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GMRES(n, k), a version of GMRES for the solution of large sparse linear systems, is
introduced. A cycle of GMRES(n, k) consists of n Richardson iterations followed by k
iterations of GMRES. Such cycles can be repeated until convergence is achieved. The
advantage in this approach is in the opportunity to use moderate k, which results in time
and memory saving. Because the number of inner products among the vectors of iteration
is about k2/2, using a moderate k is particularly attractive on message-passing parallel
architectures, where inner products require expensive global communication. The present
analysis provides tight upper bounds for the convergence rates of GMRES(n, k) for problems
with diagonalizable coefficient matrices whose spectra lie in an ellipse in C \ {0}. The
advantage of GMRES(n, k) over GMRES(k) is illustrated numerically.

1. Introduction

Let s be the solution to the nonsingular linear N × N system Bx = f , which
we choose to write equivalently in the possibly preconditioned form

Ax = b. (1.1)

With x0 picked arbitrarily, we generate the vectors x1,x2, . . .:

xj+1 = (I −A)xj + b, j = 0, 1, . . . . (1.2)

If r ≡ ρ(I − A), the spectral radius of I − A, then the error xn − s tends to zero
practically as rn for n→∞ provided r < 1.
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In most cases of interest that occur in practice r may be very close to 1, and this
causes the sequence {xj}∞j=0 to converge very slowly. An efficient way of overcoming
this problem is to use Krylov subspace methods (see, for example, [2,3,8,11,13,14,
20,33,36–38]). As a representative of these methods we use here the generalized
minimum residual method (GMRES) of Saad and Schultz [21], which is particularly
attractive because of its numerical stability. The mathematical equivalence of Krylov
subspace methods and vector extrapolation methods such as the Minimal Polynomial
Extrapolation (MPE) and the Reduced Rank Extrapolation (RRE) (see [6,10,18]) is
treated in detail in [27].

Krylov subspace methods require the computation of inner products among the
vectors of iteration for the orthogonalization of residuals with respect to some inner
product or bilinear form. For the Krylov subspace methods mentioned above, the
number of inner products computed and the storage requirements increase with the
iteration number k (the dimension of the Krylov subspace used) like k2/2 and k, re-
spectively. For even moderately large k, the storage requirements may be prohibitively
large, and the time consumption of the acceleration may dominate that of the matrix–
vector products required in the iteration. This is especially pronounced when the
system is sparse but unstructured so that no well parallelized, well vectorized pre-
conditioners are available and, therefore, only simple preconditioners such as that of
the Jacobi iteration are allowed. In such cases, the orthogonalization phase may form
the “bottle-neck” in the algorithm, namely, the most time consuming part. For exam-
ple, for message-passing parallel architectures with mesh-connected processor arrays,
the inner products required for the orthogonalization involve global communication
among all the processors and, thus, are far more time consuming than the basic Jacobi
iteration, which uses immediate neighbor communication only. Therefore, GMRES
is often used in cycling mode, that is, it is restarted after every k iterations (with a
moderate k, usually k 6 20), the last iteration of a cycle serving as the initial guess
for the next one. This approach is commonly referred to as GMRES(k). Of course,
the total number of iterations required for convergence is larger than that in GMRES;
still, it is attractive when GMRES cannot be used or is inefficient because of the
above-mentioned problems.

There are several ways to preprocess the sequence of vectors of iteration before
using GMRES(k) in order to increase the efficiency of the acceleration (see, for ex-
ample, [4,9,16,19]). The GMRES(n, k) method proposed here may also be considered
a preprocessing, in which GMRES(k) is preceded by n Richardson iterations. Each
cycle of GMRES(n, k) thus consists of n initial iterations x1,x2, . . . ,xn as in (1.2)
followed by k iterations of GMRES applied to xn. (In particular, GMRES(0, k) is the
same as GMRES(k).) The result of any one cycle (denoted hereafter by sn,k) serves
as the initial guess x0 for the next cycle. (In the sequel, we may also use the notation
sn,k when the method of Arnoldi [2] is used rather than GMRES, see [31].)

It was observed in [28] that, for the vector extrapolation methods MPE and RRE
that are mathematically equivalent to the above-mentioned Krylov subspace meth-
ods, using n > 0 (even with moderate values of n) may substantially improve the
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convergence behavior. Our purpose in the present work is to provide a rigorous expla-
nation of this interesting and useful phenomenon. We also illustrate numerically that
GMRES(n, k) with n > 0 is superior to GMRES(k).

Since n and k are fixed in GMRES(n, k), it is clear that the analysis of
GMRES(n, k) necessitates the study of sn,k for fixed n and k. We mention that
the analysis of the sequences {sn,k}∞n=0 with fixed k has been given in [26,29,30]. It
should be emphasized, however, that the results of these papers concern the behavior
of sn,k for n→∞ and thus are asymptotic in nature. Therefore, they cannot be used
to explain the behavior of sn,k with small or moderately large values of n and arbitrary
values of k, which is what we need for the analysis of GMRES(n, k).

The contents of the paper are as follows. In section 2, upper bounds for the
convergence rates of GMRES(n, k) are introduced. In section 3, explicit formulas
for these upper bounds are derived for some model cases. In section 4, it is shown
numerically that these bounds are tight and decrease rapidly as functions of n and k.
In section 5, numerical comparisons between GMRES, GMRES(k) and GMRES(n, k)
are made.

