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where C(x) = 1 − 3x + x2/2 + x3/30. Note that C ′(x) is positive for x > 3 and
C(9/2) = 53/80. Hence C(x) is positive for x > 9/2 and the bounds are established.
We can now write

F (z) > z

∫ 2

0
e−ztdt+ z

∫ ∞
2

2t2e−(z+1)tdt,

and thus

F (z) > 1 + e−2z−2(w(z)− e2),

where

w(z) = 8− 4
(z + 1)2 −

4
(z + 1)3 .

Note that w(z) increases from 200/27 at z = 2 to 8 at z =∞. Since 200/27 > e2, we
are done.
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A Family of Matrix Problems

Problem 97-11*, by Dan Givoli (Technion, Haifa, Israel).
The following family of matrix problems arises in the design of some high-order

local non-reflecting boundary conditions [1,2,3]:

10 12 14 · · · 12(N−1)

20 22 24 · · · 22(N−1)

...
...

...
. . .

...

N0 N2 N4 · · · N2(N−1)





α
(N)
1

α
(N)
2

...

α
(N)
N


=



1

2

...

N


.

For example, the solutions of this system for N = 1, 2, 3 are:

N = 1 : α
(1)
1 = 1

N = 2 : α
(2)
1 = 2/3, α

(2)
2 = 1/3,

N = 3 : α
(3)
1 = 3/5, α

(3)
2 = 5/12, α

(3)
3 = −1/60.

1. Numerical solution for various values of N shows that α(N)
m is positive for

even m and for m = 1, and is negative for odd m 6= 1. Thus, the pattern of
the signs of the solutions α(N)

m is +,+,−,+,−,+,−,+, and so on. (This has
a bearing on the stability of the non-reflecting boundary condition.) Prove
that this is indeed the case for all N .

2. Estimate the condition number of the matrix as a function of N .
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3. Give an asymptotic approximation for the solution of the system for large N .
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Solution by A. Sidi (Technion, Haifa, Israel).
Part 1. We prove part 1 for the more general problem

1 x1 x2
1 · · · xN−1

1
1 x2 x2

2 · · · xN−1
2

...
...

...
. . .

...
1 xN x2

N · · · xN−1
N




α
(N)
1

α
(N)
2
...

α
(N)
N

 =


f(x1)
f(x2)

...
f(xN )

 ,(1)

where 0 < x1 < x2 < · · · < xN < X for some X > 0 and
(i) f ∈ C[0, X] and f(0) ≥ 0, and
(ii) f ∈ CN (0, X) and (−1)j−1f (j)(x) > 0 for x ∈ (0, X), j = 1, 2, . . . , N .

Thus, the original problem is a special case of this one, with f(x) =
√
x and xk = k2,

k = 1, . . . , N . Obviously, QN (x) =
∑N
i=1 α

(N)
i xi−1 is the polynomial of interpolation

to f(x) at the points x1, x2, . . . , xN .
Substituting x = 0 in the well-known error formula

f(x)−QN (x) =
f (N)(ξ(x))

N !

N∏
i=1

(x− xi), for some ξ(x) ∈ (min{x, x1},max{x, xN}),

(2)

that is valid also for x = 0 even though f(x) is not necessarily differentiable there, we
obtain

α
(N)
1 = QN (0) = f(0) + (−1)N+1 f

(N)(ξ(0))
N !

N∏
i=1

xi, with ξ(0) ∈ (0, xN ).(3)

By the assumptions that f(0) ≥ 0 and (−1)N−1f (N)(x) > 0 for x ∈ (0, X), (3) gives
α

(N)
1 > 0.

Next, let us look at the Newton form of QN (x), namely,

QN (x) = f(x1) +
N∑
k=2

f [x1, . . . , xk](x− x1) · · · (x− xk−1).(4)

Here f [x1, . . . , xk] are the divided differences of f(x), and we know that they satisfy

f [x1, . . . , xk] =
f (k−1)(ξk)

(k − 1)!
, for some ξk ∈ (x1, xk), k = 2, . . . , N.(5)
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We also observe that xi > 0 for all i implies that

(x− x1) · · · (x− xk−1) =
k∑
i=1

(−1)k−iCkixi−1, k = 2, 3, . . . ,(6)

for some positive constants Cki. From

α
(N)
i =

N∑
k=i

f [x1, . . . , xk](−1)k−iCki, i = 2, . . . , N,(7)

that follows from (4) and (6), from (5), and from the assumption that (−1)j−1f (j)(x) >
0 for x ∈ (0, X), j = 1, 2, . . . , N , we obtain (−1)iα(N)

i > 0, i = 2, . . . , N . (Note that
even though (7) holds also for i = 1, it can not be used to show that α(N)

1 > 0. This
is the reason we have treated α

(N)
1 separately.)

