

Journal of Computational and Applied Mathematics 87 (1997) 21-38

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

A semi-iterative method for real spectrum singular linear systems with an arbitrary index

Joan-Josep Climent^{a, 1}, Michael Neumann^{b,*}, Avram Sidi^c

^a Departament de Tecnologia Informàtica i Computació, Universitat d'Alacant, E-03071 Alacant, Spain
 ^b Department of Mathematics, University of Connecticut, Storrs, CT 06269-03009, USA
 ^c Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 14 February 1997; received in revised form 16 July 1997

Abstract

In this paper we develop a semi-iterative method for computing the Drazin-inverse solution of a singular linear system Ax = b, where the spectrum of A is real, but its index (i.e., the size of its largest Jordan block corresponding to the eigenvalue zero) is arbitrary. The method employs a set of polynomials that satisfy certain normalization conditions and minimize some well-defined least-squares norm. We develop an efficient recursive algorithm for implementing this method that has a fixed length independent of the index of A. Following that, we give a complete theory of convergence, in which we provide rates of convergence as well. We conclude with a numerical application to determine eigenprojections onto generalized eigenspaces. Our treatment extends the work of Hanke and Hochbruck (1993) that considers the case in which the index of A is 1.

Keywords: Singular systems; Iterative methods; Polynomial acceleration

AMS classification: 65F10; 65F20; 15A09

1. Introduction

Consider the linear system

$$Ax = b$$
,

(1.1)

where $A \in \mathbb{C}^{n,n}$ is singular and ind(A) = a is arbitrary. Here $ind(\cdot)$ denotes the *index* of a matrix, namely, the size of the largest Jordan block corresponding to its zero eigenvalue. The purpose of

0377-0427/97/\$17.00 © 1997 Elsevier Science B.V. All rights reserved *PII* \$0377-0427(97)00169-6

^{*} Corresponding author. E-mail: neumann@math.uconn.edu.

¹ The work of this author was done while he was visiting the Department of Mathematics at the University of Connecticut, supported by Spanish DGICYT grant number PR94-205.

this paper is to develop a semi-iterative method for computing the Drazin-inverse solution of (1.1), namely, the vector $A^{D}b$, where A^{D} is the *Drazin inverse* of A, in an *efficient manner*. For the Drazin inverse and its properties, see, e.g., [1] or [2].

We shall assume that

$$\sigma(A) \subseteq \{0\} \cup [c - d, c + d], \quad 0 < d < c, \tag{1.2}$$

where $\sigma(\cdot)$ denotes the spectrum of a matrix.

Our work here extends that of Hanke and Hockbruck [8] which treats the case of a = 1 and utilizes the general theory of Eiermann et al. [4] of semi-iterative methods for computing the Drazin-inverse solution to singular systems.

We begin with some essential background. Let x_0 be an arbitrary initial vector and let $r_0 = b - Ax_0$ be the corresponding residual vector. Then, beginning with x_0 , the *m*th iterate x_m is given by

$$x_m = x_0 + q_{m-1}(A)r_0 = p_m(A)x_0 + q_{m-1}(A)b,$$
(1.3)

where $q_{m-1}(\lambda)$ is a polynomial of degree at most m-1 and $p_m(\lambda)$ is a polynomial of degree at most m given by

$$p_m(\lambda) = 1 - \lambda q_{m-1}(\lambda). \tag{1.4}$$

We call $p_m(\lambda)$ the *m*th residual polynomial. Note that

$$p_m(0) = 1.$$
 (1.5)

As is shown by Eiermann et al. [4, Lemma 2], necessary and sufficient conditions for the convergence of the sequence $\{x_m\}_{m=0}^{\infty}$ are that

$$\lim_{m \to \infty} p_m^{(i)}(0) = 0, \quad i = 1, \dots, a, \tag{1.6}$$

and

$$\lim_{m\to\infty} p_m^{(i)}(\lambda_j) = 0, \quad i = 0, \dots, k_j - 1,$$
(1.7)

where λ_j are the nonzero eigenvalues of A and $k_j = ind(A - \lambda_j I)$.

The conditions in (1.6) will, of course, be satisfied if

$$p_m^{(i)}(0) = 0, \quad i = 1, ..., a, \text{ for all } m = 0, 1, ...$$
 (1.8)

Polynomials $p_m(\lambda)$ satisfying (1.8) and (1.7) were considered by Hanke and Hockbruck [8] for the case a = 1. We mention in passing that the polynomials that arise in connection with the extrapolation methods for the Drazin-inverse solution studied by Sidi [10] satisfy (1.8) and (1.7) for arbitrary a.

The plan of this paper is as follows: In Section 2, using a weight function $w(\lambda)$, we provide an integral norm $||| \cdot |||$ and a set of polynomials $\{p_m(\lambda)\}_{m=0}^{\infty}$ satisfying (1.8) and (1.7) such that the norm of $p_m(\lambda)$ is minimal over the set of all polynomials $p(\lambda)$ of degree at most m which satisfy p(0) = 1 and $p^{(i)}(0) = 0$, i = 1, ..., a. We use these polynomials to construct our semi-iterative method. Our work here extends directly the developments of Hanke and Hockbruck [8] to the case a > 1. In Section 3 we develop a recursive algorithm for implementing the semi-iterative method defined by (1.3) and (1.4), $p_m(\lambda)$ being the minimal polynomials of Section 2. This algorithm involves only four successive iterates x_m , independently of the index of A. Here we make use of the fact that the $p_m(\lambda)$ can be expressed in terms of a set of orthogonal polynomials that satisfy the usual 3-term recurrence relation.

In Section 4 we prove the convergence of the method and provide error bounds and the corresponding rates of convergence for the case in which

$$w(\lambda) = \frac{1}{\sqrt{(\lambda - c + d)(c + d - \lambda)}}.$$
(1.9)

In particular, we show that if A satisfies (1.2), then

$$||x_m - A^{\mathrm{D}}b - \tilde{x}_0|| = \mathcal{O}(m^{a+s}\kappa^m) \text{ as } m \to \infty,$$

where \tilde{x}_0 is that part of x_0 that lies in the null space of A^a , s is a nonnegative integer, and

$$\kappa = \frac{c - \sqrt{c^2 - d^2}}{d} < 1. \tag{1.10}$$

The asymptotic estimates that we give for the bounds on our residual polynomials in equation (4.17) of Theorem 4.5 do not reach, except in the case of the index A being equal to 1, the near optimal rate achieved by the residuals of Berstein (see [6]) which is displayed here in (4.24). But we believe that our short recurrence relation for computing the residuals makes up for this deficiency.

