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IMPROVING THE ACCURACY OF
QUADRATURE METHOD SOLUTIONS OF

FREDHOLM INTEGRAL EQUATIONS THAT ARISE
FROM NONLINEAR TWO-POINT
BOUNDARY VALUE PROBLEMS

AVRAM SIDI AND JAMES A. PENNLINE

ABSTRACT. In this paper we are concerned with high-
accuracy quadrature method solutions of nonlinear Fredholm
integral equations of the form

y(x) = r(x) +

∫ 1

0

g(x, t)F (t, y(t)) dt, 0 ≤ x ≤ 1,

where the kernel function g(x, t) is continuous, but its partial
derivatives have finite jump discontinuities across x = t.
Such integral equations arise, e.g., when one applies Green’s
function techniques to nonlinear two-point boundary value
problems of the form y′′(x) = f(x, y(x)), 0 ≤ x ≤ 1, with
y(0) = y0 and y(1) = y1, or other linear boundary conditions.
A quadrature method that is especially suitable and that
has been employed for such equations is one based on the
trapezoidal rule that has a low accuracy. By analyzing the
corresponding Euler-Maclaurin expansion, we derive suitable
correction terms that we add to the trapezoidal rule, thus
obtaining new numerical quadrature formulas of arbitrarily
high accuracy that we also use in defining quadrature methods
for the integral equations above. We prove an existence and
uniqueness theorem for the quadrature method solutions, and
show that their accuracy is the same as that of the underlying
quadrature formula. The solution of the nonlinear systems
resulting from the quadrature methods is achieved through
successive approximations whose convergence is also proved.
The results are demonstrated with numerical examples.

1. Introduction. Consider the Fredholm integral equation of the
second kind of the form

(1.1) y(x) = r(x) +
∫ 1

0

g(x, t)F (t, y(t)) dt, 0 ≤ x ≤ 1,
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where the function F (t, w) is assumed to be nonlinear in w, in general.
Let M be a nonnegative integer and assume the following:

(i) r ∈ CM (I), where I ≡ [0, 1].

(ii) g ∈ C(Ω), where Ω ≡ I × I. If M ≥ 1, then the partial
derivatives (∂j+k/∂xj∂tk)g(x, t) ≡ gj,k(x, t) with j ≥ 0, k ≥ 0, and
1 ≤ j + k ≤ M , are all in PC(Ω). By this we mean that they are
continuous in each of the two halves S− = {(x, t) : 0 ≤ t ≤ x ≤ 1} and
S+ = {(x, t) : 0 ≤ x ≤ t ≤ 1} of Ω, but they are discontinuous
across the diagonal S+ ∩ S− of Ω, i.e., across x = t, where they
have finite jump discontinuities. For future reference let us define
δk(x) = g0,k(x, x+)−g0,k(x, x−), k = 1, 2, . . . , M . By the assumptions
above, δk(x) are continuous on I and thus bounded there.

(iii) F (t, w) ∈ C(Δ) and also F0,1(t, w) ≡ (∂/∂w)F (t, w) ∈ C(Δ),
where Δ = I × J with J = [R1, R2] for some R1 and R2 that can
be finite or infinite. For M ≥ 3 we also assume that Fj,k(t, w) ≡
(∂j+k/∂tj∂wk)F (t, w), with j + k ≤ M − 2, are all in C(Δ). (Starting
with our discussion of improved quadrature methods in Section 3, we
will assume this with j + k ≤ M for M ≥ 1.)

Thus, for each value of M , the assumptions in (i) (iii) contain
those for lower values. In particular, we have r ∈ C(I), g ∈ C(Ω),
and F, F0,1 ∈ C(Δ), for any M ≥ 0. These minimal smoothness
conditions on r, g, and F , along with other conditions not pertaining
to smoothness, are sufficient to guarantee the existence and uniqueness
of (i) a continuous solution y(x) of (1.1), cf. Theorem 2.1, and (ii) a
quadrature method (approximate) solution of (1.1), cf. Theorem 5.1.
Theorem 2.1 in the next section states, furthermore, that y(x) ∈ CM (I)
for each M ≥ 0 under the conditions of (i) (iii). In particular,
y ∈ C∞(I) when M = ∞.

Integral equations of the kind described in this introduction arise,
for example, when one applies Green’s function techniques to two-
point boundary value problems (BVP’s) governed by nonlinear ordinary
differential equations (ODE’s). See, e.g., Courant and Hilbert [4],
Morse and Feshbach [9], Keller [7], and Pennline [10-12].

To illustrate this point let us consider

(1.2) y′′(x) = f(x, y(x)), 0 ≤ x ≤ 1,
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with the inhomogeneous boundary conditions (BC’s)

(1.3) y(0) = y0 and y(1) = y1.

As is shown in [7], (1.2) (1.3) can be converted into the Fredholm
integral equation of the second kind

(1.4) y(x) = r(x) +
∫ 1

0

g(x, t)[k2y(t) − f(t, y(t))]dt, 0 ≤ x ≤ 1,

where

(1.5) g(x, t) =
1

k sinh k

{
sinh kx sinh k(1 − t), 0 ≤ x ≤ t

sinh k(1 − x) sinh kt, t ≤ x ≤ 1

and

(1.6) r(x) =
y0 sinh k(1 − x) + y1 sinh kx

sinh k
.

Here k > 0 is a free parameter chosen to guarantee the convergence
to the solution y(x) of the sequence of successive approximations
{y(m)(x)}∞m=0 obtained as in

(1.7)
y(m+1)(x) = r(x) +

∫ 1

0

g(x, t)[k2y(m)(t) − f(t, y(m)(t))] dt,

m = 0, 1, . . . ,

with y(0)(x) chosen suitably.

A standard procedure for solving (1.1) numerically is the quadrature
method; see, e.g., Baker [2, p. 686]. In this method we start with a
numerical quadrature formula IN [φ] =

∑N
j=0 αjφ(xj) for the integral∫ 1

0
φ(t) dt. Here 0 ≤ x0 < x1 < · · · < xN ≤ 1. Next, we replace

the integral
∫ 1

0
g(x, t)F (t, y(t)) dt by the corresponding IN [g(x, ·)F ].

Finally, we collocate the resulting equation at the abscissas xi, i =
0, 1, . . . , N , to obtain the nonlinear system of equations

(1.8) yi = r(xi) +
N∑

j=0

αjg(xi, xj)F (xj , yj), i = 0, 1, . . . , N,
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where, for each i, yi is the approximation to y(xi).

Subsequently, this system may be solved, e.g., by successive approx-
imations as in

(1.9)

y
(0)
i = y(0)(xi), i = 0, 1, . . . , N,

y
(m+1)
i = r(xi) +

N∑
j=0

αjg(xi, xj)F (xj , y
(m)
j ),

i = 0, 1, . . . , N ; m = 0, 1, . . . .

One can also use Newton’s method for solving the system in (1.8), but
this requires the computation of the Jacobian matrix and the solution
of a linear system of N +1 equations at each iteration, which may make
the solution very expensive computationally. See, e.g., [7] and [2]. We
shall come back to this subject in Section 8, where we will discuss other
options as well.

In general, the accuracy of the yi in (1.8) is that provided by the
numerical quadrature formula IN [g(x, ·)F ], subject to the condition
that g(x, t)F (t, y(t)) is sufficiently smooth for t ∈ I. For the case
considered in this work, however, g(x, t)F (t, y(t)) is not continuously
differentiable for t ∈ I, but only continuous there. This is so since
g0,1(x, t) = (∂/∂t)g(x, t) has a (finite) jump discontinuity for t =
x. Therefore, we cannot expect to obtain a high-accuracy numerical
solution by using a high-accuracy numerical quadrature formula such
as a Gaussian formula. For this reason, the trapezoidal rule that has a
low accuracy of O(N−2) has been used in previous work, [7].

When the approach above, with IN taken as the trapezoidal rule,
is applied to the integral equation (1.4) (1.6), the resulting yi have
errors of order O(N−2) as shown in [7], provided that y ∈ C2(I) and
{y(m)(x)}∞m=0 defined by (1.7) is a contractive sequence. The same
approach was used also in [10 12].

In the present work we propose to improve the accuracy from O(N−2)
to O(N−2p) for arbitrary integers p ≥ 2, by replacing the trapezoidal
rule by “numerical quadrature formulas” that have higher accuracy in
the presence of the nonsmooth kernels g(x, t) that we consider here.
Specifically, these formulas are obtained by adding suitable correction
terms to the trapezoidal rule approximations at the endpoints t = 0
and t = 1 and also at t = x, the point where g(x, t) fails to be smooth.
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These terms are derived from a careful analysis of the Euler-Maclaurin
expansion associated with the error in the trapezoidal rule. Due to the
nature of the correction terms, what we obtain are not real numerical
quadrature formulas in the sense described in the paragraph following
(1.7).

An important point that will be seen later is that, given N , the
amount of computational work per iteration is practically independent
of the order of accuracy N−2p of the quadrature formula used. This
means we can increase the order of accuracy by keeping the cost per
iteration almost the same.

An approach similar in spirit to the one here was taken by Sidi
and Israeli [14] in the quadrature method solution of periodic Fred-
holm integral equations with weakly singular kernels that have alge-
braic/logarithmic singularities along the line t = x. In [14] too the
Euler-Maclaurin expansion of the trapezoidal rule plays a crucial role
in the development of new numerical quadrature formulas of high-order
accuracy. Only there the periodic nature of the kernel and the solu-
tion enables one to propose extrapolated (Romberg-type) formulas to
replace the trapezoidal rule. In the present case, however, we do not
have any periodicity either in the kernel or in the solution, and, there-
fore, we cannot use extrapolated integration formulas. Instead, we use
corrected formulas to replace the trapezoidal rule. Thus, the approach,
methods, and results of the present work are quite different from those
of [14].

