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Abstract. Let A(y) ∼ A +
∑∞
k=1 Qk(log y)yσk as y → 0+, where y is a discrete or continuous

variable and Qk(ξ) are polynomials in ξ. It is assumed that σk and the degree of Qk(ξ) or an upper
bound for it are known for each k, and that A(y) is known for all possible y ∈ (0, b]. The aim is to
find A, whether it is the limit or antilimit of A(y) for y → 0+. A very effective way of doing this
is by the generalized Richardson extrapolation. In this paper this procedure is described and a very
efficient recursive algorithm for its implementation is given when the set of extrapolation points is
{yl = y0ωl, l = 0, 1, . . .} for some ω ∈ (0, 1). In addition, a complete theory of convergence and
stability for the columns and the diagonals of the corresponding extrapolation table is provided.
Finally, two applications are considered in detail, one of which is to generalized Romberg integration
of functions with algebraic and logarithmic endpoint singularities.
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1. Introduction. Let A (y) be a function of a discrete or continuous variable y,
defined for 0 < y ≤ b < ∞, and satisfying

A (y) ∼ A +
∞∑

k=1

Qk (log y) yσk as y → 0+,(1.1)

where Qk (ξ) are polynomials given as

Qk (ξ) =
qk∑

i=0

αkiξ
i for some integer qk ≥ 0,(1.2)

and

Re σ1 ≤ Re σ2 ≤ Re σ3 ≤ . . . ; σk 6= 0 for all k; lim
k→∞

Re σk = +∞.(1.3)

Thus there can be only a finite number of σk with equal real parts.
Note that if Re σ1 > 0, then limy→0+ A (y) exists and is equal to A. When

Re σ1 ≤ 0 and Q1 (ξ) 6≡ 0, however, limy→0+ A (y) does not exist, and A in this case
is said to be the antilimit of A (y) as y → 0+.

We assume that A (y) is known (computable) for all possible y > 0 and that the
σk and qk are known as well. Note that qk is an upper bound for ∂Qk, the degree of
Qk(ξ), and that ∂Qk need not be known exactly. We assume that A and αki are not
necessarily known. Our purpose is to find (or approximate) A, whether A is the limit
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or antilimit of A (y). One very effective way of doing this is through the generalized
Richardson extrapolation.

To simplify the discussion of the generalized Richardson extrapolation process in
the context of the present work, let us order the functions (log y)i

yσk as follows:

φi (y) = (log y)i−1
yσ1 , 1 ≤ i ≤ ν1 ≡ q1 + 1,

φν1+i (y) = (log y)i−1
yσ2 , 1 ≤ i ≤ ν2 ≡ q2 + 1,

φν1+ν2+i (y) = (log y)i−1
yσ3 , 1 ≤ i ≤ ν3 ≡ q3 + 1,

(1.4)

and so on.
Let us now pick a decreasing sequence {yl}∞l=0 such that yl ∈ (0, b], and liml→∞ yl =

0. Then we define the generalized Richardson extrapolation process through the linear
systems of p + 1 equations

A (yl) = Aj
p +

p∑
k=1

ᾱkφk (yl) , j ≤ l ≤ j + p,(1.5)

for each pair (j, p) of nonnegative integers. Here Aj
p and ᾱk, 1 ≤ k ≤ p, are the p + 1

unknowns, Aj
p being the approximation to A.

The approximations Aj
p to A can be arranged in a two-dimensional table in the

form
p = 0 p = 1 p = 2 p = 3 · · ·
A0

0
A1

0 A0
1

A2
0 A1

1 A0
2 Aj

0 = A (yj) , j = 0, 1, . . . .
A3

0 A2
1 A1

2 A0
3

...
...

...
...

. . .

(1.6)

As shown in numerous places (see, e.g., [Sc] and [Si1]) Aj
p can be expressed in the

form

Aj
p =

p∑
i=0

γj
p,iA (yj+i) ,(1.7)

where γj
p,i are scalars that satisfy

p∑
i=0

γj
p,i = 1(1.8)

and also
p∑

i=0

γj
p,iφk (yj+i) = 0, k = 1, 2, . . . , p.(1.9)

In fact, γj
p,i are determined by the linear equations in (1.8) and (1.9). What is

implied by (1.9) is that the extrapolation process eliminates φ1 (y) , . . . , φp (y) from
the asymptotic expansion of A (y) − A for y → 0+. All of these facts will be used in
what follows.

In the present work we pick yl such that

yl = y0ω
l, l = 1, 2, . . . , for some y0 ∈ (0, b] and ω ∈ (0, 1) .(1.10)

Obviously, {yl}∞l=0 is a decreasing sequence and liml→∞ yl = 0.
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Our purpose is to derive a simple and efficient recursive algorithm for computing
Aj

p and to give a complete convergence and stability analysis for the columns and
diagonals of the extrapolation table in (1.6). All of this has been done in [BuSt] for
the special case in which qk = 0, k = 1, 2, . . ., and σk are real satisfying 0 < σ1 <
σ2 < σ3 < · · · , and the results of the present work reduce precisely to those of [BuSt]
for this case.

Functions A (y) of the type discussed in the present work arise very naturally
as Euler–Maclaurin expansions in the trapezoidal rule approximations of integrals
whose integrands have algebraic and logarithmic singularities (at the endpoints in
one-dimensional integration and at corners and/or boundaries in multidimensional
integration). One way of computing such integrals is by applying the generalized
Romberg integration to appropriate sequences of trapezoidal rule approximations.
The generalized Romberg integration in these cases is thus precisely the generalized
Richardson extrapolation method we have described above. It also falls in the category
of the generalized Richardson extrapolation process (GREP) discussed in [Si1] and is
one of the examples of GREP there. See also the survey paper [Si3]. Even though this
approach has been used successfully in many cases, its theoretical analysis has not been
published before. It is hoped that the analysis presented here will contribute to our
understanding of the properties of this useful and practical approach. When qk = q
and σk+1 − σk = ρ, k = 1, 2, ..., for arbitrary q, ρ, and σ1, the extrapolation method
described by (1.1)–(1.9) can be shown to be a GREP. The method in this case can be
implemented very efficiently by the W (m)-algorithm of [FSi], and with arbitrary yl.

In the next section we concentrate on the algebraic aspects of the extrapola-
tion process. In Theorem 2.1 we give a closed form expression for the polynomial∑p

i=0 γj
p,iλ

i, showing at the same time that γj
p,i are independent of j. In Theorem 2.2

we derive a very efficient recursive algorithm for Aj
p, which we denote the SGRom-

algorithm for short. Finally, in Theorem 2.3 we provide a simple upper bound on
the quantity

∑p
i=0 |γj

p,i| that controls the numerical stability of Aj
p in the presence of

roundoff. All of these results turn out to be very crucial in the rest of the developments
of sections 3 and 4.