2. Derivation of upper bounds

Define the residual vector r(x) associated with an arbitrary vector x by

r(x) = b−Ax.

Let ‖ · ‖ denote the vector l2-norm induced by the Euclidean inner product in CN
and the operator norm induced by this vector norm. For any matrix G, denote the
condition number of G, ‖G‖ ‖G−1‖, by κ(G) and the spectrum of G by spect(G).

Define

Πk =

{
q(λ) =

k∑
i=0

aiλ
i: q(0) = 1

}
.

Then, for any Qk ∈ Πk, we have for GMRES∥∥r(sn,k)
∥∥ 6 ∥∥Qk(A)r(xn)

∥∥. (2.1)

The result in (2.1) follows from the analysis in [11] and the mathematical equiv-
alence that is proved in [27]. In [27], a unified approach is presented from which
both (2.1) and a similar estimate for the method of Arnoldi [2] can be obtained simul-
taneously.

Hereafter we assume that A is diagonalizable. This assumption is needed for the
analysis only, not for the application of the present method.

We shall denote the matrix that diagonalizes A by R, so that

A = RΛR−1, Λ = diag(λ1,λ2, . . . ,λN ).
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Note that R is not uniquely defined; it can be replaced byRD, where D is a nonsingular
diagonal matrix. The matrix D can be chosen so that κ(RD) is minimal. For A normal,
this minimum is obtained by requiring that RD be orthogonal.

We shall also define

Pk =

{
q(λ) =

k∑
i=0

aiλ
i: q(1) = 1

}
.

Because r(x) = A(s− x),

xn − s = (I −A)(xn−1 − s) = · · · = (I −A)n(x0 − s), for all n > 1.

Therefore, for any Qk ∈ Πk, we have for GMRES∥∥r(sn,k)
∥∥ 6 ∥∥Qk(A)(I −A)n

∥∥ ∥∥r(x0)
∥∥ 6 κ(R)

∥∥Qk(Λ)(I − Λ)n
∥∥ ∥∥r(x0)

∥∥.
A similar bound can be obtained for the method of [2] and the methods that are
mathematically equivalent to it (see [27] for the details). (It is also shown in [32]
that the above coefficient κ(R) could be omitted if the above norm were accordingly
redefined.) Consequently, for GMRES∥∥r(sn,k)

∥∥ 6 κ(R)Γspect(I−A)
n,k

∥∥r(x0)
∥∥,

where, for any set D of complex numbers,

ΓDn,k ≡ min
p∈Pk

max
z∈D

∣∣p(z)zn
∣∣. (2.2)

Clearly, for n > 0, ΓDn,k = ΓD\{0}
n,k . Furthermore, D ⊂ D′ implies ΓDn,k 6 ΓD′n,k. These

properties are used in the next section to derive upper bounds for Γspect(I−A)
n,k .

3. Bounds for Γspect(I−A)
n,k

From the definition of Γspect(I−A)
n,k given in (2.2), it is obvious that precise knowl-

edge of it requires complete information on the spectrum of A, which is not available
in general. We may, however, obtain reasonably good bounds on Γspect(I−A)

n,k for n > 0
if we know that the nonzero part of the spectrum of I − A is contained in a set
D ⊂ C \ {1}. (If 1 is an eigenvalue of I −A, the system in (1.1) is singular, contrary
to our assumption in the introduction.) Then, for n > 0,

Γspect(I−A)
n,k 6 min

q∈Pk
max
λ∈D

∣∣λnq(λ)
∣∣ = ΓDn,k. (3.1)

If D is a domain, then, by the maximum modulus theorem for analytic functions,

Γspect(I−A)
n,k 6 ΓDn,k = min

q∈Pk
max
λ∈∂D

∣∣λnq(λ)
∣∣ = Γ∂Dn,k , (3.2)

where ∂D denotes the boundary of D.
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In general, the min–max problems of (3.1) and (3.2) cannot be solved analytically
in a simple way. When n = 0, some analytic solutions are known, however. The
best known is the one for the case in which D is a finite real interval [α,β] with
α < β < 1, α being arbitrary otherwise. In this case the optimal polynomial q∗(λ) is
Tk(g(λ))/Tk(g(1)), with g(λ) = (2λ− α− β)/(β − α), where Tk(z) is the Chebyshev
polynomial of the first kind of degree k. Consequently,

ΓD0,k =
1

Tk((2− α− β)/(β − α))
. (3.3)

This result can be found in, e.g., Varga [35]. The analytical solution of the min–max
problem for n = 0 and D = {λ: λ = iξ, −β 6 ξ 6 β, β > 0 real} has been provided
recently by Freund and Ruscheweyh [12], who also give a numerical method for the
case in which D is any line segment in C \ {1}.