In Section 5 we present several numerical examples in which we compute the *projections onto the* generalized eigenspaces of matrices whose spectrum is real and satisfies the condition of (1.2). The algorithm does well when the transforming matrix of A to its Jordan canonical form has a relatively low condition number.

2. Minimal polynomials

Let $w(\lambda)$ be a nonnegative weight function over the interval [c-d, c+d] and let f and g be functions defined on [c-d, c+d]. Define the inner product $\langle \cdot, \cdot \rangle$ on [c-d, c+d] by

$$\langle f,g\rangle = \int_{c-d}^{c+d} w(\lambda)f(\lambda)g(\lambda)\,\mathrm{d}\lambda.$$

Next define the norm $||| \cdot |||$ via

$$|||f|||^2 = \left\langle f, \frac{1}{\lambda^a}f \right\rangle.$$

Let Π_m denote the set of all real polynomials of degree at most m and define

$$\Pi_m^0 = \{ p \in \Pi_m; \ p(0) = 1, \ p^{(i)}(0) = 0, \ i = 1, \dots, a \}.$$

Note that $p_m(\lambda) = 1$ is the only member of the set \prod_m^0 for m = 0, 1, ..., a.

Theorem 2.1. Let a be a positive integer. Then, for $m \ge a + 1$, the minimization problem

$$\min_{p \in \Pi_m^0} |||p||| \tag{2.1}$$

admits a unique solution $p_m(\lambda)$ which is characterized by

$$\langle p_m, \lambda^j \rangle = 0, \quad j = 1, \dots, m - a.$$
 (2.2)

Proof. We start by noting that $p \in \Pi_m^0$ implies that $p(\lambda) = 1 - \lambda^{a+1} u(\lambda)$ with $u \in \Pi_{m-a-1}$. Thus, we have

$$|||p|||^{2} = \int_{c-d}^{c+d} w(\lambda)\lambda^{a+2} \left[\lambda^{-a-1} - u(\lambda)\right]^{2} d\lambda.$$
(2.3)

As $w(\lambda)\lambda^{a+2}$ is nonnegative on [c-d, c+d], there exists a unique polynomial $u^*(\lambda)$ in Π_{m-a-1} that minimizes the integral on the right-hand side of (2.3); $u^*(\lambda)$ is the best approximation from Π_{m-a-1} to λ^{-a-1} in the norm induced by the inner product $\langle \cdot, \lambda^{a+2} \cdot \rangle$, see, e.g., [3]. Consequently, $p_m(\lambda) = 1 - \lambda^{a+1}u^*(\lambda)$ is the unique solution to (2.1).

Consider the polynomial $p(\lambda) = p_m(\lambda) + \alpha \lambda^{a+j}$, where $\alpha \in \mathbb{R}$ and j = 1, ..., m - a. Obviously, $p \in \Pi_m^0$. Hence,

$$|||p_m|||^2 \leq |||p|||^2 = |||p_m|||^2 + 2\alpha \langle p_m, \lambda^j \rangle + \alpha^2 |||\lambda^{a+j}|||^2.$$

Since α has an arbitrary sign, this inequality holds if and only if (2.2) holds.

Conversely, assume that (2.2) holds for some $p_m \in \Pi_m^0$. Let $p \in \Pi_m^0$. Then $p(\lambda) - p_m(\lambda)$ has a zero of multiplicity at least a+1 at $\lambda = 0$. Thus,

$$v(\lambda) = \frac{p(\lambda) - p_m(\lambda)}{\lambda^a} \in \operatorname{span}\{\lambda, \lambda^2, \dots, \lambda^{m-a}\}.$$

Consequently,

$$|||p|||^{2} = |||p_{m}|||^{2} + 2\langle p_{m}, v \rangle + |||\lambda^{a}v|||^{2} = |||p_{m}|||^{2} + |||\lambda^{a}v|||^{2} \ge |||p_{m}|||^{2}$$

since $\langle p_m, v \rangle = 0$ by (2.2). This means that $p_m(\lambda)$ is the unique solution to (2.1). \Box

Now, let us define

$$u_m(\lambda) = \frac{p_m(\lambda) - p_{m+1}(\lambda)}{\lambda}, \quad m \ge a.$$
(2.4)

Clearly, $u_m(\lambda)$ is a polynomial in span $\{\lambda^a, \lambda^{a+1}, \ldots, \lambda^m\}$.

Theorem 2.2. The polynomials $\lambda^{-a}u_m(\lambda)$, m = a, a + 1, ..., are orthogonal with respect to the inner product $\langle \cdot, \lambda^{a+2} \cdot \rangle$.

Proof. First, $\lambda^{-a}u_m(\lambda)$ is of degree precisely m-a. For any polynomial $p(\lambda)$ in \prod_{m-a-1} , with $m \ge a+1$, we then have that

$$\langle \lambda^{-a} u_m, \lambda^{a+2} p \rangle = \langle u_m, \lambda^2 p \rangle = \langle p_m - p_{m+1}, \lambda p \rangle = 0$$

by (2.2). □

From Theorem 2.2 we now have that the $u_m(\lambda)$ satisfy a 3-term recursion relation of the form

$$u_m(\lambda) = (\omega_m \lambda + \mu_m) u_{m-1}(\lambda) + v_m u_{m-2}(\lambda), \quad m \ge a+1$$
(2.5)

for some constants ω_m , μ_m , and v_m , with $v_{a+1} = 0$.

Let us denote by $t_m(\lambda)$ the orthogonal polynomial of degree *m* with respect to the inner product $\langle \cdot, \cdot \rangle$ and normalized such that $t_m(0) = 1$. As a result of this normalization, the $t_m(\lambda)$ satisfy a 3-term recursion relation of the form

$$t_{m+1}(\lambda) = -\alpha_m \lambda t_m(\lambda) + (1 + \beta_m) t_m(\lambda) - \beta_m t_{m-1}(\lambda), \quad m \ge 0$$
(2.6)

with

 $t_{-1}(\lambda) = 0$ and $t_0(\lambda) = 1$,

for some constants α_m and β_m .

