
Linear Algebra and its Applications 298 (1999) 99–113
www.elsevier.com/locate/laa

A unified approach to Krylov subspace methods
for the Drazin-inverse solution of singular

nonsymmetric linear systems
Avram Sidi

Computer Science Department, Technion, Israel Institute of Technology, Haifa 32000, Israel

Received 3 March 1999; accepted 13 July 1999

Submitted by M. Neumann

Abstract

Consider the linear systemAx = b, whereA ∈ CN×N is a singular matrix. In the present
work we propose a general framework within which Krylov subspace methods for Drazin-
inverse solution of this system can be derived in a convenient way. The Krylov subspace
methods known to us to date treat only the cases in whichA is hermitian and its index ind(A)
is unity necessarily. In the present workA is not required to be hermitian. It can have any type
of spectrum and ind(A) is arbitrary. We show that, as is the case with nonsingular systems,
the Krylov subspace methods developed here terminate in a finite number of steps that is at
mostN − ind(A). For one of the methods derived here we also provide an analysis by which
we are able to bound the errors, the relevant bounds decreasing with increasing dimension of
the Krylov subspaces involved. The results of this paper are applicable to consistent systems
as well as to inconsistent ones. An interesting feature of the approach to singular systems
presented in this work is that it is formulated as a generalization of the standard Krylov
subspace approach to nonsingular systems. Indeed, our approach here reduces to that relevant
for nonsingular systems upon setting ind(A) = 0 everywhere. © 1999 Elsevier Science Inc.
All rights reserved.
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1. Introduction

Consider the linear system

Ax = b, (1.1)

whereA ∈ CN×N is a singular matrix and ind(A) is arbitrary. Here ind(A), the index
of A, is the size of the largest Jordan block corresponding to the zero eigenvalue of
A. The purpose of this paper is to present a general framework within which Krylov
subspace methods for the Drazin-inverse solution of (1.1) can be developed and their
properties discussed. We recall that the Drazin-inverse solution of (1.1) is the vector
ADb, whereAD denotes the Drazin inverse of the singular matrixA. For the Drazin
inverse and its properties, see e.g., [2] or [4].

We do not put any restriction on the matrixA. Thus,A is not necessarily hermitian
or hermitian positive semidefinite. In addition to its index being arbitrary, its spec-
trum can be of any type. Neither do we put any restrictions on the linear system (1.1).
This system may be consistent or inconsistent. We only assume that ind(A) is known.

Before we embark on the subject matter of this paper it may be worth reminding
ourselves that Krylov subspace methods are meant to be applied especially to linear
systems that involve sparse matrices, which is where they are most useful.

The subject of Krylov subspace methods for computing Drazin-inverse solutions
has been treated in several papers. First, the method of Conjugate Gradients (CG) can
be applied whenA is hermitian positive semidefinite and (1.1) is consistent, see [13].
It is shown in [18] that the method of Arnoldi [1] and the method of Generalized
Conjugate Residuals (GCR) of Eisenstat et al. [8] and the method of Lanczos [14]
as well can be applied to nonhermitian but consistent singular systems when ind(A)

is unity, and error bounds are also given. In addition, Sidi [18] provides a complete
convergence theory for these methods and others in the presence of initial iterations
via the Richardson iterative scheme.

The treatment of the singularinconsistentsystems by Krylov subspace methods
has proved to be much harder, however. This has been so even for the simplest cases
in which ind(A) = 1. To date we are aware of the CG type methods of Calvetti et al.
[3] that apply to hermitian systems only. A recent work by Fischer et al. [9] provides
a class of methods that form a slight generalization of those of [3] and apply to the
same problems. It must be mentioned that it is not only the inconsistent singular
systems that have caused problems. Singular consistent systems with ind(A) > 1
have proved to be just as hard since the Drazin inverse solutionADb of such a system
Ax = b is not necessarily an ordinary solution, that is to say,A(ADb) = b does not
necessarily hold.

Finally, we mention the vector extrapolation methods developed in [19] for treat-
ing the most general case of singular nonhermitian inconsistent systems with arbit-
rary ind(A). This paper too contains a detailed convergence analysis for the methods
developed in it. This analysis is carried out in the presence of initial iterations with
the Richardson iterative scheme.
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In view of the above, the present work seems to be the first to present a unified
framework for Krylov subspace methods for singular, hermitian or nonhermitian,
and consistent or inconsistent linear systems with arbitrary index.

In Section 2 we give some technical preliminaries that we use in the rest of the
paper. In Section 3 we present a general framework of projection methods within
which many different methods for the Drazin-inverse solution can be defined in a
very simple way. This framework is based on a careful study of the subspaces that
play a role in the Drazin-inverse solution and of the nature of the residual vectors
rm. A pleasant feature of the approach we present is that when we set ind(A) = 0 we
fall back to the projection method formalism for nonsingular systems. In this sense
our approach is a bona fide generalization of the approach taken to the solution of
nonsingular systems by projection methods.