The existence and uniqueness of the solution to the nonlinear system
in (1.8) as well as the solution to the integral equation in (1.1) has been
discussed in [7, Chapter 4] in the context of two-point BVP’s described
above. Keller’s results are obtained under the condition that F0,1(t, w)
is continuous and bounded for t ∈ I and for all w ∈ (−∞, +∞). This is
a very severe restriction on F , however. Most problems of engineering
interest do not satisfy this restriction. In many applications physical
considerations lead one to conclude that the solution is restricted to
some finite interval. This suggests that it may be feasible to state
existence and uniqueness theorems in which F0,1(t, w) is continuous
and, therefore, also bounded for t ∈ I and w ∈ J = [R1, R2] for some
finite R1 and R2, the solution satisfying y(x) ∈ J for x ∈ I as well. This
view is taken in the series of papers by Pennline, who establishes several
existence and uniqueness theorems in the context of two-point BVP’s.
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Pennline also shows how these theorems apply to various problems that
arise in certain engineering applications. R1 and R2 are assumed finite
also in the present paper.

Both in [7] and in [10 12] the existence and uniqueness of the solution
to (1.1) is proved by establishing that a sequence {y(m)(x)}∞m=0 of
successive approximations from (1.7) contracts and thus converges to
the solution y(x) of (1.1) uniformly on I. Before this can be done,
however, one has to show that, if the initial approximation y(0)(x)
satisfies y(0)(x) ∈ J for x ∈ I, where J is the finite interval mentioned
in the previous paragraph, then so do all the other y(m)(x). (This
is not necessary when J is (−∞,∞).) When analyzing the existence
and uniqueness of the numerical solution defined by the quadrature
methods in (1.8), one would like to adopt the same approach. That
is to say, we would like to be able to show first that the successive
approximations y

(m)
i in (1.5) satisfy y

(m)
i ∈ J, i = 0, 1, . . . , N , for all

m = 1, 2, . . . , and use this to establish that {y(m)
i , i = 0, 1, . . . , N}∞m=0

contracts and thus has a limit {yi, i = 0, 1, . . . , N} that is the unique
solution to (1.8). Although y(0)(x) ∈ J may imply that y(1)(x) ∈ J ,
y
(0)
i = y(0)(xi) ∈ J may not guarantee that y

(1)
i ∈ J , due to the error in

the numerical quadrature formula
∑N

j=0 αjg(xi, xj)F (xj, y
(0)(xj)) for∫ 1

0
g(xi, t)F (t, y(0)(t)) dt. Similarly, the y

(2)
i that are obtained from the

y
(1)
i and the subsequent y

(m)
i may not all lie in J . In short, the analysis

of the nonlinear system in (1.8) seems to become rather complicated
when J is a finite interval. Simply, the conditions r ∈ C(I), g ∈ C(Ω)
and F, F0,1 ∈ C(Δ), for which we are able to state an existence and
uniqueness theorem for the solution of (1.1) do not seem to suffice for
a corresponding theorem for the approximate solution defined by (1.8).

In this paper we consider this problem in detail and prove an existence
and uniqueness theorem for the numerical solution by extending the
condition F, F0,1 ∈ C(Δ) slightly to read F, F0,1 ∈ C(Δ′), where
Δ′ = I × J ′, where J ′ = [R1 − η, R2 + η] ⊃ J , η > 0 being arbitrarily
small. A useful feature of our proof technique is the use of the modulus
of continuity in many places. This enables us to carry out the analysis
without resorting to the ε-δ formalism that would have to be used
otherwise. We believe that the idea of employing the modulus of
continuity may be applicable in other problems of numerical analysis
as well.
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For an existence and uniqueness theorem under assumptions that are
of a different nature, see [2, pp. 689 691].

The plan of this paper is as follows.

In the next section we consider the convergence of the method of
successive approximations for (1.1) and state an existence and unique-
ness theorem for the solution of (1.1) that relies on successive approx-
imations. We also derive an equicontinuity result for the successive
approximations y(m)(x) that we use later.

In Section 3 we derive our higher-order “numerical quadrature formu-
las” that we use in the quadrature method by correcting the trapezoidal
rule appropriately. In Section 4 we derive error bounds for the trape-
zoidal rule and its modifications that are expressed in terms of moduli
of continuity and thus are uniform in the xi. These bounds form an
essential part of the analyses given in Sections 5 and 6. With the slight
extension F, F0,1 ∈ C(Δ′) that we mentioned above, in Section 5 we
prove the convergence of the sequences {y(m)

i }∞m=0 for all i, thereby
establishing the existence and uniqueness of the numerical solution yi,
i = 0, 1, . . . , N , as well. With the same extension, in Section 6 we ana-
lyze the errors in the yi as functions of N . We do this analysis both for
the trapezoidal rule and for its modifications. We give uniform bounds
on |yi − y(xi)| for all M ≥ 0. In particular, the bounds for M = 0 and
M = 1 are of forms not encountered before. One of the conclusions
that can be drawn from this analysis is that if y ∈ CM (I), M ≥ 1, then
by using the appropriate modified trapezoidal rule we can achieve an
error of order hM , where h = 1/N . Finally, in Section 7 we illustrate
the new quadrature method and the accompanying theory with specific
nonlinear two-point BVP’s.

As far as is known to us, the quadrature methods proposed in this
work and their accompanying theory on existence, uniqueness, and
convergence of numerical solutions have not been published elsewhere
previously.

We mentioned above that nonlinear two-point BVP’s can be formu-
lated as Fredholm integral equations of the second kind of the type
treated in this work. Thus, the methods of this work can also be used
for solving numerically two-point BVP’s. Here it can be argued that
solving the associated ODE’s by finite differences may be less expen-
sive than solving the corresponding integral equations as the differ-
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ence equations that are formed have banded Jacobian matrices and
hence may be solved efficiently by Newton’s method. The band size in-
creases as the accuracy of the solution is increased, however. It is also
known that the finite difference approach has great difficulties in treat-
ing BVP’s with solutions y(x) that vary rapidly on (0, 1), which may
occur, for example, in the form of very thin boundary layers. The in-
tegral equation approach does not seem to have problems in producing
numerical solutions in a stable manner also for such BVP’s. In addi-
tion, the accuracy of the numerical solution of the integral equation
approach can be increased arbitrarily, practically with no extra com-
putational cost. See, e.g., Example 2 in Section 7. Finally, in case y′(0)
or y′(1) or both are present in the boundary conditions, they have to
be discretized with suitable accuracy when solving the ODE’s, whereas
in the integral equation approach boundary conditions are built right
into the associated integral equations and require no discretization.

2. Existence and uniqueness for solution of (1.1). Let us pick
a function y(0)(x) and generate the functions y(m)(x), m = 1, 2, . . . , by
the method of successive approximations as in

(2.1) y(m+1)(x) = r(x) +
∫ 1

0

g(x, t)F (t, y(m)(t)) dt, m = 0, 1, . . . .

The following theorem gives a set of sufficient conditions for
{y(m)(x)}∞m=0 to converge, establishing the existence and uniqueness
of a continuous solution to (1.1) at the same time.

Theorem 2.1. Denote

(2.2) Ψ[u](x) = r(x) +
∫ 1

0

g(x, t)F (t, u(t)) dt,

and assume that

(2.3) u(x) ∈ J for x ∈ I implies Ψ[u](x) ∈ J for x ∈ I.

Assume also that r ∈ C(I), g ∈ C(Ω) and F, F0,1 ∈ C(Δ). Denote the
operator L∞-norm of g(x, t) on Ω and the L∞-norm of F0,1(t, w) on Δ
by [[g]] and ‖F0,1‖, respectively, i.e.,

(2.4) [[g]] = max
x∈I

∫ 1

0

|g(x, t)| dt and ‖F0,1‖ = max
(t,w)∈Δ

|F0,1(t, w)|.
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Then, provided that

(2.5) μ ≡ [[g]]‖F0,1‖ < 1

and

(2.6) y(0) ∈ C(I) and y(0)(x) ∈ J for x ∈ I,

the following hold:

(i) y(m) ∈ C(I) and y(m)(x) ∈ J for x ∈ I, m = 1, 2, . . . .

(ii) {y(m)(x)}∞m=0 converges uniformly on I to a function y(x) such
that y ∈ C(I) and y(x) ∈ J for x ∈ I.

(iii) y(x) is the unique solution of (1.1).

(iv) If, in addition, r(x), g(x, t), and F (t, w) are as described in
(i) (iii) of the first paragraph of Section 1 with arbitrary M , then
y ∈ CM (I).

The proof of parts (i) (iii) of this theorem are almost identical to
that of Theorem 4.1.2 in [7, pp. 108 109], provided suitable additions
and modifications are made in the latter.

The result of part (iv) can be verified by splitting the integral
∫ 1

0
in

(1.1) into the sum
∫ x

0
+

∫ 1

x
and then differentiating under the integral

sign and using induction on M . (The case M = 0 is already covered
in parts (i) (iii).) In the course of the proof, it also becomes clear that
only those gj,k(x, t) for which j ≥ 1 and j + k ≤ M − 1 and gM,0(x, t)
are required to be in PC(Ω) for M ≥ 1.