Theorem 2.3. For $m \ge a$, the polynomials $p_m(\lambda)$ can be expressed in terms of the polynomials $t_j(\lambda)$ as

$$\lambda p_m(\lambda) = \sum_{j=m-a}^{m+1} \pi_{m,j} t_j(\lambda)$$
(2.7)

for some constants $\pi_{m,i}$ which satisfy the linear system

$$\sum_{j=m-a}^{m+1} \pi_{m,j} = 0,$$

$$\sum_{j=m-a}^{m+1} \pi_{m,j} \tau_j^{(1)} = 1,$$

$$\sum_{j=m-a}^{m+1} \pi_{m,j} \tau_j^{(i)} = 0, \quad i = 2, 3, \dots, a+1,$$
(2.8)

where $\tau_j^{(i)} = t_j^{(i)}(0)$.

Proof. Since $\lambda p_m(\lambda)$ is in Π_{m+1} , we have that

$$\lambda p_m(\lambda) = \sum_{j=0}^{m+1} \pi_{m,j} t_j(\lambda).$$

But

$$\langle \lambda p_m, t_j \rangle = \langle p_m, \lambda t_j \rangle = 0, \quad j = 0, 1, \dots, m - a - 1,$$

by (2.2). Therefore, $\pi_{m,j} = 0$ for j = 0, 1, ..., m - a - 1. This proves (2.7). The first of the equations in (2.8) follows by letting $\lambda = 0$ in (2.7). The remaining equations in (2.8) can be obtained by taking

J.-J. Climent et al. / Journal of Computational and Applied Mathematics 87 (1997) 21–38

the *i*th derivative of both sides of (2.7), i = 1, 2, ..., a + 1, noting that

$$[\lambda p_m(\lambda)]^{(i)} = \lambda p_m^{(i)}(\lambda) + i p_m^{(i-1)}(\lambda), \quad i = 1, 2, \dots,$$

and letting $\lambda = 0$ on both sides, and recalling that $p_m \in \Pi_m^0$. \Box

We now show how the coefficients ω_m , μ_m , and v_m in (2.5) can be determined from the constants $\pi_{m,j}$ in (2.7) and the coefficients α_m and β_m in (2.6).

Theorem 2.4. Let

$$\gamma_m := \pi_{m,m+1}, \quad \delta_m := \pi_{m,m} \quad and \quad \varepsilon_m := \pi_{m,m-a}. \tag{2.9}$$

Then the coefficients ω_m , μ_m , and ν_m of (2.5) can be computed from

$$\omega_{m} = -\frac{\gamma_{m+1}}{\gamma_{m}} \alpha_{m+1},$$

$$\mu_{m} = -\frac{1}{\gamma_{m}} \left[\gamma_{m} - \delta_{m+1} + \frac{\omega_{m}(\gamma_{m-1} - \delta_{m})}{\alpha_{m}} - \gamma_{m+1}(1 + \beta_{m+1}) \right],$$

$$v_{m} = \frac{\omega_{m}\varepsilon_{m-1}\beta_{m-a-1}}{\alpha_{m-a-1}\varepsilon_{m-2}}.$$
(2.10)

Proof. Using (2.7) in (2.4) we see that

$$u_{m} = \frac{1}{\lambda^{2}} \left[\pi_{m,m-a} t_{m-a} + \sum_{j=m-a+1}^{m+1} (\pi_{m,j} - \pi_{m+1,j}) t_{j} - \pi_{m+1,m+2} t_{m+2} \right], \quad m \ge a,$$
(2.11)

where we have written t_j instead of $t_j(\lambda)$ for short.

Now, let $m \ge a + 2$. Substituting (2.11) in (2.5), and multiplying throughout by λ^2 , we obtain that

$$\pi_{m,m-a}t_{m-a} + \sum_{j=m-a+1}^{m+1} (\pi_{m,j} - \pi_{m+1,j})t_j - \pi_{m+1,m+2}t_{m+2} \\ -\omega_m \left[\pi_{m-1,m-1-a}\lambda t_{m-1-a} + \sum_{j=m-a}^m (\pi_{m-1,j} - \pi_{m,j})\lambda t_j - \pi_{m,m+1}\lambda t_{m+1}\right] \\ -\mu_m \left[\pi_{m-1,m-1-a}t_{m-1-a} + \sum_{j=m-a}^m (\pi_{m-1,j} - \pi_{m,j})t_j - \pi_{m,m+1}t_{m+1}\right] \\ -\nu_m \left[\pi_{m-2,m-2-a}t_{m-2-a} + \sum_{j=m-1-a}^{m-1} (\pi_{m-2,j} - \pi_{m-1,j})t_j - \pi_{m-1,m}\lambda t_m\right] \\ = 0.$$

$$(2.12)$$

Next, from (2.6) we know that

$$\lambda t_{j} = -\frac{1}{\alpha_{j}} t_{j+1} + \frac{1+\beta_{j}}{\alpha_{j}} t_{j} - \frac{\beta_{j}}{\alpha_{j}} t_{j-1}, \quad j = 0, 1, \dots$$
(2.13)

Substituting (2.13) in (2.12) yields that

$$\pi_{m,m-a}t_{m-a} + \sum_{j=m-a+1}^{m+1} (\pi_{m,j} - \pi_{m+1,j})t_j - \pi_{m+1,m+2}t_{m+2}$$

$$-\omega_m \left[\pi_{m-1,m-1-a} \left(-\frac{1}{\alpha_{m-1-a}}t_{m-a} + \frac{1+\beta_{m-1-a}}{\alpha_{m-1-a}}t_{m-1-a} - \frac{\beta_{m-1-a}}{\alpha_{m-1-a}}t_{m-2-a} \right) \right]$$

$$+ \sum_{j=m-a}^m (\pi_{m-1,j} - \pi_{m,j}) \left(-\frac{1}{\alpha_j}t_{j+1} + \frac{1+\beta_j}{\alpha_j}t_j - \frac{\beta_j}{\alpha_j}t_{j-1} \right)$$

$$-\pi_{m,m+1} \left(-\frac{1}{\alpha_{m+1}}t_{m+2} + \frac{1+\beta_{m+1}}{\alpha_{m+1}}t_{m+1} - \frac{\beta_{m+1}}{\alpha_{m+1}}t_m \right) \right]$$

$$-\mu_m \left[\pi_{m-1,m-1-a}t_{m-1-a} + \sum_{j=m-a}^m (\pi_{m-1,j} - \pi_{m,j})t_j - \pi_{m,m+1}t_{m+1} \right]$$

$$-\nu_m \left[\pi_{m-2,m-2-a}t_{m-2-a} + \sum_{j=m-1-a}^{m-1} (\pi_{m-2,j} - \pi_{m-1,j})t_j - \pi_{m-1,m}\lambda t_m \right]$$

$$= 0,$$

which is of the form $\sum_{j=m-a-2}^{m+2} \eta_{m,j} t_j = 0$ for some constants $\eta_{m,j}$. Thus, we must have $\eta_{m,j} = 0$ for all $j = m - a - 2, m - a - 1, \dots, m + 2$. Now, from $\eta_{m,m+2} = \eta_{m,m+1} = \eta_{m,m-a-2} = 0$, we obtain the expressions for ω_m , μ_m , and v_m , respectively, as given in (2.10). \Box

3. The algorithm

We now return to the general framework of semi-iterative methods for computing the Drazininverse solution of singular linear systems that was discussed in Section 1. We choose the polynomials $p_m(\lambda)$ that appear in (1.3) and (1.4) to be precisely those given in Theorem 2.1, the integer *a* in the latter being ind(*A*). As they are in Π_m^0 , these $p_m(\lambda)$ already satisfy (1.5) and (1.8).

