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Spectral element schemes for the solution of elliptic boundary value problems are considered. Precondition-
ing methods based on finite difference and finite element schemes are implemented. Numerical experiments
show that inverting the preconditioner by a single multigrid iteration is most efficient and that the finite
difference preconditioner is superior to the finite element one for both definite and indefinite problems. A
multigrid preconditioner is also derived from the finite difference preconditioner and is found suitable for
the CGS acceleration method. It is pointed out that, for the finite difference and finite element precondition-
ers, CGS does not always converge to the accurate algebraic solution.c© 1999 John Wiley & Sons, Inc. Numer
Methods Partial Differential Eq 15: 535–543, 1999
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I. INTRODUCTION

Consider the elliptic symmetric second-order boundary value problem

−∇(D∇u) + βu = f, x ∈ Ω ⊂ Rd, (1)

whereR is the set of real numbers,d is a positive integer denoting the dimension of the problem,
Ω ⊂ Rd is a domain, andD, u, β, andf are functions of the independent variablex ∈ Rd (D
is a symmetric uniformly positive definited × d matrix andu is the unknown function) with the
boundary conditions

u = gD, x ∈ ΓD ⊂ ∂Ω (2)
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and

un + αu = gN , x ∈ ΓN = ∂Ω \ ΓD, (3)

where~n is the outer normal vector andgD, gN andα are functions defined on∂Ω. For some
particular cases, such as whenΩ is a square (or a box in 3-d) and the above functions are smooth,
the spectral method for the numerical solution of (1)–(3) has an exponential rate of convergence,
namely, its accuracy increases exponentially with the number of degrees of freedom used (see,
e.g., [1] and [2]). For more general cases, such as whenΩ is a polygon andD and the other
functions mentioned above are piecewise smooth inΩ, the spectral element method [3] might
also yield convergence rates better than those of the usual finite element, finite volume or finite
difference discretizations. However, the sparsity and conditioning of the coefficient matrices
corresponding to the spectral and spectral element methods are much worse than those of more
standard discretization methods. (Typically, the condition number of the spectral method for the
Poisson equation isO(N2), whereN is the number of degrees of freedom [2], whereas it is only
O(N2/d) for the usual finite difference scheme.) Therefore, efficient preconditioning methods for
the linear systems resulting from the spectral and spectral element schemes are of great importance
for the rapid and stable solution of these systems.

The following preconditioning methods are of special interest. In [4], it is suggested to use a
finite difference scheme based on the spectral collocation nodes for preconditioning the spectral
scheme. In [5], finite element schemes are used for this purpose. It is shown in [6] that for symmet-
ric positive definite problems the condition number of the resulting preconditioned linear system
is bounded independently of the number of degrees of freedom, which implies fast convergence of
the corresponding preconditioned conjugate gradient method. Similar preconditioning methods
were applied to spectral element schemes by Babuska, Mandel, Ronquist, and others. However,
little success was reported in applying these methods to indefinite problems such as the indefinite
Helmholtz equation.

Here we apply these preconditioning methods to spectral element schemes for the solution of
definite and indefinite problems. We emphasize the importance of scaling the coefficient matrices
of both the spectral element scheme and the preconditioning finite element or finite difference
scheme such that both have constant main diagonals. We recommend solving the preconditioning
systems approximately by one multigrid V-cycle. We observe good convergence rates for both
definite and indefinite examples, the finite difference preconditioner being superior to the finite
element one. A multigrid preconditioner is then derived from the finite difference preconditioner
and found suitable for the Conjugate Gradient Squared (CGS) acceleration method of [7]. It is
also pointed out that, for certain preconditioners, CGS does not converge to the accurate algebraic
solution.