In section 3 we analyze the convergence and stability of the columns of the ex-
trapolation table. In particular, in Theorem 3.1 we provide a complete asymptotic
expansion of the error Aj

p − A for j → ∞, in Theorem 3.2 we provide the most dom-
inant terms in this error for j → ∞, and in Theorem 3.3 we prove that the columns
are stable.

In section 4 we analyze the convergence and stability of the diagonals of the
extrapolation table. In Theorem 4.1 we provide a very realistic upper bound on∣∣Aj

p − A
∣∣. Under additional conditions on σk and qk, we use this upper bound to

prove a powerful convergence result in Theorem 4.2. In Theorem 4.3 we show that
the diagonals are stable just as the columns are. One of the important contributions
of this section is the formulation of the conditions on σk and qk that guarantee both
convergence and stability in their general form.

In section 5 we apply the theory of sections 3 and 4 to two problems, one being
a generalized Romberg integration scheme for integrals with algebraic and logarith-
mic singularities. The generalized Romberg integration scheme for this case is an
extrapolation method precisely of the form described above, as we mentioned earlier.
For this example qk are uniformly bounded in k. In the second example qk increase
polynomially in k, and this case has apparently not received much attention before in
the context of generalized Richardson extrapolation.
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In section 6 we consider briefly the case in which the existence of (1.1) is known,
but σk are not available. In this case the generalized Richardson extrapolation process
is not applicable, but the ε-algorithm can be used successfully.

We note that the recursive implementation of our generalized Richardson extrap-
olation process through the SGRom-algorithm is made possible by the choice of yl

given in (1.10). For arbitrary yl (and arbitrary qk and σk) we do not have an imple-
mentation as efficient as the SGRom-algorithm. In this case we can use the algorithm
of [FSi, Appendix A] that we shall now denote the FS-algorithm for short. The FS-
algorithm is summarized also in [Si3, section 2] and [Si4, section 1]. We can also
use the E-algorithm of [Sc], different derivations for which can also be found in [H]
and [Br]. We note, however, that the FS-algorithm requires about two thirds of the
computation that is required by the E-algorithm and may thus be preferable. When
yl in (1.5) are as in (1.10), the SGRom-algorithm is superior to both the E-algorithm
and FS-algorithm. A quantitative discussion of this point is provided following the
proof of Theorem 2.2.

Finally, we would like to comment that the order in which the functions (log y)i
yσk

are eliminated in the extrapolation procedure of the present work is not the con-
ventional one. In the present work we eliminate these functions in the order i =
0, 1, 2, . . . , qk, k = 1, 2, . . ., so that φk (y) in (1.4) do not satisfy φk+1 (y) = O (φk (y))
as y → 0+ for all k = 1, 2, . . . . In the conventional order, however, i = qk,
qk − 1, . . . , 1, 0, k = 1, 2, . . ., to achieve φk+1 (y) = O (φk (y)) as y → 0+ for all
k = 1, 2, . . . . As a result, intuition would suggest that those columns of the extrapo-
lation table of (1.6) for which

∑t
i=1 νi < p <

∑t+1
i=1 νi, t = 0, 1, . . ., may not enjoy any

acceleration property. The delicate analysis of Theorem 3.2 reveals, however, that
this acceleration property is preserved under our ordering in (1.4). Furthermore, this
ordering enables the recursive SGRom-algorithm of Theorem 2.2 as well. Our efforts
to obtain a good recursive algorithm with the conventional order were not successful.

2. Algebraic properties of γj
p,i and recursive computation of Aj

p . Let us
first note that for any integer p ≥ 0 there exist unique integers t and s such that t ≥ 0
and 0 ≤ s ≤ νt+1 − 1 and

p =
t∑

k=1

νk + s,(2.1)

where νk ≡ qk +1, k = 1, 2, . . ., as already defined in (1.4). For t = 0 we take
∑t

k=1 νk

to mean zero.
Next, with p, t, and s as above, we also define the sets of integer pairs Sp and Tp

by

Sp = {(k, r) : 1 ≤ k ≤ t and 0 ≤ r ≤ qk} ∪ {(k, r) : k = t + 1 and 0 ≤ r ≤ s − 1} ,(2.2)

Tp = {(k, r) : k ≥ 1 and 0 ≤ r ≤ qk} \Sp.

In Sp, (i) when t = 0, we can have only k = 1 and 0 ≤ r ≤ s − 1, and (ii) when s = 0,
we can have only 1 ≤ k ≤ t and 0 ≤ r ≤ qk.

Note that with φk (y) as defined in (1.4), the sets of functions {φk (y)}p
k=1 and

{(log y)r
yσk}(k,r)∈Sp

are identical.

In Theorem 2.1 below we show that when yl are as given in (1.10), γj
p,i are

coefficients of a simple known polynomial. This result is somewhat surprising in view
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of the fact that the functions φk (y) in the linear systems of (1.5) that define the
extrapolation procedure are not simple at all.

THEOREM 2.1. Given the integer p ≥ 0, let t ≥ 0 and 0 ≤ s ≤ νt+1 − 1 be the
unique integers for which p is as given in (2.1). Then, with yl as given in (1.10), γj

p,i

turn out to be independent of j. Let us denote γj
p,i = γp,i. Then γp,i satisfy

p∑
i=0

γp,iλ
i =

[
t∏

i=1

(
λ − ci

1 − ci

)νi
] (

λ − ct+1

1 − ct+1

)s

≡ Up (λ) ,(2.3)

where

ck = ωσk , k = 1, 2, . . . .(2.4)

Proof. With yl as given in (1.10) and with φk (y) as defined in (1.4), equation
(1.9) becomes

p∑
i=0

γj
p,i [log y0 + (j + i) log ω]r

(
y0ω

j+i
)σk = 0, (k, r) ∈ Sp.(2.5)

Analyzing these equations in the order r = 0, 1, . . . , qk when 1 ≤ k ≤ t, and in the
order r = 0, 1, . . . , s − 1 when k = t + 1, we can see that they are equivalent to

p∑
i=0

γj
p,i (j + i)r

cj+i
k = 0, (k, r) ∈ Sp.(2.6)

But
p∑

i=0

γj
p,i(j + i)rcj+i

k =
(

λ
d

dλ

)r
(

p∑
i=0

γj
p,iλ

j+i

)∣∣∣∣∣
λ=ck

.(2.7)

Thus, combining (2.6) and (2.7), we obtain(
d

dλ

)r
(

p∑
i=0

γj
p,iλ

j+i

)∣∣∣∣∣
λ=ck

= 0, (k, r) ∈ Sp.(2.8)

It is obvious from (2.8) that the polynomial
∑p

i=0 γj
p,iλ

i has a zero of order νk at ck,
1 ≤ k ≤ t, and a zero of order s at ct+1. Also, the sum of the multiplicities of these
zeros is simply

∑t
k=1 νk + s, which is p by (2.1). This, together with (1.8), results in

(2.3).
Note. It must be emphasized that the fact that γj

p,i are independent of j is a
consequence of the choice yl = y0ω

l in (1.10).
With the help of Theorem 2.1 we prove in Theorem 2.2 below that Aj

p can be
computed by a very simple recursion relation. As this recursion relation reduces to
the Romberg algorithm when qk = 0 and σk = kδ for some δ 6= 0, k = 1, 2, ..., we
shall call it the generalized Romberg algorithm and denote it the SGRom-algorithm
for short.

