where $C(x)=1-3 x+x^{2} / 2+x^{3} / 30$. Note that $C^{\prime}(x)$ is positive for $x>3$ and $C(9 / 2)=53 / 80$. Hence $C(x)$ is positive for $x>9 / 2$ and the bounds are established. We can now write

$$
F(z)>z \int_{0}^{2} e^{-z t} d t+z \int_{2}^{\infty} 2 t^{2} e^{-(z+1) t} d t
$$

and thus

$$
F(z)>1+e^{-2 z-2}\left(w(z)-e^{2}\right)
$$

where

$$
w(z)=8-\frac{4}{(z+1)^{2}}-\frac{4}{(z+1)^{3}}
$$

Note that $w(z)$ increases from $200 / 27$ at $z=2$ to 8 at $z=\infty$. Since $200 / 27>e^{2}$, we are done.

REFERENCES

[1] R. Bellman, A Brief Introduction to Theta Functions, Holt, Rinehart and Winston, New York, 1961.
[2] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, Vol. 2, Bateman Manuscript Project, McGraw-Hill, New York, 1954.

A Family of Matrix Problems

Problem 97-11*, by Dan Givoli (Technion, Haifa, Israel).
The following family of matrix problems arises in the design of some high-order local non-reflecting boundary conditions $[1,2,3]$:

$$
\left\{\begin{array}{ccccc}
1^{0} & 1^{2} & 1^{4} & \cdots & 1^{2(N-1)} \\
2^{0} & 2^{2} & 2^{4} & \cdots & 2^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
N^{0} & N^{2} & N^{4} & \cdots & N^{2(N-1)}
\end{array}\right)\left\{\begin{array}{c}
\alpha_{1}^{(N)} \\
\alpha_{2}^{(N)} \\
\vdots \\
\alpha_{N}^{(N)}
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
2 \\
\vdots \\
N
\end{array}\right\}
$$

For example, the solutions of this system for $N=1,2,3$ are:

$$
\begin{aligned}
& N=1: \quad \alpha_{1}^{(1)}=1 \\
& N=2: \quad \alpha_{1}^{(2)}=2 / 3, \quad \alpha_{2}^{(2)}=1 / 3, \\
& N=3: \quad \alpha_{1}^{(3)}=3 / 5, \quad \alpha_{2}^{(3)}=5 / 12, \quad \alpha_{3}^{(3)}=-1 / 60 .
\end{aligned}
$$

1. Numerical solution for various values of N shows that $\alpha_{m}^{(N)}$ is positive for even m and for $m=1$, and is negative for odd $m \neq 1$. Thus, the pattern of the signs of the solutions $\alpha_{m}^{(N)}$ is,,,,,,,++-+-+-+ , and so on. (This has a bearing on the stability of the non-reflecting boundary condition.) Prove that this is indeed the case for all N.
2. Estimate the condition number of the matrix as a function of N.
3. Give an asymptotic approximation for the solution of the system for large N.

REFERENCES

[1] D. Givoli and J. B. Keller, Non-reflecting boundary conditions for elastic waves, Wave Motion, 12 (1990), pp. 261-279.
[2] I. Patlashenko and D. Givoli, Non-local and local artificial boundary conditions for twodimensional flow in an infinite channel, Internat. J. Numer. Methods Heat Fluid Flow, 6 (1996), pp. 47-62.
[3] D. Givoli, I. Patlashenko, and J. B. Keller, High-order boundary conditions and finite elements for infinite domains, to appear in Comput. Methods Appl. Mech. Engrg.

