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Abstract

Let a(t) ∼ A+ ’(t)
∑∞

i=0 �it
i as t → 0+, where a(t) and ’(t) are known for 0¡t6c for some c¿ 0, but A and the

�i are not known. The generalized Richardson extrapolation process GREP(1) is used in obtaining good approximations
to A, the limit or antilimit of a(t) as t → 0+. The convergence and stability properties of GREP(1) for the case in
which ’(t) ∼ �t� as t → 0+; � 6= 0;−1;−2; : : : ; have been studied to a large extent in a recent work by the author.
In the present work, we continue this study for the case in which � is complex when the set of extrapolation points is
{ti=t0!i; i=0; 1; : : :} with !∈ (0; 1). We give a complete convergence and stability analysis under very weak assumptions
on ’(t). We show that this analysis applies to the Levin–Sidi D(1)-transformation that is a GREP(1), as this transformation
is used for computing both convergent and divergent in�nite-range integrals of functions f(x) that essentially satisfy
f(x) ∼ �x−�−1 as x → ∞, with � as above. In case of divergence, we show that the D(1)-transformation produces
approximations to the associated Hadamard �nite parts. We append numerical examples that demonstrate the theory.
c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In this work we continue the convergence and stability analysis of the generalized Richardson
extrapolation process GREP(1) due to the author [6] that was begun in the recent paper [8].
GREP(1) is a very e�ective extrapolation procedure that is used in accelerating the convergence

of a large family of in�nite sequences that arise from and=or can be identi�ed with functions A(y)
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that belong to a certain set denoted by F(1). For future reference we give below the de�nitions of
F(1) and GREP(1). This will also establish much of the notation that we use in this work.

De�nition 1.1. We shall say that a function A(y); de�ned for 0¡y6b; for some b¿ 0; where y
can be a discrete or continuous variable; belongs to the set F(1); if there exist functions �(y) and
�(y) and a constant A such that

A(y) = A+ �(y)�(y); (1.1)

where �(�); as a function of the continuous variable � and for some �̂6b; is continuous in [0; �̂];
and for some constant r ¿ 0; has a Poincar�e-type asymptotic expansion of the form

�(�) ∼
∞∑
i=0

�i�ir as �→ 0 + : (1.2)

If, in addition, the function B(t) ≡ �(t1=r); as a function of the continuous variable t; is in�nitely
di�erentiable for 06t6�̂

r
; we shall say that A(y) belongs to the set F(1)∞ . Note that F

(1)
∞ ⊂ F(1).

Remark. We have A= limy→0+ A(y) whenever this limit exists, in which case limy→0+ �(y) = 0. If
limy→0+ A(y) does not exist, then A is said to be the antilimit of A(y) as y → 0+. In this case,
limy→0+ �(y) does not exist, as is obvious from (1.1) and (1.2).

It is assumed that the functions A(y) and �(y) are computable for 0¡y6b (keeping in mind
that y may be discrete or continuous depending on the situation) and that the constant r is known.
The constants A and �i are not assumed to be known. In attempting to accelerate the convergence of
a sequence that can be identi�ed with A(y), the idea, thus the problem, is to �nd (or approximate) A
whether it is the limit or the antilimit of A(y) as y → 0+, and GREP(1), the extrapolation procedure
that corresponds to F(1), is designed to tackle precisely this problem. The �i are not required in most
cases of interest, although GREP(1) produces approximations (usually not very good ones) to them
as well.

De�nition 1.2. Let A(y)∈ F(1); with �(y); �(y); A; and r being as in De�nition 1:1. Pick yl ∈ (0; b];
l= 0; 1; 2; : : : ; such that y0¿y1¿y2¿ · · · ; and liml→∞ yl = 0. Then A( j)n ; the approximation to A;
and the parameters ��i; i=0; 1; : : : ; n− 1; are de�ned to be the solution of the system of n+1 linear
equations

A(yl) = A( j)n + �(yl)
n−1∑
i=0

��iy
ir
l ; j6l6j + n; (1.3)

provided the matrix of this system is nonsingular. It is this process that generates the approximations
A( j)n that we call GREP(1).

Note that the equations in (1.3) are derived from (1.1) with (1.2).
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As is seen, GREP(1) produces a two-dimensional table of approximations of the form

n= 0; n= 1; n= 2; n= 3; : : :

A(0)0

A(1)0 A(0)1

A(2)0 A(1)1 A(0)2 ; A( j)0 ≡ A(yj); j = 0; 1; : : : :
A(3)0 A(2)1 A(1)2 A(0)3
...