Now apply the above to f(x) =
√
x with xk = k2, k = 1, 2, . . . , and with arbitrary

N .
(It is interesting to note that if (−1)(j)f (j)(x) > 0 for x ∈ (0, X), j = 0, 1, . . . , N,

then with the help of (4)–(7) we can show that (−1)i−1α
(N)
i > 0, i = 1, 2, . . . , N .

This is the case for f(x) = xa with a < 0, for example.)
Part 2. Let us denote the matrix of the linear system in (1) by AN . Then the l1

condition number κ1(AN ) of AN is κ1(AN ) = ‖AN‖1 ‖A−1
N ‖1, where

‖AN‖1 = max
1≤j≤N

(
N∑
i=1

xj−1
i

)
and ‖A−1

N ‖1 = max
1≤k≤N

 N∏
i=1
i6=k

1 + xi
|xk − xi|

 .(8)

(for ‖A−1
N ‖1, see Gautschi [1]).

For the problem at hand, we have xk = k2, k = 1, 2, . . . . Thus

‖AN‖1 =
N∑
i=1

i2(N−1) ∈ (N2N−2, N2N−1)(9)

and

‖A−1
N ‖1 =

ΠN(2N
N

) max
1≤k≤N

[
2k2

1 + k2

(
2N
N + k

)]
∈
(
NΠN

N + 1
,

2N3ΠN

(N + 1)(N2 + 1)

)
(10)

where ΠN ≡
∏N
i=1(1 + i−2). Consequently,

N

N + 1
ΠNN

2N−2 < κ1(AN ) <
2N3

(N + 1)(N2 + 1)
ΠNN

2N−1.(11)

In other words, κ1(AN ) is at best O(N2N−2) and at worst O(N2N−1), as N → ∞.
(Here we have used the fact that limN→∞ΠN exists and is finite.)

Part 3. Using the well-known recursion relation that is used in defining the
divided differences, we can show by induction that when f(x) =

√
x and xk = k2, k =

0, 1, 2, . . . ,

f [xi, xi+1, . . . , xi+k] = (−4)k−1 ( 1
2 )k−1

k!
(2i)!

(2i+ 2k − 1)!
, i = 0, 1, . . . , k = 1, 2, . . . .

(12)
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(Note that x0 ≡ 0.) We thus have

α
(N)
N = f [x1, x2, . . . , xN ] =

2(−4)N−2( 1
2 )N−2

(N − 1)!(2N − 1)!
∼ (−1)N

4N−1
√
πN(2N)!

as N →∞.

(13)

Also, substituting x = x0 = 0 in the divided difference form of the error

f(x)−QN (x) = f [x, x1, x2, . . . , xN ]
N∏
i=1

(x− xi),(14)

we obtain

α
(N)
1 = QN (0) = f(0)− f [x0, x1, x2, . . . , xN ](−1)N

N∏
i=1

xi,(15)

which, by (12), becomes

α
(N)
1 =

4N−1( 1
2 )N−1(N !)

(2N − 1)!
∼ 1

2
as N →∞.(16)

In obtaining the asymptotic behaviors of α(N)
N and α(N)

1 for N →∞ in (13) and (16)
we have made use of the Stirling formula for the gamma function.

We next discuss the asymptotic behaviors of the CNi as these are important in
determining the asymptotic behaviors of the α(N)

i . We first note that

Cki = Ck−1,i−1 + xk−1Ck−1,i, i = 1, 2, . . . , k,(17)

with Ckk = 1 and Ck0 = Ck,k+1 = 0 for all k. (From this we obtain Ck1 =
∏k−1
i=1 xi

and Ck,k−1 =
∑k−1
i=1 xi for all k, which are, of course, true.) We look at two different

cases.
(i) Letting Cki = Ck1Dki, i = 1, 2, . . . , with Dk1 = 1, we rewrite (17) in the form

of a difference equation as in

Dki −Dk−1,i =
1

xk−1
Dk−1,i−1, i = 2, 3, . . . .(18)

We can now show that Dk2 =
∑k−1
i=1 1/xi =

∑k−1
i=1 i

−2 ∼ ζ(2) as k → ∞. With this
knowledge, we can next show that

Dk3 =
∑

1≤i<j≤k−1

1
xixj

=
1
2


(
k−1∑
i=1

1
xi

)2

−
k−1∑
i=1

1
x2
i

 ∼ 1
2
{[ζ(2)]2 − ζ(4)} as k →∞.