II. IMPLEMENTATION AND NUMERICAL RESULTS

Our model problem is

−uxx − uyy + βu = f, (x, y) ∈ (0, 1) × (0, 1) (4)

with the boundary conditions

u = gD, x = 1 or y = 1 (5)

and

un + αu = gN , x = 0 or y = 0. (6)
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We consider the following examples:

1. Symmetric positive definite Poisson equation with Dirichlet–Neumann boundary condi-
tions:β = α = 0.

2. Indefinite Helmholtz equation with mixed complex boundary conditions:β = −200 and
α = 10i (this example is taken from [4]).

The spectral element scheme uses sixteen elements for the uniform partitioning of the unit
square (see Fig. 1). Each element uses a9 × 9 grid consisting of the Gauss–Lobatto points
corresponding to the Legendre polynomials of degree at most eight in each spatial direction.
(Since Gauss–Lobatto points are used, some of them lie on the boundary and on the interfaces
between adjacent elements.) Each element contains64 cells (see Fig. 1) and, therefore, the whole
domain contains322 = 1024 cells. Nodes that lie on boundaries on which Dirichlet conditions
are imposed are not considered as variables, but their contributions are included in the right hand

0

1

0 1

FIG. 1. The spectral element mesh consists of the 16 elements defined by the thick lines, each of which
uses polynomials of degree at most eight. The bilinear finite element mesh used for preconditioning consists
of the322 elements defined by the thick and thin lines.
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side of the linear system of equations. Consequently, the total number of variables is also1024.
The spectral element space is the space of functions continuous on the unit square, which are
polynomials of degree at most eight in each of the 16 spectral elements. The resulting linear
system is

Ax = b. (7)

The code used for generating the coefficient matrixA is that of [9]. The preconditioned system
is denoted by

Q−1diag(Q)diag(A)−1Ax = Q−1diag(Q)diag(A)−1b, (8)

whereQ corresponds to the finite difference or finite element scheme based on the spectral
element nodes. The finite element scheme uses the bilinear finite element mesh in Fig. 1, which
yields a 9-coefficient stencil. The finite difference scheme is constructed as follows. The usual
5-coefficient second-order stencil is used. At the boundaryx = 0 (resp.,y = 0), where Neumann
or mixed boundary conditions are imposed, the grid is extended symmetrically aroundx = 0
(resp.,y = 0) to allow a 5-coefficient stencil there and to define a first-order approximation for
the normal derivative based on an external point and a boundary point. (The results may be slightly
improved by using a nonsymmetric extension, that is, external points that are further away from
the boundary. However, for the sake of uniformity we report results with the symmetric extension
only.) Of course, the stencils at points on these boundaries cannot use these dummy external
points; therefore, the 5-coefficient stencil of the finite difference scheme is combined with the
discrete boundary conditions to yield stencils that use only the mesh points of Fig. 1. (It was
observed that using only the discrete boundary conditions for constructing the stencils at these
boundary points yields poor convergence.) The scaling used in (8 ) is crucial; using the naive
preconditioningQ−1Ax = Q−1b yields poor convergence.

Equation (8 ) is solved by the Reduced Rank Extrapolation (RRE) method of [10] and [11]
using the code of [12]. More precisely, RRE(10) is used, which means restarting RRE after every
10 iterations on (8 ) to avoid storage difficulties. The number of RRE(10) cycles required for
convergence (i.e., the number of times RRE is restarted) is reported in Table I. Each RRE(10)
cycle requires the computation of 11 preconditioned iterations.

A preconditioning problem of the form

diag(Q)−1Qe = r (9)

is to be solved at each iteration on (8 ). For the finite difference preconditioning, this is done
by the automatic multigrid (AutoMUG) method of [13] (using the code of [14]). AutoMUG is
implemented with a V(1,1) cycle with the red-black point Gauss–Seidel relaxation at each level.