...
...

...
. . .

(1.4)

Numerical experiments and the theory that exists for some cases suggest that when limy→0+ A(y)
exists, the columns of this table converge, each column converging at least as quickly as those
preceding it, while the diagonals converge more quickly than the columns.
Going down a column corresponds to letting j → ∞ while n is being held �xed in A( j)n , and this

limiting process is called Process I. Going along a diagonal corresponds to letting n → ∞ while j
is being held �xed in A( j)n , and this limiting process is called Process II.
Before going on, we shall let t=yr and tl=yrl ; l=0; 1; : : : ; and de�ne a(t) ≡ A(y) and ’(t) ≡ �(y).

Then the equations in (1.3) take on the more convenient form

a(tl) = A( j)n + ’(tl)
n−1∑
i=0

��it
i
l; j6l6j + n: (1.5)

Let us denote by D( j)n the divided di�erence operator of order n over the set of points tj; tj+1; : : : ; tj+n.
Then the action of D( j)n on an arbitrary function g(t) is described by

D( j)n {g(t)}= g[tj; tj+1; : : : ; tj+n] =
n∑
i=0

c( j)ni g(tj+i); (1.6)

where

c( j)ni =
n∏
s=0
s 6=i

(tj+i − tj+s)−1; i = 0; 1; : : : ; n: (1.7)

The solution of the equations in (1.5) can be expressed with the help of the divided di�erence
operator D( j)n as in

A( j)n =
D( j)n {a(t)=’(t)}
D( j)n {1=’(t)} : (1.8)

From (1.6) and (1.8) it is obvious that ’(tl) 6= 0; l= 0; 1; 2; : : :, must be assumed throughout. ’(t)
may vanish at other points, however. From (1.6) and (1.8) we also notice that A( j)n can be expressed
as in

A( j)n =
n∑
i=0


( j)ni a(tj+i); (1.9)
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where


( j)ni =
c( j)ni =’(tj+i)

D( j)n {1=’(t)} ; i = 0; 1; : : : ; n; (1.10)

and thus
n∑
i=0


( j)ni = 1: (1.11)

As has been described in [6, Section 6], the propagation of the errors (roundo� or other) in the
a(tl) into A( j)n is controlled by the quantity �( j)n de�ned by

�( j)n =
n∑
i=0

|
( j)ni |; (1.12)

which can be expressed with the help of D( j)n (see [8, Theorem 3.3]) as in

�( j)n =
|D( j)n {P(t)}|
|D( j)n {1=’(t)}| ; (1.13)

where P(t) takes on arbitrary values for t 6= ti; i = 0; 1; : : : ; and
P(ti) = (−1)i=|’(ti)|; i = 0; 1; : : : : (1.14)

More speci�cally, if �l is the absolute error in the input a(tl); l=0; 1; : : : ; and if �A
( j)
n are the entries

in the extrapolation table (1.4) computed with the erroneous a(tl), then

|A( j)n − �A
( j)
n |6�( j)n

(
max

j6l6j+n
|�l|
)

(1.15)

for each j and n. Thus the larger �( j)n , the worse the error propagation is expected to be. (Obviously,
�( j)n ¿1 from (1.11) and (1.12).) On the basis of this we say that Process I that generates the column
sequence {A( j)n }∞j=0 with n �xed is stable provided supj �( j)n ¡∞. Similarly, we say that Process II
that generates the diagonal sequence {A( j)n }∞n=0 with j �xed is stable provided supn �( j)n ¡∞. Here
it is worth recalling that the error in �A

( j)
n satis�es

| �A ( j)n − A|6|A( j)n − A|+ |A( j)n − �A
( j)
n |: (1.16)

Both A( j)n and �( j)n can be computed very e�ciently by the W -algorithm of the author [7]. See
also Theorem 3.3 and what follows that in [8]. Here are the steps of the W -algorithm:

1. For j = 0; 1; : : : ; set

M ( j)
0 =

a(tj)
’(tj)

; N ( j)
0 =

1
’(tj)

; H ( j)
0 =

(−1) j
|’(tj)| :

2. For j = 0; 1; : : : ; and n= 1; 2; : : : ; compute recursively

M ( j)
n =

M ( j+1)
n−1 −M ( j)

n−1
tj+n − tj ; N ( j)

n =
N ( j+1)
n−1 − N ( j)

n−1
tj+n − tj ; H ( j)

n =
H ( j+1)
n−1 − H ( j)

n−1
tj+n − tj :
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3. For all j and n, set

A( j)n =
M ( j)
n

N ( j)
n
; �( j)n =

|H ( j)
n |

|N ( j)
n | :

