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Abstract 

In this paper we propose a general approach by which eigenvalues with a special 
property of a given matrix A can be obtained. In this approach we first determine a sca- 
lar function $ : @ + @ whose modulus is maximized by the eigenvalues that have the 
special property. Next, we compute the generalized power iterations 
U,+l =if!I(A)Uj, j=O,l,..., where u. is an arbitrary initial vector. Finally, we apply 
known Krylov subspace methods, such as the Arnoldi and Lanczos methods, to the vector 
u, for some sufficiently large n. We can also apply the simultaneous iteration method 
to the subspace span($), . . . ,$‘} with some sufficiently large n, where 
x?‘) = I(I(A)xk), j = 0, 1,. , m = 1,. . . ,k. In all cases the resulting Ritz pairs are ap- 
proximations to the eigenpairs of A with the special property. We provide a rather 
thorough convergence analysis of the approach involving all three methods as n -+ CC 
for the case in which A is a normal matrix. We also discuss the connections and similarities 
of our approach with the existing methods and approaches in the literature. 0 1998 
Elsevier Science Inc. All rights reserved. 
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1. Introduction 

Let A be an N x N matrix that is in general complex and denote its eigen- 
values by pi, i = 1,2, . . , N. In some applications we may need to find a number 
of the eigenvalues of A that have some special property and their 
corresponding invariant subspaces. For example, we may need some of those 

Pi: 

(i) that have largest moduli, or 
(ii) that have largest real parts, or 
(iii) that lie in a given set Q in the complex plane, etc. 
We assume that corresponding to the special property considered there 

exists a scalar function $(p), $ : @ -+ @ such that the eigenvalues satisfying this 
special property maximize ]~&)l. If we order the eigenvalues pi of A such that 

I4%)l 2 I4%)I 2 MP3)I 2 “‘> (1.1) 
then we are interested in finding ,u,, Pi,. . , in this order. Hence, our task can be 
reformulated to read as follows: Given the function II/ : @ + @ and the order- 
ing of the pi in Eq. (1 .l), find pi, p2, . , ,LL~ for a given integer k. 

Going back to the above examples, we see that the most obvious candidates 
for $(p) are as follows: 

(i1 For eigenvalues that are largest in modulus, I&) = ,u. 
For eigenvalues with largest real parts, $(p) = exp(p). 

(iii) For eigenvalues in a set Sz of the complex plane, pick $(p) to be, for 
example, a polynomial, whose modulus assumes its largest values on Sz 
and is relatively small on the rest of the spectrum of A. (The behavior of 
$(,u) outside the spectrum of A is immaterial.) 
As we shall see in Section 2, the function $(p) enters the picture through the 

computation of the vectors $(A)u E CN, where $(A) is an N x N matrix and 
u E CN. The computation of the matrix $(A), which may be a prohibitively 
expensive task even in the simplest cases, is not necessary for this purpose. The 
vectors $(A)u can be*computed exactly in case $(p) is a polynomial or can 
be approximated by $(A) U, where $(p) is an appropriate polynomial approx- 
imation for $(p). 

The purpose of the present work is to consider a general approach that has 
been observed to achieve the task above in some special cases. An important 
ingredient of this approach is the use of any one of the following three methods 
that are employed in approximating a number of eigenvalues of a given matrix: 
(1) The method of Arnoldi [l], (2) the method of Lanczos [12], and (3) the 
simultaneous iteration method (see the references in [7], Sections 7.3 and 
8.5). Thus, this general approach is really a collection of three different methods 
which we call the Special Eigenvalue Arnoldi, Lanczos, and Simultaneous Iter- 
ation methods. We will denote these methods by SEA, SEL, and SESI, respec- 
tively, for short. (Of course, we can employ additional methods for the partial 
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solution of the eigenvalue problem, such as the block Arnoldi and block 
Lanczos methods, thus enlarging this collection.) After describing how these 
methods can be applied to find eigenvalues with special properties, we provide 
a detailed analysis of convergence for the case in which the matrix A is normal. 
(We propose to extend this analysis to the case of nonnormal matrices in a 
future publication although we mention the relevant results in appropriate 
places of this work.) 

The plan of the present work is as follows: In Section 2 we treat the simplest 
problem of finding ,ui and a corresponding eigenvector. The method that we 
propose and analyze there is an extension of the power method (it is actually 
the power method when $(p) = ,u). This may serve as a motivation for the general 
approach and contains some of the major ingredients of this approach. 

In Section 3 we describe briefly the Arnoldi and Lanczos methods and the 
simultaneous iteration method. Our description is mathematical; we do not 
dwell on the important issue of numerical implementations of these methods. 
Following this, in Section 4 we describe fully the approach to the solution of 
the special eigenvalue problem using SEA, SEL, and SESI. 

The convergence analysis of this general approach for the case in which A is 
normal is the subject of Sections 5-8. In Section 5 we provide some theoretical 
preliminaries that are crucial for a proper understanding of the results of Sec- 
tions 6-8 and their proofs. The main results of these sections are Theorem 6.3 
on convergence to eigenvalues, Theorem 7.1 on convergence to eigenvectors, 
and Theorem 8.1 on formation of spurious eigenvalues under some conditions. 
An interesting feature of our treatment is that it allows us to give a unified anal- 
ysis of all three methods that we employ. The mathematics that is used in this 
analysis has been placed in Appendix A. We believe that some of the results in 
Appendix A are of independent interest. 

In Section 9 we provide numerical examples by which we demonstrate some 
of the theoretical results of Sections 6 and 7. 

The problem of finding eigenvalues with special properties has received 
some attention in the past. First, it is well known that when applied to a 
hermitian matrix the (symmetric) Lanczos method produces approximations 
to the largest and the smallest eigenvalues whose accuracy increases with the 
size of the underlying Krylov subspace. The same holds true for the block 
Lanczos method, see [4,6]. This has been analyzed in [ 11,13,17] for the Lanczos 
method, and in [28] for the block Lanczos method (see also [14,7]). Next, the 
use of Chebyshev polynomials for improving the convergence of the subspace 
iteration method for hermitian matrices was proposed in [ 15,161. The approach 
in these two papers was generalized in [19] to improve the convergence of the 
Arnoldi method and the subspace iteration method for eigenvalues with largest 
real parts of nonhermitian matrices. We will comment on these in Section 4. 

We now mention those methods that are exactly of the form that we treat in 
this work and that have been suggested and applied in the past. 
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The simultaneous iteration method was designed to find a number of eigen- 
values with largest moduli with It/(p) = p for this method. The literature for it 
is quite extensive. See, for example [8,2,3,25,26,15,16,29,10,27]. See also the 
books [9,14,7]. A convergence analysis for hermitian matrices is given in [25], 
while [26] provides an analysis for nonhermitian matrices. The use of the Arn- 
oldi and Lanczos methods for finding a number of eigenvalues with largest 
moduli was proposed in [23] with $(p) = p in this case too. The treatment of 
[23] includes general nondiagonalizable matrices and normal matrices as well. 
It provides the constructions of eigenvalue and invariant subspace approxima- 
tions, and contains a complete convergence theory for all cases. This theory is 
based on the connection of the Arnoldi and Lanczos methods with certain 
vector-valued rational approximations that have been studied in [22]. The treat- 
ment of eigenvalues with largest moduli of normal matrices by the Arnoldi 
method was previously given in [20] again with I&) = p. 