Solution by A. Sidi (Technion, Haifa, Israel).
Part 1. We prove part 1 for the more general problem

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{N-1} \tag{1}\\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N} & x_{N}^{2} & \cdots & x_{N}^{N-1}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1}^{(N)} \\
\alpha_{2}^{(N)} \\
\vdots \\
\alpha_{N}^{(N)}
\end{array}\right)=\left(\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right)
$$

where $0<x_{1}<x_{2}<\cdots<x_{N}<X$ for some $X>0$ and
(i) $f \in C[0, X]$ and $f(0) \geq 0$, and
(ii) $f \in C^{N}(0, X)$ and $(-1)^{j-1} f^{(j)}(x)>0$ for $x \in(0, X), j=1,2, \ldots, N$.

Thus, the original problem is a special case of this one, with $f(x)=\sqrt{x}$ and $x_{k}=k^{2}$, $k=1, \ldots, N$. Obviously, $Q_{N}(x)=\sum_{i=1}^{N} \alpha_{i}^{(N)} x^{i-1}$ is the polynomial of interpolation to $f(x)$ at the points $x_{1}, x_{2}, \ldots, x_{N}$.

Substituting $x=0$ in the well-known error formula
$f(x)-Q_{N}(x)=\frac{f^{(N)}(\xi(x))}{N!} \prod_{i=1}^{N}\left(x-x_{i}\right)$, for some $\xi(x) \in\left(\min \left\{x, x_{1}\right\}, \max \left\{x, x_{N}\right\}\right)$, that is valid also for $x=0$ even though $f(x)$ is not necessarily differentiable there, we obtain

$$
\begin{equation*}
\alpha_{1}^{(N)}=Q_{N}(0)=f(0)+(-1)^{N+1} \frac{f^{(N)}(\xi(0))}{N!} \prod_{i=1}^{N} x_{i}, \quad \text { with } \quad \xi(0) \in\left(0, x_{N}\right) \tag{3}
\end{equation*}
$$

By the assumptions that $f(0) \geq 0$ and $(-1)^{N-1} f^{(N)}(x)>0$ for $x \in(0, X)$, (3) gives $\alpha_{1}^{(N)}>0$.

Next, let us look at the Newton form of $Q_{N}(x)$, namely,

$$
\begin{equation*}
Q_{N}(x)=f\left(x_{1}\right)+\sum_{k=2}^{N} f\left[x_{1}, \ldots, x_{k}\right]\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right) \tag{4}
\end{equation*}
$$

Here $f\left[x_{1}, \ldots, x_{k}\right]$ are the divided differences of $f(x)$, and we know that they satisfy

$$
\begin{equation*}
f\left[x_{1}, \ldots, x_{k}\right]=\frac{f^{(k-1)}\left(\xi_{k}\right)}{(k-1)!}, \text { for some } \xi_{k} \in\left(x_{1}, x_{k}\right), \quad k=2, \ldots, N \tag{5}
\end{equation*}
$$

We also observe that $x_{i}>0$ for all i implies that

$$
\begin{equation*}
\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)=\sum_{i=1}^{k}(-1)^{k-i} C_{k i} x^{i-1}, \quad k=2,3, \ldots \tag{6}
\end{equation*}
$$

for some positive constants $C_{k i}$. From

$$
\begin{equation*}
\alpha_{i}^{(N)}=\sum_{k=i}^{N} f\left[x_{1}, \ldots, x_{k}\right](-1)^{k-i} C_{k i}, \quad i=2, \ldots, N \tag{7}
\end{equation*}
$$

that follows from (4) and (6), from (5), and from the assumption that $(-1)^{j-1} f^{(j)}(x)>$ 0 for $x \in(0, X), j=1,2, \ldots, N$, we obtain $(-1)^{i} \alpha_{i}^{(N)}>0, i=2, \ldots, N$. (Note that even though (7) holds also for $i=1$, it can not be used to show that $\alpha_{1}^{(N)}>0$. This is the reason we have treated $\alpha_{1}^{(N)}$ separately.)