THEOREM 2.2 (SGRom-algorithm). Let us define (cf. (1.4))

λi = c1, 1 ≤ i ≤ ν1,
λν1+i = c2, 1 ≤ i ≤ ν2,

λν1+ν2+i = c3, 1 ≤ i ≤ ν3,

(2.9)
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and so on. Then Aj
p can be computed recursively from

Aj
0 = A (yj) , j = 0, 1, . . . ,

Aj
p =

Aj+1
p−1 − λpA

j
p−1

1 − λp
, j = 0, 1, . . . , p = 1, 2, . . . .

(2.10)

Proof. By (2.9), the polynomial Up (λ) in (2.3) becomes simply

Up (λ) =
p∏

i=1

λ − λi

1 − λi
.(2.11)

Thus

Up (λ) =
λ − λp

1 − λp
Up−1 (λ) =

λUp−1 (λ) − λpUp−1 (λ)
1 − λp

.(2.12)

Consequently, with γk,i = 0 when i > k or i < 0, we have

γp,i =
γp−1,i−1 − λpγp−1,i

1 − λp
, 0 ≤ i ≤ p.(2.13)

The result in (2.10) now follows by substituting (2.13) in (1.7).
Given A(yl), l = 0, 1, ..., N , the generalized Richardson extrapolation process pro-

duces the approximations Aj
p, 0 ≤ j + p ≤ N . The SGRom-algorithm computes all

these Aj
p in O(N2) arithmetic operations as is clear from (2.10). The FS- and E-

algorithms, on the other hand, need O(N3) arithmetic operations for the same task,
the FS-algorithm being the more efficient of the two. The latter two also require more
storage than the SGRom-algorithm.

Next, we give a simple result concerning |γj
p,i| = |γp,i|.

THEOREM 2.3. Under the conditions of Theorem 2.1 |γj
p,i| = |γp,i| satisfy

p∑
i=0

∣∣∣γj
p,i

∣∣∣ |z|i ≤
[

t∏
i=1

(
|z| + |ci|
|1 − ci|

)νi
] (

|z| + |ct+1|
|1 − ct+1|

)s

.(2.14)

In particular, we have

p∑
i=0

∣∣∣γj
p,i

∣∣∣ ≤
[

t∏
i=1

(
1 + |ci|
|1 − ci|

)νi
] (

1 + |ct+1|
|1 − ct+1|

)s

.(2.15)

If ci, 1 ≤ i ≤ t + 1, all have the same phase, then equality holds both in (2.14) and
(2.15). This holds, in particular, when ci, 1 ≤ i ≤ t+1, are all real positive or all real
negative. Furthermore, we have

∑p
i=0 |γj

p,i| = 1 for the case ci < 0, 1 ≤ i ≤ t + 1.
Proof. Let Q (z) =

∑n
i=0 aiz

i, an = 1, and denote its zeros by z1, . . . , zn. Then
(−1)i

an−i =
∑

k1<···<ki

∏i
s=1 zks , i = 1, 2, . . . , n. Thus |an−i| ≤

∑
k1<···<ki

∏i
s=1 |zks | ≡

ãn−i, i = 1, 2, . . . , n. Set ãn = 1. Consequently,

p∑
i=0

|ai| |z|i ≤
p∑

i=0

ãi |z|i =
n∏

i=1

(|z| + |zi|) ,

whether ai and/or zi are real or complex.
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Applying this result in conjunction with Theorem 2.1, we obtain (2.14) and hence
(2.15). The rest follows from the observation that |an−i| = ãn−i, i = 1, 2, . . . , n, when
the zi all have the same phase.

It is important to mention that to a large extent the quantity
∑p

i=0 |γj
p,i| controls

the numerical stability of Aj
p with respect to roundoff. The upper bound on

∑p
i=0 |γj

p,i|
in (2.15) thus gives very reliable information on the numerical quality of Aj

p in floating
point arithmetic. For details see [Si1].

We would like to note that both Theorems 2.1 and 2.3 are of critical importance
in the convergence and stability analyses that we provide in the next two sections.

Finally, we mention that with yl as in (1.10), (1.1) and (1.2) give the asymptotic
expansion

A (yn) ∼ A +
∞∑

k=1

(
qk∑

i=0

βkin
i

)
cn
k as n → ∞ ,(2.16)

where βki depend linearly on αkr, i ≤ r ≤ qk, and βkqk = αkqky
σk
0 (log ω)qk , and ck is

as given in (2.4).
Consequently, the extrapolation process, the SGRom-algorithm, and all of the

theoretical developments of this paper directly apply to sequences {Sn}∞n=0 satisfying

Sn ∼ S +
∞∑

k=1

(
qk∑

i=0

βkin
i

)
cn
k as n → ∞,(2.17)

as well.

3. Convergence and stability of columns. In this section we will be con-
cerned with the problems of convergence and stability of the sequences

{
Aj

p

}∞
j=0

,
where p is held fixed. These appear as columns of the extrapolation table in (1.6). In
Theorem 3.1 below we give a complete asymptotic expansion of Aj

p − A for j → ∞.
In Theorem 3.2 we analyze the dominant terms in this expansion and provide both
quantitative and qualitative results for Aj

p − A as j → ∞.
As ck, rather than σk, are involved in the analysis of this section as well as the

next one, it is important to make the following observations about ck:
(i) |c1| ≥ |c2| ≥ |c3| ≥ · · ·, and |ci| = |cj | if and only if Re σi = Re σj ;
(ii) ck 6= 1, k = 1, 2, . . ., and limk→∞ ck = 0.

These follow from (1.3), (2.4), and from |ck| = ωRe σk .
THEOREM 3.1. Given the integer p, let the integers t ≥ 0 and 0 ≤ s ≤ νt+1 − 1

and the set Tp be as in (2.1) and (2.2), respectively. Then, with the polynomial Up (λ)
as defined in (2.3) of Theorem 2.1, we have the asymptotic expansion

Aj
p − A ∼

∑
(k,r)∈Tp

βkr

{(
λ

d

dλ

)r [
λjUp (λ)

]∣∣∣∣
λ=ck

}
as j → ∞.(3.1)

Proof. From (1.7), (1.8), and (2.16) we have

Aj
p − A =

p∑
i=0

γp,i [A (yj+i) − A]

∼
p∑

i=0

γp,i

∞∑
k=1

[
qk∑

r=0

βkr (j + i)r

]
cj+i
k as j → ∞.