Our next theorem essentially states that, under the conditions of
Theorem 2.1, the sequence {y(m)(x)}∞m=0 is equicontinuous on I. We
state it in terms of the moduli of continuity of r and y(m) on I and of
g on Ω. For the sake of completeness we give the precise definition of
this concept.

Definition. Let Y (�ξ) ≡ Y (ξ1, . . . , ξn) be defined on a subset X of
Rn. Then its modulus of continuity ωY on X is defined as

(2.7)
ωY (h) ≡ sup{|Y (�ξ)−Y (�ξ′)| : �ξ, �ξ′ ∈ X, |ξi−ξ′i| ≤ h, i = 1, . . . , n}.
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It is known that if X is a compact set and Y (�ξ) is continuous on
X, therefore, uniformly continuous there, ωY (h) → 0 monotonically as
h → 0. We refer the reader to Cheney [3] for this and other details on
moduli of continuity.

Theorem 2.2. Define

(2.8) ‖F‖ = max
(t,w)∈Δ

|F (t, w)|,

and let ωr, ωg, and ωy(m) denote the moduli of continuity of r(x) on
I, of g(x, t) on Ω, and of y(m)(x) on I, respectively. Then, for any
M ≥ 0, we have

(2.9) ωy(m)(h) ≤ ωr(h) + ‖F‖ωg(h), m = 1, 2, . . . ,

and thus ωy(m)(h) → 0 as h → 0 uniformly in m.

Proof. From (2.1) we have, for m = 1, 2, . . . ,

(2.10) y(m)(x) − y(m)(x′)

= [r(x) − r(x′)] +
∫ 1

0

[g(x, t) − g(x′, t)]F (t, y(m−1)(t)) dt.

The result in (2.9) now follows by taking absolute values on both
sides of (2.10) and invoking (2.7) and (2.8) along with the result that
y(m)(x) ∈ J for x ∈ I. The rest follows from the fact that r ∈ C(I),
y(m) ∈ C(I), m = 0, 1, . . . and g ∈ C(Ω).

3. Derivation of the improved quadrature formulas. Let
us denote φ(t) = g(x, t)F (t, y(t)) with x being held fixed. Let us also
assume that, in case M ≥ 1, Fj,k(t, w) ∈ C(Δ) for j + k ≤ M , instead
of j + k ≤ M − 2 for M ≥ 3. Here y(x) is the unique solution of (1.1)
in the sense of Theorem 2.1, i.e., y ∈ CM (I) and y(x) ∈ J when x ∈ I.
Thus, we are assuming that the conditions (i) (iii) of Section 1 and the
conditions (2.3) and (2.5) of Theorem 2.1 are satisfied. We will retain all
these assumptions throughout the remainder of this work. We conclude
that φ(t) is continuous for t ∈ I, but not continuously differentiable.
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We also conclude that φ(k)(t), k = 1, . . . , M , are continuous in each
of the intervals [0, x] and [x, 1], but have finite jump discontinuities at
t = x when x ∈ (0, 1).

Let h = 1/N , where N is some positive integer, and let xi = ih,
i = 0, 1, . . . , N . Assume now that the point x mentioned in the previous
paragraph is equal to xi for some fixed i. Let us consider the trapezoidal
rule approximations T−(h) for

∫ x

0
φ(t) dt and T+(h) for

∫ 1

x
φ(t) dt that

are given by

(3.1) T−(h) = h

i∑
j=0

′′φ(xj) and T+(h) = h

N∑
j=i

′′φ(xj),

where
∑s

j=r
′′μj = (1/2)(μr+μs)+

∑s−1
j=r+1 μj if r < s and

∑s
j=r

′′μj = 0
if r = s. Obviously,

(3.2) T−(h) + T+(h) = h
N∑

j=0

′′φ(xj) = T (h),

where T (h) is the trapezoidal rule approximation for
∫ 1

0
φ(t) dt.

3.1. Euler-Maclaurin expansions for T (h). Let us first consider the
cases i = 1, . . . , N − 1. For each such case x = xi ∈ (0, 1), and we have
the following (Euler-Maclaurin) expansions for T−(h) and T+(h):

(3.3)

∫ x

0

φ(t) dt = T−(h) −
p−1∑
s=1

B2s

(2s)!
[φ(2s−1)(x−) − φ(2s−1)(0)]h2s

+ E(−)
p (h; x),

E(−)
p (h; x) = −x

B2p

(2p)!
φ(2p)(ξ−)h2p, for some ξ− ∈ (0, x),

and∫ 1

x

φ(t) dt = T+(h) −
p−1∑
s=1

B2s

(2s)!
[φ(2s−1)(1) − φ(2s−1)(x+)]h2s

+ E(+)
p (h; x),(3.4)

E(+)
p (h; x) = −(1 − x)

B2p

(2p)!
φ(2p)(ξ+)h2p, for some ξ+ ∈ (x, 1).
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In (3.3) and (3.4) Br are the Bernoulli numbers. Combining (3.3) and
(3.4), we have

(3.5)

∫ 1

0

φ(t) dt = T (h) −
p−1∑
s=1

B2s

(2s)!
[φ(2s−1)(1) − φ(2s−1)(0)]h2s

+
p−1∑
s=1

B2s

(2s)!
[φ(2s−1)(x+) − φ(2s−1)(x−)]h2s

+ Ep(h; x),

Ep(h; x) = E(−)
p (h; x) + E(+)

p (h; x)

= − B2p

(2p)!
[xφ(2p)(ξ−) + (1 − x)φ(2p)(ξ+)]h2p.

Let us now turn to the cases i = 0 and i = N . When x = x0 = 0, we
have simply T (h) = T+(h). Therefore, the Euler-Maclaurin expansion
of T (h) now is given by (3.4) with x there replaced by 0. Similarly,
when x = xN = 1, T (h) = T−(h), and the Euler-Maclaurin expansion
of T (h) is given by (3.3) with x there replaced by 1. In other words,
T (h) satisfies (3.5) also when x = x0 = 0 and x = xN = 1, with the
second summation involving [φ(2s−1)(x+) − φ(2s−1)(x−)] being absent
from (3.5) in both cases.

Notice that Ep(h; x) = O(h2p) as h → 0 uniformly in x = xi,
i = 0, 1, . . . , N , and in N . Also in (3.3) (3.5) we have assumed that
M ≥ 2p, p ≥ 1. We shall make this assumption throughout the
remainder of this section even though it does not cover all possible
cases. (We will consider the remaining cases following Theorem 6.7 in
Section 6.)

The combined Euler-Maclaurin expansion of (3.5) guides the deriva-
tion of the improved numerical quadrature formulas below. For a dis-
cussion of the Euler-Maclaurin expansion see, e.g., Davis and Rabi-
nowitz [5].

3.2. Corrections to the trapezoidal rule. It is clear from the Euler-
Maclaurin expansions given in (3.3) (3.5) that

∫ 1

0
φ(t)dt−T (h) = O(h2)

as h → 0, for all x = xi, i = 0, 1, . . . , N . While for x = x0 = 0 and
x = xN = 1 this result is immediate, for x = xi ∈ (0, 1) it comes
somewhat as a surprise, as φ′(t) is not continuous on [0, 1] for such
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values of x. We now aim at improving the accuracy of T (h) by taking
its Euler-Maclaurin expansion into account.

To motivate our approach let us take x = xi ∈ (0, 1). Then T (h)
satisfies (3.5). Next, if φ(2s−1)(0), φ(2s−1)(1) and [φ(2s−1)(x+) −
φ(2s−1)(x−)], s = 1, . . . , p − 1, are available, then the numerical
quadrature formula

(3.6)

Tp(h) = T (h) −
p−1∑
s=1

B2s

(2s)!
[φ(2s−1)(1) − φ(2s−1)(0)]h2s

+
p−1∑
s=1

B2s

(2s)!
[φ(2s−1)(x+) − φ(2s−1)(x−)]h2s

will satisfy
∫ 1

0
φ(t) dt−Tp(h) = Ep(h; x) = O(h2p) as h → 0. Obviously,

Tp(h) with p ≥ 2 cannot be used as part of a quadrature method for
integral equations as in (1.8), since (dk/dtk)F (t, y(t)) and hence φ(k)(t),
k ≥ 1, are not known. We, therefore, modify Tp(h) by using suitable
approximations for the φ(k)(t). Below we illustrate this approach in
detail for p = 2.

3.2.1. Modification of T2(h). We again start by taking x = xi ∈
(0, 1). Letting p = 2 in (3.6), we thus have

(3.7) T2(h) = T (h) − B2

2
{[φ′(1) − φ′(0)] − [φ′(x+) − φ′(x−)]}h2,

and, therefore,
∫ 1

0
φ(t)dt − T2(h) = O(h4) as h → 0. We can maintain

an error of the order of h4 by approximating the quantity inside the
curly brackets on the right-hand side of (3.7) with an error of h2. As
we want to be able to preserve the form of the equations in (1.8),
we need to express the relevant approximations solely in terms of the
F (xj , y(xj)), j = 0, 1, . . . , N . Although this can be achieved in various
ways, we suggest the following route that seems to be the simplest
mathematically and also very effective computationally.

We start by breaking up φ′(t) in the form

(3.8) φ′(t) = g0,1(x, t)F (t, y(t)) + g(x, t)
d

dt
F (t, y(t)).
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We compute g(x, t) and g0,1(x, t) exactly since g(x, t) is given. Thus,
only (d/dt)F (t, y(t)) remains to be approximated.