From (1.3), (1.4), and (2.4), the iterates x_m and x_{m+1} of the semi-iterative method satisfy

$$x_{m+1} - x_m = u_m(A)r_0. ag{3.1}$$

But the $u_m(\lambda)$ satisfy the 3-term recursion relation given in (2.5). Consequently, the x_m satisfy the 4-term recursion relation

$$x_{m+1} = x_m + \omega_m A(x_m - x_{m-1}) + \mu_m (x_m - x_{m-1}) + \nu_m (x_{m-1} - x_{m-2}), \quad m \ge a+1,$$
(3.2)

which is exactly of the form given in [8] for the case a = 1. Note that this recursion relation has the same length *independent* of a.

As the recursion relation above is valid for $m \ge a+1$ and as $v_{a+1} = 0$, we see that in order to start the algorithm we need x_a and x_{a+1} . Now because $p_a(\lambda) = 1$, we have that $q_{a-1}(\lambda) = 0$ so that $x_a = x_0$. As for x_{a+1} , we proceed as follows: First, we know that

$$p_{a+1}(\lambda) = 1 - \rho \lambda^{a+1}$$

for some constant ρ that can be uniquely determined from the characterization property in (2.2). As $\langle p_{a+1}, \lambda \rangle = 0$, we evidently have that

$$\rho = \frac{\langle 1, \lambda \rangle}{\langle 1, \lambda^{a+2} \rangle}.$$
(3.3)

Next, on recalling (2.4), we see that

$$u_a(\lambda) = \rho \lambda^a. \tag{3.4}$$

Finally, from (3.1) and (3.4) we have that

$$x_{a+1} = x_a + \rho A^a r_0 = x_a + \rho A^a (b - A x_0).$$
(3.5)

Assuming that the polynomials $t_m(\lambda)$ and the constants α_m and β_m in (2.6) are known, our algorithm now reads as follows:

Step 0: Choose
$$x_0$$
 and set $x_a = x_0$.
Set $\pi_{a,0} = \frac{-1}{t'_i(0)}$, $\pi_{a,1} = -\pi_{a,0}$, and $\pi_{a,j} = 0$ for $j \neq 0, 1$.
Determine ρ from (3.3).
Compute x_{a+1} from (3.5).
Step 1: For $m = a + 1, a + 2, \dots$, until convergence, do:

Solve (2.8) for the $\pi_{m,j}$. Compute ω_m , μ_m , and ν_m from (2.9) and (2.10). Compute x_{m+1} from (3.2).

For the special case in which the weight function $w(\lambda)$ is that defined by (1.9), the polynomials $t_m(\lambda)$ and the corresponding constants α_m and β_m are given by

$$t_m(\lambda) = \frac{T_m(z(\lambda))}{T_m(z(0))}, \quad \text{with } z(\lambda) = \frac{c - \lambda}{d}, \tag{3.6}$$

where $T_m(z)$ are the Chebyshev polynomials of the first kind normalized so that $T_m(1) = 1$, and

$$\begin{aligned} \alpha_0 &= \frac{1}{c}, \quad \beta_0 = 0, \\ \alpha_1 &= \frac{2c}{2c^2 - d^2}, \quad \beta_1 = c\alpha_1 - 1, \\ \alpha_m &= \frac{1}{c - (\frac{1}{2}d)^2 \alpha_{m-1}}, \quad \beta_m = c\alpha_m - 1, \quad m \ge 2. \end{aligned}$$

In addition, the constant ρ in (3.3) is now given by

$$\rho = \frac{1}{c^{a+1} \sum_{k=0}^{\lfloor a/2 \rfloor + 1} {a+2 \choose 2k} {2k \choose k} \left(\frac{d}{2c}\right)^{2k}}.$$

4. Error bounds and convergence analysis

4.1. General preliminaries and error bounds

Let us denote by $\hat{\mathscr{S}}$ the direct sum of the invariant subspaces of A corresponding to its nonzero eigenvalues λ_j , and by $\tilde{\mathscr{S}}$, its invariant subspace corresponding to its zero eigenvalue. Thus, $\hat{\mathscr{S}} = \mathscr{R}(A^a)$, the range of A^a , and $\tilde{\mathscr{S}} = \mathscr{N}(A^a)$, the nullspace of A^a . Every vector in \mathbb{C}^n can be written as the sum of two unique vectors, one in $\hat{\mathscr{S}}$ and the other in $\tilde{\mathscr{S}}$.

Resolve $b = \hat{b} + \tilde{b}$, where $\hat{b} \in \hat{\mathscr{S}}$ and $\tilde{b} \in \hat{\mathscr{S}}$. Then $A^{\mathrm{D}}b$, the Drazin-inverse solution of Ax = b, is the unique vector in $\hat{\mathscr{S}}$ that satisfies the consistent linear system $Ax = \hat{b}$. From (1.3) and (1.4) we see that

$$x_{m} - A^{D}b = p_{m}(A)x_{0} + q_{m-1}(A)(b+b) - A^{D}b$$

= $p_{m}(A)x_{0} + q_{m-1}(A)AA^{D}b + q_{m-1}(A)\tilde{b} - A^{D}b$
= $p_{m}(A)(x_{0} - A^{D}b) + q_{m-1}(A)\tilde{b}.$ (4.1)

Decompose $x_0 = \hat{x}_0 + \tilde{x}_0$, where $\hat{x}_0 \in \hat{\mathscr{S}}$ and $\tilde{x}_0 \in \hat{\mathscr{S}}$. Then (4.1) becomes

$$x_m - A^{\rm D}b = p_m(A)(\hat{x}_0 - A^{\rm D}b) + p_m(A)\tilde{x}_0 + q_{m-1}(A)b.$$
(4.2)

Because

$$p_m(\lambda) = 1 - \lambda^{a+1} u(\lambda) \tag{4.3}$$

for some $u \in \prod_{m-a-1}$, we have that

$$p_m(A)\tilde{x}_0 = \tilde{x}_0 - u(A)A^{a+1}\tilde{x}_0 = \tilde{x}_0$$
(4.4)

as $\tilde{x}_0 \in \tilde{\mathscr{P}} = \mathscr{N}(A^a)$. Similarly, $q_{m-1}(\lambda) = \lambda^a u(\lambda)$ by (1.4) and (4.3), so that

$$q_{m-1}(A)\dot{b} = u(A)A^{a}\dot{b} = 0 \tag{4.5}$$

as $\tilde{b} \in \tilde{\mathscr{S}} = \mathscr{N}(A^a).$

Combining (4.4) and (4.5) in (4.2), we deduce the following result.