(3.2)
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Interchanging the order of summation, and invoking (2.6), we can rewrite (3.2) in the
form

Aj
p − A ∼

∑
(k,r)∈Tp

βkr

[
p∑

i=0

γp,i (j + i)r
cj+i
k

]
as j → ∞.(3.3)

The result in (3.1) now follows by invoking (2.7) in (3.3).
A cursory look at the asymptotic expansion given in (3.1) shows that the error

Aj
p −A is at worst O(j q̂cj

t+1) as j → ∞, where q̂ = max {qk : |ck| = |ct+1| , k ≥ t + 1}.
This is due to the fact that (t + 1, qt+1) ∈ Tp. This result is not the best possible,
however, and can be improved upon by a more careful analysis of (3.1). We do this in
Theorem 3.2 below, in which we also provide the dominant terms in (3.1) explicitly.

THEOREM 3.2. With p, t, and s as in Theorem 3.1, let µ be that integer for which

|ct+1| = · · · = |ct+µ| > |ct+µ+1| .(3.4)

(i) When s = 0, Aj
p satisfies

Aj
p − A =

t+µ∑
k=t+1

{
βkqkUp (ck) cj

kjqk + o
(
cj
kjqk

)}
as j → ∞.(3.5)

(ii) When 0 < s ≤ νt+1 − 1, Aj
p satisfies

Aj
p − A = βt+1,qt+1

(
qt+1

s

)
U (s)

p (ct+1) cj+s
t+1jqt+1−s + o

(
cj
t+1j

qt+1−s
)

+
t+µ∑

k=t+2

{
βkqkUp (ck) cj

kjqk + o
(
cj
kjqk

)}
as j → ∞.

(3.6)

(iii) As a consequence of (i) and (ii), for all s, 0 ≤ s ≤ νt+1 − 1, we have

Aj
p − A = O

(
|ct+1|j j q̄

)
as j → ∞,(3.7)

where

q̄ = max (qt+1 − s, qt+2, . . . , qt+µ) .(3.8)

Proof. We start by observing that the dominant terms in the asymptotic expan-
sion given in (3.1) are those with k = t + 1, . . . , t + µ. This can be seen very easily
from the identical asymptotic expansion given in (3.3).

To prove (i) we first note that when s = 0, Up (ck) 6= 0 for all k ≥ t + 1. Thus,
for all (k, r) ∈ Tp,

p∑
i=0

γp,i (j + i)r
cj+i
k ∼

p∑
i=0

γp,ij
rcj+i

k as j → ∞

∼ Up (ck) cj
kjr as j → ∞.

(3.9)

It follows from (3.9) that, for any k ≥ t + 1, of all the terms with 0 ≤ r ≤ qk in (3.1),
the one with r = qk is the most dominant. With this the proof of (3.5) can now be
completed.
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The proof of (ii) proceeds along the same lines as that of (i). As in the previous
case we have Up (ck) 6= 0 for k ≥ t + 2, from which we deduce the validity of the
summation on the right-hand side of (3.6). For k = t+1, however, we have Up (ct+1) =
0, hence (3.9) is not valid for this case, and we need a more detailed analysis. To this
effect we observe that for any function f (λ)(

λ
d

dλ

)r [
λjf (λ)

]
=

r∑
i=0

υri (j) λj+if (i) (λ) ,(3.10)

where υr0 (j) = jr and υrr (j) = 1, and

υri (j) ∼
(

r
i

)
jr−i as j → ∞, 0 ≤ i ≤ r.(3.11)

The proof of (3.10) and (3.11) can be achieved by induction, and we leave its details
to the interested reader. By (3.10) and the fact that U

(i)
p (ct+1) = 0, 0 ≤ i ≤ s − 1,

we have for r ≥ s(
λ

d

dλ

)r [
λjUp (λ)

]∣∣∣∣
λ=ct+1

=
r∑

i=s

υri (j) cj+i
t+1U

(i)
p (ct+1) .(3.12)

For j → ∞ the most dominant term in this summation is that with i = s and it is
of order cj

t+1j
r−s. As s ≤ r ≤ qt+1 when k = t + 1 in (3.12), we therefore have that

the most dominant of the terms with k = t + 1 and s ≤ r ≤ qt+1 in (3.1) is that with
r = qt+1. By (3.12) and (3.11) this term is asymptotically equivalent to

βt+1,qt+1

(
qt+1

s

)
U (s)

p (ct+1) cj+s
t+1jqt+1−s

as j → ∞. The proof of the result in (3.6) can now be completed.
COROLLARY. Provided µ = 1 and βt+1,qt+1 6= 0 in Theorem 3.2, for any s =

0, 1, . . . , νt+1 − 1 we have

Aj
p − A ∼ βt+1,qt+1

(
qt+1

s

)
U (s)

p (ct+1) cj+s
t+1jqt+1−s as j → ∞.(3.13)

This is the case when |c1| > |c2| > |c3| > · · ·, for example. Consequently, in case
|ct+1| < 1, limj→∞Aj

p = A for all s, 0 ≤ s < νt+1 − 1, and the column for which s
is larger converges more quickly than the preceding ones.

In connection with Theorem 3.2 and its corollary we note that βkqk 6= 0 in (2.16)
if and only if αkqk 6= 0 in (1.2).

Note. The results of Theorems 3.1 and 3.2 and its corollary are valid whether
limj→∞Aj

p exists or not. Obviously, limj→∞Aj
p = A when |ct+1| < 1, i.e., when

Re σt+1 > 0, even when some or all of |c1| , . . . , |ct| may be greater than or equal to
unity.

With the question of convergence of columns of the extrapolation table in (1.6)
settled, we now turn to the question of stability.

THEOREM 3.3. The extrapolation process that generates the sequences
{
Aj

p

}∞
j=0

with p fixed is stable in the sense that

sup
j

p∑
i=0

∣∣∣γj
p,i

∣∣∣ < ∞.(3.14)

Proof. The result follows from the fact that the γj
p,i are all independent of j as

proved in Theorem 2.1.



1770 AVRAM SIDI

4. Convergence and stability of diagonals. In this section we will be con-
cerned with the problems of convergence and stability of the sequences

{
Aj

p

}∞
p=0

,
where j is held fixed. These appear as the diagonals of the extrapolation table in
(1.6). In Theorem 4.1 we give an upper bound on

∣∣Aj
p − A

∣∣ that is suitable for anal-
ysis as p → ∞. In Theorem 4.2 we provide this analysis under additional realistic
assumptions. In Theorem 4.3 we give the corresponding stability result.