Approximations to (d/dt)F (t, y(t)) at t = 0 and t = 1 are provided
by the one-sided three-point differentiation formulas

(3.9)
Q′(0) =

1
2h

[−3Q(0) + 4Q(h) − Q(2h)] +
1
3
Q′′′(ξ)h2,

0 < ξ < 2h,

and

(3.10)
Q′(1) =

1
2h

[3Q(1) − 4Q(1 − h) + Q(1 − 2h)] +
1
3
Q′′′(ξ)h2,

1 − 2h < ξ < 1,

and we use these in the approximations for φ′(0) and φ′(1). For a
detailed discussion of differentiation formulas see, e.g., Hildebrand [6].

As for the term [φ′(x+) − φ′(x−)], we have

(3.11)
φ′(x+) − φ′(x−) = [g0,1(x, x+) − g0,1(x, x−)]F (x, y(x))

= δ1(x)F (x, y(x)).

Note that (d/dt)F (t, y(t))|t=x is absent from (3.11) since g(x, t) is
continuous at t = x.

Combining all the above, we obtain the “numerical quadrature for-
mula” T̂2(h) given by

(3.12)

T̂2(h) = T (h) − h

24
{g(xi, 1)(3FN − 4FN−1 + FN−2)

− g(xi, 0)(−3F0 + 4F1 − F2)}

− h2

12
{g0,1(xi, 1)FN − g0,1(xi, 0)F0}

+
h2

12
δ1(xi)Fi for x = xi ∈ (0, 1),

where Fj ≡ F (xj , y(xj)) for short, and we have used the fact that
B2 = 1/6. This completes the treatment for x = xi ∈ (0, 1).

Remark. One might think that the break-down of φ′(t) as in (3.8)
in order to apply the differentiation formulas of (3.9) and (3.10) to
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(d/dt)F (t, y(t)) is redundant, and that these formulas can be directly
applied to φ′(t). While this is true for x = xi, i = 2, 3, . . . , N−2, it fails
to be true for x = x1 and x = xN−1. The reason for this failure is that
when x = x1 = h or x = xN−1 = 1− h, g0,1(x, x) does not exist, hence
φ(t) is not differentiable on (0, 2h) or (1 − 2h, 1), respectively. Thus,
the approximations to φ′(0) and φ′(1) by (3.9) and (3.10), respectively,
cannot have errors of the order of h2. (Actually, the errors are O(1) as
h → 0, at best.) Finally, the simplicity of the correction term in (3.11)
coming from the point t = x is also a consequence of (3.8).

When x = x0 = 0 and x = xN = 1, the integrand φ(t) is M times
continuously differentiable for t ∈ I, hence φ′(x+) − φ′(x−) = 0 in
(3.7). Consequently, (3.12) is now modified to read

(3.13)

T̂2(h) = T (h) − h

24
{g(0, 1)(3FN − 4FN−1 + FN−2)

− g(0, 0)(−3F0 + 4F1 − F2)}

− h2

12
{g0,1(0, 1)FN − g0,1(0, 0+)F0} for x = x0 = 0

and

T̂2(h) = T (h) − h

24
{g(1, 1)(3FN − 4FN−1 + FN−2)

− g(1, 0)(−3F0 + 4F1 − F2)}
(3.14)

− h2

12
{g0,1(1, 1−)FN − g0,1(1, 0)F0} for x = xN = 1.

The “numerical quadrature formula” that is defined through (3.12)–
(3.14) thus satisfies

∫ 1

0
φ(t) dt − T̂2(h) = O(h4) as h → 0, uniformly in

the xi and N (if M ≥ 4).

3.3. Modification of Tp(h), p ≥ 3. Again let us begin by taking
x = xi ∈ (0, 1), and consider Tp(h) in (3.6). It is sufficient to replace
the coefficients of h2s in the two summations there by approximations
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whose errors are of order h2p−2s, s = 1, . . . , p − 1. Then, the resulting
modified Tp(h), which we call T̂p(h), will maintain an error of order
h2p. We do this as follows. First, we break up φ(2s−1)(t) in the form

(3.15) φ(2s−1)(t) =
2s−1∑
μ=0

(
2s − 1

μ

)
g0,2s−1−μ(x, t)

dμ

dtμ
F (t, y(t)).

Next, we approximate (dμ/dtμ)F (t, y(t)), μ = 1, . . . , 2s − 1, at t = 0
and t = 1, by one-sided (2p − 2s + μ)-point differentiation formulas,
involving xj , 0 ≤ j ≤ 2p − 2s + μ − 1, when t = 0, and xj ,
N − (2p − 2s + μ) + 1 ≤ j ≤ N , when t = 1. All of the g0,2s−1−μ(x, t)
at t = 0 and t = 1 are computed exactly.

As for the term [φ(2s−1)(x+)−φ(2s−1)(x−)], we have from (3.15) and
from the assumption that g(x, t) is continuous for t ∈ I, that

(3.16) φ(2s−1)(x+) − φ(2s−1)(x−)

=
2s−2∑
μ=0

(
2s − 1

μ

)
δ2s−1−μ(x)

dμ

dtμ
F (t, y(t))|t=x.

We approximate (dμ/dtμ)F (t, y(t))|t=x, μ = 1, . . . , 2s − 2, by (2p −
2s + μ)-point differentiation formulas in which x is in the center of the
point set or as close to the center as possible. All of the δ2s−1−μ(x) are
computed exactly.

Note that all of the differentiation formulas above will have errors of
order h2p−2s, s = 1, . . . , p− 1, under the assumption that M ≥ 2p− 1,
as can easily be shown.

The “numerical quadrature formula” T̂p(h) that is obtained by the
approximation procedures above obviously satisfies

∫ 1

0
φ(t)dt− T̂p(h) =

O(h2p) as h → 0, uniformly in the xi and N , if M ≥ 2p.

In the next sections we shall refer to T̂p(h) as a numerical quadrature
formula even though it is not one in the true sense of the expression.

3.4. The new quadrature method from T̂2(h). We close this section
by giving the new quadrature method for (1.1). It is defined through
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the following system of N + 1 equations

yi = r(xi) + h
N∑

j=0

′′g(xi, xj)Fj

− h

24
{g(xi, 1)(3FN − 4FN−1 + FN−2)

− g(xi, 0)(−3F0 + 4F1 − F2)}

− h2

12
{g0,1(xi, 1)FN − g0,1(xi, 0)F0}

+
h2

12
δ1(xi)Fi, i = 1, 2, . . . , N − 1,

(3.17)

y0 = r(x0) + h
N∑

j=0

′′g(x0, xj)Fj

− h

24
{g(0, 1)(3FN − 4FN−1 + FN−2)

− g(0, 0)(−3F0 + 4F1 − F2)}

− h2

12
{g0,1(0, 1)FN − g0,1(0, 0+)F0}

yN = r(xN ) + h
N∑

j=0

′′g(xN , xj)Fj

− h

24
{g(1, 1)(3FN − 4FN−1 + FN−2)

− g(1, 0)(−3F0 + 4F1 − F2)}

− h2

12
{g0,1(1, 1−)FN − g0,1(1, 0)F0}.

Here Fi ≡ F (xi, yi) and yi is the approximation to y(xi).

If we now write the system in (3.17) as

(3.18) yi = Φi(y0, y1, ..., yN ), i = 0, 1, . . . , N,

then the method of successive approximations takes the form

(3.19)
y
(0)
i = y(0)(xi), i = 0, 1, . . . , N,

y
(m+1)
i = Φi(y

(m)
0 , y

(m)
1 , . . . , y

(m)
N ),

i = 0, 1, . . . , N ; m = 0, 1, 2, . . . .
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4. Preliminary results on T (h) and T̂p(h).

4.1. Bound on trapezoidal rule error. The next theorem bounds the
error in the trapezoidal rule in terms of the modulus of continuity of
the integrand.

Theorem 4.1. Assume that Q(t) is integrable on I, and denote by
TQ(h) the trapezoidal rule approximation to

∫ 1

0
Q(t) dt. Then

(4.1) |EQ(h)| ≡
∣∣∣∣
∫ 1

0

Q(t) dt − TQ(h)
∣∣∣∣ ≤ ωQ(h),

where ωQ is the modulus of continuity of Q(t) on I.

Proof. We have

(4.2)
∫ 1

0

Q(t) dt =
N−1∑
i=0

∫ xi+1

xi

Q(t) dt

and

(4.3) TQ(h) =
N−1∑
i=0

1
2

∫ xi+1

xi

[Q(xi) + Q(xi+1)] dt.

Subtracting (4.3) from (4.4), we obtain

(4.4) EQ(h) =
N−1∑
i=0

1
2

{∫ xi+1

xi

[Q(t) − Q(xi)] dt

+
∫ xi+1

xi

[Q(t) − Q(xi+1)] dt

}
.

Taking absolute values on both sides of (4.4), we next obtain

(4.5) |EQ(h)| ≤
N−1∑
i=0

1
2

{∫ xi+1

xi

|Q(t) − Q(xi)| dt

+
∫ xi+1

xi

|Q(t) − Q(xi+1)| dt

}
.
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The result in (4.1) now follows from (2.7) and from the fact that
xi+1 − xi = h = 1/N .

Our next result is an application of Theorem 4.1 with Q(t) =
g(x, t)F (t, u(t)).