In Section 4 we show that the projection methods generated in Section 3 terminate
in a finite number of steps, this number being at mostN − ind(A). The main results
of this section are Theorems 4.2 and 4.3.

In Section 5 we give some actual Krylov subspace methods of Arnoldi, GCR, and
Lanczos types, and show their connection with the existing methods for symmetric
systems.

In Section 6 we derive error bounds for the GCR type method of Section 5. The
main result of this section is Theorem 6.1.

In the remainder of this paper we denote ind(A) by a for short.

2. General preliminaries

We shall consider methods that start with an arbitrary initial vectorx0 and com-
pute a sequence of vectorsx1, x2, . . . , that are of the general form

xm = x0+ qm−1(A)r0; r0 = b − Ax0, (2.1)

whereqm−1(λ) is a polynomial inλ of degree at mostm− 1. Let us define

pm(λ) = 1− λqm−1(λ). (2.2)

We callpm(λ) themth residual polynomial since

rm = b − Axm = pm(A)r0. (2.3)

Note that

pm(0) = 1. (2.4)

As shown in [6], necessary and sufficient conditions for the convergence of all
sequences{xm}∞m=0 generated as above are that

lim
m→∞p

(i)
m (0) = 0, i = 1,2, . . . , a; a = ind(A) (2.5)

and
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lim
m→∞p

(i)
m (λj ) = 0, i = 0,1, . . . , kj − 1, (2.6)

whereλj are the nonzero eigenvalues ofA andkj = ind(A− λj I).
The conditions in (2.5) will, of course, be satisfied if

p(i)m (0) = 0, i = 1,2, . . . , a, for all m = 0,1, . . . (2.7)

Our purpose in this work is to discuss the design of methods that will generate vectors
xm as described above, such that their corresponding polynomialspm(λ) satisfy (2.7)
instead of (2.5), in addition to (2.4).

Before going on it will be convenient to introduce some notation that has been
used before in [11,5]. We shall denote byPm the set of all polynomials of degree at
mostm. We shall also define

P0
m = {p ∈ Pm: p(0) = 1 and p(i)(0) = 0, i = 1, . . . , a}. (2.8)

Clearly,P0
m is the collection of all polynomials of degree at mostm that satisfy (2.4)

and (2.7). Thus, the polynomialspm(λ) that we will be considering in the present
work are all inP0

m.
Note thatpm(λ) = 1 is the only member ofP0

m for m = 0,1, . . . , a, while for
m > a all polynomials inP0

m are of the formp(λ) = 1−∑m−a
i=1 ciλ

a+i .
Finally, we will work with the standard Euclidean inner product

(x, y) ≡ x∗y (2.9)

for which(y, x) = (x, y) and(αx, βy) = αβ(x, y) for anyα, β ∈ C and anyx, y ∈
CN . Also, byx is orthogonal toy we shall mean(x, y) = 0.

In addition, we will let‖x‖ stand for thel2-norm ofx ∈ CN , i.e.,‖x‖ = √(x, x).
We will also denote by‖B‖, B ∈ CN×N , the norm of the matrixB induced by the
l2-norm inCN .

3. Derivation of Krylov subspace methods

3.1. Review of some facts about{xm}

Let us denote bŷS the direct sum of the invariant subspaces ofA corresponding
to its nonzero eigenvaluesλj , and byS̃, its invariant subspace corresponding to its
zero eigenvalue. Thus,̂S isR(Aa), the range ofAa, andS̃ isN(Aa), the nullspace
of Aa. Every vector inCN can be written as the sum of two unique vectors, one in
Ŝ and the other inS̃.

Let us resolveb. Thenb = b̂ + b̃, whereb̂ ∈ Ŝ andb̃ ∈ S̃, andADb, the Drazin-
inverse solution toAx = b, is the unique vector in̂S that satisfies the consistent
systemAx = b̂.

Let us also resolvex0. Thenx0 = x̂0+ x̃0, wherex̂0 ∈ Ŝ and x̃0 ∈ S̃, and, as
shown in Theorem 4.1 of Climent et al. [5],

xm − ADb = pm(A)(x̂0− ADb)+ x̃0. (3.1)
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That is to say,xm = x̂m + x̃m with x̂m = ADb + pm(A)(x̂0− ADb) ∈ Ŝ andx̃m =
x̃0 ∈ S̃ for all m. Obviously, we can eliminatẽxm = x̃0 by pickingx0 = 0 or x0 =
Aaξ for anyξ ∈ CN . In either casẽx0 = 0.