First, with p, t, s as in the first paragraph of section 2, and with the set Sp as in
the second paragraph there, we define Rp (y) by

A (y) − A =
∑

(k,r)∈Sp

αkr (log y)r
yσk + Rp (y) .(4.1)

Let us set

q̂ = max {qk : |ck| = |ct+1| , k ≥ t + 1} .(4.2)

Then we can see from (1.1)–(1.3) that

|Rp (y)| ≤ α̂p |log y|q̂ yRe σt+1 for some constant α̂p > 0.(4.3)

From this we also have

|Rp (yn)| ≤ β̂pn
q̂ |ct+1|n ,(4.4)

with

β̂p = α̂p (|log y0| + |log ω|)q̂
y

Re σt+1
0 .(4.5)

THEOREM 4.1. With p, t, s, q̂, and β̂q as above, we have

∣∣Aj
p − A

∣∣ ≤ β̂p (j + p)q̂ |ct+1|j
[

t∏
i=1

(
|ct+1| + |ci|

|1 − ci|

)νi
] (

2 |ct+1|
|1 − ct+1|

)s

.(4.6)

Proof. Substituting (4.1) in the equality in (3.2), and invoking (1.9), we obtain

Aj
p − A =

p∑
i=0

γp,iRp (yj+i) ,(4.7)

which by (4.4) becomes

∣∣Aj
p − A

∣∣ ≤ β̂p

p∑
i=0

|γp,i| (j + i)q̂ |ct+1|j+i

≤ β̂p (j + p)q̂ |ct+1|j
p∑

i=0

|γp,i| |ct+1|i .

(4.8)

The result in (4.6) now follows by invoking (2.14) of Theorem 2.3 in the last summation
of (4.8).

Let 1 = k1 < k2 < k3 < · · · be the (smallest) positive integers for which

Re σki < Re σki+1 and Re σm = Re σki , ki ≤ m < ki+1, i = 1, 2, . . . .(4.9)
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By the fact that |ci| = ωRe σi , (4.9) is equivalent to

|cki | >
∣∣cki+1

∣∣ and |cm| = |cki | , ki ≤ m < ki+1, i = 1, 2, . . . .(4.10)

Let us now define

µi = ki+1 − ki and Ni =
µi−1∑
m=0

νki+m, i = 1, 2, . . . .(4.11)

Thus the number of σm whose real parts are equal to Reσki or, equivalently, the
number of cm whose moduli are equal to |cki | is µi, and the sum of their respective
multiplicities νm is Ni.

THEOREM 4.2. Assume that σk are such that

Re
(
σki+1 − σki

)
≥ M > 0, i = 1, 2, . . . , for some fixed M > 0.(4.12)

Assume also that Ni satisfy

lim inf
i→∞

Ni/ia = D and lim sup
i→∞

Ni/ib = E for some D > 0, E > 0, and

0 ≤ a ≤ b with a + 2 > b.

(4.13)

If, for ki ≤ k < ki+1, all of the αkm in (1.2) grow at most like Biu for B > 1
and u < a + 2, and Re σki = O(iu

′
) as i → ∞ with u′ < a + 2 when y0 > 1, then

limp→∞Aj
p = A whether limy→0+ A(y) exists or not.

Let K̃ = ωDM/(a+2). Let also kr+1 ≤ t + 1 < kr+2 for some r. Then, for any
ε > 0 for which K̃ + ε < 1, there exists a positive integer p0 such that

∣∣Aj
p − A

∣∣ ≤
(
K̃ + ε

)ra+2

for all p ≥ p0.(4.14)

Note that r is uniquely determined by t, and t is uniquely determined by p from (2.1).
Also, r = O

(
p1/(a+1)

)
as p → ∞, so that r → ∞ as p → ∞. The result in (4.14) can

also be expressed as

∣∣Aj
p − A

∣∣ ≤
(
L̃ + ε

)p(a+2)/(b+1)

for all p ≥ p0,(4.15)

where L̃ = ωτ < 1, τ = DM
a+2

(
b+1
E

)(a+2)/(b+1)
.

Proof. Let us rewrite (4.6) as

(4.16)∣∣Aj
p − A

∣∣ ≤
{[

t∏
i=1

(
1 + |ct+1/ci|

|1 − ci|

)νi
] (

2
|1 − ct+1|

)s
}

β̂p

∣∣∣∣∣
t∏

i=1

cνi
i

∣∣∣∣∣ ∣∣∣cs+j
t+1

∣∣∣ (j + p)q̂
.

(i) First, we show that the infinite products
∏∞

i=1 |1 − ci|νi and
∏∞

i=1 (1 + |ci|)νi

converge under (4.12) and (4.13). To show this it is sufficient to demonstrate that∑∞
i=1 νi |ci| converges. We have

∞∑
i=1

νi |ci| =
∞∑

i=1

Ni |cki | ≤ E1

∞∑
i=1

ib |cki | ,(4.17)
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where we have used the fact that Ni ≤ E1i
b, i = 1, 2, . . ., for some E1 > E that

follows from (4.13). The result follows from the convergence of
∑∞

i=1 ib |cki |, which
can be verified by the ratio test upon invoking∣∣∣∣cki+1

cki

∣∣∣∣ ≤ ωM < 1, i = 1, 2, . . . ,(4.18)

that follows from (4.12).
The fact that

∏∞
i=1 |1 − ci|νi converges implies that (

∏t
i=1 |1 − ci|νi)|1 − ct+1|s in

(4.16) is bounded away from zero for all p.
(ii) Next, we show that

Wp = 2s
t∏

i=1

(1 + |ct+1/ci|)νi ≤ Hrb for some H > 1.(4.19)

From s < νt+1, Ni ≤ E1i
b, i = 1, 2, . . ., and |ct+1| = |ckr+1 | which follows from

kr+1 ≤ t + 1 < kr+2, it follows that

Wp ≤
t+1∏
i=1

(1 + |ct+1/ci|)νi ≤
kr+2−1∏

i=1

(1 + |ct+1/ci|)νi(4.20)

≤
r+1∏
i=1

(
1 + |ckr+1/cki |

)Ni ≤
[

r+1∏
i=1

(
1 +

∣∣ckr+1/cki

∣∣)]E2rb

for some E2 > E1.