The problem of finding eigenvalues with largest real parts was tackled in [5] 
with $(p) = exp(p) explicitly. The vectors u, = [Ic/(A)]“uo = en%,, that are 
needed are approximated through the numerical solution of the linear system 
of ordinary differential equations u’(t) = Au(t) with initial conditions 
u(0) = uo, where u(n) = u,. Subsequently, a mathematical equivalent of the 
Arnoldi method is employed. (This equivalence can be verified with the help 
of [23], Section 5.) The method then is applied to a problem in hydrodynamic 
stability that involves the Orr-Sommerfeld equation. 

Finally, the techniques of analysis in the present work form an extension of 
those developed in [20]. These techniques are nongeometric in the sense that 
they do not utilize projection operators. 

2. A power method for p1 

To motivate our approach we will start with the problem of finding only 
that eigenvalue of A that maximizes I$(,u)], namely, p, in Eq. (1. l), and a cor- 
responding eigenvector. For simplicity we assume that A is diagonalizable. The 
method that we propose below is a generalization of the power method via the 
Rayleigh quotient. It is also a special case of SEA as will be explained later. 

We start by picking an arbitrary vector u. E CN. We next generate the 
vectors ul, u2,. . . , through u~+~ = $(A)u,, j = 0, 1,2,. . . (Obviously, in compu- 
tational work we would normalize these vectors as we generate them.) We then 
compute the Rayleigh quotient 

p = (%,A%) 
n (u?l,u,) 

(2.1) 

with (a, b) = a*Qb, where Q is some hermitian positive definite matrix. Theorem 
2.1 below states the precise conditions under which p, tends to pL1 and a 
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properly normalized u, tends to an eigenvector corresponding to ,u, . We leave 
the proof of this theorem to the reader. 

Theorem 2.1. Denote the eigenvector of A that corresponds to the eigenvalue pi by 
vi, i= 1,2,...,N. For some r-2 1 we have ~1 =/L~=...=~~#/L~+I. Also, 
ug = C;“=, yivi for some scalars yi. Assume that $(A)Vi = $(,Ui)vi for all i. 
Provided that 

we have 

and, for some normalization constant CY,, 

(2.3) 

(2.4) 

If the matrix A is normal, i.e., A*A = AA*, and (y,z) = y*z, then Eq. (2.3) is 
improved to read 

P, - PI = 0 *(&+I) 2n (1 1) @J 
as n -+ o;), (2.5) 

while Eq. (2.4) remains unchanged. 

Note that as p, = . . = pr, the vector C:=, yiv, is an eigenvector of A corre- 
sponding to p,. It is also nonzero since Cl=, Iyil # 0 and vl, . . . , v, are linearly 
independent. 

Obviously, Theorem 2.1 does not cover, for instance, the case in which 
,uz =F and $ is a real function, for in this case II&~)/ = l$(p2)l, contrary 
to Eq. (2.2). This case is covered, however, by the theorems of Sections 6 
and 7 (with k > 2 there). 

Note 2.1. It is important to emphasize that the method analyzed in Theorem 
2.1 is not the standard power method for the matrix B z $(A) (for which 
in = (~n,&Jl( u,, u,) with u, = B”uo = [IC/(A)]“uo,n = 1,2,. . .) just as it is not 
the standard power method for the matrix A (for which p,, = (un,Au,)/(u,, u,) 
with U, = A”uo, n = 1,2, . . .). It is the Rayleigh quotient method for the matrix 
A, the relevant power iterations being { [+(A)]“uo} and not {A”%~}. As such, it 
seems to be new. 

Before we go on we would like to mention that the generation of the vectors 
UI, u2,. ‘. 1 through Uj+i = $(A)uj, j = O,l,. . . , in the power method above, 
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forms the first part of SEA and SEL. The importance of this step stems from 
the fact that the vectors u, = [$(A)]” u. have spectral decompositions with large 
contributions from the invariant subspace of A associated with pL1. Also, this 
power method is a special case (the simplest case) of SEA and SESI as will 
become clear later. 

3. A brief description of projection methods for eigenvalue problems 

An effective way of obtaining approximations to some of the eigenvalues of 
a matrix A is through projection methods. In these methods one picks two k- 
dimensional subspaces Y and Z, 

Y = span{y, ,y2, . . , yk} and 2 = span{z,, z2, . , zk}. 

Then an approximate eigenpair (p,z) is defined by the requirements 

(3.1) 

ZEZ and (y,Az-p)=O forallyc Y, (3.2) 

where (a, 6) = a*@ for some hermitian positive definite matrix Q. If we also 
define the matrices Y and Z by 

Y= IvlIY2I~~~IYkl and Z = [zi Iz2 1 . . . Izk] , (3.3) 

then, by the fact that z E Z implies z = Zt for some < E Ck, the second require- 
ment in Eq. (3.2) can be expressed equivalently as 

Y*Q(A - fl)Z( = 0. (3.4) 

Thus p is an eigenvalue of the k x k matrix pencil (Y*QAZ, Y’QZ) and 5 is the 
corresponding eigenvector. In the literature ,u is called a Ritz value and z = Z< 
is called the corresponding Ritz vector. In general, there will be k pairs of Ritz 
values and Ritz vectors. Also, the subspaces Y and Z are called the left and 
right subspaces, respectively. Note that a projection method is uniquely defined 
by its left and right subspaces Y and Z and by the inner product (or, equiva- 
lently, by the matrix Q). 

The Arnoldi and Lanczos methods and the simultaneous iteration method 
are all projection methods with their left and right subspaces as described 
below. For their efficient implementation we refer the reader to the literature cited 
in Section 1. A summary of the implementations of the Arnoldi and Lanczos 
methods can also be found in [23]. 

For the Arnoldi method 

Z = span{u,du, . . . ,&‘u} and Y = Z, (3.5) 

where u is some given vector. For some error bounds, see [18]. If we pick 
u = A”uo for some uo, then this method produces Ritz values and Ritz vectors 
that converge, respectively, to eigenvalues of largest modulus and to their 
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invariant subspaces, as n -+ co. For this theory and some optimality properties 
of the Arnoldi method, see [23]. 

For the Lanczos method 

Z = span{u,du, . . . ,&‘u} and Y = span{q,d*q, . . . ,Alk-‘q}, (3.6) 

where u and q are some given vectors. For different convergence theories per- 
taining to hermitian matrices, see [11,13,17]. If we pick u = A”uo for some ~0, 
then this method too produces Ritz values and Ritz vectors that converge, res- 
pectively, to eigenvalues of largest modulus and to their invariant subspaces, as 
n + 00. For this theory, see [23]. 

The simultaneous iteration method was designed to produce Ritz values that 
approximate the eigenvalues of A that are largest in modulus. In this method 
one begins with a k-dimensional subspace that is spanned by a given set of 
vectors wl , . . . , wk. Then one proceeds through a number of stages at each of 
which this subspace is modified. It can be shown that at the nth stage this meth- 
od is a projection method with right and left subspaces given by 

Z = span{wj”),wf), . . . ,I$‘} and Y = Z, (3.7) 

where w(“’ = A%+, i = 1, . . , k. Again convergence takes place as n -+ m, see 
[25,26]. See also [1_5]. 