The study of GREP(1) carried out in [8] concerned predominantly the case �(y) ≡ ’(t) ∼ �t�

as t → 0+, where � is in general complex and � 6= 0;−1;−2; : : : : . Functions A(y) ≡ a(t) with
this property are related to in�nite sequences that converge logarithmically and to their divergent
extensions, as shown in [8]. By re�ning the techniques in [8], in the present work we continue and
complete the study of this case with the choice ti = t0!i; i = 1; 2; : : : ; for some t0¿ 0 and some
!∈ (0; 1). We improve substantially on the convergence and stability results in [8] and prove new
ones as well. An important feature of the results of the present work is that they are all achieved
by assuming conditions on ’(t) and B(t) that are much weaker than the ones in [8]. The analytical
tools developed in [8], including those in the appendix in [8], turn out to be useful in this work
too.
The main result on stability is Theorem 2.1 in Section 2. This result essentially says that in

case ’(t) = �t� + O(t�+�) as t → 0+, where �¿ 0, both Processes I and II are stable in the
sense described earlier, namely, supj �

( j)
n ¡∞ and supn �

( j)
n ¡∞. It also gives limj→∞ �( j)n and

limn→∞ �( j)n exactly, showing at the same time that both limits exist and depend only on �, and that
the latter is independent of j as well. The main results on the convergence of Processes I and II
are Theorems 3.1–3.3 in Section 3. These results are obtained under the same (weak) assumptions
on ’(t) imposed in Section 2. In addition, they employ assumptions on B(t) that are weaker than
those employed in [8].
In Section 4 we show that the results of Sections 2 and 3 are directly applicable to the D(1)-trans-

formation of Levin and Sidi [4] that is a GREP(1), when this transformation is used for computing
in�nite-range integrals

∫∞
a f(t) dt of functions f(x) that essentially satisfy f(x) ∼ �x−�−1 as x → ∞.

Now when R�¿ 0 these integrals converge, and the D(1)-transformation gives approximations to their
values. When R�60, however, they diverge, and the D(1)-transformation produces approximations
to their Hadamard �nite parts (HFPs) provided also that � 6= 0;−1;−2; : : : ; as we show in Theorem
4.1. As far as is known to us, application of extrapolation methods for computing HFPs of divergent
in�nite-range integrals has not been given in the literature before. In the appendix to this work we dis-
cuss the connection of these HFPs to analytic continuation, the main result there being Theorem A.1.
Now the D(1)-transformation is a special case of the general D(m)-transformation that has been

used very e�ectively in accelerating the convergence of a large class of in�nite-range integrals.
Although the theory of Sections 2 and 3 apply to the D(1)-transformation only, based on am-
ple numerical evidence, we believe that a very similar theory under similar conditions exists for
the D(m)-transformation. In this sense the approach of the present work might be a �rst step to-
wards the analytical treatment of the D(m)-transformation for arbitrary m. The de�nition of the
D(m)-transformation is visited brie
y at the end of Section 4.
In Section 5 we demonstrate the results of Sections 2–4 by applying the D(1)-transformation

to convergent and divergent in�nite-range integrals of the type discussed in Section 4. We also
include examples for which the D(2)-transformation produces excellent approximations but the D(1)-
transformation is not e�ective.
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2. Stability

Throughout the remainder of this work we will assume that

’(t) = �t� +O(t�+�) as t → 0 + for some � 6= 0 and �¿ 0: (2.1)

Thus, when R�¿ 0, A= limt→0+ a(t). In case limt→0+ a(t) does not exist, A is the antilimit of a(t)
as t → 0+, and R�60 for this case necessarily. (Note that the condition on ’(t) given in (2.1) is
already much weaker than those imposed on ’(t) in Section 3 in [8].)
We also recall that ti are picked as in

ti = t0!i; i = 1; 2; : : : ; for some t0¿ 0 and !∈ (0; 1): (2.2)

As described earlier, the stability analysis of GREP(1) revolves around the study of �( j)n de�ned in
(1.12), which in turn is based on the expression for �( j)n given in (1.13) with (1.14). We begin this
study by reminding ourselves that D( j)n is a divided di�erence operator, as a consequence of which
we have the well-known recursion relation

D( j)n {g(t)}= D
( j+1)
n−1 {g(t)} − D( j)n−1{g(t)}

tj+n − tj : (2.3)

Employing (2.3) we �rst prove the following lemma that will be very useful in the sequel.