Theorem 4.2. Assume that g ∈ C(Ω) and that F, F0,1 ∈ C(Δ), and
define G(x, t) = g(x, t)F (t, u(t)). Assume also that u(t) is such that
u(t) ∈ J for t ∈ I, and G(x, t), as a function of t, is integrable on I
when x ∈ I. Denote by TG(h; x) the trapezoidal rule approximation for∫ 1

0
G(x, t) dt. Then

(4.6)
|EG(h; x)| ≡

∣∣∣∣
∫ 1

0

G(x, t) dt − TG(h; x)
∣∣∣∣

≤ ‖F‖ωg(h) + ‖g‖[ωF (h) + ‖F0,1‖ωu(h)],

uniformly in x ∈ I. Here ‖g‖ is the L∞-norm of g(x, t) on Ω defined
by ‖g‖ = max(x,t)∈Ω |g(x, t)|.

Proof. From Theorem 4.1

(4.7)

|EG(h; x)| ≤ sup{|G(x, t) − G(x, t′)| : t, t′ ∈ I and |t − t′| ≤ h}.

Now

(4.8)
G(x, t) − G(x, t′) = F (t, u(t))[g(x, t)− g(x, t′)]

+ g(x, t′)[F (t, u(t)) − F (t′, u(t′))]

and

(4.9)
F (t, u(t))− F (t′, u(t′)) = [F (t, u(t)) − F (t, u(t′))]

+ [F (t, u(t′)) − F (t′, u(t′))]

and, finally, by the mean value theorem,

(4.10)
F (t, u(t)) − F (t, u(t′)) = F0,1(t, w̃)[u(t) − u(t′)]

for some w̃ ∈ J.
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The result now follows by taking absolute values in (4.8) (4.10) and
maximizing over I, Ω, and Δ. We leave the details to the reader.

4.2. Bound on error in T̂2(h). We now proceed to the corrected
rules T̂G

p (h; xi) with G(x, t) = g(x, t)F (t, u(t)) that are obtained from
the trapezoidal rule TG(h; xi) for

∫ 1

0
G(xi, t) dt of Theorem 4.2 exactly

as described in the previous section. It is sufficient to examine the
details of the case p = 2 as all other cases are treated in exactly the
same way and the conclusions are the same for all values of p.

From (3.12) (3.14) it is clear that the correction to TG(h; xi), i =
0, 1, . . . , N , is of the form

T̂G
2 (h; xi) − TG(h; xi) = h

2∑
j=0

[αijF (xj , u(xj)) + βijF (xN−j , u(xN−j))]

+ h2[γi0F (x0, u(x0)) + γiNF (xN , u(xN ))(4.11)
+ γiiF (xi, u(xi))].

There are two important points to be noted here: (i) The number
of function values F (xj , u(xj)) in this correction is fixed and is thus
independent of N . (ii) The coefficients αij , βij , and γij are some
constant multiples of g(xi, 0), g(xi, 1), g0,1(xi, 0), g0,1(xi, 1), and δ1(xi),
and thus are uniformly bounded in i, j, and N if g ∈ C(Ω) and
g0,1 ∈ PC(Ω). Thus, if F ∈ C(Δ), we have for all i

(4.12) |T̂G
2 (h; xi) − TG(h; xi)| ≤ (C(2)

1 h + C
(2)
2 h2)‖F‖

for some positive constants C
(2)
1 and C

(2)
2 that depend on g but are

independent of F , i and h.

Combining all this with Theorem 4.2, we have the following important
convergence result on T̂G

2 (h; xi).

Theorem 4.3. Assume that g ∈ C(Ω) and that g0,1 ∈ PC(Ω).
Assume also that F, F0,1 ∈ C(Δ). Let u ∈ C(I) and u(t) ∈ J for t ∈ I.
Then, for i = 0, 1, . . . , N, we have

(4.13) |ÊG
2 (h; xi)| =

∣∣∣∣
∫ 1

0

G(xi, t) dt − T̂G
2 (h; xi)

∣∣∣∣ ≤ D2(h) + σωu(h),
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where σ > 0 is a constant and D2(h) is a function that goes to 0
monotonically as h → 0, and both are independent of i, N , and u(t).

The result of Theorem 4.3 is important since it states that T̂G
2 (h; xi) →∫ 1

0
G(xi, t) dt as h → 0 uniformly in i = 0, 1, . . . , N . (For σ and D2(h),

see Theorem 4.4 below.)

4.3. Bound on error in T̂p(h) for arbitrary p. So far we have
analyzed the properties of T̂G

2 (h; xi). We would now like to summarize
the properties of T̂G

p (h; xi) for arbitrary p ≥ 1. Note that T̂G
1 (h; xi) is

simply the trapezoidal rule TG(h; xi) throughout.

Theorem 4.4. Provided g ∈ C(Ω) and g0,i ∈ PC(Ω), 1 ≤ i ≤ 2p−3,
and u ∈ C(I), we can construct the corrected trapezoidal rule T̂G

p (h; xi),
which is of the form

(4.14) T̂G
p (h; xi) = TG(h; xi) +

N∑
j=0

( 2p−2∑
k=1

A
(p)
ijkhk

)
F (xj , u(xj)).

Here the A
(p)
ijk depend on g but not on F , and can be bounded indepen-

dently of i, j, and N , and the number of the nonzero A
(p)
ijk is fixed and

thus independent of N . As a result, under the conditions that u(t) ∈ J
for t ∈ I, and F, F0,1 ∈ C(Δ), (4.13) can be generalized to

(4.15) |ÊG
p (h; xi)| =

∣∣∣∣
∫ 1

0

G(xi, t) dt − T̂G
p (h; xi)

∣∣∣∣ ≤ Dp(h) + σωu(h),

where σ > 0 is a constant and Dp(h) is a function that goes to 0
monotonically as h → 0, and both are independent of i, N , and u(t).
While σ is the same for all p, Dp(h) depends on p. Specifically,

(4.16)

σ = ‖g‖ ‖F0,1‖ and Dp(h) = ‖F‖
[
ωg(h)+

2p−2∑
k=1

C
(p)
k hk

]
+‖g‖ωF (h),

where, for each k, C
(p)
k is an upper bound on

∑N
j=0 |A(p)

ijk| that depends

on g but is independent of F, i, and N . (If p = 1, then the A
(p)
ijk and

hence C
(p)
k are all zero.)
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5. Existence and uniqueness of numerical solution. In order
to solve the problem of existence and uniqueness of the numerical
solution we need to enlarge the set J = [R1, R2] by an arbitrarily
small amount η > 0 that will be fixed later. Hence, we define
J ′ = [R′

1, R
′
2] = [R1 − η, R2 + η] and Δ′ = I × J ′. We also define

‖F0,1‖′ = max
(t,w)∈Δ′

|F0,1(t, w)|.

We start with the following lemma.

Lemma 5.1. Assume that g(x, t) is as in Theorem 4.4 so that we
can define T̂G

p (h; xi) as in (4.14). Define also

(5.1)

Zp,i(h; {wk}) = h

N∑
j=0

′′g(xi, xj)F (xj , wj)

+
N∑

j=0

( 2p−2∑
k=1

A
(p)
ijkhk

)
F (xj , wj).

Then, provided that F, F0,1 ∈ C(Δ′) and uj , vj ∈ J ′, j = 0, 1, . . . , N ,
we have

(5.2) |Zp,i(h; {uk}) − Zp,i(h; {vk})| ≤ μ(h)‖u − v‖, i = 0, 1, . . . , N,

where

(5.3) μ(h) =
(

[[g]] + ω|g|(h) +
2p−2∑
k=1

C
(p)
k hk

)
‖F0,1‖′,

where [[g]] is as defined by (2.4) and C
(p)
k are as described in Theo-

rem 4.4, and

(5.4) ‖u − v‖ = max
0≤j≤N

|uj − vj |.

Remark. Note that Zp,i(h; {u(xk)}) = T̂G
p (h; xi) when G(x, t) =

g(x, t)F (t, u(t)) for an arbitrary function u(t).
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Proof. The difference Wp,i = Zp,i(h; {uk}) − Zp,i(h; {vk}) can be
expressed as

Wp,i = h

N∑
j=0

′′g(xi, xj)[F (xj , uj) − F (xj , vj)]

+
N∑

j=0

( 2p−2∑
k=1

A
(p)
ijkhk

)
[F (xj , uj) − F (xj , vj)],

which, upon applying the mean value theorem, becomes

Wp,i = h

N∑
j=0

′′g(xi, xj)F0,1(xj , wj)(uj − vj)

+
N∑

j=0

( 2p−2∑
k=1

A
(p)
ijkhk

)
F0,1(xj , wj)(uj − vj),

where wj is between uj and vj for each j, and hence wj ∈ J ′,
j = 0, 1, . . . , N . Taking absolute values, and maximizing appropriately,
we obtain from this

|Wp,i| ≤
[
h

N∑
j=0

′′|g(xi, xj)| +
2p−2∑
k=1

C
(p)
k hk

]
‖F0,1‖′ ‖u − v‖.

Now h
∑N

j=0
′′|g(xi, xj)| is the trapezoidal rule approximation for∫ 1

0
|g(xi, t)| dt, and Theorem 4.1 applies to it. Invoking also the def-

inition of [[g]] we thus have

h
N∑

j=0

′′|g(xi, xj)| ≤ [[g]] + ω|g|(h).

The result now follows.