Let us denotêem = x̂m − ADb, m = 0,1, . . . , for short. Clearly, we want to drive
êm to zero. Now aŝe0 ∈ Ŝ andêm = pm(A)ê0, the behavior of̂em is determined by
the action ofpm(A) on Ŝ. Of course, what we want is to makepm(A) on Ŝ small
with increasingm. The question now is how to choosepm(λ) to achieve precisely
this goal.

When we know that the nonzero spectrum ofA is contained in a certain setX of
the complexλ-plane, then we can try to determinepm(λ) such that|pm(λ)| onX is
sufficiently small. Better still, we may be able to determinepm(λ) by minimizing
some norm of it that is defined onX. This kind of an approach has been taken in
[11,5] for the case in whichX is a real positive interval and the minimization is
carried out in somel2-norm. The treatment of [11] assumesa = 1, while that of [5]
is valid for all values ofa. Now these methods are semi-iterative methods and not
projection methods. In this paper we are interested in projection methods that require
no knowledge of the spectrum, and we should consider other ways of determining
pm(λ).

3.2. Review of projection methods for nonsingular systems

At this point it is important to recall some essential facts about projection methods
for the solution ofBx = f whenB ∈ CN×N is nonsingular. We choose an arbitrary
vectorx0 and twom-dimensional subspacesV andW. Then we look for an approx-
imation to the solution ofBx = f that is of the formxm = x0+ zm, zm ∈ V , such
thatrm = f − Bxm = r0− Bzm is orthogonal to all vectors inW. If we denote byV
andWalso theN ×mmatrices whose columns span the subspacesV andW, respect-
ively, thenxm is uniquely determined and given byxm = x0+ V (W∗BV )−1W∗r0,
provided det(W∗BV ) /= 0.

First, by the assumption thatB is nonsingular, and by the fact thatrm = −B(xm −
s), wheres is the solution ofBx = f , we know that‖rm‖ is a true norm of the
error (xm − s), and hence drivingrm to zero is equivalent to drivingxm to s. Next,
we expectrm to decrease towards zero as we enlarge the subspacesV andW. The
reason for this expectation is thatrm is becoming orthogonal to more and more
vectors as we are increasingm. Indeed, ifm = N , then rm = 0 since any vector
in CN that is orthogonal toN linearly independent vectors must be the zero vector.
We also know thatrm decreases on the average with increasingm in case of the
Krylov subspace methods such as the method of Arnoldi, the method of Generalized
Conjugate Residuals (GCR), and the method of Lanczos, all of which are projection
methods whose right and left subspaces are Krylov subspaces. (For all three meth-
odsV =Km(B; r0), andW = V for the method of Arnoldi,W =Km(B;Br0)
for GCR, andW =Km(B

∗; ř0) with some arbitrary̌r0 ∈ CN for the method of
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Lanczos. HereKm(B; u) ≡ span{u,Bu, . . . , Bm−1u} is anm-dimensional Krylov
subspace.)

3.3. General projection methods forADb

We now want to be able to use the methodology described above that involves
computational work with the residualrm to construct projection methods to ap-
proximateADb. We first realize that when the systemAx = b is inconsistent, we
necessarily haverm = b − Axm /= 0 for all m, from which it becomes obvious that
rm cannot be driven to zero and hence direct application of the projection approach,
as described in the previous section, will lead nowhere. Furthermore,rm /= 0 for all
m may be the case even whenAx = b is a consistent system, if ind(A) > 1. To see
this we begin withr0 = b − Ax0 = r̂0+ r̃0,wherer̂0 ∈ Ŝ andr̃0 ∈ S̃, which, upon
substituting in (2.3), and using the fact thatpm(A)v = v for v ∈ S̃, gives

rm = pm(A)r̂0+ r̃0. (3.2)

That is to say,rm = r̂m + r̃m with r̂m = pm(A)r̂0 ∈ Ŝ and r̃m = r̃0 ∈ S̃ for all m.
Thusrm /= 0 for all m if r̃0 /= 0. We note that̃r0 /= 0 in general for arbitraryx0. Even
when we takex0 = 0 so thatx̃0 = 0, we may havẽr0 /= 0 as nowr0 = b so that
r̃0 = b̃, andAx = b may be consistent even with̃b /= 0 when ind(A) > 1, as shown
in Theorem 2.1 in [18]. (WhenAx = b is inconsistent,̃r0 /= 0 is always the case.
This also follows from Theorem 2.1 in [18].)

We have thus shown that direct application of the projection approach of the
previous section has no meaning when the singular systemAx = b is inconsistent,
or consistent but ind(A) > 1, and we should look for a suitable modification of this
approach.