From (4.18)

r+1∏
i=1

(
1 + |ckr+1/cki |

)
≤

r+1∏
i=1

(
1 + Kr+1−i

)
=

r∏
i=0

(
1 + Ki

)
(4.21)

with K = ωM < 1. Since
∏∞

i=0

(
1 + Ki

)
converges,

∏r
i=0

(
1 + Ki

)
is bounded for all

r, say, by H1/E2 > 1. The result in (4.19) now follows.
(iii) Next, we prove that for all large p, and for ε > 0 but arbitrary,

V j
p =

∣∣∣∣∣
t∏

i=1

cνi
i

∣∣∣∣∣ ∣∣∣cs+j
t+1

∣∣∣ ≤ (K̃ + ε)ra+2[1+η(r)], η (r) = O
(
r−1) as r → ∞.(4.22)

First, we observe that
∑t

i=1 νi ≤ p ≤
∑t+1

i=1 νi so that p → ∞ implies t → ∞ and
vice versa. Also, from the fact that

∑r
i=1 Ni ≤ p ≤

∑r+1
i=1 Ni and from (4.13), we

have that p → ∞ implies r → ∞ and vice versa, and that p = O
(
rb+1

)
as r → ∞

and r = O
(
p1/(a+1)

)
as p → ∞. From limk→∞ ck = 0 it follows that |ck| ≤ 1 for all

k ≥ m+1, m being a fixed nonnegative integer. Thus, for p sufficiently large, we have
|ck| ≤ 1 for k ≥ kr+1. With this and with |ct+1| =

∣∣ckr+1

∣∣ we have

V j
p ≤

∣∣∣∣∣
t∏

i=1

cνi
i

∣∣∣∣∣ ≤

∣∣∣∣∣∣
kr+1−1∏

i=1

cνi
i

∣∣∣∣∣∣ =

∣∣∣∣∣
r∏

i=1

cNi
ki

∣∣∣∣∣ = ωXr ,(4.23)

where

Xr =
r∑

i=1

Ni Re σki .(4.24)
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But from (4.12) we have Re σki ≥ Re σ1 + (i − 1) M , i = 1, 2, . . . . Substituting this
in (4.24), and using the fact that, given ε > 0 arbitrary and sufficiently close to zero,
there exists a positive integer i0 such that Ni > (D − ε) ia for i > i0, we obtain

Xr ≥
r∑

i=1

Ni [Re σ1 + (i − 1) M ] >
(D − ε) M

a + 2
ra+2 [1 + η (r)] ,

η (r) = O
(
r−1) as r → ∞.

(4.25)

With this the proof of (4.22) is now complete.
(iv) Next, we have also

(j + p)q̂ = O
(
r(b+1)E1rb

)
as r → ∞.(4.26)

This follows from p = O
(
rb+1

)
as r → ∞ and from q̂ ≤ Nr+1 and from (4.13).

(v) The growth condition on the αkm and on Re σki , together with the connection
between the αkm, kr+1 ≤ k < kr+1, and α̂p, and the connection between β̂p and α̂p

given in (4.5), suggest that β̂p = O
(
Bru1

1
)

as r → ∞ for some B1 > 1 and u1 < a+2.
Finally, by combining the results in (i)–(v), we obtain the result given in (4.14).

The result in (4.15) can be obtained by using the fact that lim supp→∞
(
p/rb+1

)
≤

E/ (b + 1), which follows from (4.13) and
∑r

i=1 Ni ≤ p ≤
∑r+1

i=1 Ni.
Remarks.
(1) The conditions that are imposed on σk, Ni, and αkm in Theorem 4.2 may

seem to be arbitrary at first, but they are, in fact, naturally satisfied in many cases of
practical interest. In addition to guaranteeing quick convergence, these conditions also
guarantee stability for the diagonals, as we show in Theorem 4.3 below. The condition
in (4.13) that is imposed on Ni can be achieved when Fkθ1 ≤ νk ≤ F ′kθ′1 for all k and
Giθ2 ≤ µi ≤ G′iθ

′
2 for all i, for 0 ≤ θ1 ≤ θ′1 and for 0 ≤ θ2 ≤ θ′2. In connection with

the growth condition on the αkm, it is worth mentioning that this condition is a mild
and rather comprehensive one; it includes, for example, αkm = O ((di)!) as i → ∞,
for any d > 0, where ki+1 ≤ k < ki+2.

(2) When a 6= b and/or D 6= E in (4.13), the results in (4.14) and (4.15) are not
equivalent. Although (4.14) implies (4.15), the opposite is not always valid. Only
when a = b and D = E does (4.15) imply (4.14). Thus (4.14) is the stronger of the
two results in general. We have included (4.15) since we would also like to have a
bound on

∣∣Aj
p − A

∣∣ involving p itself. The situation in which a = b and D = E can
be achieved when Ni ∼ Cia as i → ∞, for then D = E = C. This prevails when
νk ∼ Fkθ1 as k → ∞ and µi ∼ Giθ2 as i → ∞ for some θ1 ≥ 0 and θ2 ≥ 0. For
example, for the case treated in [BuSt] we have, for all k and i, νk = 1, µi = 1, and
hence Ni = 1, which implies D = E = 1 and a = b = 0; consequently, |Aj

p − A| is
practically O(ωMp2/2) as p → ∞, and this is precisely what is given in [BuSt].

(3) From the proof of Theorem 4.2 we see that what determines the issues of
convergence and rate of convergence of Aj

p for p → ∞ is the factor |
∏t

i=1 cνi
i | that

behaves at worst like L̃p(a+2)/(b+1)
under the given conditions. It is this factor that

explains the remarkably quick convergence of the sequences
{
Aj

p

}∞
p=0

.
With the issue of convergence settled, we now go on to investigate the issue of

stability.
THEOREM 4.3. Under the conditions of Theorem 4.1 γj

p,i = γp,i satisfy

lim sup
p→∞

p∑
i=0

∣∣∣γj
p,i

∣∣∣ ≤
∞∏

i=1

(
1 + |ci|
|1 − ci|

)νi

< ∞.(4.27)
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As a result, the extrapolation process that provides the sequences
{
Aj

p

}∞
p=0

with j fixed
is stable in the sense that

sup
p

p∑
i=0

∣∣∣γj
p,i

∣∣∣ < ∞.(4.28)

Furthermore, when ci, i = 1, 2, . . . , all have the same phase, lim sup and “≤” in
(4.27) are to be replaced by lim and “=”, respectively. This holds, in particular, when
ci, i = 1, 2, . . ., are all real positive or all real negative. When ci < 0, i = 1, 2, . . ., we
have

∑p
i=0 |γj

p,i| = 1 for all p.
Proof. The inequalities in (4.27) follow from (2.15) and from the convergence of

the infinite products
∏∞

i=1 (1 + |ci|)νi and
∏∞

i=1 |1 − ci|νi that was proved in part (i)
of the proof of Theorem 4.2. The inequality in (4.28) follows directly from (4.27).
The rest follows from the last part of Theorem 2.3.