We now consider the nonlinear system

(5.5) yi = r(xi) + Zp,i(h; {yk}), i = 0, 1, . . . , N,
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that results from applying the corrected trapezoidal rule T̂G
p (h; xi)

to (1.1). In the next theorem we show that there exists a unique
solution for the yi, i = 0, 1, . . . , N , for all large N , under suitable
conditions. When p = 1, T̂G

1 (h; xi) = TG(h; xi) and these conditions
are almost the same as those given in Theorem 2.1. For p ≥ 2 we should
impose sufficient differentiability conditions on g(x, t) so that T̂G

p can
be defined, as mentioned earlier.

Theorem 5.1. Assume that all the conditions of Theorem 2.1
concerning r(x), g(x, t), and F (t, w) hold. Assume, in addition, that
g(x, t) satisfies the differentiability conditions of Theorem 4.4 so that
T̂G

p is defined. Assume, by extension, that F, F0,1 ∈ C(Δ0), where
Δ0 = I × [R1 − η0, R2 + η0] for some η0 > 0 and thus Δ0 ⊃ Δ. Let
the sequence of successive approximations {y(m)

i , i = 0, 1, . . . , N}∞m=0

be generated from (5.5) according to

(5.6)
y
(0)
i = y(0)(xi), i = 0, 1, . . . , N,

y
(m+1)
i = r(xi) + Zp,i(h; {y(m)

k }),
i = 0, 1, . . . , N ; m = 0, 1, . . . .

(Here we recall that the function y(0)(x) is the initial approximation in
(2.6).) Then there exists a constant η ∈ (0, η0) and a positive integer
N0, such that the following hold:

(i) y
(m)
i ∈ J ′ = [R1 − η, R2 + η], i = 0, 1, . . . , N , m = 0, 1, . . . , for

each N ≥ N0.

(ii) limm→∞ y
(m)
i = yi ∈ J ′, i = 0, 1, . . . , N , exist for each N ≥ N0.

(iii) yi, i = 0, 1, . . . , N , is the unique solution to (5.5), for each
N ≥ N0.

Remark. As will follow from the proof below, such an η can be picked
and once this is done any smaller η will render the theorem valid. Thus,
η can be picked arbitrarily small.

Proof. We start by picking η ∈ (0, η0) such that [[g]]‖F0,1‖′ < 1,
which is possible from the assumption that F0,1 ∈ C(Δ0) and from
(2.5) in Theorem 2.1. Thus the choice of η is independent of N .
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With η thus fixed, we next pick a positive integer N , thus h̄ = 1/N ,
for which μ(h̄) < 1, with μ(h) as defined in (5.3). This is possible
as limh→0 μ(h) = [[g]]‖F0,1‖′ by the assumption that g ∈ C(Ω) that
implies that |g| ∈ C(Ω) so that limh→0 ω|g|(h) = 0. Moreover, we have
μ(h) < μ(h̄) < 1 for all h < h̄ or all N > N .

From Theorem 2.2 we have

(5.7)
ωy(m)(h) ≤ max{ωy(0)(h), ωr(h) + ‖F‖ωg(h)} ≡ ρ(h),

m = 0, 1, . . . ,

and ρ(h) → 0 monotonically as h → 0. Define now

(5.8) ε(h) = Dp(h) + σρ(h),

with Dp(h) and σ as in Theorem 4.4. Thus ε(h) → 0 monotonically
as h → 0 as well. Therefore, there exists a positive integer N0 ≥ N ,
1/N0 = h0 ≤ h̄, for which

(5.9) ε(h0) < η[1 − μ(h̄)] ⇐⇒ ε(h0)
1 − μ(h̄)

< η.

Obviously, with this h0 we have

(5.10)
ε(h)

m∑
q=0

[μ(h)]q ≤ ε(h)
1 − μ(h)

≤ ε(h0)
1 − μ(h0)

≤ ε(h0)
1 − μ(h̄)

< η,

for h ≤ h0 ≤ h̄, m = 0, 1, 2, . . . .

At this point it is worth recalling that Zp,i(h; {w(xk)}) is the corrected
trapezoidal rule T̂G

p (h; xi) for the integral
∫ 1

0
g(xi, t)F (t, w(t)) dt.

Let us set m = 0 in (5.6) and (2.1). Upon subtraction we obtain

(5.11) y
(1)
i −y(1)(xi) = Zp,i(h; {y(0)(xk)}) −

∫ 1

0

g(xi, t)F (t, y(0)(t)) dt,

and, by (4.15), (5.7), (5.8) and (5.10), this gives

(5.12) ‖e(1)‖ ≤ ε(h) < η,
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where we have defined
(5.13)

e
(m)
i =y

(m)
i −y(m)(xi), i=0, 1, . . . , N, and ‖e(m)‖=max

i
|e(m)

i |.

By (5.12) and the assumption that y(1)(x) ∈ J for x ∈ I, it is clear
that y

(1)
i ∈ J ′, i = 0, 1, . . . , N .

Let us next set m = 1 in (5.6) and (2.1). Upon subtraction we obtain

y
(2)
i − y(2)(xi) =

[
Zp,i(h; {y(1)

k }) − Zp,i(h; {y(1)(xk)})
]

+
[
Zp,i(h; {y(1)(xk)}) −

∫ 1

0

g(xi, t)F (t, y(1)(t)) dt

]
.(5.14)

Applying Lemma 5.1 to the first brackets, and (4.15) to the second
ones, and also invoking (5.7), (5.8) and (5.12), and, following that,
(5.10), we obtain

(5.15) ‖e(2)‖ ≤ ε(h) + μ(h)‖e(1)‖ ≤ ε(h)[1 + μ(h)] < η.

Therefore, y
(2)
i ∈ J ′, i = 0, 1, . . . , N , too. Proceeding by induction, we

can show in general that

(5.16)
‖e(m)‖ ≤ ε(h) + μ(h)‖e(m−1)‖ ≤ ε(h)

m−1∑
q=0

[μ(h)]q < η,

m = 1, 2, . . . ,

as a result of which y
(m)
i ∈ J ′, i = 0, 1, . . . , N , for all m. This proves

part (i) of the theorem.

For part (ii) we proceed in the standard way. From (5.6) we have

(5.17)
y
(m+1)
i − y

(m)
i = Zp,i(h; {y(m)

k }) − Zp,i(h; {y(m−1)
k }),

m = 1, 2, . . . .

Since y
(m)
i ∈ J ′ for all i and m, Lemma 5.1 applies and we have

(5.18) ‖y(m+1) − y(m)‖ ≤ μ(h)‖y(m) − y(m−1)‖, m = 1, 2, . . . .
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The result now follows by the fact that μ(h) < 1 since h ≤ h0, which
implies that {y(m)

i , i = 0, 1, . . . , N}∞m=0 is a contractive sequence and
thus has a limit.

The proof of part (iii) also follows from the fact that μ(h) < 1 when
h ≤ h0.

It is worth pointing out the similarity between (5.18) for the numerical
solution and

(5.19)
max
x∈I

|y(m+1)(x) − y(m)(x)| ≤ μ max
x∈I

|y(m)(x) − y(m−1)(x)|,
m = 1, 2, . . . ,

for the analytical solution, with μ as in (2.5).

Since we can pick η arbitrarily close to 0 and thus ‖F0,1‖′ arbitrarily
close to ‖F0,1‖, we see that, for very large N , hence very small h, μ(h)
in (5.3) is arbitrarily close to μ in (2.5). That is to say, the discrete
successive approximation procedure converges practically at the same
rate as the continuous one does.

6. Accuracy of numerical solution. With the existence and
uniqueness questions resolved, we now turn to that of the accuracy of
the numerical solution yi, i = 0, 1, . . . , N of (5.5). Our proof proceeds
along the same lines as that of Theorem 4.2.1 in [7, pp. 114 115].

Theorem 6.1. Under the conditions of Theorem 5.1, the numerical
solution with N ≥ N0 satisfies

(6.1) ‖e‖ = max
0≤i≤N

|yi − y(xi)| ≤ 1
1 − μ(h)

max
0≤i≤N

|ÊG
p (h; xi)|,

where G(x, t) = g(x, t)F (t, y(t)).

Proof. Subtracting (1.1) with x = xi from (5.5), we can write

(6.2)
yi − y(xi) = [Zp,i(h; {yk}) − Zp,i(h; {y(xk)})]

+
[
Zp,i(h; {y(xk)}) −

∫ 1

0

g(xi, t)F (t, y(t)) dt

]
.
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Since y(x) ∈ J for x ∈ I and yi ∈ J ′, i = 0, 1, . . . , N , Lemma 5.1
applies to the expression in the first brackets. The expression in the
second brackets is nothing but ÊG

p (h; xi), the error in T̂G
p (h; xi). Thus,

taking absolute values, we have

(6.3) |ei| = |yi − y(xi)| ≤ μ(h)‖e‖ + |ÊG
p (h; xi)|.

The result in (6.1) follows by maximizing both sides of (6.3) and by
using the fact that μ(h) < 1. We leave the details to the reader.

Since for all N ≥ N0 we have μ(h) ≤ μ(h0) < 1 and thus 1/(1 −
μ(h)) ≤ 1/(1 − μ(h0)), we realize from Theorem 6.1 that the accuracy
of the numerical approximations yi is determined strictly by that of the
numerical quadrature formula underlying the quadrature method.