Invoking now the fact that̂r0 = −A(x̂0− ADb) (which is implied byAADb = b̂)
in r̂m = pm(A)r̂0, we have

r̂m = −Apm(A)ê0 = −Aêm, (3.3)

where, we recall,̂em = x̂m − ADb, m = 0,1, . . . Thus, the behavior of̂rm, just as
that of êm, is also determined by the action ofpm(A) on the subspacêS. If pm(A)
onŜ is small, then, just likêem, r̂m will be small too.

So far we know that̂em and r̂m will be small simultaneously ifpm(A) on Ŝ is
small. We also observe thatr̂m will be small if êm is. At this point, it is important
to remind ourselves (i) that we aim at makingêm small and (ii) that we would like
to concentrate on projection methods in which what we are allowed to compute are
essentially residuals. We, therefore, ask whether we can makeêm small by making
r̂m small. Sincer̂m = −Aêm and A is singular, the answer to this question is not
immediate. It is in the affirmative, however.

To show this we consider the restriction of the operatorA to Ŝ. Let us denote
this restriction byÂ. We haveAv = Âv for anyv ∈ Ŝ. As Ŝ is the direct sum of
the invariant subspaces ofA corresponding only to itsnonzeroeigenvaluesλj , the
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eigenvalues of̂A are also thesenonzeroeigenvaluesλj . Therefore,Â is nonsingular,

and so areÂk, k = 2,3, . . . Let us order the singular valuesσ (k)i of Âk such that

σ
(k)
1 > σ

(k)
2 > · · · > σ

(k)
d > 0. Hered = dimŜ. Then

‖r̂m‖ = ‖Aêm‖ = ‖Âêm‖ > σ
(1)
d ‖êm‖,

which means that̂rm → 0 impliesêm→ 0.
Following the discussion given above, we would like to find ways of makingr̂m

small. Asr̂m ∈ Ŝ, it is clear that we should somehow do all our computational work
in Ŝ. We recall, however, thatrm = r̂m + r̃m with r̂m ∈ Ŝ and r̃m ∈ S̃ and with
r̃m = r̃0 /= 0 always whenAx = b is inconsistent, and thatr̃0 /= 0 is possible also
whenAx = b is consistent but ind(A) > 1. This implies that, in general,rm /∈ Ŝ
holds for allm. We should, therefore,force our computations intôS in a suitable
manner. One way of achieving this is by working withAarm sinceAarm = Aar̂m ∈
Ŝ. (Recall thatS̃ =N(Aa).) Obviously, if r̂m is small, so isAarm. The question is
whetherr̂m is small whenAarm is. Arguing as in the case ofr̂m versusêm, we have

‖Aarm‖ = ‖Aar̂m‖ = ‖Âar̂m‖ > σ
(a)
d ‖r̂m‖.

Consequently, we have thatAarm → 0 impliesr̂m→ 0, which is what we desire.
We are now at the stage where we decide to makeAarm small, as this will make

r̂m small, which, in turn, will makêem small. In analogy to projection methods for
nonsingular systems, let us now choose a subspaceWof some appropriate dimension
and require thatAarm (andnot rm) be orthogonal to every vector inW. Now, due to
the fact thatpm ∈ P0

m, we havepm(λ) = 1−∑m−a
i=1 ciλ

a+i . Since the number of
the unknown constantsci ism− a, the dimension ofWshould bem− a too.

Let us now express things in mathematical terms. From (2.1)–(2.3) andpm(λ) =
1−∑m−a

i=1 ciλ
a+i andqm−1(λ) =∑m−a

i=1 ciλ
a+i−1, we have

xm = x0+
m−a∑
i=1

ciA
a+i−1r0 and rm = r0 −

m−a∑
i=1

ciA
a+ir0. (3.4)

Let us define theN × (m− a)matrixV and the(m− a)-dimensional column vector
c by

V = [Aar0|Aa+1r0| · · · |Am−1r0] and c = [c1, . . . , cm−a]T. (3.5)

Then

xm = x0+ V c and rm = r0 − AV c. (3.6)

Let us denote byWalso theN × (m− a)matrix whose columns form a basis forW.
Then orthogonality ofAarm to all vectors inW is equivalent toW∗Aarm = 0, hence
to

W∗Aa+1V c = W∗Aar0. (3.7)

Assuming that det(W∗Aa+1V ) /= 0, (3.7) has a unique solution forc, and the vector
xm is now given by
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xm = x0+ V (W∗Aa+1V )
−1
W∗Aar0. (3.8)

Note that the columns of the matrixV in (3.5) play the role of a basis for a
right subspaceV, which is the Krylov subspaceKm−a(A;Aar0). (We can make the
treatment above more general by replacingV in (3.5) byV = Aa[v1|v2| · · · |vm−a]
wherev1, v2, . . . , are arbitrary linearly independent vectors. In this case tooV c ∈ Ŝ
as desired, and (3.7) and (3.8) remain valid.)