Now apply the above to $f(x)=\sqrt{x}$ with $x_{k}=k^{2}, k=1,2, \ldots$, and with arbitrary N.
(It is interesting to note that if $(-1)^{(j)} f^{(j)}(x)>0$ for $x \in(0, X), j=0,1, \ldots, N$, then with the help of (4)-(7) we can show that $(-1)^{i-1} \alpha_{i}^{(N)}>0, i=1,2, \ldots, N$. This is the case for $f(x)=x^{a}$ with $a<0$, for example.)

Part 2. Let us denote the matrix of the linear system in (1) by A_{N}. Then the l_{1} condition number $\kappa_{1}\left(A_{N}\right)$ of $A N$ is $\kappa_{1}\left(A_{N}\right)=\left\|A_{N}\right\|_{1}\left\|A_{N}^{-1}\right\|_{1}$, where

$$
\begin{equation*}
\left\|A_{N}\right\|_{1}=\max _{1 \leq j \leq N}\left(\sum_{i=1}^{N} x_{i}^{j-1}\right) \text { and }\left\|A_{N}^{-1}\right\|_{1}=\max _{1 \leq k \leq N}\left(\prod_{\substack{i=1 \\ i \neq k}}^{N} \frac{1+x_{i}}{\left|x_{k}-x_{i}\right|}\right) \tag{8}
\end{equation*}
$$

(for $\left\|A_{N}^{-1}\right\|_{1}$, see Gautschi [1]).
For the problem at hand, we have $x_{k}=k^{2}, k=1,2, \ldots$ Thus

$$
\begin{equation*}
\left\|A_{N}\right\|_{1}=\sum_{i=1}^{N} i^{2(N-1)} \in\left(N^{2 N-2}, N^{2 N-1}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A_{N}^{-1}\right\|_{1}=\frac{\Pi_{N}}{\binom{2 N}{N}} \max _{1 \leq k \leq N}\left[\frac{2 k^{2}}{1+k^{2}}\binom{2 N}{N+k}\right] \in\left(\frac{N \Pi_{N}}{N+1}, \frac{2 N^{3} \Pi_{N}}{(N+1)\left(N^{2}+1\right)}\right) \tag{10}
\end{equation*}
$$

where $\Pi_{N} \equiv \prod_{i=1}^{N}\left(1+i^{-2}\right)$. Consequently,

$$
\begin{equation*}
\frac{N}{N+1} \Pi_{N} N^{2 N-2}<\kappa_{1}\left(A_{N}\right)<\frac{2 N^{3}}{(N+1)\left(N^{2}+1\right)} \Pi_{N} N^{2 N-1} \tag{11}
\end{equation*}
$$

In other words, $\kappa_{1}\left(A_{N}\right)$ is at best $O\left(N^{2 N-2}\right)$ and at worst $O\left(N^{2 N-1}\right)$, as $N \rightarrow \infty$. (Here we have used the fact that $\lim _{N \rightarrow \infty} \Pi_{N}$ exists and is finite.)

Part 3. Using the well-known recursion relation that is used in defining the divided differences, we can show by induction that when $f(x)=\sqrt{x}$ and $x_{k}=k^{2}, k=$ $0,1,2, \ldots$,

$$
\begin{equation*}
f\left[x_{i}, x_{i+1}, \ldots, x_{i+k}\right]=(-4)^{k-1} \frac{\left(\frac{1}{2}\right)_{k-1}}{k!} \frac{(2 i)!}{(2 i+2 k-1)!}, \quad i=0,1, \ldots, \quad k=1,2, \ldots \tag{12}
\end{equation*}
$$

(Note that $x_{0} \equiv 0$.) We thus have

$$
\begin{equation*}
\alpha_{N}^{(N)}=f\left[x_{1}, x_{2}, \ldots, x_{N}\right]=\frac{2(-4)^{N-2}\left(\frac{1}{2}\right)_{N-2}}{(N-1)!(2 N-1)!} \sim(-1)^{N} \frac{4^{N-1}}{\sqrt{\pi N}(2 N)!} \text { as } N \rightarrow \infty . \tag{13}
\end{equation*}
$$