In subsection 3.1 on Euler-Maclaurin expansions we proved that
Ep(h; xi) = O(h2p) as h → 0, uniformly in i and N , under the
assumption that M ≥ 2p, p ≥ 1. This also produces the result that
ÊG

p (h; xi) = O(h2p) as h → 0, uniformly in i and N , whenever M ≥ 2p,
p ≥ 1, as we have already shown. This result covers all cases except
some in which M is an odd integer. In case M = 2p − 1 (p ≥ 1), we
have Ep(h; xi) = O(h2p−1) as h → 0, again uniformly in i and N . (This
time Ep(h; xi) involves φ(2p−1)(t) ≡ (∂2p−1/∂t2p−1)G(xi, t) but is given
by an integral representation involving periodic Bernoullian functions
that we will skip.) This produces the result that ÊG

p (h; xi) = O(h2p−1)
as h → 0, uniformly in i and N , whenever M = 2p − 1, p ≥ 1. This
then covers all possible cases that can occur. Both bounds on Êp(h; xi)
will be of use below.

Also note that for arbitrary M the rules T̂G
q , q = 1, . . . , (M +

3)/2�, are all well defined. Using the facts mentioned in the previous
paragraph, it can be shown that T̂G

�(M+1)/2� and T̂G
�(M+3)/2� have errors

of the same order, namely, O(hM ) as h → 0. Thus, there is no
advantage to the rule T̂G

�(M+3)/2� when we know that y ∈ CM (I), and
we shall not consider it in what follows.

In light of the contents of the previous two paragraphs we now discuss
the various possible cases to which Theorem 6.1 applies.

1. The case M = 0. Here r ∈ C(I), g ∈ C(Ω), and F, F0,1 ∈ C(Δ′),
and no other differentiability properties for r, g and F are given. From
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Theorem 2.1 y ∈ C(I) only. Thus the quadrature rule that can be used
for this case is only T̂1(h) = T (h), namely, the trapezoidal rule itself.
Applying Theorem 4.2, we obtain

(6.4) ‖e‖ ≤ B
(0)
1 ωg(h) + B

(0)
2 ωF (h) + B

(0)
3 ωy(h) = o(1) as h → 0.

2. The case M = 1. Here r ∈ C1(I), g ∈ C(Ω) and g1,0, g0,1 ∈
PC(Ω), and F, F1,0, F0,1 ∈ C(Δ′). From Theorem 2.1 y ∈ C1(I) only.
The quadrature rule that can be used for this case is T̂1(h) = T (h),
the trapezoidal rule. (As we mentioned above, we disregard T̂2(h) even
though it is well defined.) Now the error in the trapezoidal rule is of
order h uniformly in i. Hence we have for this case

(6.5) ‖e‖ ≤ B
(1)
1 h for T̂1(h).

3. The case M = 2. Here r ∈ C2(I), g ∈ C(Ω) and gj,k ∈ PC(Ω),
j+k ≤ 2 and F and Fj,k, j+k ≤ 2, are all in C(Δ′). From Theorem 2.1
y ∈ C2(I) only. In this case too we can use T̂1(h) = T (h). (Again,
we disregard T̂2(h) even though it is well defined.) The error in the
trapezoidal rule now is of order h2 uniformly in i. Thus, we have for
this case

(6.6) ‖e‖ ≤ B
(2)
1 h2 for T̂1(h).

4. The case M ≥ 3. Here r ∈ CM (I), g ∈ C(Ω) and gj,k ∈ PC(Ω),
j + k ≤ M , and F and Fj,k, j + k ≤ M , are all in C(Δ′). From
Theorem 2.1 y ∈ CM (I) only. In this case we can use the rules T̂p(h),
p = 1, 2, . . . , (M + 1)/2�. (We disregard T̂�(M+3)/2� even though it is
well defined.) We then have

(6.7) ‖e‖ ≤
{

B
(M)
p h2p, p = 1, . . . , (M − 1)/2�,

B
(M)
p hM , p = (M + 1)/2�.

Thus the maximum accuracy that can be achieved is determined by the
differentiability properties of the exact solution y(x), which, in turn,
are determined by those of r, g and F .
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7. Applications to two-point boundary value problems.

Example 1. Consider the two-point BVP with

y′′ = 2y3, 0 ≤ x ≤ 1,

y(0) = 2 and y(1) = 2/3.

The exact solution to this problem is

y(x) =
1

x + 1/2
.

General problems with ODE’s of the form y′′ = ayn with a > 0 and
n ≥ 1 occur in nth order reaction kinetics, see Aries [1]. We note
that Dirichlet BC’s are not the standard BC’s associated with reaction
kinetics problems (normally, y′(0) = 0 is assigned at x = 0). We use
Dirichlet BC’s in our example, as this enables us to determine the exact
solution by which we can demonstrate the accuracy of the corrected
trapezoidal rule quadrature methods rigorously.

We observe that, for x ∈ [0, 1] and y ∈ [0, 2], f(x, y) = 2y3 satisfies
0 ≤ (∂f/∂y) ≤ 24 and 0 ≤ f(x, y) ≤ 8y. Therefore, Theorem 1 in
[11] applies, and we conclude that (i) a unique solution y(x) ∈ [0, 2]
exists, and (ii) with k2 = 12 and y(0)(x) = r(x) in (1.4) (1.7),
y(x) = limm→∞ y(m)(x) uniformly in [0, 1]. In turn, all the conditions
of our Theorem 2.1 and hence of Theorem 5.1 as well are satisfied,
and the quadrature method solutions via the trapezoidal rule and its
modifications exist and are unique for all large N .

From (5.18) and (5.3), it is clear that the contraction parame-
ter μ(h) of the sequence of successive approximations {y(m)

i , i =
0, 1, . . . , N}∞m=0 is practically the same as μ, the contraction parame-
ter of the sequence {y(m)(x)}∞m=0, that is given in (2.5). Consequently,
we can conclude that the sequences {y(m)

i , i = 0, 1, . . . , N}∞m=0 will
converge to a prescribed accuracy in the same number of iterations
independently of N . We have verified this conclusion by solving the
problem above with different values of N .

We have applied the quadrature method via the trapezoidal rule T (h)
and also via the corrected trapezoidal rule T̂2(h) with N = 100 and
N = 200. The results of the computations are given in Tables 1a and
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1b, respectively. The last columns of these tables demonstrate very
clearly the orders of accuracy of h2 and h4. It seems from these tables
that if the quadrature formula T̂3(h), whose order of accuracy is h6,
were used, then we would be able to achieve errors of order 10−12 with
N = 100. We also note again that the computational cost per iteration
of all three quadrature methods is practically the same, and this makes
the high-accuracy methods practical.

Example 2. In a problem concerning the analysis of heat and
mass transfer in a porous catalyst, see Kubecek and Hlavacek [8], the
following two-point BVP is obtained:

y′′ = αy exp
(

γβ(1 − y)
1 + β(1 − y)

)
, 0 ≤ x ≤ 1,

y′(0) = 0 and y(1) = 1.

The quantities γ, β and α are positive constants representative of di-
mensionless energy of activation, heat evolution, and Thiele’s modulus,
respectively.

The solution y(x) can again be shown to satisfy a Fredholm integral
equation of the form (1.4) with

g(x, t) =
1

k cosh k

{
cosh kx sinh k(1 − t), 0 ≤ x ≤ t

sinh k(1 − x) cosh kt, t ≤ x ≤ 1

and
r(x) =

cosh kx

cosh k
.

The existence and uniqueness of a solution y(x) satisfying 0 ≤ y(x) ≤
1 when 0 ≤ x ≤ 1 was proved in [12]. There it is shown that
f(x, y) = αy exp(γβ(1 − y)/(1 + β(1 − y))) satisfies 0 ≤ ∂f/∂y ≤
2αeγβ and 0 ≤ f(x, y) ≤ αeγβy for 0 ≤ y ≤ 1, provided γβ ≤
1. Consequently, Theorem 2B in [12] applies, and the sequence of
successive approximations {y(m)(x)}∞m=0 with y(0)(x) = r(x) converges
to the unique solution when we pick k2 = αeγβ . Again, all the
conditions of our Theorem 2.1, and hence of Theorem 5.1 as well, are
satisfied, and the quadrature method solutions via the trapezoidal rule
and its modifications exist and are unique for all large N .
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TABLE 1a. Results from quadrature method solution via the trapezoidal

rule for Example 1. Here e(N)(x) stands for |yi−y(xi)|, where x = xi = i/N

for some i and yi is the approximate solution with h = 1/N .

x e(100)(x) e(200)(x) e(100)(x)/e(200)(x)
0.1 4.347D − 05 1.087D − 05 3.999D + 00
0.2 6.508D − 05 1.627D − 05 3.999D + 00
0.3 7.671D − 05 1.918D − 05 4.000D + 00
0.4 8.206D − 05 2.052D − 05 4.000D + 00
0.5 8.218D − 05 2.055D − 05 4.000D + 00
0.6 7.721D − 05 1.930D − 05 4.000D + 00
0.7 6.691D − 05 1.673D − 05 4.000D + 00
0.8 5.091D − 05 1.273D − 05 4.000D + 00
0.9 2.876D − 05 7.189D − 06 4.000D + 00

TABLE 1b. Results from quadrature method solution via the corrected

trapezoidal rule T̂2(h) for Example 1. Here e(N)(x) stands for |yi − y(xi)|,
where x = xi = i/N for some i and yi is the approximate solution with h = 1/N .

x e(100)(x) e(200)(x) e(100)(x)/e(200)(x)
0.1 9.571D − 09 5.985D − 10 1.599D + 01
0.2 1.056D − 08 6.601D − 10 1.599D + 01
0.3 9.611D − 09 6.010D − 10 1.599D + 01
0.4 8.291D − 09 5.184D − 10 1.599D + 01
0.5 6.956D − 09 4.349D − 10 1.599D + 01
0.6 5.652D − 09 3.534D − 10 1.599D + 01
0.7 4.350D − 09 2.720D − 10 1.599D + 01
0.8 3.003D − 09 1.877D − 10 1.599D + 01
0.9 1.566D − 09 9.790D − 11 1.599D + 01

We have applied the quadrature method via the corrected trapezoidal
rule T̂2(h) with N = 50, 100, and 200. This enables us to verify
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numerically the h4 behavior of the quadrature method error even
though we do not have the exact solution against which to compare
our approximate solution. If we let yN,i stand for the approximate
solution at x = i/N , then, for each i = 0, 1, . . . , N , the ratios
(yN,i −y2N,2i)/(y2N,2i −y4N,4i) should approach 24 = 16 as N becomes
large. This was seen to be the case in the numerous computations that
we performed.