Lemma 2.1. Let v(t; �) = t−�; where � is in general complex and � 6= 0;−1;−2; : : : . De�ne also
w(ti; �)=(−1)i|v(ti; �)|; i=0; 1; : : : ; cf: (1:14); w(t; �) being arbitrary for all other values of t. Then;
for all j and n,

D( j)n {v(t; �)}= (−1)n
!�n+(n2−n)=2 t�+nj

n∏
i=1

1− !�+i−1
1− !i (2.4)

and

D( j)n {w(t; �)}= (−1) j
!(R�)n+(n2−n)=2 tR�+nj

n∏
i=1

1 + !R�+i−1

1− !i : (2.5)

Proof. The proofs of (2.4) and (2.5) can be achieved by invoking (2.3) and using induction.

We note that (2.4) is already given by Lemma A.3 in [8]. The result in (2.5) is new, however.
With the help of Lemma 2.2 we next prove a result on D( j)n {1=’(t)} and D( j)n {P(t)}.

Lemma 2.2. With ’(t) and the ti as in (2:1) and (2:2) respectively; we have

D( j)n {1=’(t)}= �−1D( j)n {v(t; �)}[1 + Q( j)n !�nt�j ] (2.6)

and

|D( j)n {P(t)}|= |�|−1|D( j)n {w(t; �)}|[1 + R( j)n !�nt�j ]; (2.7)

where Q( j)n and R( j)n are constants that satisfy supj; n |Q( j)n |¡∞ and supj; n |R( j)n |¡∞.
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Proof. We start by analyzing D( j)n {1=’(t)}. By (1.6) we have

D( j)n {1=’(t)}=
n∑
i=0

c( j)ni =’(tj+i): (2.8)

Let us de�ne the function N (t) through

1=’(t) = �−1t−� + N (t): (2.9)

Now (2.1) implies that there exists t̂ ∈ (0; br] such that ’(t) 6= 0 for 0¡t6t̂. Consequently, we
have

|N (t)|=
∣∣∣1=’(t)− �−1t−�∣∣∣6K1t−R�+� for t ∈ (0; t̂ ]; (2.10)

where K1 is some positive constant. Recalling that 1=’(tl) 6= 0; l = 0; 1; 2; : : : ; we have that N (tl)
are all de�ned. Noting also that the number of the tl in X = (t̂; br] is �nite, we have

max
tl ∈ X

|N (tl)t�−�l | ≡ K2¡∞: (2.11)

Combining (2.10) and (2.11), and letting K =max(K1; K2), we have

|N (tl)|6Kt−R�+�
l ; l= 0; 1; 2; : : : : (2.12)

Substituting (2.9) in (2.8), we obtain

D( j)n {1=’(t)}= �−1D( j)n {v(t; �)}+ D( j)n {N (t)}: (2.13)

But, by (2.12),

|D( j)n {N (t)}|6K
n∑
i=0

|c( j)ni | t−R�+�
j+i = K |D( j)n {w(t; �− �)}|: (2.14)

Invoking Lemma 2.1 in (2.14), we obtain

|D( j)n {N (t)}|
|D( j)n {v(t; �)}|6K

(
n∏
i=1

1 + !R�−�+i−1

|1− !�+i−1|

)
!�nt�j : (2.15)

Now, by the fact that !∈ (0; 1), the in�nite products ∏∞
i=1 |1 − !�+i−1| and

∏∞
i=1(1 + !

R�−�+i−1)
converge and, therefore, have nonzero limits. By combining (2.13)–(2.15), the result in (2.6) now
follows.
Similarly, by (1.6), (1.7), and (1.14), we have

|D( j)n {P(t)}|=
n∑
i=0

|c( j)ni |=|’(tj+i)|: (2.16)

We also have

|1=’(t)|= |�−1| t−R� +M (t) with |M (t)|6|N (t)|: (2.17)

Substituting (2.17) in (2.16), we obtain

|D( j)n {P(t)}|= |�−1||D( j)n {w(t; �)}|+ E( j)n {M (t)} (2.18)

with E( j)n {M (t)}=∑n
i=0 |c( j)ni |M (tj+i), so that

|E( j)n {M (t)}|6
n∑
i=0

|c( j)ni | |M (tj+i)|6
n∑
i=0

|c( j)ni | |N (tj+i)|6K |D( j)n {w(t; �− �)}|: (2.19)
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Invoking Lemma 2.1 in (2.19), we obtain

|E( j)n {M (t)}|
|D( j)n {w(t; �)}|6K

(
n∏
i=1

1 + !R�−�+i−1

1 + !R�+i−1

)
!�nt�j : (2.20)

The result in (2.7) now follows by combining (2.18)– (2.20) and by the fact that the in�nite products∏∞
i=1(1 + !