Also, substituting $x=x_{0}=0$ in the divided difference form of the error

$$
\begin{equation*}
f(x)-Q_{N}(x)=f\left[x, x_{1}, x_{2}, \ldots, x_{N}\right] \prod_{i=1}^{N}\left(x-x_{i}\right) \tag{14}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\alpha_{1}^{(N)}=Q_{N}(0)=f(0)-f\left[x_{0}, x_{1}, x_{2}, \ldots, x_{N}\right](-1)^{N} \prod_{i=1}^{N} x_{i} \tag{15}
\end{equation*}
$$

which, by (12), becomes

$$
\begin{equation*}
\alpha_{1}^{(N)}=\frac{4^{N-1}\left(\frac{1}{2}\right)_{N-1}(N!)}{(2 N-1)!} \sim \frac{1}{2} \text { as } N \rightarrow \infty \tag{16}
\end{equation*}
$$

In obtaining the asymptotic behaviors of $\alpha_{N}^{(N)}$ and $\alpha_{1}^{(N)}$ for $N \rightarrow \infty$ in (13) and (16) we have made use of the Stirling formula for the gamma function.

We next discuss the asymptotic behaviors of the $C_{N i}$ as these are important in determining the asymptotic behaviors of the $\alpha_{i}^{(N)}$. We first note that

$$
\begin{equation*}
C_{k i}=C_{k-1, i-1}+x_{k-1} C_{k-1, i}, \quad i=1,2, \ldots, k \tag{17}
\end{equation*}
$$

with $C_{k k}=1$ and $C_{k 0}=C_{k, k+1}=0$ for all k. (From this we obtain $C_{k 1}=\prod_{i=1}^{k-1} x_{i}$ and $C_{k, k-1}=\sum_{i=1}^{k-1} x_{i}$ for all k, which are, of course, true.) We look at two different cases.
(i) Letting $C_{k i}=C_{k 1} D_{k i}, i=1,2, \ldots$, with $D_{k 1}=1$, we rewrite (17) in the form of a difference equation as in

$$
\begin{equation*}
D_{k i}-D_{k-1, i}=\frac{1}{x_{k-1}} D_{k-1, i-1}, \quad i=2,3, \ldots \tag{18}
\end{equation*}
$$

We can now show that $D_{k 2}=\sum_{i=1}^{k-1} 1 / x_{i}=\sum_{i=1}^{k-1} i^{-2} \sim \zeta(2)$ as $k \rightarrow \infty$. With this knowledge, we can next show that

$$
D_{k 3}=\sum_{1 \leq i<j \leq k-1} \frac{1}{x_{i} x_{j}}=\frac{1}{2}\left\{\left(\sum_{i=1}^{k-1} \frac{1}{x_{i}}\right)^{2}-\sum_{i=1}^{k-1} \frac{1}{x_{i}^{2}}\right\} \sim \frac{1}{2}\left\{[\zeta(2)]^{2}-\zeta(4)\right\} \text { as } k \rightarrow \infty
$$

(Here $\zeta(z)$ is the Riemann zeta function.) In general, by induction, we obtain from (18) that

$$
\begin{equation*}
D_{k i} \sim \hat{D}_{i} \quad \text { as } \quad k \rightarrow \infty, \quad i=1,2, \ldots, \quad i \text { fixed } \tag{19}
\end{equation*}
$$

for some constants \hat{D}_{i} that are independent of k. As a result,

$$
\begin{equation*}
C_{k i} \sim \hat{D}_{i}[(k-1)!]^{2} \text { as } k \rightarrow \infty, \quad i=1,2, \ldots, \quad i \text { fixed } \tag{20}
\end{equation*}
$$