Note that the min–max problems in (3.1) and (3.2) are constrained best uniform
approximation problems by incomplete polynomials. The problem relevant to the
present case is the one in (3.1), which now reads

ΓDn,k = min∑k

i=0
ai=1

max
λ∈D

∣∣∣∣∣
k∑
i=0

aiλ
n+i

∣∣∣∣∣. (3.4)

Uniform approximation on the real interval [0, 1] by incomplete polynomials has been
studied by Lorentz [17] and, in a series of papers, by Saff and Varga [22–25]. From
[22, proposition 3], it follows that the solution of (3.1) for n = 1 and arbitrary k and
D = [α,β], 0 < α < β < 1 real, is

q∗(λ) =
Tk+1((1− η)λ/β + η)
Tk+1((1− η)/β + η)

and, hence,

Γ[0,β]
1,k =

1
Tk+1((1− η)/β + η)

,

where η = − cos(π/2(k + 1)). (This result applies to the method in [15], which is
equivalent to using n = 1.) For general n, we shall not attempt to determine q∗(λ)
analytically. We could determine q∗(λ) numerically by the Remes algorithm, see [7],
although this would not provide us with an analytical upper bound for Γspect(I−A)

n,k .
Instead of doing this we shall try to give an analytical upper bound on ΓDn,k in terms
of orthogonal polynomials with respect to the weight function λ2n.
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3.1. D is a domain or a curve in the complex plane

Let {φn,j(λ)}∞j=0 be the sequence of polynomials orthogonal with respect to the
non-negative weight function |λ|2n, in the sense∫

Ω
|λ|2nφn,i(λ)φn,j(λ) dΩ = νjδij .

Here Ω stands for D when D is a curve or a domain (or ∂D in case D is a domain)
and δmk is the Kronecker delta. As a result, dΩ is the line element on Ω if Ω is a
curve, or the area element if Ω is a domain. By (3.1) and theorem A.4 in the appendix,
we have {

c
k∑
j=0

∣∣φn,j(1)
∣∣2/νj}−1/2

6 ΓDn,k 6
maxλ∈D |λnφn,k(λ)|

|φn,k(1)| , (3.5)

where c =
∫

Ω dΩ.
Of course, in order to determine these bounds we need to find the polynomials

φn,k(λ) numerically, possibly through the 3-term recursion relation that they satisfy.
In addition, this recursion relation needs to be determined numerically too.

3.2. D is an interval in the complex plane

Important simplifications take place when D = [α,β] ⊂ C \ {1}. (Note that α
and β may be complex.) In this case, by theorem A.3 in the appendix,

max
λ∈D

∣∣λnφn,k(λ)
∣∣ = max

(∣∣αnφn,k(α)
∣∣, ∣∣βnφn,k(β)

∣∣). (3.6)

When D = [α,β] ⊂ [0,β], it is possible to bound ΓDn,k by Γ[0,β]
n,k . The motivation for

this is that, for large n, Γ[0,β]
n,k will not be too different from ΓDn,k, since the weight |λ|n

in the interval [0,α] is negligible compared to its average value in the interval [α,β],
hence, there cannot be a great difference between the solutions of the two min–max
problems on [α,β] and on [0,β]. Furthermore, explicit lower and upper bounds for
Γ[0,β]
n,k exist. Hence, this case deserves special treatment.

3.3. The case D = [0,β] ⊂ C \ {1}

Here φn,k(λ) is expressible in terms of Jacobi polynomials. In fact, φn,k(λ),
which now is the kth orthogonal polynomial with respect to the weight function |λ|2n
and the measure |dλ| on [0,β], is a constant multiple of P (0,2n)

k (2λ/β − 1) by (A.4)
in the appendix.

By (A.2) and (A.3) from the appendix, we have, respectively,∫ β

0
|λ|2n

∣∣P (0,2n)
k (2λ/β − 1)

∣∣2|dλ| = |β|2n+1

2n+ 2k + 1
(3.7)



A. Sidi, Y. Shapira / Upper bounds for convergence rates of acceleration methods 119

and

P (0,2n)
k (2λ/β − 1)

∣∣
λ=β

= P (0,2n)
k (1) = 1. (3.8)

Using (3.7) and (3.8) to make the appropriate substitutions in (3.5) and (3.6), we now
obtain an upper and a lower bound for ΓDn,k, which are expressible in terms of Jacobi
polynomials and, hence, are easily computable. These are given in theorem 3.1 below.

Theorem 3.1. Let D = [0,β] ⊂ C \ {1}. Then ΓDn,k satisfies the inequalities

|β|n{∑k
j=0(2n + 2j + 1)|P (0,2n)

j (2/β − 1)|2
}1/2

6 ΓDn,k 6
|β|n∣∣P (0,2n)

k (2/β − 1)
∣∣ . (3.9)

If, in addition, β is real, β < 1, and β 6= 0, then 2/β − 1 > 1 or 2/β − 1 <

−1. Thus, by theorem A.1 in the appendix, the sequence {|P (0,2n)
j (2/β − 1)|}∞j=0 is

monotonically increasing. We can use this to replace the lower bound on ΓDn,k by a
weaker but more informative one presented in the following corollary.

Corollary 3.2. Let D = [0,β], where β < 1, β 6= 0. Then ΓDn,k satisfies the following
weaker form of (3.9):

1√
(k + 1)(2n + 2k + 1)

· |β|n

|P (0,2n)
k (2/β − 1)|

6 ΓDn,k 6
|β|n

|P (0,2n)
k (2/β − 1)|

. (3.10)

As can be seen from (3.10), the upper and lower bounds on ΓDn,k differ from each
other at most by a factor

√
(k + 1)(2n + 2k + 1) and this implies that the upper bound

is quite tight (especially for moderate values of n and k), as will be demonstrated
numerically later.