R�+i−1) and
∏∞
i=1(1 + !

R�−�+i−1) converge and, therefore, have nonzero limits.

We now turn to the main stability result of this work. The quantity �̂n(�;!) that is de�ned with
the help of Lemma 2.1 and via

|D( j)n {w(t; �)}|
|D( j)n {v(t; �)}| =

n∏
i=1

1 + !R�+i−1

|1− !�+i−1| ≡ �̂n(�;!) (2.21)

is of relevance to this result.

Theorem 2.1. With ’(t) and the ti as in (2:1) and (2:2) respectively; we have

�( j)n = �̂n(�;!) for all j and n if ’(t) = �t� (2.22)

and

lim
j→∞

�( j)n = �̂n(�;!) and lim
n→∞�

( j)
n = �̂∞(�;!) =

∞∏
i=1

1 + !R�+i−1

|1− !�+i−1| (2.23)

whether ’(t) = �t� or not.

Proof. When ’(t) = �t�, we have 1=’(t) = �−1v(t; �) and P(t) = |�|−1w(t; �) in (1.13). The result
in (2.22) now follows by invoking (2.21). In general, we have

�( j)n = �̂n(�;!)[1 + O(!�j)] as j → ∞ (n �xed): (2.24)

and

�( j)n = �̂n(�;!)[1 + O(!�n)] as n→ ∞ (j �xed); (2.25)

both of which are obtained by substituting (2.6) and (2.7) in (1.13), invoking (2.21), and, �nally,
letting j → ∞ for (2.24) and n→ ∞ for (2.25).

An important consequence of Theorem 2.1 is that Processes I and II are both stable. Theorem 2.1
also states that limj→∞�( j)n and limn→∞�( j)n depend only on �. In other words, they are both deter-
mined by the dominant asymptotic behavior of ’(t) for t → 0+, the details of the remaining part
of ’(t) being irrelevant. This, we believe, is a very interesting and surprising result especially since
A( j)n and hence �( j)n in Process II are determined from ’(t) for t ∈ (0; tj] for j �xed. Finally, another
surprising result is that limn→∞�( j)n is independent of j.

Theorem 2.2. With ’(t) and the ti as in (2:1) and (2:2) respectively; we have

lim
n→∞ 
( j)ni = 0 for each �xed i: (2.26)
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Proof. From (1.7) and (2.2) we have

c( j)ni = (−1)i[tnj !in−(i
2+i)=2CiCn−i]

−1; (2.27)

where Ck =
∏k
s=1(1 − !s); k = 1; 2; : : : ; and C0 ≡ 1. Substituting (2.27) and (2.6) in (1.10), and

invoking (2.4), we obtain


( j)ni =O(!
n2=2+din) as n→ ∞; some constant di: (2.28)

The result now follows.

Combining Theorems 2:1 and 2:2, and (1.11), we now state the following regularity theorem for
Processes I and II of this work.

Theorem 2.3. Process I that generates the column sequences {A( j)n }∞j=0; n=0; 1; 2; : : : ; and Process
II that generates the diagonal sequences {A( j)n }∞n=0; j = 0; 1; 2; : : : ; are both regular summability
methods.

We leave the details of the proof to the interested reader. For summability methods and their
regularity, see, e.g., [3] or [5]. See also [6, Section 4].
Important Note. As is clear from (1.15), when A(y) is bounded as y → 0+ and A(yl) are

computed to maximum possible accuracy in �nite precision arithmetic, the sequence {�l} is bounded.
As a result, the stability of Processes I and II guarantees that the sequences {A( j)n − �A

( j)
n }∞j=0 (n �xed)

or {A( j)n − �A
( j)
n }∞n=0 (j �xed) are bounded. Note that A(y) is bounded as y → 0+ whenever R�¿ 0

(in which case A= limy→0+ A(y)) or R�=0 (in which case A is the antilimit of A(y) as y → 0+).
When A(y) is unbounded as y → 0+ (which occurs for R�¡ 0) and A(yl) are computed to
maximum possible accuracy in �nite precision arithmetic, the sequence {�l} is unbounded. In fact,
�l generally behaves like uA(yl) in this case. Here u is the unit roundo� of the arithmetic used. As
a result, even though both Processes I and II are stable in the sense described above, the sequences
{A( j)n − �A

( j)
n }∞j=0 (n �xed) and {A( j)n − �A

( j)
n }∞n=0 (j �xed) are now unbounded. In this situation the

hope is that the convergence rates of the sequences {A( j)n }∞j=0 and {A( j)n }∞n=0 are much greater than
the divergence rate of {�l} such that su�cient accuracy is achieved by A( j)n before |A( j)n − �A

( j)
n | grows

too much. Naturally, we expect less and less accuracy for sequences {A(yl)} that grow faster and
faster. Here we have recalled (1.16).