(ii) Replacing i in (17) by $k-s$, we obtain the difference equation

$$
\begin{equation*}
C_{k, k-s}-C_{k-1,(k-1)-s}=x_{k-1} C_{k-1,(k-1)-(s-1)}, \quad s=0,1, \ldots, k-1 \tag{21}
\end{equation*}
$$

For $s=1$ we obtain from (21) that $C_{k, k-1}=\sum_{i=1}^{k-1} x_{i}=\sum_{i=1}^{k-1} i^{2}=(k-1) k(2 k-$ $1) / 6 \sim k^{3} / 3$ as $k \rightarrow \infty$. Continuing with $s=2,3, \ldots$, and realizing that $C_{k, k-s}$ are polynomials in k whose degrees depend on s, we obtain

$$
\begin{equation*}
C_{k, k-s} \sim \frac{k^{3 s}}{3^{s}(s!)} \text { as } k \rightarrow \infty, \quad s=0,1,2, \ldots, s \text { fixed } \tag{22}
\end{equation*}
$$

We now proceed to the asymptotic behavior of the $\alpha_{i}^{(N)}$. Again, we look at two different cases.
(i) From (7) and from the fact that for fixed i

$$
\begin{equation*}
(-1)^{k-i} f\left[x_{1}, \ldots, x_{k}\right] C_{k i} \sim(-1)^{i} \frac{\hat{D}_{i}}{4 k^{2}} \text { as } k \rightarrow \infty \tag{23}
\end{equation*}
$$

that follows from (13) and (19), we see that, for $i=1,2, \ldots$, and i fixed,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \alpha_{i}^{(N)}=\hat{\alpha}_{i} \text { for some constant } \hat{\alpha}_{i} . \tag{24}
\end{equation*}
$$

(ii) Let us replace i in (7) by $N-s$. Then the summation there has only $s+1$ terms independently of N. The asymptotic behavior for $N \rightarrow \infty$ of this summation is determined solely by its last term, namely, by $(-1)^{s} f\left[x_{1}, \ldots, x_{N}\right] C_{N, N-s}$, since

$$
\begin{equation*}
\frac{f\left[x_{1}, \ldots, x_{N}\right] C_{N, N-s}}{f\left[x_{1}, \ldots, x_{N-1}\right] C_{N-1, N-s}} \sim-\frac{1}{3 s} N \quad \text { as } N \rightarrow \infty . \tag{25}
\end{equation*}
$$

Thus, for $s=0,1, \ldots$, and s fixed,

$$
\begin{equation*}
\alpha_{N-s}^{(N)} \sim(-1)^{s} f\left[x_{1}, \ldots, x_{N}\right] C_{N, N-s} \sim(-1)^{N-s} \frac{4^{N-1}}{\sqrt{\pi N}(2 N)!} \frac{N^{3 s}}{3^{s}(s!)} \text { as } N \rightarrow \infty . \tag{26}
\end{equation*}
$$

That is to say, $\alpha_{N-s}^{(N)}$ tends to 0 as $N \rightarrow \infty$ like $4^{N} N^{3 s-\frac{1}{2}} /(2 N)$!
Note that the result in (24) is not contained in that given in (26) and vice versa. Note also that neither (24) nor (26) covers $\alpha_{i}^{(N)}, i=1, \ldots, N$, uniformly in i. It is, however, possible to show that $\alpha_{i}^{(N)}$ are uniformly bounded both in N and in i. To do this we first show that $C_{k i} \leq \Pi_{k-1}[(k-1)!]^{2}$ for all k and i, with $\Pi_{m}=\prod_{i=1}^{m}\left(1+i^{-2}\right)$ as before. This is achieved by using induction in (17). Consequently, $C_{k i}<\Pi_{\infty}[(k-1)!]^{2}$ for all k and i, since $\Pi_{\infty}=\lim _{m \rightarrow \infty} \Pi_{m}$ exists. Next, we substitute this upper bound on $C_{k i}$ in (7) to obtain

$$
\begin{equation*}
\left|\alpha_{i}^{(N)}\right| \leq \Pi_{\infty} \sum_{k=i}^{N}\left|f\left[x_{1}, \ldots, x_{k}\right]\right|[(k-1)!]^{2}, \quad i=1,2, \ldots, N . \tag{27}
\end{equation*}
$$

Invoking (12) in (27) and using Stirling's formula, we can show that $\left|f\left[x_{1}, \ldots, x_{k}\right]\right|[(k-$ $1)!]^{2}=O\left(k^{-2}\right)$ as $k \rightarrow \infty$. The result now follows.