Remark. Using (A.1), one may substitute in (3.9) and (3.10)

P (0,2n)
k (2/β − 1) = β−k

k∑
j=0

(
k

j

)(
2n+ k

j

)
(1− β)j . (3.11)

From this one obtains that, for −1 6 β < 1, the upper bound in (3.9)–(3.10) is a
monotonically decreasing function of n and k (see the proof of theorem A.1 in the
appendix). This is a desirable property for an upper bound, since it holds for ΓDn,k
itself.

Note that when n = 0 the Jacobi polynomial P (0,2n)
k (z) reduces to the Legendre

polynomial of degree k. This causes the upper bound to be slightly inferior to that
obtained from the corresponding Chebyshev polynomial as in (3.3).



120 A. Sidi, Y. Shapira / Upper bounds for convergence rates of acceleration methods

3.4. The case D = [−β,β] ⊂ C \ {1}

Here we assume again that β is a complex number. Again, the orthogonal
polynomials φn,k(λ) can be expressed in terms of Jacobi polynomials. Using the
substitution λ = βx in (A.5) in the appendix, we have,

φn,k(λ) =

{
P

(0,n−1/2)
ν

(
2(λ/β)2 − 1

)
if k = 2ν,

(λ/β)P (0,n+1/2)
ν

(
2(λ/β)2 − 1

)
if k = 2ν + 1,

(3.12)

i.e., φn,k(λ) is an even or odd function of λ, depending on whether k is even or odd,
respectively. As a result of (3.12), we obtain

φn,k(β) = 1 for all n and k

and

νj =

∫ β

−β
|λ|2n

∣∣φn,j(λ)
∣∣2|dλ| = |β|2n+1

n+ j + 1/2
for all n and j.

Combining all these in (3.5) and (3.6), we obtain:

Theorem 3.3. Let D = [−β,β] ⊂ C \ {1}. Then ΓDn,k satisfies the inequalities

|β|n{∑k
j=0(2n + 2j + 1)|φn,j(1)|2

}1/2
6 ΓDn,k 6

|β|n
|φn,k(1)| . (3.13)

Using (A.7) in the appendix (with x = 1/β there), one may substitute

|β|n
|φn,k(1)| =

|β|n+k∣∣∑ν
j=0

(ν
j

)(n+µ−1/2
j

)
(1− β2)j

∣∣ , (3.14)

with

ν =

⌊
k

2

⌋
and µ =

⌊
k + 1

2

⌋
, (3.15)

as follows from (A.7) and (A.8).
If, in addition, β2 is real and −1 6 β2 < 1, then theorem A.2 applies, and,

therefore, the sequence {|φn,j(1)|}∞j=0 is monotonically increasing. With the help of
this property, we can replace (3.13) by the weaker but more informative form presented
in the following corollary.

Corollary 3.4. Let D = [−β,β], where −1 6 β2 < 1. Then ΓDn,k satisfies

1√
(k + 1)(2n + 2k + 1)

· |β|
n

|φn,k(1)| 6 ΓDn,k 6
|β|n
|φn,k(1)| .
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Assuming again that β2 may be complex, we note that the upper bound given
by (3.13) and (3.14) can be improved somewhat as follows: by the fact that |λ|n is
symmetric with respect to the origin in D = [−β,β], we see that the solution of the
min–max problem in (3.1) is even or odd depending on whether k is even or odd,
respectively. Thus

ΓDn,k = min
q∈Pk

max
λ∈[−β,β]

∣∣λnq(λ)
∣∣ =


min
h∈Pν

max
λ∈[0,β]

∣∣λnh(λ2
)∣∣ if k = 2ν,

min
h∈Pν

max
λ∈[0,β]

∣∣λn+1h
(
λ2
)∣∣ if k = 2ν + 1.

Making now the change of variable λ2 = τ , we have

ΓDn,k =


min
h∈Pν

max
τ∈[0,β2]

∣∣τn/2h(τ )
∣∣ if k = 2ν,

min
h∈Pν

max
τ∈[0,β2]

∣∣τ (n+1)/2h(τ )
∣∣ if k = 2ν + 1.

We finally employ theorem 3.1 to obtain

|β|n{∑ν
j=0(n+ 2j + 1)|P (0,n)

j (2/β2 − 1)|2
}1/2

6 ΓDn,2ν 6
|β|n∣∣P (0,n)

ν (2/β2 − 1)
∣∣

(3.16)
|β|n+1{∑ν

j=0(n+ 2j + 2)
∣∣P (0,n+1)
j (2/β2 − 1)

∣∣2}1/2
6 ΓDn,2ν+1 6

|β|n+1∣∣P (0,n+1)
ν (2/β2 − 1)

∣∣ .
As in (3.11), the upper bounds on ΓDn,k can be unified to read

ΓDn,k 6
|β|n+k∣∣∑ν

j=0

(ν
j

)(n+µ
j

)
(1− β2)j

∣∣ (3.17)

with ν and µ as defined in (3.15). Comparing the upper bound in (3.17) with that
of (3.13) and (3.14) for the case −1 6 β2 < 1, we see that the former is slightly smaller
than the latter. Both, however, have the desirable property of being monotonically
decreasing functions of n and k. For β2 < −1, this is not necessarily true. In this
case, it is only guaranteed that both upper bounds have the property that the sequences
obtained by taking the upper bounds for either ΓDn,2ν or ΓDn,2ν+1 are monotonically
decreasing functions of ν (see theorems A.1 and A.2 in the appendix).