Before we end this section we would like to note that the general framework that
we have presented for the Drazin-inverse solution of singular systems by projection
methods reduces exactly to that pertaining to nonsingular systems when we seta = 0
everywhere. Thus, our general framework is a bona fide generalization of that for
nonsingular systems in the previous subsection. This is a very pleasant feature of our
approach to projection methods for Drazin-inverse solutions.

4. Finite termination property of projection methods

Our aim in this section is to prove that, in the absence of a breakdown,xm =
ADb + x̃0 for some finitem 6 N . Equivalently, subject to certain conditions of regu-
larity, the projection methods of the previous section terminate successfully in a finite
number of steps. This property puts our projection methods for the Drazin-inverse
solution on even firmer grounds.

For the sake of convenience we shall make the following definition.

Definition 4.1. Let A be singular with ind(A) = a. We shall callP(λ) the minimal
a-incomplete polynomial of A with respect to the vectorû ∈ Ŝ = R(Aa) if P ∈ P0

m

andm is smallest possible such thatP(A)û = 0.

Definition 4.1 generalizes the concept ofthe minimal polynomial of a matrix with
respect to a vector, which can be found, e.g., in [12], and will be of use below.

We start with an existence and uniqueness theorem forP(λ).

Theorem 4.1. P(λ) exists and is unique. Furthermore, its degree m satisfies
q 6 m 6 q + a, where q is the degree of the minimal polynomial of A with respect
to û, and henceq 6 dimŜ 6 N − a. Actually, P(λ) is the only polynomial in
P0
q+a that satisfiesP(A)û = 0.

Proof. LetP1(λ) be the minimal polynomial ofA with respect tôu, and letq be its
degree. We know thatP1(λ) is unique when normalized to be monic. Furthermore,
sinceû ∈ Ŝ, P1(0) /= 0. Let us now setb0 = 1/P1(0) and defineb1, b2, . . . , ba, re-

cursively bybi = −
[∑i−1

s=0

(
i
s

)
P
(i−s)
1 (0)bs

]/
P1(0), i = 1,2, . . . , a. AsP1(0) /= 0,

all the bi are well-defined and uniquely fixed byP1(λ). Consider now all poly-
nomialsQ(λ) that satisfyQ(i)(0) = bi, i = 0,1, . . . , a. We know that there is at
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least one such polynomial, namely,Q(λ) =∑a
i=0(bi/i!)λi ≡ P2(λ). Consider also

the polynomialsf (λ) = P1(λ)Q(λ). As can easily be shown, each suchf (λ) satis-
fiesf (0) = 1 andf (i)(0) = 0, i = 1, . . . , a, and hence is inP0

d for some integer
d > q, andf (A)û = 0 sinceP1(A)û = 0. In particular,P1(λ)P2(λ) is one such
f (λ), and we claim thatP(λ) = P1(λ)P2(λ).

Obviously, the degreem of P(λ) is at leastq and at mostq + a, and thusP ∈
P0
q+a .
We next show thatP(λ) is the only polynomial inP0

q+a that satisfiesP(A)û =
0. For this assume to the contrary thatP̄ (λ) is another polynomial inP0

q+a that

satisfiesP̄ (A)û = 0. We haveP(λ) = 1− λa+1R(λ) and P̄ (λ) = 1− λa+1R̄(λ)

with R, R̄ ∈ Pq−1. SinceP(A)û = 0 andP̄ (A)û = 0, it follows thatAa+1[R(A)−
R̄(A)]û = 0, which, byû ∈ Ŝ, implies that[R(A)− R̄(A)]û = 0. Thus, the polyno-
mialR1(λ) = R(λ) − R̄(λ) is in Pq−1 and satisfiesR1(A)û = 0. This is impossible
as the degree of any polynomialU(λ) that satisfiesU(A)û = 0 must be at least
q. Therefore,P(λ) is unique inP0

q+a. Obviously, this also implies thatP(λ) is
unique. �

SinceP(λ) = 1−∑q

i=1 ciλ
a+i andP(A)û = 0, we see that the scalarsci sat-

isfy theN × q (overdetermined) systemU(q)c(q) = û, where we have defined the
matricesU(j) and the vectorsc(j) byU(j) = [Aa+1û|Aa+2û| · · · |Aa+j û] andc(j) =
[c1, . . . , cj ]T, respectively. Since, by the previous theorem,P(λ) exists and is unique,
we have that the overdetermined systemU(q)c(q) = û is consistent and has a unique
solution for theci . If cq /= 0, then the degree ofP(λ) is q + a. If cm−a /= 0 and
ci = 0, i = m− a + 1, . . . , q, then the degree ofP(λ) is m. In this case the system
U(m)c(m) = û is consistent and has a unique solution for theci .