(Here ζ(z) is the Riemann zeta function.) In general, by induction, we obtain from
(18) that

Dki ∼ D̂i as k →∞, i = 1, 2, . . . , i fixed,(19)

for some constants D̂i that are independent of k. As a result,

Cki ∼ D̂i[(k − 1)!]2 as k →∞, i = 1, 2, . . . , i fixed.(20)
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(ii) Replacing i in (17) by k − s, we obtain the difference equation

Ck,k−s − Ck−1,(k−1)−s = xk−1Ck−1,(k−1)−(s−1), s = 0, 1, . . . , k − 1.(21)

For s = 1 we obtain from (21) that Ck,k−1 =
∑k−1
i=1 xi =

∑k−1
i=1 i

2 = (k − 1)k(2k −
1)/6 ∼ k3/3 as k → ∞. Continuing with s = 2, 3, . . . , and realizing that Ck,k−s are
polynomials in k whose degrees depend on s, we obtain

Ck,k−s ∼
k3s

3s(s!)
as k →∞, s = 0, 1, 2, . . . , s fixed .(22)

We now proceed to the asymptotic behavior of the α
(N)
i . Again, we look at two

different cases.
(i) From (7) and from the fact that for fixed i

(−1)k−if [x1, . . . , xk]Cki ∼ (−1)i
D̂i

4k2 as k →∞,(23)

that follows from (13) and (19), we see that, for i = 1, 2, . . . , and i fixed,

lim
N→∞

α
(N)
i = α̂i for some constant α̂i.(24)

(ii) Let us replace i in (7) by N − s. Then the summation there has only s + 1
terms independently of N . The asymptotic behavior for N → ∞ of this summation
is determined solely by its last term, namely, by (−1)sf [x1, . . . , xN ]CN,N−s, since

f [x1, . . . , xN ]CN,N−s
f [x1, . . . , xN−1]CN−1,N−s

∼ − 1
3s
N as N →∞.(25)

Thus, for s = 0, 1, . . . , and s fixed,

α
(N)
N−s ∼ (−1)sf [x1, . . . , xN ]CN,N−s ∼ (−1)N−s

4N−1
√
πN(2N)!

N3s

3s(s!)
as N →∞.(26)

That is to say, α(N)
N−s tends to 0 as N →∞ like 4NN3s− 1

2 /(2N)!
Note that the result in (24) is not contained in that given in (26) and vice versa.

Note also that neither (24) nor (26) covers α(N)
i , i = 1, . . . , N , uniformly in i. It is,

however, possible to show that α(N)
i are uniformly bounded both in N and in i. To do

this we first show that Cki ≤ Πk−1[(k−1)!]2 for all k and i, with Πm =
∏m
i=1(1+i−2) as

before. This is achieved by using induction in (17). Consequently, Cki < Π∞[(k−1)!]2

for all k and i, since Π∞ = limm→∞Πm exists. Next, we substitute this upper bound
on Cki in (7) to obtain

∣∣∣α(N)
i

∣∣∣ ≤ Π∞
N∑
k=i

|f [x1, . . . , xk]| [(k − 1)!]2, i = 1, 2, . . . , N.(27)

Invoking (12) in (27) and using Stirling’s formula, we can show that |f [x1, . . . , xk]| [(k−
1)!]2 = O(k−2) as k →∞. The result now follows.



PROBLEMS AND SOLUTIONS 723

REFERENCE

[1] W. Gautschi, Norm estimates for inverses of Vandermonde matrices, Numer. Math., 23 1975,
pp. 337–347.
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A Laplace Transform from a Diffusion Problem

Problem 97-12*, by M. L. Glasser (Clarkson University).
In an investigation [1] of the scaling properties of diffusion in a space of dimen-

sionality d, the authors require knowledge of the Laplace transform

φ(s) =
∫ ∞

0
e−st sin−1

(
sechd/2(t/2)

)
dt.

1. Show that for d = 1, 2 it is possible to express φ(s) in closed form in terms
of the digamma function.

2. Can this be done for d = 3, 4?

REFERENCE

[1] S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell, Nontrivial exponent for simple
diffusion, Phys. Rev. Lett., 77 (1996), pp. 2867–2870.

Solution by Carl C. Grosjean (University of Ghent, Ghent, Belgium).
The given integral is convergent for Re(s) > −d/4 since the integrand approxi-

mately behaves like 2d/2e−(s+d/4)t as t → +∞. For s 6= 0, integration by parts can
be carried out as follows:

φ(s) = −1
s

∫ ∞
0

sin−1
(

sechd/2(t/2)
)
de−st

=
π

2s
− d

4s

∫ ∞
0

e−st
sinh (t/2)

cosh (t/2)[coshd (t/2)− 1]1/2
dt.

For s→ 0, this right-hand side tends to

d

4

∫ ∞
0

t sinh (t/2)
cosh (t/2)[coshd (t/2)− 1]1/2

dt

representing φ(0). Note that, with the substitution of a new integration variable,
x2 = coshd (t/2)− 1,

d

4

∫ ∞
0

sinh (t/2)
cosh (t/2)[coshd (t/2)− 1]1/2

dt =
π

2
,

as required.
The simplest case is that of d = 2. For s 6= 0, we have

φ2(s) =
π

2s
− 1

2s

∫ ∞
0

e−st

cosh (t/2)
dt(1)

=
π

2s
− 1
s

∫ ∞
0

e−(s+1/2)t

1 + e−t
dt

=
π

2s
− 1
s

[
1

s+ 1/2
− 1
s+ 3/2

+
1

s+ 5/2
− 1
s+ 7/2

+ · · ·
]
.