3.5. D is an ellipse in C \ {1}

In this case we can extend our previous results to obtain bounds on ΓDn,k in
conjunction with Bernstein’s theorem, which is stated below.
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Theorem 3.5 (Bernstein). Let p(z) be a polynomial of degree at most k. Denote by Eτ
the ellipse with foci at ±1, semi-major axis 1

2 (τ+τ−1) and semi-minor axis 1
2 (τ−τ−1),

where τ > 1. Then

max
z∈Eτ

∣∣p(z)
∣∣ 6 τk max

z∈[−1,1]

∣∣p(z)
∣∣.

As a result of this theorem, we see that if the foci of the ellipse are at α and β,
then the above upper bounds for the case D = [α,β] need to be multiplied by τn+k

for some τ > 1, whose size depends on the size of the ellipse. Of course, this will be
so provided 1 lies outside the ellipse. The thinner the ellipse, the closer τ is to 1.

4. Numerical computation of the bounds

We would now like to demonstrate by actual computation that the bounds that
were presented in sections 3.3 and 3.4 are very close to ΓDn,k. We also computed the
upper bounds obtained from (3.3), namely,

ΓDn,k 6
|β|n

Tk((2 − α− β)/(β − α))
≡ ΓCh

n,k. (4.1)

The inequality in (4.1) is actually an equality when n = 0 as follows from (3.3). As
mentioned previously, these bounds do not explain the behavior of sn,k for n > 0.
They are given only for the sake of comparison. Finally, we computed the lower
bounds on ΓDn,k in order to verify that the upper bounds are indeed quite tight. All the
computations reported in this section were done on an IBM-370 computer in double
precision arithmetic.

Tables 1 and 2 contain the lower and upper bounds for ΓDn,k and the Chebyshev
polynomial bounds given in (4.1) for the cases D = [0, 0.96] and D = [−0.96, 0.96],
respectively. The values considered are n = 0, 50, 100 and k = 0, 2, 4, . . . , 20. Note

Table 1
Bounds for ΓDn,k when D = [0, 0.96]. “lb” is the lower bound defined in (3.9), “ub” is the upper bound
defined in (3.9) and ΓCh

n,k is the Chebyshev bound defined in (4.1). Note that ΓD0,k = ΓCh
0,k for this case.

k n = 0 n = 50 n = 100

lb ub ΓCh
n,k lb ub ΓCh

n,k lb ub ΓCh
n,k

0 1.00D+00 1.00D+00 1.00D+00 1.29D−02 1.30D−01 1.30D−01 1.19D−03 1.69D−02 1.69D−02
2 2.83D−01 7.93D−01 7.42D−01 6.46D−04 6.88D−03 9.64D−02 2.15D−05 3.13D−04 1.25D−02
4 1.24D−01 5.00D−01 3.80D−01 7.71D−05 8.66D−04 4.94D−02 1.24D−06 1.86D−05 6.41D−03
6 5.66D−02 2.77D−01 1.74D−01 1.30D−05 1.52D−04 2.26D−02 1.16D−07 1.78D−06 2.94D−03
8 2.57D−02 1.43D−01 7.79D−02 2.66D−06 3.25D−05 1.01D−02 1.42D−08 2.25D−07 1.31D−03

10 1.16D−02 7.16D−02 3.47D−02 6.22D−07 7.85D−06 4.50D−03 2.12D−09 3.42D−08 5.85D−04
12 5.20D−03 3.50D−02 1.54D−02 1.60D−07 2.08D−06 2.00D−03 3.61D−10 5.97D−09 2.60D−04
14 2.32D−03 1.68D−02 6.85D−03 4.39D−08 5.88D−07 8.90D−04 6.85D−11 1.16D−09 1.16D−04
16 1.04D−03 8.00D−03 3.04D−03 1.28D−08 1.75D−07 3.95D−04 1.42D−11 2.43D−10 5.14D−05
18 4.62D−04 3.77D−03 1.35D−03 3.89D−09 5.47D−08 1.76D−04 3.13D−12 5.48D−11 2.28D−05
20 2.06D−04 1.77D−03 6.01D−04 1.23D−09 1.77D−08 7.81D−05 7.35D−13 1.31D−11 1.01D−05
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Table 2
Bounds for ΓDn,k when D = [−0.96, 0.96]. “lb” is the lower bound defined in (3.16), “ub” is the upper
bound defined in (3.16) and ΓCh

n,k is the Chebyshev bound defined in (4.1). Note that ΓD0,k = ΓCh
0,k for this

case.

k n = 0 n = 50 n = 100

lb ub ΓCh
n,k lb ub ΓCh

n,k lb ub ΓCh
n,k

0 1.00D+00 1.00D+00 1.00D+00 1.82D−02 1.30D−01 1.30D−01 1.68D−03 1.69D−02 1.69D−02
2 4.42D−01 8.55D−01 8.55D−01 3.24D−03 2.39D−02 1.11D−01 1.71D−04 1.74D−03 1.44D−02
4 2.41D−01 6.44D−01 5.75D−01 8.31D−04 6.38D−03 7.47D−02 2.83D−05 2.94D−04 9.70D−03
6 1.38D−01 4.44D−01 3.45D−01 2.55D−04 2.03D−03 4.48D−02 6.02D−06 6.37D−05 5.82D−03
8 7.92D−02 2.90D−01 1.98D−01 8.78D−05 7.18D−04 2.57D−02 1.49D−06 1.61D−05 3.34D−03