The next theorem states that the Drazin-inverse solutionADb can be obtained in
terms ofx̂0 and a (finite) linear combination of the vectorsAar0, Aa+1r0, . . . , A

Nr0.

Theorem 4.2. LetP(λ) be the minimal a-incomplete polynomial of A with respect
to ê0 = x̂0− ADb, and let m be its degree. ThenP(λ) = 1−∑m−a

i=1 ĉiλ
a+i for some

uniqueĉi , andADb + x̃0 = x0+∑m−a
i=1 ĉiA

a+i−1r0.

Proof. Letpm(λ) = P(λ). Then from (3.1) we have thatxm = ADb + x̃0. But with
thispm(λ), we haveqm−1(λ) = (1− pm(λ))/λ =∑m−a

i=1 ĉiλ
a+i−1 in (2.1). The res-

ult now follows. �

Theorem 4.3. Let m be the degree ofP(λ), the minimal a-incomplete polynomial of
A with respect tôe0 = x̂0− ADb. In addition, let xm be the vector generated by the
projection method described through(3.4)–(3.8). Then, provideddet(W∗Aa+1V ) /=
0, we havexm = ADb + x̃0.

Proof. The projection equations that definexm areW∗Aarm = 0, which, by the fact
thatAarm = Aar̂m and by (3.3) are equivalent toW∗Aa+1pm(A)ê0 = 0. Now, by the
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discussion following the proof of Theorem 4.1, the linear systemf (A)ê0 = 0, f ∈
P0
m, is overdetermined but consistent and has a unique solution, namely,f (λ) =

P(λ). By the assumption that det(W∗Aa+1V ) /= 0, the linear systemW∗Aa+1pm(A)

ê0 = 0 has a unique solution forpm(λ) that is simplyP(λ). Invoking now Theorem
4.2, this implies thatxm = ADb + x̃0. �

5. Examples of projection methods of Krylov subspace type

We can now use the general framework developed in Section 3 to propose some
concrete projection methods for computingADb, in which the left subspacesW, just
as the right subspacesV, are Krylov subspaces.

Recall thatV stands both for the Krylov subspaceKm−a(A;Aar0) and for the
N × (m− a)matrix in (3.5). Also, from (3.6), we have thatxm ∈ x0+ V .

Finally, as the right subspaceV is the same for all the methods considered here,
namely,V =Km−a(A;Aar0), what distinguishes one method from another is its
corresponding left subspaceW.

5.1. Arnoldi type methods

Let us chooseW =Km−a(A;Aµr0), whereµ is a nonnegative integer. With this
choice ofW we haveV = Aa−µW whena > µ, where we have definedBνKm

(B; u) =Km(B;Bνu).
WhenA is hermitian, hencea = 1, and we takeµ = 1, the projection equations

in (3.7) become

(AV )∗(AV )c = (AV )∗r0 (5.1)

and these are actually the normal equations of the least squares problem

min
c1,...,cm−a

‖r0 − AV c‖, (5.2)

which is the same as

min
xm∈x0+Km−1(A;Ar0)

‖rm‖, (5.3)

whetherA is semidefinite or indefinite. Sincerm = r̂m + r̃0 and(r̂m, r̃0) = 0 for A
hermitian, we have that‖rm‖2 = ‖r̂m‖2+ ‖r̃0‖2, so that minimizing‖rm‖ in (5.3)
is the same as minimizing‖r̂m‖, which shows the validity of the approach above. In
caseA is hermitian positive semidefinite, and we takeµ = 0, the projection equations
(3.7) become

V ∗AV c = V ∗r0 (5.4)

and these are the normal equations of the least squares problem

min
xm∈x0+Km−1(A;Ar0)

(xm − ADb)
∗
A(xm − ADb) (5.5)
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as can be shown after some lengthy manipulations. Sincey∗Ay = y∗Aŷ = (Ay)∗ŷ =
(Aŷ)

∗
ŷ = (Âŷ)∗ŷ = ŷ∗Âŷ, we see that we can replace(xm − ADb)

∗
A(xm − ADb)

in (5.5) by (x̂m − ADb)
∗
Â(x̂m − ADb), which shows the validity of the approach

above once again. Recall thatÂ is the restriction ofA to Ŝ, and it is hermitian
positive definite whenA is hermitian positive semidefinite.

The methods defined by (5.3) and (5.5) were proposed in [3], where CG type
recursive algorithms for them are also given. We mention thatx0 = 0 in [3], which
guarantees that̃xm = 0 for all m.