In connection with the Lanczos method, we note that when A is hermitian, 
i.e., A* = A, then with the choice q = u in Eq. (3.6) this method becomes math- 
ematically equivalent to that of Arnoldi. 

It is clear that setting up the subspace 2 in the simultaneous iteration meth- 
od is about k times as expensive as setting up 2 in the Arnoldi method, when 
measured in terms of matrix-vector products. 

4. Algorithms for eigenvalues with special properties 

We now turn to the description of the methods SEA, SEL, SESI by which 
we would like to approximate the eigenvalues of A that have the special prop- 
erty quantified via the function $(p). 

For SEA we start by picking u. E CN arbitrarily, and generate the vectors 
Ul,U2,.“, by u~+~ = $(A)z.q, j = 0, 1,. . . We next apply the Arnoldi method 
with the subspaces Y and 2 as in Eq. (3.5), where u = u, for some large ~1. 

For SEL we start by picking u. E CN arbitrarily, and generate the 
vectors ul,u2,..., by Uj+i = $(A)uj, j = 0, 1, . . We next apply the Lanczos 
method with the subspaces Y and Z as in Eq. (3.6) where q = u = u, for some 
large n. 

For SESI we start by picking x(Io), . . . ,$’ E CN arbitrarily. (These vectors 
independent.) Following that we generate the vectors 

zit?;!lbe li”,“;;$+l, = $(&j/) j = 0 1 1 I >‘..3 I > > I”‘, i= l,...,k. We next apply one 
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stage of the simultaneous iteration method with the subspaces Y and Z as 
in Eq (3 7) where wi”’ = xi”’ i = 1 2 . ., .., k, for some large n. 

Note that in comp;tatioia; work ihk’vectors uj and xy’, i= l,...,k,should 
be normalized as they are generated. Obviously, this has no effect whatsoever 
on the Ritz values and Ritz vectors. Note also that, with k= 1, SEA and SESI 
reduce to the generalized power method treated in Theorem 2.1. 

Note 4.1. We emphasize here that the Krylov subspace methods above are 
being applied with the matrix A and not with the matrix $(A), and that the 
corresponding Ritz values will be shown to approximate pl, ,u2, . . , directly. 
This will be done in Section 6. 

Before we go on we would like to remark that the use of Chebyshev polyno- 
mials in [ 15,16,19] that we mentioned in Section 1 resembles the approach that 
we have described above. In [15,16 
tion method is obtained from w,‘” ? 

the subspace Z in the simultaneous itera- 
= P(A)@, i = 1, . . . , k, where P(p) is a 

polynomial of some high degree that supresses the unwanted eigenvalues of 
a hermitian matrix. In particular, P(p) is taken to be a Chebyshev polynomial 
resealed and shifted to an interval that contains the unwanted eigenvalues. 
Thus P(p) is analogous to our [11/(p)]“. In [19] this approach is extended to non- 
hermitian matrices. In particular, the polynomial P(p) now is taken to be a 
Chebyshev polynomial resealed and shifted to an elliptical domain that con- 
tains the unwanted eigenvalues. Thus the vector u in the method of Arnoldi 
is taken to be u = P(A) uo, so that P(p) is analogous to our [I&)]~ in this case 
too. 

5. Analytical preliminaries 

5.1. General considerations 

We now begin the investigation of the convergence as n + 03 of the Ritz 
values and Ritz vectors for the approach presented in Section 4. Even though 
we have three different methods, all of these methods can be analyzed within a 
unified framework as we show below. 

The starting point of our investigation is the homogeneous linear system in 
Eq. (3.4). As mentioned following Eq. (3.4), the Ritz values are the roots of the 
characteristic equation 

&(,u) = det [r+@Z - A)Z] = 0, (5.1) 

and all our results are obtained by a detailed analysis of this polynomial equa- 
tion for n + m. 

Letting z@(p) stand for the (T,s) element of the matrix yfQ(@ - A)Z, 
Y,s= 1,2,... , k, we have for each r and s 
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U(Q) = v*e<PJ -A)& rs r T’ (5.4 

Note that Eqs. (5.1) and (5.2) are independent of whether A is normal or non- 
normal, diagonalizable or nondiagonalizable. In the present work, however, we 
restrict our investigation to normal matrices, as the analytical technique for 
these matrices is less involved and the actual numerical convergence and the 
corresponding theoretical results more powerful. We begin this by analyzing 
the z@) (cl). rs 

5.2. u:)(p) for normal matrices 

We recall that an N x N normal matrix A is characterized by the property 
A’A = AA* and has a set of orthonormal eigenvectors that span CN. The eigen- 
vectors are orthogonal with respect to the standard Euclidean inner product 
(a, b) = a*b, which we take to be the inner product in the sequel. That is to 
say, we have Q= lin Eqs. (3.2), (3.4), (5.1), (5.2). In general, this choice of the 
inner product gives the methods described in the previous section a convergence 
rate for eigenvalue approximations that is twice as large as that achieved with a 
different inner product. We will discuss this point further in the next section. 

We now give the behavior of the U:)(P) for SEA, SEL, and SESI. We 
assume that 

$(A)u, = $(pL,)vj for all i, (5.3) 

which is satisfied, e.g., when 1c/(p) is a polynomial or a rational function or an 
exponential function. 

(1) u:)(p) for SEA: Since the vector u. has a spectral decomposition of the 
form uo = CE, yiui for some scalars yi, we have 

(5.4) 

By adding together all the terms that have equal pi and ~,t,!&) # 0, and renam- 
ing if necessary, we realize that u, is actually of the form 

U, = &i[t/&)]“t;i for some fi < N, 
i=l 

(5.5) 

where y,, p,, and Ui are not necessarily those in Eq. (5.4) and are such that 

pi#pi ififj, i,j=l,..., ti, (5.6) 

yit)(pi) #O, i= l,..., fi, (5.7) 

and 

Au; = piui, i = 1,. . . ,I?; (Ui, Uj) = 6,, i, j = 1,. . . ,a. (5.8) 
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Note that Eq. (5.6) means that the pi that appear in Eq. (5.5) are distinct. The 
integer J? is at most equal to the number of the distinct eigenvalues of A, i.e., 
{Pi>&>.. .,,~}maybeth e set of the distinct eigenvalues of A or a proper sub- 
set of it. 