5. Examples. We now demonstrate the results of the previous sections with two
examples. The first one comes from the numerical integration of a function having
a logarithmic endpoint singularity by the trapezoidal rule. In this example νk, µi,
and hence Ni (cf. (4.11)) are all bounded, i.e., a = b = 0 in (4.13). In the second
example νk and hence Ni are unbounded with a = b = 1 in (4.13). To the best of
our knowledge cases with unbounded νk have not received enough attention in the
context of generalized Richardson extrapolation before.

The computations reported in this section were carried out in double precision
arithmetic on an IBM-370 computer at the University of Connecticut in Storrs, Con-
necticut.

Example 5.1. Consider the integral

Iq =
∫ 1

0
(log x)q

xαg (x) dx, q = 0, 1, . . . , Re α > −1, g (x) ∈ C∞ [0, 1] ,(5.1)

and the (modified) trapezoidal rule approximation to it

Tq (h) = h
m−1∑
i=1

Gq (ih) +
h

2
Gq (1) ;

Gq (x) ≡ (log x)q
xαg (x) and h = 1/m, m = 1, 2, . . . .

(5.2)

Note that Tq(h) does not include Gq(0) which is usually undefined for q > 0 and/or
Re α < 0. Also, note that Gq(1) = 0 for q > 0.

Theorem 5.1 below gives the Euler–Maclaurin expansion for the error Tq (h) − Iq

as h → 0.
THEOREM 5.1. The approximation Tq (h) satisfies

Tq (h) − Iq ∼
∞∑

j=1

a
(q)
j h2j +

∞∑
j=0

[
q∑

i=0

b(q)
ji

(log h)i

]
hα+j+1 as h → 0(5.3)

for some constants a
(q)
j and b

(q)
ji that are independent of h. Actually,

a
(q)
j =

B2j

(2j)!
G(2j−1)

q (1) , j = 1, 2, . . . ,

b
(q)
ji =

(
q
i

) [
dq−i

dαq−i
ζ (−α − j)

]
g(j) (0)

j!
, 0 ≤ i ≤ q, j = 0, 1, . . . ,

(5.4)

where Bi are the Bernoulli numbers and ζ (z) is the Riemann zeta function.
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Proof. The result in (5.3) and (5.4) when q = 0 is a special case of that given in
[Na1]. The result for q = 1 is similarly a special case of that given in [Na2], and it is
obtained by differentiating both sides of (5.3) (with q = 0 there) once with respect to
α. Applying this technique of differentiation with respect to α q times on both sides
of (5.3) (with q = 0 there), we obtain the required result.

We observe that for all values of Re α > −1, whether α is integral or not, and for
all integers q ≥ 0, Tq (h) in (5.2) is precisely of the form described in (1.1) and (1.2),
with qk ≤ q, k = 1, 2, . . . , and 0 < Re σ1 < Re σ2 < · · ·, such that limk→∞ Re σk =
+∞; cf. (1.3).

Letting now h = hn = 2−n in (5.2), and denoting Sn = Tq (hn) , n = 0, 1, . . ., and
S = Iq, after some manipulation (5.3) becomes

Sn ∼ S +
∞∑

j=1

ãjρ
n
j +

∞∑
j=0

(
q∑

i=0

b̃jin
i

)
τn
j as n → ∞,(5.5)

where ρj = 2−2j , τj = 2−α−j−1, and ãj = a
(q)
j , b̃ji = (− log 2)i

b
(q)
ji . Of course, (5.5)

is of the form given in (2.16).
When −1 < Re α < 0, we have

c3k+1 = τ2k, q3k+1 = q,

c3k+2 = τ2k+1, q3k+2 = q, k = 0, 1, . . . ,

c3k+3 = ρk+1, q3k+3 = 0,

(5.6)

and |c1| > |c2| > |c3| > · · ·.
When α = 0, we have

ck = τk−1 = 2−k, k = 1, 2, . . . ,(5.7)

and thus c1 > c2 > c3 > · · ·. Also,

q1 = q; q2k = q, q2k+1 = q − 1, k = 1, 2, . . . ,(5.8)

since ζ (0) 6= 0 and ζ (−2m) = 0, ζ (−2m + 1) 6= 0, m = 1, 2, . . . .
In all cases Theorem 3.2 applies and all of the columns of the extrapolation table

converge, the rates of convergence being given by (3.13) in the corollary to Theorem
3.2. Of course, this is subject to (5.6) when −1 < Re α < 0 and subject to (5.7) and
(5.8) when α = 0.

Also, the additional conditions of Theorem 4.2 that are imposed on σk and qk are
automatically satisfied with a = b = 0 in (4.13). If also the function g (x) is such that
max0≤x≤1

∣∣g(m) (x)
∣∣ = O ((dm)!) as m → ∞ for an arbitrary constant d , then the

constants ãm and b̃mi, i = 0, 1, . . . , in (5.5) are at worst O ((d′m)!) as m → ∞ for some
constant d′. In proving this we make use of the facts that B2m/(2m)! = O((2π)−2m)
as m → ∞ and ζ (−2m + 1) = O((2m−1)!(2π)−2m) as m → ∞. As a result, Theorem
4.2 applies, and all of the diagonals of the extrapolation table converge.

Finally, both the columns and the diagonals are stable as implied by Theorems
3.3 and 4.3.

Before closing this section we mention that the results of [Na1] and [Na2] have
been obtained in [LNi] by using entirely different techniques. Generalizations of the
expansion in Theorem 5.1 to multidimensional integrals of singular functions have
been given in [L], [LM], [ML], and [Si2].
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TABLE 5.1
Relative errors in Ajp for the integral I1 =

∫ 1
0 log x/ (1 + x)2 dx = − log 2 of Example 5.1.

j p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
0 1.0D+00
1 7.8D−01 5.6D−01
2 5.4D−01 2.9D−01 2.9D−02
3 3.4D−01 1.4D−01 7.4D−03 2.0D−02
4 2.0D−01 6.8D−02 5.6D−03 5.0D−03 2.0D−04
5 1.2D−01 3.3D−02 2.2D−03 1.1D−03 2.1D−04 2.7D−04
6 6.7D−02 1.6D−02 7.4D−04 2.5D−04 3.9D−05 1.4D−05 3.5D−06
7 3.8D−02 8.0D−03 2.3D−04 5.8D−05 5.0D−06 1.4D−07 7.6D−07 5.8D−07
8 2.1D−02 4.0D−03 6.8D−05 1.4D−05 5.9D−07 3.5D−08 4.6D−08 1.5D−09 2.0D−08
9 1.1D−02 2.0D−03 2.0D−05 3.4D−06 7.0D−08 4.4D−09 2.4D−09 5.0D−10 4.7D−10

10 6.2D−03 9.8D−04 5.5D−06 8.5D−07 8.4D−09 4.0D−10 1.3D−10 2.0D−11 3.9D−12

We have applied the SGRom-algorithm of Theorem 2.2 to the integral∫ 1

0

log x

(1 + x)2 dx = − log 2,

precisely as described above. We thus have ck = 2−k, k = 1, 2, . . ., and q1 = 1,
q2k = 1, q2k+1 = 0, k = 1, 2, . . . . As a result, Ni = νi = qi + 1, so that 1 ≤ Ni ≤ 2 for
all i, giving D = 1, E = 2 , and a = b = 0 in (4.13). Also, M = 1 in (4.12). Finally,
by the analyticity of 1/ (1 + x)2 at x = 0 and of log x/ (1 + x)2 at x = 1, it turns
out that the growth condition on αkm in Theorem 4.2 is also satisfied. Therefore,
Theorems 4.2 and 4.3 apply, and we have |Aj

p − A| ≤ (ω1/8 + ε)p2
.