5.2. A GCR type method: DGCR

Let us chooseW = Aa+1V . Then the equations in (3.7) become

(Aa+1V )
∗
(Aa+1V )c = (Aa+1V )

∗
Aar0 (5.6)

and these are the normal equations of the least squares problem

min
xm∈x0+Km−a(A;Aar0)

‖Aarm‖. (5.7)

We shall denote this method DGCR, where the letter D serves as a reminder that the
Drazin-inverse solution is being computed.

Note that if we seta = 0 everywhere, (5.7) becomes

min
xm∈x0+Km(A;r0)

‖rm‖,
which is how GCR for nonsingular systems is defined.

5.3. Lanczos type methods

Let us chooseW =Km−a(A∗; (A∗)µř0), whereř0 is an arbitrary vector inCN ,
andµ is a nonnegative integer. A Bi–CG type algorithm for the caseµ = 1 has
recently been developed in [20].

Obviously, whenA is hermitian and we setř0 = r0, the Lanczos and Arnoldi type
methods become mathematically equivalent, since in this situation the left subspace
W for the former is the same as that for the latter.

6. Error analysis for DGCR

As the vectorsxm produced by DGCR are also the solutions of thel2 minimization
problems of (5.7), they can conveniently be analyzed.

First, from (3.3) and the fact thatAar̃m = 0 we have that

Aa+1êm = Aa+1pm(A)ê0 = −Aar̂m = −Aarm, (6.1)

where, we recall,̂em = x̂m − ADb, m = 0,1, . . . Next, sinceAv = Âv for every
v ∈ Ŝ, whereÂ is the restriction ofA to Ŝ, we haveAarm = −Âa+1êm andAarm =
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Âar̂m from (6.1). By the fact that̂A is nonsingular,‖Aarm‖ is a true norm for both
‖êm‖ and‖r̂m‖. Actually,‖êm‖ and‖r̂m‖ are related to‖Aarm‖, respectively, by

σ
(a+1)
d ‖êm‖ 6 ‖Aarm‖ 6 σ

(a+1)
1 ‖êm‖ (6.2)

and

σ
(a)
d ‖r̂m‖ 6 ‖Aarm‖ 6 σ

(a)
1 ‖r̂m‖, (6.3)

where, we recall,σ (k)1 > 0 andσ (k)d > 0 are the largest and the smallest singular

values ofÂk, k = 1,2, . . . In view of this discussion, we conclude that it suffices to
study the behavior of‖Aarm‖ for increasingm, to which we now turn.

Sincexm and hencepm(λ) in DGCR are optimal in the sense

‖Aarm‖ = ‖Aapm(A)r̂0‖ = min
p∈P0

m

‖Aap(A)r̂0‖, (6.4)

we have

‖Aarm‖ 6 ‖p(A)(Aar̂0)‖ for anyp ∈ P0
m. (6.5)

SinceAar̂0 ∈ Ŝ, Aar̂0 is a linear combination of the eigenvectors and principal
vectors corresponding to the nonzero eigenvaluesλj of A. Therefore,

p(A)(Aar̂0) =
∑

λj∈σ(A)\{0}

kj−1∑
i=0

ujip
(i)(λj ) (6.6)

for some vectorsuji that lie in the invariant subspace ofA corresponding toλj . Here
σ(A) denotes the spectrum ofA, andkj = ind(A− λj I) as before. Thus, for any
p ∈ P0

m,

‖p(A)Aar̂0‖ 6 K1

(
max

λj∈σ(A)\{0}
max

0 6 i 6 kj−1
|p(i)(λj )|

)
, (6.7)

with some positive constantK1 that depends only onAar̂0. If X is a closed domain in
the complex plane containing only the nonzero eigenvalues ofA, then we can replace
(6.7) by

‖p(A)Aar̂0‖ 6 K1

(
max

0 6 i 6 k̂−1
‖p(i)‖X

)
, (6.8)

where

‖f ‖X = max
λ∈X |f (λ)| (6.9)

and

k̂ = max{kj : λj ∈ σ(A)\{0}}. (6.10)

By a theorem of Pommerenke [15], we know that ifQ(z) is an arbitrary polyno-
mial in Pm andE is a connected compact set of thez-plane, then there holds
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max
z∈E |Q

′(z)| 6 e

2

m2

cap(E)
max
z∈E |Q(z)|,

where cap(E) denotes the capacity ofE. Now sinceX is a connected compact set of
the complexλ-plane, Pommerenke’s theorem applies and (6.8) becomes

‖p(A)Aar̂0‖ 6 K2 m
2(k̂−1)‖p‖X (6.11)

for some positive constantK2 independent ofm.
Substituting (6.11) in (6.5), and keeping in mind thatp ∈ P0

m is arbitrary, we can
now write

‖Aarm‖ 6 K2 m
2(k̂−1)

(
min
p∈P0

m

‖p‖X
)
. (6.12)