Combining Eqs. (5.5)-(5.8) with the fact that y, = z, = Am-lun, 
m= 1,2 ,..., k, wehave 

so that from Eq. (5.2) 

(5.10) 

(2) u$)(p)for SEL: The vector U, = [$(A)]” u. is obviously precisely the one 
that was given for SEA. In particular, Eqs. (5.5)-(5.8) hold. Combining this 
withz,,,=A”-‘u, andy,,,=A’“P’u,, m= 1,2,...,k, we have 

(5.11) 

so that from Eq. (5.2) 

ij 
(5.12) 

with the pji, the yj and fi being precisely those of Eq. (5.10). 
(3) u$!)(p) for SESI: Since the vectors X, have spectral decompositions 

x, = C;“=, Yrniui for some scalars y,,, we have 

(5.13) 

By excluding the terms for which $(pi) = 0, and renaming if necessary, we re- 
alize that xt) is actually of the form 

i=I 

m= l,...,k forsomek<N, (5.14) 

where ymi,pLir and ui are not necessarily those in Eq. (5.13) and are such that 

$(pj) # 0, i = 1,. . . ,I? (5.15) 

and 

Aui = piu,, i= l,...,fi; (Ui,Uj)=dij, i,j= l,..., ti. (5.16) 
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Note that the pi in Eq. (5.14) are not necessarily distinct. Also, we have the 
same pi and Vi for all m,m = l,... , k. Finally, some of the yrni may be zero. 
From Eqs. (5.14)-(5.16) and the fact that y, = z, = xt), m = 1,2,. . . , k, and 
from Eq. (5.2) we have 

A 

u$‘(P) = ~?$Ysjl+(Ic,)12"(P - P-j). (5.17) 

Remark 5.1. (i) From Eqs. (5.10), (5.12) and (5.17) we realize that for all the 
three methods z.&!) have the unzjied structure 

(5.18) 
j=l 

so that we have the correspondences aj ++ pi and cj c-t l$(pj)12 and M H fi for 
all the methods. This enables us to analyze them simultaneously. 

(ii) Recall that p,, p2,. . . , pfi in the z@( p associated with SEA and SEL that ) 
are given in Eqs. (5.10) and (5.12), respectively, are some or all of the distinct 
eigenvalues of A. Furthermore, yit&) # 0, i = 1,2, , I?. On the other hand, 
in the ~2) associated with SESI that is given in Eq. (5.17) the pi are not neces- 
sarily distinct. Also, even though rj(pLi) # 0, i = 1,. . . ,I?, some of the yrni may 
be zero. Obviously, I? in Eqs. (5.10) and (5.12) is not necessarily the same as 
that in Eq. (5.17). 

Now that we have the z.@ with the structure in Eq. (5.18) we can use the 
results of Appendix A to state the main convergence results for Ritz values 
and vectors. 

We preserve the type of ordering given in Eq. (1 .l) also after we have 
renamed the pi, i.e., we have the ordering 

I$%%)1 2 MP2)l 2 ... 2 Wh)l. (5.19) 

In the sequel we shall denote tj(pi) by I,$~ for short. 
Finally, all of the above, and, consequently, all of the results in the se- 

quel, hold with no changes also when A is not normal, but the ui are or- 
thogonal in the sense u,*Qu, = 6, with Q # I necessarily, cf. Eqs. (5.8) and 
(5.16). 

When A is not normal, and thus the eigenvectors ui are not all mutually or- 
thogonal, the u$) have expansions that are expressed as double series instead of 
those given in Eqs. (5.10), (5.12) and (5.17). This makes the analysis of the case 
of non-normal matrices much more complicated. 
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6. Analysis of Ritz values for normal matrices 

Theorem 6.1 below provides the complete expansion of D,,(p) in Eq. (5.1) 
the polynomial whose zeros are the Ritz values, and plays a central role in 
the convergence analysis that follows. 

Theorem 6.1. With t&)(p) as given in (5.10) or (5.12) or (5.17), the polynomial 
D,,(,u) = det [~$‘(~)]~,,~i has the expansion 

(6.1) 

(64 

(6.3) 

and 

%Jzl...,jk = /zjIj,,...,jk (7) I2 for S.IZU. (6.4) 

Here $, = +(PJ, i = 1,2, . , and V(%I, 22, . , &) is the Vandermonde determi- 
nant that is given by 

V(&, 12,. . . ) A,) = = n (%j - %i) (6.5) 

and Zjlj2,...,jk (cc) is defined in Eq. (A.7) of Appendix A. 

Proof. The result follows from Lemma A.2 by making the substitutions 
lj = l$jl’J oj = pj for all three methods, and the substitutions asj = yj$’ and 
prj = G for SEA, Msj = yjpjP’ 
prj = Z$ for SESI. 

and prj = 5~;~’ for SEL, and asj = Ysj and 
Cl 

The next theorem provides sufficient conditions for the Ritz values to 
converge. 
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Theorem 6.2. In Theorem 6.1 let 

I$11 2 1441 2 ... 2 Wkl > lh+,l 2 “‘> 
then 

141 

(6.6) 

asn+x, (6.7) 

unconditionally for SEA and SEL, and provided that Z1,z,...,k(Y) # 0 for SESZ. 
Consequently, D,,(u) has exactly k zeros (the k Ritz values) that tend to 
h,~:!,.‘.,~k. 

Proof. The result follows from Lemma A.3 as Wi,2,...,k # 0 for all the three 
methods. That this is so for SEA and SEL follows from Eqs. (6.2), (6.3), (6.5), 
(5.6), (5.7), and for SESI it follows from Eq. (6.4) and from the assumption 
that Zl,Z,...,k(Y) # 0. 0 

Remark 6.1. The condition Zi,Z,...,k(Y) # 0 for SESI is equivalent to the 
requirement that the projections & ymivi of the vectors x!$, m = 1,2, . . . , k, 
in Eq. (5.14) unto the subspace span {vi, ~2,. . . , uk} be linearly independent. 
This can be seen by using Eq. (A.7). 

Theorem 6.3. Assume that the conditions of Theorem 6.2 hold, and denote the 
Ritz value that tends to us by n,(n), s = 1,2,. . . , k. Then 

asn+rx (6.8) 

for all three methods. For SEA and SEL and, provided us # u, for s # j, for 
SESZ as well, this result can be refined in an optimal way as follows: Let r be 
the integer for which 

ltikl > I+k+ll = “’ = l+k+rl > Itik+r+ll. (6.9) 

Then 

where K, is a constant given by 

(6.10) 
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hk+i - PsL,) for SE,c (6.12) 

and 

KS = 2 z1’2~~‘.~~~~:...,k~k+i 2(pk+i _ & for S,lT’JI. 

i=l 3% 3 

(6.13) 

Proof. The proof of this theorem is established by using Lemma A.5 along with 
Eqs. (6.2)-(6.4). 0 

It is interesting to note that when pS # ,uj for s # j, the Ritz value pS(n) 
tends to pL, monotonically along a ray that makes an angle of arg KS with the 
real axis. 

We mention that the result of Theorem 6.3 with $(p) = p was originally giv- 
en in [20] for the method of Arnoldi and in [22] for the method of Lanczos. 
Again with +(,u) = ~1 and for hermitian matrices a slightly weaker form of 
Eq. (6.8), namely, 

limsup,,,IpS(n) - pXL,l’ln < + ’ 
I I s 

was given for the simultaneous iteration method in [25]. 
Before closing this section we note that when A is not normal, the results of 

Theorems 6.2 and 6.3 are modified substantially. Thus, subject to Eq. (6.6), the 
result of Eq. (6.7) is replaced by 

for some nonzero constant W, while the result in Eq. (6.8) is replaced by 

and this shows that better accuracy is produced for normal matrices. As men- 
tioned earlier, the proofs of these results are more complicated than the ones 
we have given in the present work, and they will be the subject of a future 
publication. 