Theorem 4.1. Let
$$x_0 = \hat{x}_0 + \tilde{x}_0$$
, where $\hat{x}_0 \in \hat{\mathscr{S}}$ and $\tilde{x}_0 \in \tilde{\mathscr{S}}$. Then
 $x_m - A^{\mathrm{D}}b = p_m(A)(\hat{x}_0 - A^{\mathrm{D}}b) + \tilde{x}_0.$
(4.6)

Now, as the vector $\hat{x}_0 - A^D b$ is in $\hat{\mathscr{S}}$, we observe that the behavior of $x_m - A^D b$ is determined by the action of $p_m(A)$ on $\hat{\mathscr{S}}$.

J.-J. Climent et al. | Journal of Computational and Applied Mathematics 87 (1997) 21-38

Recall that, by $\operatorname{ind}(A - \lambda_j I) = k_j$, $\lambda_j \in \sigma(A) \setminus \{0\}$, the fact that $\hat{x}_0 - A^{\mathrm{D}}b \in \hat{\mathscr{S}}$ implies that

$$p_{m}(A)(\hat{x}_{0} - A^{\mathrm{D}}b) = \sum_{\lambda_{j} \in \sigma(A) \setminus \{0\}} \sum_{i=0}^{k_{j}-1} r_{ji} p_{m}^{(i)}(\lambda_{j})$$
(4.7)

for some vectors r_{ji} that lie in the invariant subspace of A corresponding to λ_j . Thus, from (4.6) and (4.7),

$$\|x_m - A^{\mathrm{D}}b - \tilde{x}_0\| = \|p_m(A)(\hat{x}_0 - A^{\mathrm{D}}b)\| \leq C \left(\max_{\lambda_j \in \sigma(A) \setminus \{0\}} \max_{0 \leq i \leq k_j - 1} |p_m^{(i)}(\lambda_j)|\right)$$
(4.8)

for some positive constant C. Replacing the maximum over the $\lambda_j \in \sigma(A) \setminus \{0\}$ by the maximum over the interval [c - d, c + d], and using

$$\max_{\lambda \in [c-d,c+d]} |p_m^{(i)}(\lambda)| \leq D_i m^{2i} \left(\max_{\lambda \in [c-d,c+d]} |p_m(\lambda)| \right) \quad \text{for some} \quad D_i > 0,$$

which follows from one of Markoff's inequalities, see. e.g., Meinardus [9, p. 67], (4.8) becomes

$$\|x_m - A^{\mathrm{D}}b - \tilde{x}_0\| = \|p_m(A)(\hat{x}_0 - A^{\mathrm{D}}b)\| \leq Mm^{2\hat{k}-2} \left(\max_{\lambda \in [c-d,c+d]} |p_m(\lambda)|\right),$$
(4.9)

where M is a positive constant and

$$\hat{k} = \max\{k_j: \lambda_j \in \sigma(A) \setminus \{0\}\}.$$
(4.10)

Hence, all we have to analyze is $\max_{\lambda \in [c-d,c+d]} |p_m(\lambda)|$.

Before we go on, we observe from (4.6) and (4.7) that the conditions in (1.7) ensure the convergence of $\{x_m\}_{m=0}^{\infty}$ to $A^{\mathrm{D}}b + \tilde{x}_0$, as guaranteed also by Eiermann et al. [4, Lemma 2]. Also, if $\tilde{x}_0 = 0$, which can be enforced by picking $x_0 = 0$, then $\lim_{m\to\infty} x_m = A^{\mathrm{D}}b$ under (1.7).

4.2. Convergence analysis

In the sequel, we analyze the case in which the weight function $w(\lambda)$ is that defined by (1.9). Obviously, we first need to know the behavior of the $\pi_{m,j}$ in Theorem 2.3 for $m \to \infty$. For this we have to start with the behavior of the $t_m^{(i)}(0)$ for $m \to \infty$, as is obvious from (2.8). Recall that in this case $t_m(\lambda)$ are as in (3.6).

Lemma 4.2. Suppose that $t_m(\lambda)$ are the polynomials given in (3.6). If $\lambda \in [c - d, c + d]$, then, for i = 0, 1, 2, ...,

$$t_{m}^{(i)}(\lambda) = P_{i}(\lambda, m) \frac{e^{m \cosh^{-1} z(\lambda)} + e^{-m \cosh^{-1} z(\lambda)}}{e^{m \cosh^{-1} z(0)} + e^{-m \cosh^{-1} z(0)}} + N_{i}(\lambda, m) \frac{e^{m \cosh^{-1} z(\lambda)} - e^{-m \cosh^{-1} z(\lambda)}}{e^{m \cosh^{-1} z(0)} + e^{-m \cosh^{-1} z(0)}},$$
(4.11)

where $P_i(\lambda, m)$ and $N_i(\lambda, m)$ are polynomials in m, whose coefficients are functions of λ and whose degree is dependent on the parity of i, given by

$$P_{2r}(\lambda,m) = \left[-\frac{1}{\sqrt{(c-\lambda)^2 - d^2}}\right]^{2r} m^{2r} + O(m^{2r-2}),$$

$$N_{2r}(\lambda,m) = \frac{(2r-1)2r}{2}(c-\lambda) \left[-\frac{1}{\sqrt{(c-\lambda)^2 - d^2}}\right]^{2r+1} m^{2r-1} + O(m^{2r-3}),$$
(4.12)

with the terms $O(m^{2r-2})$ and $O(m^{2r-3})$ missing for r = 0, 1, and

$$P_{2r+1}(\lambda,m) = \frac{2r(2r+1)}{2}(c-\lambda) \left[-\frac{1}{\sqrt{(c-\lambda)^2 - d^2}} \right]^{2r+2} m^{2r} + O(m^{2r-2}),$$

$$N_{2r+1}(\lambda,m) = \left[-\frac{1}{\sqrt{(c-\lambda)^2 - d^2}} \right]^{2r+1} m^{2r+1} + O(m^{2r-1}),$$
(4.13)

with the terms $O(m^{2r-2})$ and $O(m^{2r-1})$ missing for r = 0, 1, and r = 0, respectively.