3. Convergence

With the stability problem completely settled, we now state the relevant convergence results for
A( j)n . Some of these results are directly based on [8], and we leave their veri�cation to the interested
reader. In addition, all our results are valid whether A is the limit or the antilimit of A(y) for
y → 0+.
Theorem 3.1 below relates to Process I in which n is held �xed and j → ∞, and its result is best

possible asymptotically. Theorems 3:2 and 3:3, on the other hand, deal with Process II in which j
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is held �xed and n → ∞. Note that in Theorems 3.1, 3.2, and part (i) of Theorem 3.3 we require
only that A(y)∈F(1), which is a weaker requirement than A(y)∈F(1)∞ .

Theorem 3.1. Let B(t) be as in De�nition 1:1 and let ’(t) and the ti be as in (2:1) and (2:2);
respectively. De�ne ck = !�+k−1; k = 1; 2; : : : : Then; for any �xed n; we have

A( j)n − A ∼ ��n+�
(

n∏
i=1

cn+�+1 − ci
1− ci

)
t�+n+�j as j → ∞; (3.1)

where �n+� is the �rst nonzero �i with i¿n.

It follows from Theorem 3.1 that the column sequence {A( j)n }∞j=0 converges to A provided n¿
− R�− �, and diverges otherwise. It also follows that if {A( j)n−1}∞j=0 converges, {A( j)n }∞j=0 converges
at least as quickly, and if {A( j)n }∞j=0 diverges, it diverges at worst as quickly as {A( j)n−1}∞j=0. In other
words, the sequence {A( j)n }∞j=0 has convergence properties at least as good as those of {A( j)n−1}∞j=0.
Lemma 3.1 below gives upper bounds on |A( j)n − A| that are valid for all j and n. These bounds

are crucial in obtaining convergence results relevant to Process II.

Lemma 3.1. Let B(t) be as in De�nition 1:1; and let ’(t) and the ti be as in (2:1) and (2:2);
respectively. Then there exist positive constants �̂ and �̂s; s = 0; 1; 2; : : : ; all independent of j and
n; such that; for each s; s= 0; 1; : : : ; n;

|A( j)n − A|6�̂�̂s
|D( j)n {w(t;−s)}|
|D( j)n {v(t; �)}| = �̂�̂s

(
n∏
i=1

1 + !−s+i−1

|1− !�+i−1|

)
!(R�+s)ntR�+sj : (3.2)

The nature of the constants �̂ and �̂s; s= 0; 1; : : : ; will be discussed in the proof below.

Proof. From [8] we have

A( j)n − A= D( j)n {B(t)}
D( j)n {1=’(t)} : (3.3)

Due to the fact that D( j)n {g(t)}=0 when g(t) is a polynomial in t of degree at most n− 1, (3.3) is
equivalent to

A( j)n − A= D
( j)
n {B(t)−∑ s−1

i=0 �it
i}

D( j)n {1=’(t)} ; s= 0; 1; : : : ; n: (3.4)

As we have shown in the proof of Lemma 2.2, there exists t̂ ∈ (0; br] such that ’(t) 6= 0 for
t ∈ (0; t̂ ]. This together with the observation that B(t) = [a(t)− A]=’(t), cf. (1.1), implies that B(t)
is well de�ned for t ∈ [0; t̂ ], but may not necessarily be continuous for t ∈X =(t̂; br]. From this and
from B(t) ∼∑∞

i=0 �it
i as t → 0+, cf. (1.2), we deduce that there exist positive constants �̂s;1 de�ned

as in

�̂s;1 = max
06t6t̂

(∣∣∣∣∣B(t)−
s−1∑
i=0

�iti
∣∣∣∣∣
/
t s
)
; s= 0; 1; 2; : : : : (3.5)
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Similarly, by the fact that the interval X contains a �nite number of the tl, there exist additional
positive constants �̂s;2 de�ned by

�̂s;2 = maxtl ∈ X

(∣∣∣∣∣B(tl)−
s−1∑
i=0

�itil

∣∣∣∣∣
/
t sl

)
; s= 0; 1; 2; : : : : (3.6)

Combining (3.5) and (3.6), we see that there exist positive constants �̂s de�ned as in