Finally, we note also that in any case the approximations for pi are the best, 
followed by those for p2, pL3,. . . , pk, in this order. 
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7. Analysis of Ritz vectors for normal matrices 

We now analyze the convergence behavior of the Ritz vectors. Denote by 
v,(n) the Ritz vector that corresponds to the Ritz value p,(n). If we let the eigen- 
vector of the matrix pencil (Y’AZ, Y*Z) that corresponds to ,~~,(n) be 
5,(n) = (&r(n), . . , t,k(n))T, then we have 

us(n) = z5s(n) = &tsi(n)zi. (7.1) 
i=l 

Invoking in Eq. (7.1) the expressions for z, that we gave in Section 5 for the 
three methods, we obtain the spectral decomposition 

Ij 
vs(n) = Cfisj(n)$$l,i, (7.2) 

j=l 

where 

6,yj(n) = ~@Gjtsi(n): (7.3) 
i=l 

with aij = y&l for SEA and SEL, and Clij = yij for SESI. In fact, xlj are exactly 
the ones that appear in u:)(n) = xyZ, ~,jcC~jl$~12”(~ - cl,). Thus we see that if 
we know the behavior of the &(n) for n --) oo, then we can determine that 
of us(n) as well. This is precisely the approach that we take to this question 
in Theorem 7.1 below. While for SEA and SEL we have no additional assump- 
tions, for SESI we assume that K # cl, for s # j in Eq. (5.14). 

Theorem 7.1. Assume that the conditions of Theorem 6.2 hold. Then, with proper 
normalization of the vector 4,(n), the 6,j(n) satisfy 

{ 

O(l) forj>k+l, 

sSi(n) = 1 + O(l) for j = s, 

O($:“,,$;‘“) for 1 <j< k, j # s, as n --f 0~). 

Consequently, the Ritz vector v,(n), when normalized suitably, satisjies 

j=l 

j#s 

with 

&j(n) = 

wp,“) forj3k+l, 

O(ICI::l$~“$,n) for 1 <j < k, j # s, as n + 00. 

(7.4) 

(7.5) 

(7.6) 
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which implies that 

as n + 00. (7.7) 

Proof. First, we recall that the &(n) are the solution to the homogeneous 
system of equations in Eq. (3.4), i.e., they satisfy 

(7.8) 

Noting the similarity of Eq. (7.8) with Eq. (A.39) and of Eq. (7.3) with 
Eq. (A.40), we see that Lemma A.6 applies. This results in Eq. (7.4). The rest 
is a direct outcome of Eqs. (7.2) and (7.4). 0 

With e(p) = p and for hermitian matrices, a slightly weaker form of 
Eq. (7.7), namely 

limsup,_Jv,(n) - 21~11”~ < y , 
I I s 

was given for the simultaneous iteration method in [25]. 
We know that (Ui, u,) = 0 when i # j. An immediate question of interest 

that arises in connection with Ritz vectors is that of how close (u,(n), o,(n)) 
is to zero when Y # S. We provide the answer to this question in Theorem 
7.2 below. 

Theorem 7.2. Let u,(n) and us(n) be two Ritz vectors that correspond to the 
Ritz values p,(n) and p$(n), respectively. Assume that they have been 
normalized such that (vi(n), Vi(n)) = 1, i = r,s. Then, under the conditions of 
Theorem 6.2, 

(7.9) 

for SEA and SEL, and, provided K, ps # pj for j # r, s in Eq. (5.14), for SESI as 
well. 

Proof. The result follows from Eqs. (7.5) and (7.6). 0 

We note that the result in Eq. (7.9) for the simultaneous iteration method 
when II/(p) = p can be found, for example, in [14]. Again, as will be shown 
in a future publication, subject to Eq. (6.6), the result of Eq. (7.7) remains un- 
changed when A is not normal. 
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8. Formation of spurious approximate eigenvalues 

An important requirement that makes the results of Theorems 6.2, 6.3, 7.1, 
and 7.2 possible is the condition l$kl > (ijk+, 1 in Eq. (6.6). In the absence of this 
condition, namely, when l$kl = \ijk+,l, the proofs of these theorems are no 
longer valid. In this section we provide new versions for Theorems 6.2 and 
6.3 that concern D,,(p) and its zeros under the new condition ltjkl = ltik+, I. 

One of the consequences of llClkl = /tjk+i) is that some of the Ritz values are 
approximations to a number of the eigenvalues ,LQ, p2,. . , in this order, while 
the rest are spurious approximations that depend on the arj and, generally, 
have nothing to do with the spectrum of A. 

Theorem 8.1. In Theorem 6.1 let 

I*,1 a ... 2 I$,1 > I+,+,1 = ‘.. = I+,+,1 > wt+4 3 . .’ 
for some t 3 0 and r > 2, and let 

t+l<k<t+r. 

(8.1) 

(8.2) 

Define 

with 

and 

S(p)= c 62 ,..., tj,, ,,... jk (8.3) 
t+l<j,+~<.~-cjk<r+r 

41 .jz%...& as de$ned by Eqs. (6.2)-(6.4) for the three methods. Assume that 

Z 1.2 ,._.. t,,,+ ,.... j, (Y) # 0 for some j,+l, . . . ,jk in Eq. (8.3) for SESI (8.4) 

c &,2 ,..., rj,+ ,,.., J, #O for SK (8.5) 
r+l < j,+l<--,<jk <t+r 

while no additional assumption is neededfor SEA. Thus S(p) is a polynomial in p 
of degree exactly q = k - t. Denote the zeros of S(p) by p:, . . . , ,uk. Then 

where d,, is an appropriate constant and 

(8.7) 

Consequently, D,,(p) has t Ritz values pl (n), . . . , p,(n) that tend to ,ul, . . . , pt, and 
q others that tend to p:, . . , pk. 

When CL, Sr W,, . . , , p:} and 1 <s < t, we have 
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2n 

pJ12) = ,& + 0 (1 1) !k 

*s 

asn-+w (8.8) 

for all three methods. 

Proof. The proof of Eqs. (8.6) and (8.7) can be accomplished by employing 
Lemma A.7, while that of Eq. (8.8) follows from Lemma A.8. 0 

We must note that the spurious eigenvalue approximations mentioned in 
Theorem 8.1 should be present theoretically, i.e., in exact arithmetic, under 
the condition l$kl = Itik+, 1. They, therefore, do not seem to have much in com- 
mon with the “spurious” or “ghost” eigenvalues that appear in applications of 
the method of Lanczos in finite precision arithmetic. 

9. Numerical examples 

Consider the N x N matrix A = tridiag (p, 0, z), where p and z are real. The 
eigenvalues of this matrix are 

2Jpz cos 571 
N+l’ 

j= l,...,N. 

For the sake of simplicity we pick p and 7 such that 2,,/3? = 1 so that the spec- 
trum of A lies in (-1,l). 

Suppose now that we are interested in the eigenvalues that are closest to 0. 
For this we need to pick a function $(p) that is largest in a neighborhood of 
p = 0 for p E (-1,l). A simple yet effective choice would be It/(p) = a2 - p2 
with a2 > 4, so that I$(O)l > 1$(p)/ f or all p E (-1,1) \ (0). Note that this 
choice is also quite inexpensive as it involves only two matrix-vector multipli- 
cations in the computation of $(A)u = a2u - A(b). 

Unless there is strong clustering of eigenvalues about 0, the methods SEA, 
SEL, and SESI are expected to produce good approximations for the eigenval- 
ues of A that are in the immediate neighborhood of 0. Depending on the value 
of the integer it (in u,) and on the size of the rounding unit of the floating point 
arithmetic being used, eigenvalues pi for which l$(pLi)/lC/(pLl)ln is less than the 
rounding unit are not expected to be approximated well. The reason for this 
is that the contributions vi[$(pj)]” ; f v or such p, are not noticeable numerically 
in u,, cf. Eq. (5.4), if we assume that the yi are all of comparable sizes. (As 
we normally pick ug randomly, this assumption is quite reasonable.) 