TABLE I. Number of RRE(10) cycles (under the heading ‘‘cycles") applied to the preconditioned linear
system. Each RRE(10) cycle requires 11 preconditioned iterations. The cost of a single preconditioned
iteration in terms of work units is under the heading ‘‘cost".

preconditioner β α cost cycles ‖error‖∞ ‖preconditioned residual‖2

finite differences 0 0 1.6 2 3.8 · 10−11 7.6 · 10−11

finite elements 0 0 1.9 4 6.3 · 10−11 1.3 · 10−10

multigrid 0 0 2.1 2 1.1 · 10−9 2.0 · 10−9

finite differences −200 10i 1.8 8 1.0 · 10−11 1.1 · 10−11

finite elements −200 10i 2.1 13 3.6 · 10−11 3.4 · 10−11

multigrid −200 10i 2.3 7 3.9 · 10−11 7.2 · 10−11
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For the definite example, six levels are used, which is the maximum number of levels allowed.
The coarsest level consists of one variable only. For the indefinite example, only three levels
are used, in light of the guidelines developed in [15] and [16]. As recommended in [16], 20
consecutive point Kacmarz relaxations are performed for the approximate solution of the coarsest
grid problem within AutoMUG in the indefinite case. For the examples tested here, it was found
that the most efficient implementation is to use only one AutoMUG iteration for the approximate
solution of (9) (with a zero initial guess), presumably because it efficiently reduces all the Fourier
modes present in the error. (Of course, for other applications it might be efficient to use more
than one iteration.) This implementation is referred to as the finite difference preconditioning in
the sequel.

The finite element preconditioner is also approximated, that is, it is solved approximately by
a single V(1,1) multigrid cycle. In fact, we just replace the stencil used at the finest grid within
AutoMUG by the 9-coefficient stencil of the finite element scheme (scaled such that its central
element is equal to 1). This stencil is then used for both relaxation and residual computation at
the finest level within AutoMUG. The coarse levels of AutoMUG remain unchanged, namely,
they still use 5-coefficient stencils as before. The relaxation with the above 9-coefficient stencil
at the finest level of AutoMUG is done by the red-black Jacobi method, that is, a point Jacobi
sweep on the red-colored points followed by a point Jacobi sweep on the black-colored points.
[The usual (damped) point Jacobi relaxation did not work well here.] The relaxation on the coarse
levels is the red-black point Gauss–Seidel method as before. This implementation is referred to
as the finite element preconditioning in the sequel.

The above implementation generates another possible approach: replace the finite difference
stencil at the finest level of AutoMUG by the original spectral element stencil (scaled such that its
central element is equal to 1). This stencil is then used on the finest level of AutoMUG for both
residual computation and relaxation, using the above red-black point Jacobi method. [The usual
(damped) point Jacobi relaxation did not work well here]. The operators on all other levels remain
unchanged. Since this is an iterative method for the solution of the original problem (7), there is
no need to apply it to a preconditioning problem of the form (9) but rather directly to (7), which
avoids computing the residual of (7) before applying the multigrid method. The preconditioned
system for this approach is of the form

Q̃−1diag(A)−1Ax = Q̃−1diag(A)−1b, (10)

whereQ̃ represents the multigrid preconditioner (see [17]) resulting from this multigrid iteration.
Here we find it more efficient to use a V(0,1) multigrid cycle, the cost of which is only slightly
larger than 2 work units, where a work unit is the amount of arithmetical operations required for
computing the residual for the original problem (7). This approach was first tested in [14] and
[18] and is referred to in the sequel as "multigrid."

The exact solution of (4)–(6) in our examples isu = xy. The initial guess in all our experiments
is zero. In Table I, we show the number of RRE(10) cycles required for the solution of (8) (or
(10) for the multigrid preconditioning). As can be seen from Table I, during this process thel2
norm of the residual of (8) or (10) (that is, the preconditioned residual of (7)) is reduced by 10–11
orders of magnitude, as well as thel∞ norm of the error. As discussed in [16], the preconditioned
residual yields a more realistic convergence criterion than the residual of the original problem
(7), since (8) and (10) are better conditioned than (7). (This is an advantage of left preconditioning
over right and symmetric ones.) Thel2 norms of the preconditioned residuals are available in the
RRE algorithm for no additional cost (see [12]). Replacing RRE(10) by RRE(5) (namely, restarting
RRE after every 5 iterations) yields no essential change in the convergence behavior of all three
methods (Table II).
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TABLE II. Number of RRE(5) cycles (under the heading ‘‘cycles") applied to the preconditioned linear
system. Each RRE(5) cycle requires 6 preconditioned iterations. The cost of a single preconditioned iteration
in terms of work units is under the heading ‘‘cost".