Proof. The proof is straightforward and proceeds by induction on i. \Box

Taking $\lambda = 0$, (4.11) becomes

$$t_m^{(i)}(0) = P_i(0,m) + N_i(0,m) \left(1 - \frac{2}{\kappa^{-2m} + 1}\right),$$
(4.14)

where κ , defined by (1.10), satisfies also

$$\kappa = \mathrm{e}^{-\cosh^{-1} z(0)}.$$

Upon substituting (4.12) and (4.13) in (4.14), we now have the following result.

Theorem 4.3. Suppose that $t_m(\lambda)$ are the polynomials defined in (3.6). Then, for i = 0, 1, 2, ...,

$$t_{m}^{(i)}(0) = \begin{cases} 1, & i = 0, \\ -\frac{1}{(c^{2} - d^{2})^{1/2}}m + O(m\kappa^{2m}), & i = 1, \\ (-1)^{i}\frac{1}{(c^{2} - d^{2})^{i/2}}m^{i} + \sum_{k=0}^{i-1}\eta_{i,k}m^{k} + O(m^{i}\kappa^{2m}), & i \ge 2 \end{cases}$$

as $m \to \infty$, where $\eta_{i,k}$ are some constants and l = i - 1 if i is even, and l = i if i is odd.

Theorem 4.3 has the following implication. In order to solve the system in (2.8) for the $\pi_{m,j}$, we first introduce the matrices B and E in $\mathbb{C}^{a+2,a+2}$ and the vector h in \mathbb{C}^{a+2} as follow: • For i, j = 0, 1, 2, ..., a + 1, set

$$b_{i+1,j+1} = \begin{cases} 1, & i = 0, \\ -\frac{1}{(c^2 - d^2)^{1/2}}(m - a + j), & i = 1, \\ (-1)^i \frac{1}{(c^2 - d^2)^{i/2}}(m - a + j)^i + \sum_{k=0}^{i-1} \eta_{i,k}(m - a + j)^k, & 2 \leq i \leq a + 1, \end{cases}$$

with the $\eta_{i,k}$ as in Theorem 4.3.

• For j = 0, 1, 2, ..., a + 1, set

$$e_{i+1,j+1} = \begin{cases} 0, & i = 0, \\ O(m^l \kappa^{2m}), & 1 \leq i \leq a+1, \end{cases}$$

where l is defined in Theorem 4.3, and observe that $E \rightarrow O$ as $m \rightarrow \infty$.

• Introduce the vector *h* via

$$h_{i+1} = \begin{cases} 0, & i = 0, \\ 1, & i = 1, \\ 0, & 2 \leqslant i \leqslant a + 1 \end{cases}$$

Then the linear system in (2.8) can be written as

$$(B+E)\pi=h,$$

(4.15)

where $\pi \in \mathbb{C}^{a+2}$ is the unknown vector whose (j+1)th entry, $0 \leq j \leq a+1$, is $\pi_{m,m-a+j}$.

To solve (4.15) for π we apply elementary row operations to obtain the equivalent system

$$(B^{(2)} + E^{(2)})\pi = h^{(2)},$$

where

$$b_{i+1,j+1}^{(2)} = \begin{cases} 1, & i = 0, \\ (m-a+j)^i, & 1 \leq i \leq a+1, \end{cases}$$

i.e., $B^{(2)}$ is a Vandermonde matrix, and

$$h_{i+1}^{(2)} = egin{cases} 0, & i = 0, \ -(c^2 - d^2)^{1/2}, & i = 1, \ K_i (c^2 - d^2)^{1/2}, & 2 \leqslant i \leqslant a+1 \end{cases}$$

where K_i is a constant that depends only on the coefficients $\eta_{i,k}$.

Now, using the algorithm to solve Vandermonde systems (see [7, p. 122]), we obtain the equivalent system

$$(I+E^{(3)})\pi=h^{(3)},$$

where

$$h_{i+1}^{(3)} = (-1)^{i} {\binom{a+1}{i}} \frac{(c^{2} - d^{2})^{1/2}}{a!} m^{a} + \mathcal{O}(m^{a-1}) \quad \text{for } 0 \le i \le a+1$$
(4.16)

and $E^{(3)} \rightarrow O$, as $m \rightarrow \infty$. Therefore, we have the following result.

Theorem 4.4. For i = 0, 1, 2, ..., a, a + 1, the $\pi_{m,m-a+i}$ in (2.8) are given by $\pi_{m,m-a+i} = h_{i+1}^{(3)}$, where $h_{i+1}^{(3)}$ are defined in (4.16).

We now combine Theorem 4.4 with the expansion of $p_m(\lambda)$ in Theorem 2.3 to derive an asymptotically optimal upper bound on $|p_m(\lambda)|$ for $\lambda \in [c-d, c+d]$.

Theorem 4.5. Consider the polynomials $p_m(\lambda)$ of Theorem 2.1 with the weight function $w(\lambda)$ given by (1.9). Then

$$\max_{\lambda \in [c-d,c+d]} |p_m(\lambda)| = \frac{2(\kappa^{-1} - \kappa)(1+\kappa)^{a-1}}{a!} m^a \kappa^{m-a+1} + \mathcal{O}(m^{a-1}\kappa^m) \quad as \ m \to \infty, \tag{4.17}$$

where κ is given by (1.10).

Proof. For the weight function $w(\lambda)$ given by (1.9) we have that the polynomials $t_m(\lambda)$ are defined by (3.6).