REFERENCE

[1] W. Gautschi, Norm estimates for inverses of Vandermonde matrices, Numer. Math., 23 1975, pp. 337-347.
Also partially solved by C. C. Grosjean and H. E. De Meyer (University of Ghent, Ghent, Belgium).

A Laplace Transform from a Diffusion Problem

Problem 97-12*, by M. L. Glasser (Clarkson University).
In an investigation [1] of the scaling properties of diffusion in a space of dimensionality d, the authors require knowledge of the Laplace transform

$$
\phi(s)=\int_{0}^{\infty} e^{-s t} \sin ^{-1}\left(\operatorname{sech}^{d / 2}(t / 2)\right) d t .
$$

1. Show that for $d=1,2$ it is possible to express $\phi(s)$ in closed form in terms of the digamma function.
2. Can this be done for $d=3,4$?

REFERENCE

[1] S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell, Nontrivial exponent for simple diffusion, Phys. Rev. Lett., 77 (1996), pp. 2867-2870.
Solution by Carl C. Grosjean (University of Ghent, Ghent, Belgium).
The given integral is convergent for $\operatorname{Re}(s)>-d / 4$ since the integrand approximately behaves like $2^{d / 2} e^{-(s+d / 4) t}$ as $t \rightarrow+\infty$. For $s \neq 0$, integration by parts can be carried out as follows:

$$
\begin{aligned}
\phi(s) & =-\frac{1}{s} \int_{0}^{\infty} \sin ^{-1}\left(\operatorname{sech}^{d / 2}(t / 2)\right) d e^{-s t} \\
& =\frac{\pi}{2 s}-\frac{d}{4 s} \int_{0}^{\infty} e^{-s t} \frac{\sinh (t / 2)}{\cosh (t / 2)\left[\cosh ^{d}(t / 2)-1\right]^{1 / 2}} d t .
\end{aligned}
$$

For $s \rightarrow 0$, this right-hand side tends to

$$
\frac{d}{4} \int_{0}^{\infty} \frac{t \sinh (t / 2)}{\cosh (t / 2)\left[\cosh ^{d}(t / 2)-1\right]^{1 / 2}} d t
$$

representing $\phi(0)$. Note that, with the substitution of a new integration variable, $x^{2}=\cosh ^{d}(t / 2)-1$,

$$
\frac{d}{4} \int_{0}^{\infty} \frac{\sinh (t / 2)}{\cosh (t / 2)\left[\cosh ^{d}(t / 2)-1\right]^{1 / 2}} d t=\frac{\pi}{2},
$$

as required.
The simplest case is that of $d=2$. For $s \neq 0$, we have

$$
\begin{align*}
\phi_{2}(s) & =\frac{\pi}{2 s}-\frac{1}{2 s} \int_{0}^{\infty} \frac{e^{-s t}}{\cosh (t / 2)} d t \tag{1}\\
& =\frac{\pi}{2 s}-\frac{1}{s} \int_{0}^{\infty} \frac{e^{-(s+1 / 2) t}}{1+e^{-t}} d t \\
& =\frac{\pi}{2 s}-\frac{1}{s}\left[\frac{1}{s+1 / 2}-\frac{1}{s+3 / 2}+\frac{1}{s+5 / 2}-\frac{1}{s+7 / 2}+\cdots\right] .
\end{align*}
$$