We have also observed that, for γβ fixed, as α becomes large, the ODE
has the characteristic of a singularly perturbed problem εy′′ = f̂(x, y),
where ε = 1/α and f̂(x, y) is independent of ε. Our computations
suggest the existence of a boundary layer near x = 1 for large values of
α. Even in such cases our quadrature method seems to be producing
very smooth and accurate approximations to y(x) everywhere in [0, 1].
This is true, in particular, near x = 1 where y(x) has a boundary layer
and hence is varying rapidly.

In Tables 2a and 2b we give some numerical results obtained for the
cases (a) α = 10, β = 0.5, γ = 2 and (b) α = 100, β = 0.5, γ = 2,
respectively. These tables show the numerical solution with N = 200,
the differences d

(50)
i = |y50,i − y100,2i| and d

(100)
i = |y100,2i − y200,4i|

and their ratios d
(50)
i /d

(100)
i . In the absence of knowledge of the exact

solution, and making the reasonable assumption that y2N,2i is a better
approximation than yN,i, we can say that d

(50)
i and d

(100)
i are almost

identical to the absolute errors in y50,i and y100,2i, respectively. In
addition, since the corrected trapezoidal rule T̂2(h) has error of order
h4, d

(N)
i /d

(2N)
i must approach 24 = 16 as N becomes large. This is

observed in the last columns of our tables.

8. Summary and concluding remarks. In this work we have
considered the quadrature method solution (via the trapezoidal rule)
of Fredholm integral equations of the second kind described by (1.1) and
(i) (iii) in the first paragraph of Section 1. Exploiting the known singu-
larity structure of the kernel function g(x, t), we have designed a class
of corrected quadrature formulas for the integral

∫ 1

0
g(x, t)F (t, u(t))dt

with corrections derived from an analysis of the Euler-Maclaurin expan-
sion associated with the trapezoidal rule. These new quadrature formu-
las allow us to improve the order of accuracy in the standard trapezoidal
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TABLE 2a. Results from quadrature method solution via the corrected

trapezoidal rule T̂2(h) for Example 2 with α = 10, β = 0.5, and γ = 2.

Here y200(x) is the numerical solution with N = 200, d(50)(x) = |y50(x) − y100(x)|,
and d(100)(x) = |y100(x) − y200(x)|.

x y200(x) d(50)(x) d(100)(x) d(50)(x)/d(100)(x)
0.0 2.902507D − 02 2.008D − 10 6.044D − 11 3.322D + 00
0.1 3.185952D − 02 1.026D − 09 9.504D − 11 1.079D + 01
0.2 4.090769D − 02 2.274D − 09 1.620D − 10 1.403D + 01
0.3 5.789865D − 02 4.142D − 09 2.715D − 10 1.525D + 01
0.4 8.603731D − 02 6.813D − 09 4.336D − 10 1.571D + 01
0.5 1.305101D − 01 1.027D − 08 6.461D − 10 1.589D + 01
0.6 1.992036D − 01 1.381D − 08 8.647D − 10 1.597D + 01
0.7 3.035426D − 01 1.519D − 08 9.475D − 10 1.603D + 01
0.8 4.590925D − 01 9.880D − 09 6.124D − 10 1.613D + 01
0.9 6.849658D − 01 4.638D − 09 2.973D − 10 1.560D + 01

TABLE 2b. Results from quadrature method solution via the corrected

trapezoidal rule T̂2(h) for Example 2 with α = 100, β = 0.5, and γ = 2.

Here y200(x) is the numerical solution with N = 200, d(50)(x) = |y50(x) − y100(x)|,
and d(100)(x) = |y100(x) − y200(x)|.

x y200(x) d(50)(x) d(100)(x) d(50)(x)/d(100)(x)
0.0 2.072705D − 06 6.755D − 11 3.368D − 12 2.005D + 01
0.1 4.440899D − 06 7.612D − 11 4.622D − 12 1.647D + 01
0.2 1.695708D − 05 1.954D − 10 1.245D − 11 1.569D + 01
0.3 6.822186D − 05 5.196D − 10 3.355D − 11 1.549D + 01
0.4 2.753740D − 04 1.061D − 09 7.027D − 11 1.510D + 01
0.5 1.111655D − 03 1.345D − 10 2.261D − 11 5.948D + 00
0.6 4.485999D − 03 1.580D − 08 9.371D − 10 1.686D + 01
0.7 1.807543D − 02 1.231D − 07 7.511D − 09 1.639D + 01
0.8 7.238558D − 02 6.288D − 07 3.858D − 08 1.630D + 01
0.9 2.827760D − 01 1.614D − 06 9.721D − 08 1.660D + 01
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rule from N−2 to N−2p for arbitrary p ≥ 2, where N +1 is the number
of points in the discrete approximation. We have also shown that the
accuracy of the quadrature method solution yi, i = 0, 1, . . . , N , is the
same as that of the underlying numerical quadrature formula.

One can also achieve an increase in accuracy by extrapolation pro-
vided an asymptotic expansion for the error involving negative powers
of N is known. However, for one extrapolation the problem will have
to be solved for a given N and then again for 2N . The improvement
will only be able to be achieved on the course grid at an expense that is
almost four times that of the improved quadrature. With the improved
quadrature we do not need to obtain another approximation with twice
the number of points.

Finally, we would like to comment on the solution of the non-
linear system of equations (5.5) for the discrete approximation yi,
i = 0, 1, . . . , N . The reader is aware that throughout the paper we
have emphasized the method of successive approximations as given in
(5.6) for solving this system. Actually, successive approximations have
served as an indispensable tool in the theoretical study of the new meth-
ods proposed here. In particular, the proof of Theorem 5.1 on existence
and uniqueness of the yi, i = 0, 1, . . . , N , and that of Theorem 6.1 con-
cerning the error in the yi rely entirely on successive approximations.

In addition to being a theoretical tool, the method of successive ap-
proximations has something to offer as a practical numerical tool for ac-
tually solving the system in (5.5). First, it is an extremely easy method
to implement on a computer. Next, as we have shown in the course of
Sections 5 and 6, the convergence of successive approximations in our
problem has the nice property that the associated contraction parame-
ter μ(h) given in (5.3) is practically independent of η, of h, and of which
quadrature formula T̂G

p is being used, since η > 0 is arbitrarily close
to zero and N is sufficiently large, and thus limη→0(limh→0 μ(h)) = μ
with μ as in (2.5). This implies that the number of iterations to reach
convergence is nearly independent of N and of the accuracy of the
quadrature formula. Consequently, with N fixed, the cost of the so-
lution is practically the same for all accuracies. For these reasons the
method of successive approximations may be a very efficient numerical
tool for obtaining the yi when the contraction parameter μ is suffi-
ciently smaller than 1, as it will require a small number of iterations to
reach convergence.
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Of course, when the contraction parameter μ is too close to unity,
successive approximations converge very slowly and hence become quite
expensive. In such a case Newton’s method may be very efficient as
it has quadratic convergence and thus may produce the yi with high
accuracy at the cost of a small number of iterations. Newton’s method
may be more efficient than successive approximations in such cases
despite the fact that each of its iterations has a large computational
cost. Now we need a reasonable initial approximation for Newton’s
method in order to reduce the number of iterations and hence the cost.
Again, successive approximations can be used to produce such an initial
guess. Thus, this kind of a combination of successive approximations
and Newton’s method may be a good way for determining the yi from
(5.5).

Whatever the value of μ, we can also employ vector extrapolation
methods, such as the minimal polynomial extrapolation (MPE) or the
reduced rank extrapolation (RRE), to accelerate the convergence of
the sequences of successive approximations from (5.6). As no Jacobian
matrices need to be computed and no large scale linear systems need
to be solved in applying MPE or RRE, this approach to the solution
of the nonlinear equations in (5.5) via successive approximations and
vector extrapolation methods may turn out to be more economical
than that of Newton’s method, at least in some cases. For the subject
of vector extrapolation methods we refer the reader, for example, to the
review paper by Smith, Ford, and Sidi [15], and to Sidi [13], where a
FORTRAN program that implements MPE and RRE in a numerically
stable way is also given. More references to developments pertaining
to MPE and RRE can be found in these two papers.

Clearly, the problem of actual solution of (5.5) is of importance in
itself and should be the subject of a separate publication.

One last remark that we would like to make is that the approach
of the present work can be applied to systems of nonlinear Fredholm
integral equations, and hence to systems of nonlinear two-point BVP’s,
almost with no modification.
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