Table 5.1 shows the relative errors in Aj
p. Note the absolute stability of Aj

p both
in columns and diagonals.

Example 5.2. A (y) = (1 − y log y) /
(
1 − 2y log y + y2

)
. This A (y) has the asymp-

totic expansion

A (y) ∼ 1 +
∞∑

k=1

ykTk (log y) as y → 0+,

where Tk (z) are the Chebyshev polynomials of the first kind. Thus σk = k and qk = k,
k = 1, 2, . . . . The validity of this asymptotic expansion can be shown as follows: we
first have the identity

1 − xz

1 − 2xz + z2 =
N−1∑
k=0

zkTk (x) + zN TN (x) − zTN−1 (x)
1 − 2xz + z2

that is valid for all x and z as long as 1 − 2xz + z2 6= 0. Now let z = y and
x = log y. The left-hand side of the identity above becomes A (y), the summation on
the right-hand side becomes

∑N−1
k=0 ykTk (log y), and the remaining term is precisely

O
(
yNTN (log y)

)
as y → 0+.

We have applied the SGRom-algorithm of Theorem 2.2 to this example, taking
yn = 2−n, n = 0, 1, . . .. We thus have ck = 2−k, qk = k, k = 1, 2, . . .. As a result
Ni = i + 1, i = 1, 2, . . ., giving D = E = 1 and a = b = 1 in (4.13). Also, M = 1
in (4.12). Finally, a straightforward analysis of the coefficients of the Chebyshev
polynomial Tk (x) reveals that the growth condition imposed on the αkm in Theorem
4.2 is satisfied. Therefore, Theorems 4.2 and 4.3 apply.

Table 5.2 shows the relative errors in Aj
p. Note the absolute numerical stability

of Aj
p both in columns and in diagonals.
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TABLE 5.2
Relative errors in Ajp for Example 5.2.

j p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
0 5.0D−01
1 3.1D−01 1.1D−01
2 2.3D−01 1.6D−01 2.0D−01
3 1.8D−01 1.3D−01 9.3D−02 5.6D−02
4 1.3D−01 8.3D−02 4.0D−02 2.2D−02 1.1D−02
5 9.0D−02 4.8D−02 1.4D−02 4.8D−03 1.0D−03 5.1D−03
6 5.8D−02 2.6D−02 3.0D−03 4.8D−04 2.3D−03 2.7D−03 2.3D−03
7 3.5D−02 1.3D−02 6.4D−05 9.3D−04 1.1D−03 6.9D−04 4.0D−04 1.3D−04
8 2.1D−02 6.3D−03 3.4D−04 4.8D−04 3.3D−04 8.1D−05 5.8D−06 6.4D−05 9.1D−05
9 1.2D−02 3.0D−03 2.2D−04 1.8D−04 7.9D−05 4.7D−06 1.7D−05 1.9D−05 1.2D−05

10 6.7D−03 1.5D−03 9.8D−05 5.8D−05 1.7D−05 3.9D−06 3.8D−06 1.9D−06 4.7D−07
11 3.7D−03 7.1D−04 3.7D−05 1.7D−05 3.5D−06 8.9D−07 4.6D−07 2.1D−08 3.0D−07
12 2.0D−03 3.5D−04 1.3D−05 4.9D−06 7.9D−07 1.3D−07 2.4D−08 3.7D−08 3.9D−08
13 1.1D−03 1.7D−04 4.3D−06 1.4D−06 1.9D−07 1.4D−08 3.4D−09 7.4D−09 3.2D−09
14 5.9D−04 8.6D−05 1.3D−06 3.7D−07 4.6D−08 4.7D−10 1.4D−09 1.1D−09 2.1D−10
15 3.2D−04 4.3D−05 4.1D−07 1.0D−07 1.2D−08 2.1D−10 3.1D−10 1.5D−10 1.7D−11
16 1.7D−04 2.1D−05 1.2D−07 2.8D−08 3.0D−09 7.6D−11 5.7D−11 2.1D−11 2.2D−12
17 9.0D−05 1.1D−05 3.7D−08 7.5D−09 7.6D−10 1.8D−11 9.7D−12 2.9D−12 3.3D−13
18 4.8D−05 5.3D−06 1.1D−08 2.0D−09 1.9D−10 3.6D−12 1.6D−12 4.0D−13 4.3D−14
19 2.5D−05 2.6D−06 3.1D−09 5.4D−10 4.9D−11 6.7D−13 2.5D−13 6.0D−14 1.1D−14
20 1.3D−05 1.3D−06 8.8D−10 1.4D−10 1.2D−11 1.2D−13 3.7D−14 7.1D−15 3.9D−16

6. Concluding remarks. As mentioned in section 1, our generalized Richard-
son extrapolation process needs the integers qk, the (real or complex) numbers σk, and
yl in (1.10) as input. This means, obviously, that we need to know that A(y) is of the
form given in (1.1) and (1.2), and we need to know σk in (1.1) and qk in (1.2) as well.

When we know that A(y) is of the form given in (1.1) and (1.2), but we have no
knowledge of σk, the generalized Richardson extrapolation above cannot be applied.
Instead, the Shanks transformation of [Sh] or the equivalent ε-algorithm of [W] can
be applied to the sequence {A(yn)}∞n=0 with yl as in (1.10). The convergence of the
columns of the epsilon table on sequences {Sn}∞n=0 with Sn as in (2.17) has been
analyzed in great detail in the recent work [Si6]. Recall that, with yl as in (1.10),
the sequence {A(yn)}∞n=0 is exactly of the form given in (2.17). Furthermore, the
ck in (2.17) (hence the σk in (1.1)) and the precise degrees of the Qk(ξ) in (1.2)
can be obtained from the denominators of the Padé approximants associated with
the formal power series f(z) := S0 +

∑∞
i=1(Si − Si−1)zi. In fact, the reciprocals of

the poles of these Padé approximants approximate ck under certain mild conditions.
This approach has been proposed in [Si5, section 7], where the construction of good
approximations to the ck is described and a detailed convergence analysis is given.
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