For $\lambda \in [c-d, c+d]$, it is easy to see that

$$t_m(\lambda) = 2\kappa^m \Re(s(\lambda)^m) + O(\kappa^{3m}) \quad \text{as } m \to \infty,$$
(4.18)

where

$$s(\lambda) = e^{i \arccos z(\lambda)}$$
 with $|s(\lambda)| = 1$

and, therefore,

$$\lambda = c - dz(\lambda) = c - d\Re(s(\lambda)). \tag{4.19}$$

Now, from (2.7), (3.6), Theorem 4.4, and (4.18), we obtain that for $m \to \infty$,

$$p_{m}(\lambda) = \frac{1}{\lambda} \sum_{j=0}^{a+1} (-1)^{j} {\binom{a+1}{j}} \frac{\sqrt{c^{2} - d^{2}}}{a!} m^{a} 2\kappa^{m-a+j} \Re(s(\lambda)^{m-a+j}) + O(m^{a-1}\kappa^{m})$$
$$= \frac{2\sqrt{c^{2} - d^{2}}}{a!\lambda} m^{a} \kappa^{m-a+1} \Re\left(\frac{s(\lambda)^{m-a}}{\kappa} [1 - \kappa s(\lambda)]^{a+1}\right) + O(m^{a-1}\kappa^{m}).$$
(4.20)

On the other hand, from (1.10) we have that

$$\kappa^{-1} + \kappa = 2\frac{c}{d} \quad \text{and} \quad \kappa^{-1} - \kappa = \frac{2\sqrt{c^2 - d^2}}{d}.$$
(4.21)

J.-J. Climent et al. / Journal of Computational and Applied Mathematics 87 (1997) 21-38

Now, using (4.19) and the fact that $|s(\lambda)| = 1$, we conclude that

$$\lambda = \frac{1}{2}d\kappa^{-1}[1 - \kappa s(\lambda)][1 - \kappa \overline{s(\lambda)}].$$

Inserting this expression into (4.20) and using (4.21), we obtain that

$$p_m(\lambda) = \frac{2}{a!} (\kappa^{-1} - \kappa) m^a \kappa^{m-a+1} \Re \left(\frac{s(\lambda)^{m-a} [1 - \kappa s(\lambda)]^a}{1 - \kappa \overline{s(\lambda)}} \right) + O(m^{a-1} \kappa^m) \quad \text{as } m \to \infty.$$

Then

$$\frac{1}{m^a \kappa^{m-a+1}} p_m(\lambda) = \frac{2}{a!} (\kappa^{-1} - \kappa) \Re \left(\frac{s(\lambda)^{m-a} [1 - \kappa s(\lambda)]^a}{1 - \kappa \overline{s(\lambda)}} \right) + O(m^{-1}) \quad \text{as } m \to \infty.$$
(4.22)

Next, using the facts that $|s(\lambda)| = 1$ and $|1 - \kappa s(\lambda)| = |1 - \kappa \overline{s(\lambda)}|$, we conclude that

$$\max_{\lambda \in [c-d,c+d]} \left| \frac{s(\lambda)^{m-a} [1-\kappa s(\lambda)]^a}{1-\kappa \overline{s(\lambda)}} \right| = \max_{\lambda \in [c-d,c+d]} |1-\kappa s(\lambda)|^{a-1} = (1+\kappa)^{a-1}$$
(4.23)

and this maximum is attained at $\lambda = c + d$ for which $s(\lambda) = -1$. Finally, combining (4.23) and (4.22), we obtain that

$$\frac{1}{m^a \kappa^{m-a+1}} \max_{\lambda \in [c-d,c+d]} |p_m(\lambda)| = \frac{2(\kappa^{-1}-\kappa)(1+\kappa)^{a-1}}{a!} + \mathcal{O}(m^{-1}) \quad \text{as } m \to \infty,$$

from which (4.17) follows. \Box

Now, using (4.9) and (4.17), we have the following convergence result that is the main result of this section.

Corollary 4.6. With the same notation as in Theorem 4.5, we have

$$||x_m - A^{\mathrm{D}}b - \tilde{x}_0|| = \mathcal{O}(m^{a+2\tilde{k}-2}\kappa^m) \quad as \ m \to \infty,$$

where \hat{k} is as defined in (4.10).

Theorem 4.5 implies that

$$\max_{\lambda\in[c-d,c+d]}|p_m(\lambda)|\approx\frac{2(\kappa^{-1}-\kappa)(1+\kappa)^{a-1}}{a!}m^a\kappa^{m-a+1}.$$

On the other hand, the Berstein result as applied by Eiermann and Starke to the polynomials $\{p_m\}$ developed in their paper, see [6, p. 314], gives that their residual polynomials satisfy that

$$\max_{\lambda \in [c-d,c+d]} |p_m(\lambda)| \approx \frac{2(\kappa^{-1}-\kappa)^a}{a!} m^a \kappa^m.$$
(4.24)

Now,

$$\frac{2(\kappa^{-1}-\kappa)^{a}}{a!}m^{a}\kappa^{m} < \frac{2(\kappa^{-1}-\kappa)(1+\kappa)^{a-1}}{a!}m^{a}\kappa^{m-a+1},$$

because $1 > -\kappa$. Therefore, our polynomials are not "near-optimal". However, the residual polynomials $\{p_m\}$ constructed by Eiermann and Starke in [6] cannot be computed by means of short recurrences as we have developed for the present residuals in Section 3. Such short recurrences make for the efficient implimentation of semi-iterative methods. In this regard please see also the comments on Hanke and Hochbruck [8, pp. 90, 93].

5. Numerical examples

In this section we use the algorithm developed in Section 3 to compute the eigenprojection $Z_A := I - AA^{D}$ onto the eigenspace of A corresponding to the eigenvalue 0 of three singular matrices whose index exceeds 1.

If we take b = 0 in (1.1) then Corollary 4.6 implies

$$\lim_{m\to\infty}x_m=\tilde{x}_0=(I-AA^{\rm D})x_0.$$

Now, if we choose x_0 as the *i*th column of *I*, the above expression represents the *i*th column of the eigenprojection Z_A .

First, consider the following singular *M*-matrix:

$$A_1 = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 1 & -1 & 0 & 0 \\ -1 & -1 & -1 & 1 & 0 & 0 \\ -1 & -1 & -1 & 0 & 2 & -1 \\ -1 & -1 & 0 & -1 & -1 & 2 \end{bmatrix}$$

Observe that $\sigma(A_1) = \{0, 0, 1, 2, 2, 3\}$ and a = 2. So we can choose c = 2 and d = 1 in (1.2). Using the algorithm of Section 3, with the polynomials $t_m(\lambda)$ defined by (3.6), and stopping when

$$\frac{\|x_{m+1}-x_m\|_{\infty}}{\|x_m\|_{\infty}} \leqslant 10^{-15},$$

we obtain, after 35 iterations, that

	0.50000000000000	0.49999999999999999	0	0	0	0 -	1
	0.49999999999999 0.5000000000001		0	0	0	0	
7 –	0	0	0.50000000000001	0.49999999999999999	0	0	
$Z_{A_1} =$	0	0	0.49999999999999999	0.5000000000001	0	0	ŀ
	0	0	0.5000000000005	0.49999999999999997	-0.00000000000004	0.00000000000002	
	0	0	0.49999999999999997	0.5000000000005	0.00000000000002	-0.0000000000004	