�̂s =maxl

(∣∣∣∣∣B(tl)−
s−1∑
i=0

�itil

∣∣∣∣∣
/
t sl

)
; s= 0; 1; 2; : : : ; (3.7)

that satisfy

|�s|6�̂s6max(�̂s;1; �̂s;2); s= 0; 1; 2; : : : : (3.8)

Invoking (1.6) in the numerator on the right-hand side of (3.4), taking moduli, and, �nally, using
(3.7), we obtain for each s; s= 0; 1; : : : ; n,∣∣∣∣∣D( j)n

{
B(t)−

s−1∑
i=0

�iti
}∣∣∣∣∣6�̂s

n∑
i=0

|c( j)ni |t sj+i = �̂s|D( j)n {w(t;−s)}|: (3.9)

By (2.25) there exists a positive constant �̂¿|�| independent of j and n such that
1

|D( j)n {1=’(t)}|6
�̂

|D( j)n {v(t; �)}| ; n= 0; 1; 2; : : : : (3.10)

(Obviously, �̂= |�| when ’(t)=�t�.) The result in (3.2) now follows by combining (3.9) and (3.10)
in (3.4) and by invoking Lemma 2.1.

Theorem 3.2. Assume all the conditions of Lemma 3:1. Then; for any �xed j; the diagonal sequence
{A( j)n }∞n=0 converges to A. The nature of this convergence is at worst as in

A( j)n − A= O(!cn) as n→ ∞ for any c¿ 0: (3.11)

Proof. From (3.2) we have that

A( j)n − A=O(!(R�+s)n) as n→ ∞ for �xed s: (3.12)

The result follows from the fact that, as n→ ∞, s takes on all positive integer values.

By comparing Theorem 3:1 with Theorem 3:2 we can see very clearly that a diagonal sequence
{A( j)n }∞n=0 converges at a much greater rate than any of the column sequences {A(s)p }∞s=0; p=1; 2; : : : :
Theorem 3.2 actually states that, whether limt→0+a(t) exists or not, |A( j)n − A| tends to zero as

n→ ∞ faster than exp(−�n) for any �¿ 0. By imposing suitable growth conditions on the �̂s it is
possible to show that |A( j)n −A| tends to zero as n→∞ at worst like exp(−�n2) for some �¿ 0. This
is done in Theorem 3.3 below, following Lemma 3.2 that provides suitable bounds for |A( j)n − A|.



280 A. Sidi / Journal of Computational and Applied Mathematics 112 (1999) 269–290

Lemma 3.2. Assume that the conditions of Lemma 3:1 are satis�ed.
(i) With �̂ and �̂s as in Lemma 3:1; we have

|A( j)n − A|6�̂�̂n
(

n∏
i=1

1 + !i

|1− !�+i−1|

)
tR�+nj !(R�)n+(n

2−n)=2: (3.13)

(ii) If we assume; in addition; that A(y)∈F (1)∞ with B(t)∈C∞[0; t̂ ] and t̂¿tj; then (3:13) can
be improved to read

|A( j)n − A|6�̂�̂n;3
(

n∏
i=1

1− !i
|1− !�+i−1|

)
tR�+nj !(R�)n+(n

2−n)=2; (3.14)

where

�̂s;3 = max
06t6t̂

|B(s)(t)=s!|; s= 0; 1; 2; : : : ; (3.15)

and �̂ is as in Lemma 3:1.

Proof. Eq. (3.13) is obtained from (3.2) by letting s= n on the right-hand side of the latter and by
realizing that

n∏
i=1

(1 + !−n+i−1) = !−(n2+n)=2
n∏
i=1

(1 + !i):

The proof of (3.14) is achieved by recalling that

D( j)n {B(t)}= B(n)(�)=n! for some �∈ (tj+n; tj) (3.16)

when B(t)∈C∞[0; t̂ ] and t̂¿tj, and by substituting (3.16) in (3.3) and invoking (3.10) as
well.