10 4.54D−02 1.83D−01 1.12D−01 3.26D−05 2.74D−04 1.46D−02 4.14D−07 4.54D−06 1.89D−03
12 2.58D−02 1.13D−01 6.33D−02 1.28D−05 1.11D−04 8.22D−03 1.25D−07 1.39D−06 1.07D−03
14 1.47D−02 6.89D−02 3.56D−02 5.26D−06 4.65D−05 4.63D−03 4.01D−08 4.54D−07 6.01D−04
16 8.30D−03 4.15D−02 2.00D−02 2.23D−06 2.02D−05 2.60D−03 1.36D−08 1.56D−07 3.38D−04
18 4.69D−03 2.48D−02 1.13D−02 9.77D−07 9.02D−06 1.46D−03 4.81D−09 5.61D−08 1.90D−04
20 2.65D−03 1.47D−02 6.34D−03 4.37D−07 4.12D−06 8.24D−04 1.76D−09 2.09D−08 1.07D−04

the closeness of the lower and upper bounds, which implies that both are close to ΓDn,k.
Note also that both bounds decrease at an increasing rate as n increases.

5. Numerical examples

Consider the 2-dimensional convection-diffusion equation

−∂
2u

∂x2 −
∂2u

∂y2 + γ

(
x
∂u

∂x
+ y

∂u

∂y

)
+ βu = f in Ω, u = g on ∂Ω, (5.1)

where Ω is the unit square (0, 1) × (0, 1). f and g are chosen such that the solution
of (5.1) is u = xy. The linear system obtained by discretizing this equation has been
used as a test problem for vector extrapolation methods and Krylov subspace methods
on nonsymmetric and/or indefinite systems. See, e.g., Gander et al. [13].

Let xi = iδx, 0 6 i 6 Mx + 1, and yj = jδy, 0 6 j 6 My + 1, where
δx = 1/(Mx + 1) and δy = 1/(My + 1) for some positive integers Mx and My. We
discretize this equation by replacing all the partial derivatives at (xi, yj) by central
differences.

For all our computations we took a random vector as the initial vector.
Observing that the matrix of the linear system above is consistently ordered, we

can use the strategy that was proposed in [28, section 7] to reduce the computational
cost, reducing the storage requirements by almost a half at the same time. According to
this strategy, vector extrapolation methods are applied to the vector sequence obtained
by using the double Jacobi iteration technique. With x0 given, and I − A being the
matrix of the Jacobi iteration method, the double Jacobi iteration produces the vectors
x1,x2, . . . , in accordance with

xj+1 = (I −A)
(
(I −A)xj + b

)
+ b, j = 0, 1, 2, . . . . (5.2)
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We then expect cycling with the double Jacobi iteration using sn,k to produce results
similar to those produced by cycling with the (single) Jacobi iteration using s2n,2k.
Obviously, the number of single Jacobi iterations actually performed in both cases is
almost the same, although the computational cost and storage requirements for it are
much lower with the double Jacobi iteration.

The acceleration method used in conjunction with this iterative technique is GM-
RES in the GMRES(n, k) cycling mode for some n and k, namely, a cycle consists
of n double Jacobi iterations and then k iterations of GMRES with the preconditioner
corresponding to the double Jacobi iteration.

In our experiments, we pick γ = 125 and β = −100. We first picked Mx =
My = 31 so that the number of unknowns is N = MxMy = 961. The conver-
gence criterion is the reduction of the l2-norm of the initial residual by 12 orders
of magnitude. The residual is recalculated after each iteration to check whether the
convergence criterion is met. (It was also checked that the l∞ norm of the error is
reduced at about the same rate as the l2-norm of the residual.) The results are as
follows. GMRES(20) converges in 13 cycles (figure 2). GMRES(20, 20) converges in
2 cycles (figure 1). This shows the superiority of GMRES(n, k) with n > 0 in com-
parison with GMRES(k). For this example, GMRES converges in 56 iterations; this
requires storage of 58 arrays, which is usually prohibitive for large systems arising, for
example, from 3-D PDEs. GMRES(50, 20) converges in 4 cycles, which is inferior to
GMRES(20,20). This is probably because of roundoff errors; the coefficient matrix is
not an M -matrix and, hence, the basic double Jacobi iteration diverges. The 50 initial
iterations might yield very large residuals and significant roundoff errors in the subse-
quent GMRES iteration. Interestingly, GMRES(40) is also inferior to GMRES(20, 20):
it requires 3 cycles for convergence (figure 3). The reason for this is probably also
numerical instability.

Figure 1. GMRES(20, 20) for the convection–diffusion equation (5.1) on a 31 × 31 grid. Residual
reduction (on a logarithmic scale) vs. the total number of double Jacobi iterations (including those

performed within the GMRES iteration).
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Figure 2. GMRES(20) for the convection–diffusion equation (5.1) on a 31× 31 grid. Residual reduction
(on a logarithmic scale) vs. the total number of double Jacobi iterations (including those performed within

the GMRES iteration).