We have done numerical computations for various values of N, p, z, a, and n. 
All the computations have been carried out in double precision arithmetic (ap- 
proximately 14 decimal digits). The method that has been used is SEA, the 
vector u. being random. 
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In Tables 1 and 2 we show some of the numerical results obtained for the 
following two cases: 

(i) N = 51 and p = z = l/2. (A is real symmetric, hence normal, in this case.) 
(ii)N=51,p=1/2.2, and z = 0.55. (A is not normal for this case.) 

We also picked a = 0.8, n = 100, and u. = (1, l/a, . . . , l/a)‘. 
For both cases 0 is an eigenvalue and the spectra are symmetric with respect 

to 0. We expect to obtain good approximations to the eigenvalue 11, = 0 and to 
a number of eigenvalues closest to it. From our discussion in the second para- 
graph of this section we do not expect to be able to approximate those eigen- 
values pi that satisfy 

l4%4)/$(Pdl” = lb’ - Pzw~l~-14. 
With a and n picked as above, this implies that the eigenvalues pi for which 

Ipi1 > dm = dO.8(1 - 10-“.‘4) = 0.469 . . . 

cannot be approximated. Thus, we expect to approximate the eigenvalues 
0, f0.0604, f0.121, f0.180, f0.239, f0.298, f0.355, f0.410 (rounded to 3 dec- 
imal digits), but not the rest of the eigenvalues, beginning with f0.465 (round- 
ed to 3 decimal digits, again). Again, from our theory we expect to obtain the 
best approximations for p, = 0, followed by those for f0.0604, f0.121, etc. To 
a large extent, all these expectations seem to be verified by our numerical exper- 
iments as Tables 1 and 2 show. Recall also that the Ritz values for k = 1 are the 
ones obtained from the generalized power method described in Theorem 2.1. 

10. Concluding remarks 

In this work we have described an approach by which one can employ 
known Krylov subspace methods to obtain approximations to eigenvalues of 
a matrix that have special properties. In particular, we have considered the 
methods of Arnoldi and Lanczos and the simultaneous iteration method, 
and have provided a detailed analysis of convergence for them as they are ap- 
plied to normal matrices and stated without proofs the corresponding results 
for non-normal matrices. From the theory of convergence it follows that when 
the matrix A has eigenvalues of multiplicity 1, all three methods produce the 
same rates of convergence. When A has eigenvalues of multiplicity 2 or more, 
however, the Arnoldi and Lanczos methods have better convergence proper- 
ties. The reason for this is that the Arnoldi and Lanczos methods produce at 
most one Ritz value for a multiple eigenvalue, and also one Ritz vector for a 
corresponding eigenvector. The simultaneous iteration method, on the other 
hand, will produce a number of Ritz values for a multiple eigenvalue, this num- 
ber being equal to the multiplicity of the eigenvalue in general. In addition, it 
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will produce the same number of Ritz vectors for the corresponding eigenvec- 
tors. 
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Appendix A 

A. 1. General considerations 

The purpose of this appendix is to provide the mathematical tools that are 
used in analyzing the polynomials D,,(p) and their zeros in the limit as 12 -+ 00. 
We believe that the results which we obtain here are of interest in themselves as 
the techniques used in obtaining them are rather general and may apply to oth- 
er problems as well. 

Lemma A.l. Let il, . . . , ik be positive integers, and assume that the scalars Vi, ,.,..b 

are odd under an interchange of any two indices il,. ’ ..,lk. Let 
ti,j, i > 1, 1 <j < k, be scalars. Define 

and 

Jk,N = c 
1 <I, <Q<...<lk c N 

Then 

1k.N = Jk.N. 

ti,.l ti2.1 .. tik,l 

ti,.2 tiz,2 ’ ’ ’ tik.2 

ti, ,k ti2.k ’ . tik.k 

(A.1) 

Vi,,....ik. (A.21 

(A.31 

This lemma was stated and proved in [24]. Lemmas A.2-A.4 below are anal- 
ogous to Lemmas 2.2 and 2.3 in [20]. For simplicity of notation below we shall 
use the shorthand notation 
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c> c > hlNi% 
i jl<j,-c.-cj, 

to mean, respectively, 

We note that the polynomial H,(a) that is defined in Lemma A.2 and 
analyzed throughout is a generalization of the polynomial D,,(p). Consequent- 
ly, all of the results that we prove for H,,(o), after the proper analogy is drawn, 
are good for D,,(p) as well. 

Lemma A.2. Let 01, ~72, . . , and [, , c2, . . , be two sequences of complex numbers, 
and 

and assume that there can be only ajnite number of ij’s having the same modulus. 
Let H,(o) be a polynomial in cs of degree k dejined by 

u;;‘(C) u\“,‘(a) . . . L&o) 

H,(a) = 
z&7) &c-J) . . . z@(G) 

> 64.5) 

$(a) ?&T) . .’ z&7) 

where 

Dejine the scalars 

Uljt U2jk ‘.’ Ukji 

$ (A.61 co. 

(A.7) 

with jl, . . ,jk being positive integers. Define the scalars Zj,jz,,,,Jl (/I) similarly, and 
set 
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Then we have 

(If the summation in Eq. (A.6) isjinite, and N is replaced by = , then the multiple 
sum in Eq. (A.91 is finite, and N is replaced by = there too.) 

Proof. Substituting Eq. (A.6) in Eq. (AS), we obtain 

(( 

(A.lO) 

Using the multilinearity property of determinants, and removing common fac- 
tors from each row, we can express Eq. (A.lO) in the form 

(A.1 1) 

Since the product (I’$=, $J [n:_,(o - gjP)]Zj,,?,,,,,jk(a) in Eq. (A.1 1) is odd 
under an interchange of any two of the indices jr ! . . . , jk, Lemma A. 1 applies, 
and Eq. (A.9) follows. Cl 

A.2. Analysis of the Zeros of H,, (17) when I& 1 > lik+, ( 

We now start the analysis of the zeros of H,(a). We show that, under appro- 
priate conditions, the zeros of H,(a) tend to cr1, . , ok as n -+ ix). We also pro- 
vide the precise rates of convergence. 

Lemma A.3. If in Lemma A.2 we also assume that 

iiki > iik+l/ (A.12) 

and 

Wl,Z,...,k # 0, (A.13) 

then, for o # or, 1 < i <k, the dominant behavior of H,(a) is given by 
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fi(a - aj) f 0 %’ (I I)] as n --+ 00. (A.14) 
j=l 

This implies that H,,(a) has precisely k zeros that tend to ai, a>, . . . , ok as 
n --f 03. 