The problem minp∈P0
m
‖p‖X has a unique solutionp∗(z) as has been shown by

Rivlin and Shapiro [16]. Under the assumption that the boundary ofX is sufficiently
smooth, Eiermann and Starke [7] have shown that limm→∞

(
m−a|U(0)|m‖p∗‖X

)
exists. (The casea = 0 of this result was proved earlier by Gutknecht [10].) Here
U(λ) is the conformal mapping of the exterior ofX to the exterior of the unit disk,
namely, to the set{w: |w| > 1}. As the boundary ofX is mapped onto|w| = 1, if
the pointλ = 0 is in the exterior ofX, we have|U(0)| = |w0| > 1 and, therefore,
‖p∗‖X 6 Lma|U(0)|−m for all m whereL is some positive constant that depends
only onX, and also limm→∞ ‖p∗m‖X = 0. Using this fact in (6.12), we finally obtain
the following result.

Theorem 6.1. ChooseX to be a closed domain that containsσ(A)\{0} but not
λ = 0, such that its boundary is twice differentiable with respect to arclength. Denote
byU(λ) the conformal mapping of the exterior ofX onto the exterior of the unit disk
{w : |w| > 1}. Then the vectorxm generated by DGCR satisfies

‖Aarm‖ 6 K ma+2(k̂−1)ρm for all m, (6.13)

where K is a positive constant independent of m, k̂ = max{kj : kj = ind(A− λj I),
λj ∈ σ(A)\{0}}, andρ = 1/|U(0)| < 1.

What Theorem 6.1 implies is that limm→∞ ‖Aarm‖ = 0. We should, of course,
bear in mind thatAarm = 0 for somem 6 N , as proved already in Theorem 4.3.
Therefore, the result of Theorem 6.1 should be understood in the sense that we
have an upper bound on‖Aarm‖ that decreases to zero monotonically form > (a +
2(k̂ − 1))/| logρ| essentially exponentially inm.

Theorem 6.1 is also valid for GCR on nonsingular systems when we seta = 0
everywhere.

Needless to say, the result in (6.13) would be sharper whenX is chosen to be as
small as possible as this reduces the value ofρ.

Using a standard technique employed in the analysis of CG, it can be shown that
if xm is the solution to (5.3) withA hermitian and possibly indefinite, then
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‖r̂m‖/‖r̂0‖ 6 max
λj∈σ(A)\{0}

|p(λj )| for anyp ∈ P0
m (6.14)

and ifxm is the solution to (5.5) withA positive semidefinite, then

‖êm‖A/‖ê0‖A 6 max
λj∈σ(A)\{0}

|p(λj )| for anyp ∈ P0
m, (6.15)

where we have defined‖y‖A = √y∗Ay. These results have been obtained in [3]. In
(6.14) we should keep in mind thatσ(A)\{0} may be contained in the unionX =
[−γ,−δ] ∪ [α, β], with α, β, γ, δ > 0. In (6.15), however, it is contained inX =
[α, β] with α, β > 0, and in this caseρ = 1/|U(0)| = (√β −√α)/(√β +√α),
which is a familiar quantity in the literature of CG and Chebyshev acceleration.

Concerning‖p∗‖X, in [7] it is mentioned that under more general conditions on
X there holds

α1 6 m−a|U(0)|m‖p∗‖X 6 α2

with α1 andα2 being positive constants independent ofm, as follows from the results
of Saff [17].

7. Conclusions

In this work we have developed a unified framework for the construction of
Krylov subspace methods for the Drazin-inverse solution of singular linear systems
Ax = b, A ∈ CN×N . The matricesA are assumed to be nonhermitian in general
anda = ind(A) can be arbitrary. In these methods the approximations toADb, the
Drazin-inverse solution ofAx = b, are all of the formxm = x0+∑m−a

i=1 ciA
a+i−1r0,

wherex0 is the initial vector andr0 = b − Ax0 andci are scalars. Theci are de-
termined by requiring thatAarm, whererm = b − Axm, be orthogonal to an(m−
a)-dimensional subspaceW. After showing the relevance and theoretical validity of
this approach, we have proved that, subject to certain regularity assumptions, the
methods developed terminate in a finite number of steps. That is, for some finite
m 6 N , there holdsxm = ADb + x̃0, wherex̃0 is that part ofx0 that lies inN(Aa).
We have proposed new methods analogous to the Arnoldi, GCR, and Lanczos meth-
ods. For one of the methods denoted DGCR we have also provided a rigorous error
analysis. A pleasant feature of our approach is that, when ind(A) is set equal to
zero, it reduces to the projection approach for nonsingular systems. In this sense,
our approach to singular systems is a true generalization of the projection approach
relevant to nonsingular systems.
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