Figure 3. GMRES(40) for the convection–diffusion equation (5.1) on a 31× 31 grid. Residual reduction
(on a logarithmic scale) vs. the total number of double Jacobi iterations (including those performed within

the GMRES iteration).

Figure 4. GMRES(20, 20) for the convection–diffusion equation (5.1) on a 63 × 63 grid. Residual
reduction (on a logarithmic scale) vs. the total number of double Jacobi iterations (including those

performed within the GMRES iteration).
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Figure 5. GMRES(50, 20) for the convection–diffusion equation (5.1) on a 63 × 63 grid. Residual
reduction (on a logarithmic scale) vs. the total number of double Jacobi iterations (including those

performed within the GMRES iteration).

Figure 6. GMRES(40) for the convection–diffusion equation (5.1) on a 63× 63 grid. Residual reduction
(on a logarithmic scale) vs. the total number of double Jacobi iterations (including those performed within

the GMRES iteration).

We then turned to the same problem on a larger grid: Mx = My = 63. The
convergence criterion is the reduction of the l2-norm of the initial residual by 8 orders
of magnitude. Again, the double Jacobi iteration is used. The results are as follows.
GMRES(20, 20) converges in 8 cycles (figure 4). GMRES(50, 20) converges in 3 cycles
(figure 5). GMRES(20) stagnates. GMRES(40) converges in 15 cycles (figure 6).
GMRES with no restarting converges in 65 iterations.

We have also tested the circulating convection example of Brandt and Yavneh [5]

sin
(
π(y − 0.5)

)
cos
(
π(x− 0.5)

)
ux − sin

(
π(x− 0.5)

)
cos
(
π(y − 0.5)

)
uy = 0.

The domain is the unit square (0, 1)× (0, 1) with a (δx/2)× (δy/2) hole at the middle
of it (corresponding to a 1× 1 hole at the middle of the grid). Homogeneous Dirichlet
boundary conditions are imposed on the outer boundary and on this hole. The scheme
is as in [5], that is, isotropic artificial viscosity is used, the amount of which is locally
chosen to be the minimal amount required for diagonal dominance. Mx = My = 31 is
used. The convergence criterion is the reduction of the l2-norm of the initial residual by
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12 orders of magnitude. Again, the double Jacobi iteration is used. The results are as
follows. GMRES(20) converges in 51 cycles. GMRES(20, 20) converges in 12 cycles.
GMRES(60, 20) converges in 5 cycles. GMRES converges in 140 iterations, which
is again prohibitive on most computers in terms of storage for large systems arising
in practice. Again, the superiority of GMRES(n, k) with n > 0 over GMRES(k) and
GMRES is clear.

Acknowledgements

The authors would like to thank Prof. Moshe Israeli for useful conversations and
Prof. Allan Pinkus for drawing their attention to some of the references cited in this
work.

Appendix

A.1. A collection of useful formulas and results for Jacobi polynomials

The Jacobi polynomials P (α,β)
k (x) are defined by

P (α,β)
k (x) =

k∑
j=0

(
k + α

k − j

)(
k + β

j

)(
x− 1

2

)j(x+ 1
2

)k−j
(A.1)

with α > −1 and β > −1. They are orthogonal with respect to the weight function
w(x) = (1− x)α(1 + x)β on [−1, 1], i.e.,∫ 1

−1
(1− x)α(1 + x)βP (α,β)

m (x)P (α,β)
k (x) dx

= δmk
2α+β+1

2k + α+ β + 1
· Γ(k + α+ 1)Γ(k + β + 1)

Γ(k + 1)Γ(k + α+ β + 1)
, (A.2)

where δmk is the Kronecker delta. P (α,β)
k (x) are normalized such that

P (α,β)
k (1) =

(
k + α

k

)
. (A.3)

For a and b complex numbers, polynomials orthogonal on [a, b] with respect to
the weight function w(z) = |(b− z)α(z − a)β| and the measure |dz| are

pk(z) = P (α,β)
k

(
2
z − a
b− a − 1

)
. (A.4)

This result is obtained by a change of variables in the original Jacobi polynomials.
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Polynomials orthogonal on [−1, 1] with respect to the weight function w(x) =
|x|2n are given by

pk(x) =

{
P

(0,n−1/2)
ν

(
2x2 − 1

)
if k = 2ν,

xP
(0,n+1/2)
ν

(
2x2 − 1

)
if k = 2ν + 1.

(A.5)

The normalization condition given in (A.3) is the one that has been widely ac-
cepted in the literature of orthogonal polynomials. Thus (A.1)–(A.3) can be found in
many books. See, e.g., [1, chapter 22] or [34]. For (A.5) see [34, pp. 59–60].

Theorem A.1. For x > 1 or x < −1 fixed and α,β > 0, the sequence {|P (α,β)
k (x)|}∞k=0

is monotonically increasing.

Proof. We start with the case x > 1. First, all the terms in the summation on the
right hand side of (A.1) are positive for x > 1. Next, the jth term of P (α,β)

k (x) in (A.1)

is strictly less than the corresponding term of P (α,β)
k+1 (x). The result now follows. As

for x < −1, we first recall that

P (α,β)
k (−x) = (−1)kP (β,α)

k (x), (A.6)

and then apply the result for x > 1, which we have already proved, to the polynomials
P (β,α)
k (x). �

Theorem A.2. The polynomials pk(x) that are defined in (A.5) are such that, for x
real and |x| > 1, or for x pure imaginary and |x| > 1, the sequence {|pk(x)|}∞k=0 is
monotonically increasing. For x pure imaginary and |x|<1 the sequences {|p2ν(x)|}∞ν=0
and {|p2ν+1(x)|}∞ν=0 are monotonically increasing.