‖preconditioned
preconditioner β α cost cycles ‖error‖∞ residual‖2

finite differences 0 0 1.6 4 7.0 · 10−11 6.7 · 10−11

finite elements 0 0 1.9 8 7.9 · 10−11 4.5 · 10−10

multigrid 0 0 2.1 5 5.1 · 10−11 1.8 · 10−10

finite differences −200 10i 1.8 16 6.2 · 10−11 5.6 · 10−11

finite elements −200 10i 2.1 28 6.5 · 10−11 6.6 · 10−11

multigrid −200 10i 2.3 15 6.0 · 10−11 8.8 · 10−11

It was observed in [14] that restarted RRE (as well as restarted GMRES) is not optimal for
certain highly indefinite problems. For these difficult cases, better convergence may be achieved
by the Conjugate Gradient Squared (CGS) method of [7] (used also in [16]) or the Transpose
Free Quasi Minimal Residual (TFQMR) method of [19], Algorithm 5.2 (used in [13]). Indeed,
even for the original system (7) with the simple point Jacobi preconditioner, CGS converges for
the indefinite example to 10 orders of magnitude accuracy in 325 iterations, whereas RRE(5)
and RRE(10) practically stagnate. (It is possible that this could be fixed by restarting RRE after
performing several initial iterations as in [20]. We did not use this strategy here, because it could
cause numerical explosion when the sensitive preconditioners are used.) The advantage of CGS
for indefinite examples is also indicated in Table III, with the present finite difference, finite
element, and multigrid preconditioners. However, it turns out that CGS (and also TFQMR) does
not always converge to the accurate solution of (7), and its accuracy depends on the particular
preconditioner used. For the multigrid preconditioner, no special treatment is necessary and CGS
always converges accurately. For the finite difference and finite element preconditioners, however,
it is impossible to reduce the error (for the definite example) by more than six orders of magnitude.
To obtain the accuracy reported in Table III for these preconditioners, we had to replace the red-
black point Gauss–Seidel smoother used at the coarse levels within AutoMUG (from the third
level on) by the more stable point Kacmarz relaxation. A yet severer phenomenon was observed
when we tried to solve (9) more accurately by an inner accelerated AutoMUG iteration; both CGS
and TFQMR applied to (8) did not converge to more than three orders of magnitude accuracy. We
suppose that the reason for this is that, because of roundoff errors, the direction vectors in CGS
and TFQMR are no longer related to the approximate solutionx̃ through the theoretical relation

Q−1diag(Q)diag(A)−1(Ax̃ − b).

TABLE III. Number of CGS iterations (under the heading ‘‘iterations") applied to the preconditioned linear
system. Each CGS iteration requires two preconditioned iterations. The cost of a single preconditioned
iteration in terms of work units is under the heading ‘‘cost".

‖preconditioned
preconditioner β α cost iterations ‖error‖∞ residual‖2

finite differences 0 0 1.6 14 1.5 · 10−11 5.4 · 10−11

finite elements 0 0 1.9 28 2.4 · 10−12 3.1 · 10−11

multigrid 0 0 2.1 13 1.7 · 10−11 3.6 · 10−11

finite differences −200 10i 1.8 29 1.5 · 10−13 4.3 · 10−13

finite elements −200 10i 2.1 50 1.4 · 10−12 8.6 · 10−12

multigrid −200 10i 2.3 26 4.2 · 10−12 4.0 · 10−11
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In our CGS implementation, thel2 norm of the residuals is computed automatically from
the CGS algorithm. These scalars converge nicely, and the user might have no idea that he
has the wrong solution. In fact, the maximum norm of the error vectors does not converge to
zero. In our TFQMR implementation we compute the residuals explicitly after each iteration and
calculate theirl2 norm; these scalars also converge to a positive scalar. This leads us to believe
that the methods suffer from numerical instability when the above finite difference and finite
element preconditioners are used. We do not expect that using right preconditioning rather than
left preconditioning would help here.