Proof. By Eqs. (A.12) and (A.13) the dominant term in Eq. (A.9) is that for 
which ji = 1, j2 = 2,. . . ,jk = k, this term being of order [ii c2. . & 1’. The next 
dominant terms are of order ][1<2 . . &l[k+l In by the assumption that there 
can be only a finite number of [j’s having modulus equal to ]<k+i 1. By this 
Eq. (A.14) now follows. Cl 

Definition A.l. Let s be an integer in { 1,2,. . . , k}. We shall say that as has 
multiplicity o if the set { ai, as, . . , ak} contains precisely o elements that are 
equal to a,Y, including a, itself. If o = 1, we shall say that a, is simple, 
otherwise, we say that it is multiple. In case as has multiplicity w > 1, we shall 
also assume that as = aS+i = . . . = asfw-t and Ii,1 = lL+l I = . = lis+w-~ II as 
happens in eigenvalue problems. 

Now by Lemma A.3 the zeros al(n), . . , ak(n) of H,(a) tend to ai,. . . , ok as 
n -+ co, whether the latter are simple or multiple. The rates of convergence, 
however, depend entirely on the aj but not on their multiplicities as we show 
in Lemma A.4. Before going into this lemma, however, we wish to present a 
perturbation lemma concerning the zeros of certain polynomials, which is of 
interest in itself. We note that Lemma 2.5 in [21] is similar in spirit to the per- 
turbation lemma we are about to state, although its results are rather different. 

Lemma A.4. Let the polynomial @,(a) be given by 

Qn(a) = ed,jnj(a - 6)’ for some jixed 6, (A.15) 
i=O 

such that 

lim “(‘) _ 0 for O<i<o- 1, 

n-m d,,(n) 2, for o<i<k. 
(A.16) 

1. @,,(a) has precisely w zeros 61(n), 1 < I < o, that tend to 6 as n + 0~;. 
2. if w = 1, then the unique zero 6, (n) of @,,(a) that tends to 6 satisjies pre- 
cisely 

(A.17) 

3. For any o > 1 assume that the d,(n) satisfy 
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where 

1 > El 3 E2 2 . . . 3 t,,] 2 0. (A.19) 

Then, 

6(n)=6+O(E;) asn+coy l<l<w. (A.20) 

Proof. The proof of part (1) is obvious from 

(A.21) 

which follows from Eqs. (A.15) and (A.16). 
For the proof of parts (2) and (3) we start by rewriting Qn(e,(n)) = 0 in the 

form 

(A.22) 

Now by the assumptions in Eq. (A.16) and the fact that Cl(n) - 6 = o(1) as 
n + 00, which follows from part (l), the denominator of Eq. (A.22) is asymp- 
totically equal to 1 as II ---f co. 

If o = 1, the numerator of Eq. (A.22) is simply &(n)/&(n), so that we im- 
mediately have Eq. (A.17). 

For arbitrary o > 1 we start by letting ~?[(n) - C? = $x,(n). Then Eq. (A.22) 
can be written in the form 

~cdm!,W + k/kw = 03 (A.23) 
j=O 

where 

cdn) = 1 + c;=,,,+, [d,(n)/&(n)](c?,(n) - 6)i-co ’ 
O<j<w - 1. (A.24) 

Substituting Eqs. (A.18) and (A.19) in Eq. (A.24), and recalling that the de- 
nominator in Eq. (A.24) is asymptotically equal to 1 as n + cc, we see that 

n 

Crj(n) = 0 ( (0 fj $ = O(1) as n + co, O<j<‘w-- 1. 
r=l 

(A.25) 
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Now x,(n) is a zero of theJixed manic polynomial P(i) = ~&~ c[,(n)lj + ?‘, 
and all the zeros of this polynomial are bounded 1x-i modulus by 
max(1, EC;’ Ic/j(n)l), h h w ic is itself bounded as 12 + co by Eq. (A.25). Hence 
Ixr(n)l is bounded as n --+ 00. This proves Eq. (A.20). 0 

We now go back to the zeros of H,,(o). 

Lemma AS. Assume that the conditions of Lemma A.3 hold, and denote the zeros 
of H,,(a) that tend to 01,. . . ,ok by al(n), . . . , ok(n), respectively. For 
s= 1,2 ,..., k, wehave 

as(n) =o,+O ikfl’ 
(1 I) L 

us n --+ ~0. (A.26) 

When oS is simple, i.e., 0, # aj for s # j, Eq. (A.26) can be reJined optimally in 
the following way: Let r be that positive integer for which 

liki > lik+lI = . . = lik+rl > lik+r+lI (A.27) 

and denote 

W 1.2, . . . s-l.s+l,..., k.k+i = $;k+i]. (A.28) 

Then 

Proof. We start by writing 

H,(o) = e;H;)(o,)(o - 0,)‘. 
i=O 

In light of Lemma A.4 we now need to analyze the Hii) (a,). 
Assume that 6, is simple. Then, letting c = os in Eq. (A.9), we have 

(A.29) 

(A.30) 

(A.31) 

as all the terms in the summation having j, = s for any one of the j,, 1 <p < k, 
vanish. By Eqs. (A.12) and (A.27) and the assumption that ~7~ is simple, the 
dominant part of the summation on the right-hand side of Eq. (A.31) is seen 
to be the sum of those terms having the indices 

jl,j2,. ..,jk = 1,2 ,..., s- 1,s~ l,..., k,k+i, l<i<r. 
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Now by Eq. (A.14) and by the assumption that a, is simple 

N %32x. ..k (A.33) 

Similarly, H!‘)(o,,) for i 3 2 are of the same order as H:(o.,). Therefore, part (2) 
of Lemma A.4 applies with a(n) = H,(‘)(a.y)/i!, Q = 1, eI = l[k+l/[sl, and 
8 = o,, and we have 

Hn(o.\) (A.34) 

which, upon invoking Eqs. (A.32) and (A.33) produces the result in Eq. (A.29) 
and also that in Eq. (A.26). 

If us has multiplicity w > 1, i.e., if gs = gs+, = = c-J~++~, then the analysis 
of the HL’)(o,) becomes more involved, First, for i 3 w the dominant term of 
H,(o) is obtained by differentiating the term with j,, . ,jk = 1,. . . , k, and set- 
ting 0 = (rv in it, and iS Of order Iii . &In as 12 + 30. In partidar, 

H(‘“’ (c~s)/w! - W,L.., n (A.35) 

For i=O set CJ = a, in Eq. (A.9). We see that all the terms having any one of 
their indices ji, . , jk equal to s. s + 1,. . ,s + o - 1 vanish. Therefore, 

(A.36) 

For i= 1 differentiate Eq. (A.9) term by term and set g = a, there. Now all the 
terms having any two of their indices ji, . . >jk equal to s, s + 1,. . . , s + o - 1 
vanish. Therefore, 

(A.37) 
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For i < co - 1 differentiate Eq. (A.9) i times term by term and set CJ = cs there. 
All the terms having any i + 1 of their indices j,, . , j, equal to 
s,s+ l,...,s+o- 1 vanish. Therefore, for O<i<tu, 

(A.38) 

Hence part (3) of the previous lemma applies with 
d,(n) = H(‘)(a.J/i!, t, = l[k+i/[Sl, and 8 = o.~, and we obtain Eq. (A.26). (The 
reader is trged to verify Eqs. (A.36)-(A.38) for small values of k and Q.) 