The exact eigenprojection is given by

0.5	0.5	0	0	0	0]
0.5	0.5	0	0	0	0
0	0	0.5	0.5	0	0
0	0	0.5	0.5	0	0 .
0	0	0.5	0.5	0	0
0.5 0.5 0 0 0 0	0	0.5	0.5	0	0

As a second example, we again consider a singular *M*-matrix, this time of index a = 4:

	[1.0	-1.0	0	0	0	0	0	0 -]
	$ \begin{bmatrix} 1.0 \\ -1.0 \\ -1.0 \end{bmatrix} $	1.0	0	0	0	0	0	0	
	-1.0	-1.0	1.0	-1.0	0	0	0	0	
	-1.0	-1.0	-1.0	1.0	0	0	0	0	
$A_2 =$	0	0	0	0	1.0	-1.0	-1.0	-1.0	•
	0	0	0	0	-1.0	1.0	-1.0	-1.0	
	0	0	0	-1.0	0	0	1.0	-1.0	
	6	0	0	0	0	0	-1.0	1.0	

Here $\sigma(A_2) = \{0, 0, 0, 0, 2, 2, 2, 2\}$. With c = 2 and d = 1 in (1.2) we get using the algorithm in Section 3 that after 25 iterations for columns 1, 2, 5, 6, and 7 and 45 iterations for columns 3 and 4 that

	5.0000 $\times 10^{-1}$	5.0000×10^{-1}	0	0	0	0	0	0	
	5.0000×10^{-1}	5.0000×10^{-1}	0	0	0	0	0	0	
	0	0	5.0000×10^{-1}	5.0000×10^{-1}	0	0	0	0	
7	0	0	5.0000×10^{-1}	5.0000×10^{-1}	0	0	0	0	
$Z_{A_2} =$	0	0	1.2500×10^{-1}	-1.2500×10^{-1}	5.0000×10^{-1}	5.0000×10^{-1}	0	0	1
	0	0	1.2500×10^{-1}	-1.2500×10^{-1}	5.0000×10^{-1}	5.0000×10^{-1}	0	0	
	-1.2500×10^{-1}	-1.2500×10^{-1}	-5.7858×10^{-12}	2.5000×10^{-1}	0	0	5.0000×10^{-1}	5.0000×10^{-1}	
	1.2500×10^{-1}	1.2500×10^{-1}	-2.5000×10^{-1}	5.3423×10^{-11}	0	0	5.0000×10^{-1}	5.0000×10^{-1}	

The exact eigenprojection is given here by

[0.5000	0.5000	0	0	0	0	0	ך 0
	0.5000	0.5000	0	0	0	0	0	0
	0	0	0.5000	0.5000	0	0	0	0
	0	0	0.5000	0.5000	0	0	0	0
	0	0	0.1250	-0.1250	0.5000	0.5000	0	0
	0	0	0.1250	-0.1250	0.5000	0.5000	0	0
	-0.1250	-0.1250	0	0.2500	0	0	0.5000	0.5000
Į	0.1250	0.1250	-0.2500	0	0	0	0.5000	0.5000]

Finally, we consider a singular matrix A with a = 3.

1	5	-1	-1	1	-1	0	-1]
	1	3	-1	-1	-1	0	-1	
	0	0	3	-1	-1	0	-1	
$A_3 =$	0	0	1	1	-1	0	-1	.
	0	0	0	0	1	0	-1	
	0	0	0	0	1	0	-1	l
	0	0	0	0	0	1	-1	

Here $\sigma(A_3) = \{0, 0, 0, 2, 2, 4, 4\}$, so we can take c = 3 and d = 1. Then, using the algorithm in Section 3 we get, after 51 iterations for columns 1, 2, 3 and 4, 29 iterations for column 5, and 6 iterations for columns 6 and 7 that

[-0.3908×10^{-12}	0.1799×10^{-12}	$0.0267 imes 10^{-12}$	$0.1909 imes 10^{-12}$	1.0000	0	0 -]
	-0.1846×10^{-12}	-0.0252×10^{-12}	$0.0270 imes 10^{-12}$	0.1909×10^{-12}	1.0000	0	0	
	0	0	-0.1840×10^{-12}	0.1909×10^{-12}	1.0000	0	0	
$Z_{A_3} =$	0	0	-0.1890×10^{-12}	0.1970×10^{-12}	1.0000	0	0	
	0	0	0	0	1.0000	0	0	
	0	0	0	0	0	1.0000	0	
	0	0	0	0	0	0	1.0000]

The exact value is

	0	0	0	0	1	0	0
	0	0	0	0	1	0	0
ĺ	0	0	0	0	1	0	0
	0	0	0	0	1	0	0
	0 0 0 0 0 0	0	0	0	1	0	0
	0	0	0	0	0	1	0
	0	0	0	0	0	0	1

References

- [1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses, Theory and Applications, Wiley, New York, 1974.
- [2] S.L. Campbell, C.D. Meyer, Jr., Generalized Inverses of Linear Transformations, Pitman, London, 1979.
- [3] P.J. Davis, Interpolation and Approximation, Blaisdell, New York, 1963.
- [4] M. Eiermann, I. Marek, W. Niethammer, On the solution of singular linear systems of algebraic equations by semiiterative methods, Numer. Math. 53 (1988) 265-283.
- [5] M. Eiermann, L. Reichel, On the application of orthogonal polynomials to the iterative solution of singular linear systems of equations, in: J. Dongarra, I. Duff, P. Gaffney, S. McKee (Eds.), Vector and Parallel Computing, Wiley, New York, 1989, pp. 285-297.
- [6] M. Eiermann, G. Starke, The near-best solution of a polynomial minimization problem by the Carathéodory-Fejér method, Constr. Approx. 6 (1990) 303-319.

- 38 J.-J. Climent et al. / Journal of Computational and Applied Mathematics 87 (1997) 21-38
- [7] G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, MD, 1983.
- [8] M. Hanke, M. Hochbruck, A Chebyshev-like semiiteration for inconsistent linear systems, Electronic Transactions on Numerical Analysis 1 (1993) 89-103.
- [9] G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer, New York, 1967.
- [10] A. Sidi, Development of iterative techniques and extrapolation methods for Drazin inverse solution of consistent or inconsistent singular linear systems, Linear Algebra Appl. 167 (1992) 171-203.