The code used for CGS is that of [16]. Each CGS iteration requires two preconditioned itera-
tions. One additional preconditioned iteration is performed in the beginning of the CGS algorithm
for computing the initial preconditioned residual, which serves as an initial direction vector. Thel2
norms of the preconditioned residuals in the CGS iteration are available from the CGS algorithm
for no additional cost (see [19]).

Finally, we report a slight deterioration in the convergence rates when the problem size is
increased. Specifically, we have increased the number of degrees of freedom per spectral element
from 82 = 64. to 162 = 256. For the definite example (β = 0), RRE(5) requires six cycles
to converge to ten orders of magnitude accuracy (with the finite difference preconditioner). We
suppose that this deterioration is because of a larger number of error components (corresponding
to eigenvectors of the iteration matrix) that have to be annihilated by the outer acceleration.
CGS also suffers from a similar deterioration in the number of iterations needed for convergence
when the number of degrees of freedom per element is increased to162 = 256. We expect that the
preconditioned conjugate gradients method may be more robust here than CGS and restarted RRE,
since it uses Krylov subspaces of unlimited dimension. Next, we have also employed this spectral
element scheme, again with polynomials of degree seventeen, for the indefinite example (β =
−200) and observed similar deterioration in the convergence rate in comparison with the results
in Table III. Here we had to increase the number of point Kacmarz relaxations on the coarsest
(namely, third) level in AutoMUG to 140 in order to achieve convergence to six orders of magnitude
accuracy in 22 CGS iterations with the multigrid preconditioner. The reason for this necessity is
probably that, with the increase in problem size, the third level contains four times as many degrees
of freedom as before, which, in view of the high indefiniteness in the third-level equation, requires
many Kacmarz relaxations to reduce the error modes corresponding to that level. Indeed, whenβ =
−400 is used in this experiment, 200 Kacmarz relaxations are needed on the third level to achieve
a similar convergence rate. (Block Kacmarz relaxation may also be considered, although it is not
used here.)

III. DISCUSSION

In this article, we test three preconditioners for a spectral element scheme for the solution of
certain elliptic PDEs in the unit square, namely, the Poisson equation with Dirichlet–Neumann
boundary conditions and the indefinite Helmholtz equation with Dirichlet-mixed complex bound-
ary conditions. The first two preconditioners are based on known ideas, that is, finite difference
and finite element schemes based on the spectral mesh. The new implementation here uses a single
V(1,1) multigrid iteration as an approximate solver for the finite difference and finite element
preconditioners. It turns out that this implementation is more efficient than solving the finite dif-
ference and finite element schemes accurately. Furthermore, it works well also for the indefinite
example, with CGS or restarted RRE as the outer acceleration method.
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For the indefinite example, CGS turns out to be somewhat more efficient than restarted RRE as
the acceleration technique. However, some care is needed when CGS (or TFQMR) is employed.
In particular, the multigrid cycle for the approximate solution of the finite difference and finite
element preconditioning schemes must use the stable Kacmarz smoother rather than more common
smoothers, or the outer CGS iteration would not converge to the accurate algebraic solution,
presumably because of numerical roundoff errors in the CGS algorithm. This difficulty can be
overcome by using a new preconditioner, that is, a multigrid preconditioner that is constructed
directly for the original spectral element scheme. In this multigrid preconditioner, the fine-grid
residual is computed from the original spectral element scheme and the error is smoothed by
applying the point red-black Jacobi smoother to that scheme, and the finite difference operators
are used on the coarse grids as before. With this preconditioner, the outer CGS iteration suffers no
instability and converges nicely to the algebraic solution for both definite and indefinite examples.
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