This completes the proof. 0 

A.3. A further result for simple oS when I& 1 > II&+, 1 

Lemma Ah. Assume that the conditions of Lemma A.3 hold, and denote the zeros 
of H,,(a) that tend to IJI, . , ck by (~1 (n), . . , ok(n), respectively. Let oS be simple 
for some s E { 1,. , k}. Then the solution of the homogeneous system oj 
equations, cf Eq. (A.$ 

(A.39) 

for n suficiently large, is unique up to a multiplicative constant, and satisjies 

&cx,Y&i(n) = 
O(l) at most, q 3 k + 1, 

1 + o(l) precisely, 4 = s, (A.40) 
i=l 

O(G+, i,“) at most, 1 <q < k. q # s. as n + ocj. 

when scaled appropriately. 

Proof. First, the matrix of the system in Eq. (A.39) is singular as its 
determinant is simply H,(oS(n)), which itself is zero. By the assumption that 
oS is simple, we see from Lemma A.5 that OS(n) # “j(n) for j # s for all large n. 
Thus the matrix of the system in Eq. (A.39) has rank k - 1 exactly. This implies 
that the solution of Eq. (A.39) is unique up to a multiplicative constant, and 
that it can be obtained from k - 1 of the equations there. 

Next, Eq. (A.13) implies that Zl,...,k(a) # 0 and Z,,.. ,k(p) # 0 simultaneously. 
Now Z,....,,(fi) # 0 guarantees that for any s, 1 <s < k, there exists a 
(k- 1) x (k- 1) minor of the determinant representation of Z,. ..,k(fi), cf. 
Eq. (A.7), that does not include the sth row and does not vanish. Without loss 
of generality and for simplicity of notation, we assume that this minor is ob- 
tained by deleting the sth row and the kth column. This amounts to 

Z 1.2. ..,s-l,s+l,..., !a) # 0. (A.41) 
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With this we now assume, without loss of generality, that the k - 1 equations 
mentioned at the end of the previous paragraph are the first k - 1 equations of 
Eq. (A.39). In view of this, it is easy to verify by Cramer’s rule that for any sca- 
lars 6,) &., . . . , CT&, we have 

6, s2 ..’ Sk 

Ull u12 ‘.. Ulk 

u21 u22 . . U2k with k’=k- 1, (A.42) 

. . 

where we have denoted uw = ug)(a,(n)) and we have normalized c,,(n) appro- 
priately. Substituting now 6, = cliy and Eq. (A.6) in Eq. (A.42), and proceeding 
exactly as in the proof of Lemma A.3, we obtain 

(A.43) 

Obviously, all those terms in Eq. (A.43) for which any one of the indices 

ii,. . . , jk’ takes on the value q vanish on account of Z4j,,.,.Jk, (rx) vanishing. That 
is to say, the indices j,, , j@ in Eq. (A.43) take on all values except q. 

Let us now analyze Eq. (A.43) for all values of q. First, for q = s the domi- 
nant term there has the indices 

j,,j, ,..., jkj = 1,2 ,..., s- l,s+ l,... ,k 

and, by Lemma A.5, as IZ + m, is asymptotically equal to 

(-l)“-‘Zi,. .,sPl.s+l ,..., k(b)Z1,2 ,..., k(a) fi(os - “j) I 10 fily . j=l j=l j#s jZs 
The important point here is that this term is precisely O(Y) as n ---f a, where 
7L E ( nt=,lj)/is3 since the constant factors in it are all nonzero by Eqs. (A. 13) 
and (A.41). Next, for 1 < q < k, q # s, we see that the dominant terms have in- 
dicesjl,..., jkr,thattakeonthevalues1,2 ,..., q-l,q+l,..., kincludings, 
or the values 1,2,. . . , k, k + i excluding q and s, i = 1,2,. . . , r. Invoking also 
Lemma AS, we see that all these terms are at most O(rP[;+i/[~) as n --f 00. 
Finally, for q 2 k + 1 the dominant term has the same indices as in the case of 
q = s and is O(?) as n + 03. This completes the proof. 0 
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A.4. Treatment of H,,(a) and its zeros for IlkI = l&+,1 

159 

The results in Lemmas A.3, AS, and A.6 are made possible especially by the 
condition l&J > l&+i/ in Eq. (A.12). If this condition is not satisfied, then the 
proofs of these results are not valid, and the question arises as to whether they 
can be saved or modified in a simple manner. Lemmas A.7 and A.8 give a de- 
tailed treatment of this question regarding Lemma A.3 for H,(a) and Lemma 
A.5 for the CJ~, respectively. We shall not pursue the modification of Lemma A.6. 

Lemma A.7. In Lemma A.2 let 

Ii, I 3 ‘. . 3 IL > Ii,+, I = ” = Ii,+,1 > li,+r+l I 3 ‘. . 
for some t > 1 and r 3 2, and let 

t+l<k<t+r. 

1. When it+, , . . . , L are not all the same, assume that 

R(n; o) = 

for some integer n. Then there exist integers 0 <no < nl < n2 
{R(n;; o)}:, has a limit. Also, with appropriate constants d,,, 

$0 (A.46) 

< . . . , for which 
the subsequence 

{d,,,H,,, (~)}p”=~ converges to a polynomial in o of degree t + q G k, whose zeros 
areo1,02,..., o, and o’, , . . , ai, the latter being the zeros of the limit of the sub- 
sequence of polynomials {R(n; c~)}p”=~. Actually, for this subsequence 

(A.44) 

(A.45) 

with 

2. When c,,, = . = if+, assume that 

T(o) = c fl.2...Jjl_,,...Jk 
t+1 <j,+l<-- <,I St+r 

(A.48) 

(A.49) 

Then, with the proper normalization constants d,,, the sequence {d,,H,,(a)}~Zo 
converges to a polynomial in o of degree t + q < k whose zeros are 01, ~72, . . . , cr, and 
cJ;;...,o;, the latter being the zeros of the polynomial T(a). If 

c r+1 < jr+1 <‘..<Jt 6 1+r 
W 1.2 ,..., rj,+ ,,... j, # 0, then t + q = k exactly. This time the whole 

sequence {d,H,(a)}Eo satisfies Eqs. (A.47) and (A.48). 
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Proof. The proof can be accomplished as that of Lemma 2.4 in [20]. 
the details to the reader. 0 

We leave 

Lemma A.8. Assume the conditions of Lemma A.7, and let s E { 1,2, . . . , t}. Then 

a,(n) = os + 0 
i n 

(1 1) 
2 asn-+oo (A.50) 

when<,+,=...=& When5,+,,...,1,+, are not all the same, Eq. (A.50) holds 
with n replaced by ni, where {d,,,H,,, (o)},“=, is the convergent subsequence of part 
(1) of Lemma A.I. 

Proof. The proof is almost identical to that of Lemma A.5. We shall mention 
the important points for the case in which [,+t , . . , [l+r are not all the same. 
First, for arbitrary (T @ (~1, . . . , cl, c:, . . . , a:}, we have 

(A.51) 

Next, if a, is of multiplicity o in (61, . . . , a,} and os $ {c’, , . . . , ob}, then from 
Eq. (A.51) we have 

(Both Eqs. (A.52) and (A.53) are obtained by differentiating Eq. (A.51).) Fi- 
nally, 

Now proceed as in the proof of Lemma A.5 to get to Eq. (A.50) with n there 
replaced by nj, recalling also the fact that lCkl = lik+rJ = j[,+tj. 

The proof of the case in which [,+r = . . . = ir+r is completely analogous and 
slightly easier, and is left to the reader. 0 
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