Proof. We observe that, by proper manipulation of (A.1), pk(x) can be expressed in
the unified form

pk(x) =
ν∑
j=0

(
ν

j

)(
n+ µ− 1/2

j

)(
x2 − 1

)j
xk−2j , (A.7)

where

ν =

⌊
k

2

⌋
and µ =

⌊
k + 1

2

⌋
. (A.8)

Note that both ν and µ are monotonically nondecreasing in k, and that one of them
is always increasing. Letting now x be real and x > 1, we see that all the terms in
the summation on the right hand side of (A.7) are positive. Next, the jth term of
pk(x) in (A.7) is strictly less than the corresponding term of pk+1(x). The result now
follows for x > 1. For x < −1, we note that pk(−x) = (−1)kpk(x), and apply the
result for x > 1, which we have already proved, to the polynomials pk(x). For the
case in which x is pure imaginary, i.e., x = iξ, ξ real, the factor (x2 − 1)jxk−2j in
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the jth term of pk(x) becomes ik(ξ2 + 1)jξk−2j . The proof for the case |x| > 1 can
now be completed as before. The proof of the case |x| < 1 can be done by employing
theorem A.1 in conjunction with (A.5). �

A.2. A result on monotonic weight functions

Theorem A.3. Let {pn(z)}∞n=0 be the sequence of polynomials orthogonal on [a, b]
(for a and b complex numbers) with respect to the non-negative weight function w(z)
and the measure |dz|. Assume that w(z) is nondecreasing on [a, b]; that is, for any
two points z1, z2 ∈ [a, b]

|z1 − b| < |z2 − b| ⇒ w(z1) > w(z2).

Then the functions
√
w(z)|pn(z)| attain their maximum on [a, b] for z = b. A cor-

responding statement holds for any subinterval [z0, b] of [a, b], where w(z) is nonde-
creasing.

Proof. For a and b real, the proof is given in [34, theorem 7.2, p. 163]. For a and b
complex, let T be the affine mapping which maps [−1, 1] onto [a, b]. Since w(Tx) is
nondecreasing on [T−1z0,T−1b], the theorem follows by applying it to the orthogonal
polynomials pn(Tx) on [−1, 1] with respect to the weight function w(Tx) and the
measure |dx|. �

A.3. A lower bound for a best polynomial l∞-approximation problem

Theorem A.4. Let {pn(z)}∞n=0 be the sequence of orthonormal polynomials on a com-
pact set Ω of the complex z-plane with respect to the real non-negative weight function
w(z) on Ω, i.e., ∫

Ω
w(z)pm(z)pn(z) dΩ = δm,n, (A.9)

where dΩ stands for the area element if Ω is a domain D, and for the line element if
Ω is the boundary of a domain D or an arbitrary rectifiable curve. Let φ∗(z) be the
solution of the constrained min–max problem

min
φ

max
z∈Ω

∣∣∣√w(z)φ(z)
∣∣∣, φ(z) polynomial of degree 6 k,

(A.10)
subject to M (φ) = 1,

where M is a bounded linear functional on the space of functions continuous on Ω.
Then

max
z∈Ω

∣∣∣√w(z)φ∗(z)
∣∣∣ > {c k∑

j=0

∣∣M (pj)
∣∣2}−1/2

, c =

∫
Ω

dΩ. (A.11)
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Proof. We start by observing that, for any function f (z) that is continuous on Ω, we
have

max
z∈Ω

∣∣f (z)
∣∣ > {c−1

∫
Ω

∣∣f (z)
∣∣2 dΩ

}1/2

. (A.12)

Letting now f (z) =
√
w(z)φ(z) in (A.12), where φ(z) is a polynomial of degree at

most k satisfying M (φ) = 1, and minimizing both sides of (A.12) with respect to φ,
we obtain

max
z∈Ω

∣∣∣√w(z)φ∗(z)
∣∣∣ > min

M (φ)=1

{
c−1

∫
Ω
w(z)

∣∣φ(z)
∣∣2 dΩ

}1/2

. (A.13)

Since φ(z) is a polynomial of degree k, it can be written as

φ(z) =
k∑
i=0

αipi(z), (A.14)

so that the minimization problem on the right-hand side of (A.13) becomes

min
αi

k∑
i=0

|αi|2

(A.15)

subject to
k∑
i=0

αiM (pi) = 1.

The solution of (A.15) can be achieved, e.g., by using the method of Lagrange multi-
pliers, and is given by

αj =
M (pj)∑k

i=0 |M (pi)|2
, j = 0, 1, . . . , k. (A.16)

Combining (A.16) with (A.13)–(A.15), (A.11) follows. �

Obviously, in case Ω = [a, b], a finite real interval, we have dΩ = dx and
c = b− a.

Also, if M is a point evaluation functional, i.e., M (φ) = φ(ξ) for some ξ, then
M (pi) = pi(ξ) in (A.11).
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Rational Approximations: Theory and Applications, eds. E.B. Saff and R.S. Varga (Academic
Press, New York, 1977) pp. 289–302.
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