Theorem 3.3. Assume that the conditions of Lemma 3:1 are satis�ed. Assume also that
(i) �̂n;1 de�ned as in (3:5) grows at worst like exp(
n

1+�) with increasing n; or that
(ii) B(t)∈C∞[0; t̂ ] for some t̂ ∈ (0; br] and that �̂n;3 de�ned as in (3:15) grows at worst like

exp(
n1+�) with increasing n;
where 
¿ 0 and �∈ (0; 1) are some constants. Then; for any �¿ 0 such that ! + �¡ 1; there
exists a positive integer n0 for which

|A( j)n − A|6(!+ �)n2=2 when n¿n0: (3.17)

Proof. Case (i): By the fact that �s = limt→0+ ([B(t) −∑ s−1
i=0 �it

i]=t s); s = 0; 1; 2; : : : ; and by (3.5),
we have that |�s|6�̂s;1; s= 0; 1; 2; : : : . Using this in (3.6), we obtain

�̂n;26
(
max
tl ∈ X

|B(tl)|
)
t̂
−n
+
(
max

06i6n−1
�̂i;1

) n∑
i=1

t̂
−i
: (3.18)

Finally, by the assumption that, with increasing n; �̂n;1 grows at most like exp(
n
1+�) for some 
¿ 0

and �∈ (0; 1), (3.8) and (3.18) together imply that �̂n grows as most like exp(
′n1+�) for some

′¿
. Combining this with (3.13) we obtain (3.17).
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Case (ii): When B(t)∈C∞[0; t̂ ], the fact that
∑∞

i=0 �it
i represents B(t) asymptotically for t → 0+,

implies that �i = B(i)(0)=i!; i = 0; 1; : : : ; and hence, for t ∈ [0; t̂ ],

B(t)−
s−1∑
i=0

�iti =
B(s)(�(t))

s!
t s for some �(t)∈ (0; t); (3.19)

from which we have �̂s;16�̂s;3, and also |�s|6�̂s;3; s = 0; 1; 2; : : : : Using these facts in (3.6), we
obtain, analogously to (3.18),

�̂n;26
(
max
tl ∈ X

|B(tl)|
)
t̂
−n
+
(
max

06i6n−1
�̂i;3

) n∑
i=1

t̂
−i
: (3.20)

The rest of the proof can be completed as that of case (i).

Note that the growth condition on �̂n;1 in case (i) and on �̂n;3 in case (ii) of Theorem 3.3 is
very liberal and holds in most practical situations. Consequently, the result in (3.17) of Theorem
3.3 captures the true nature of the convergence of Process II. In particular, this growth condition on
�̂n;3 is automatically satis�ed when B(t) is analytic on [0; t̂ ]. In this case, �̂n;1 = O(R

n) as n → ∞
for some R¿ 0.
Before we end this section we would also like to mention the convergence results that are relevant

to the case in which B(t) does not have an (in�nite) asymptotic expansion for t → 0+, but it satis�es

B(t) =
s−1∑
i=0

�iti +O(t s) as t → 0+ (3.21)

for some �nite and �xed integer s. Thus, A(y) in this case is not in F (1).
Theorem 3.1 is modi�ed as follows: The asymptotic equivalence in (3.1) is valid for n + �¡s

there. Otherwise, we have A( j)n − A = O(t�+sj ) as j → ∞, as follows from (3.2). A less re�ned but
inclusive result is as follows:

A( j)n − A=O(!(�+n̂) j) as j → ∞ where n̂=min(n; s): (3.22)

Theorem 3.2 is modi�ed as follows: (3.11) is replaced by

A( j)n − A=O(!(�+s)n) as n→ ∞: (3.23)

Thus, convergence takes place in Process II provided R�+ s¿ 0.

4. Application to the D(1)-transformation for in�nite integrals

Consider the function f(x) that is integrable in [a; T ] for any T ¿a¿0. Assume that f(x) has
the asymptotic expansion

f(x) ∼ x−�−1
∞∑
i=0

�ix−i as x → ∞; �0 6= 0; (4.1)

for some � that is in general complex and satis�es � 6= 0;−1;−2; : : : . Only when R�¿ 0,
∫∞
a f(t) dt

exists as an improper integral and its value is limx→∞ F(x), where

F(x) =
∫ x

a
f(t) dt: (4.2)
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When R�60, limx→∞ F(x) does not exist, and hence
∫∞
a f(t) dt does not exist as an improper

integral, but it has a Hadamard �nite part (HFP) that is well de�ned, as is shown in Theorem 4.1
below. We are interested in computing the value of

∫∞
a f(t) dt when R�¿ 0, and its HFP when

R�60. The Levin–Sidi D(1)-transformation is the appropriate extrapolation method through which
this can be achieved very e�ciently, as we show below. As will become clear, the D(1)-transformation
is a GREP(1), and the theory of the previous sections is valid for the D(1)-transformation as this is
applied to the integral

∫∞
a f(t) dt with f(x) as above.

In Theorem 4.1 below we derive the asymptotic expansion of F(x) as x → ∞.

Theorem 4.1. With f(x) as described above; F(x) satis�es

F(x) = I [f] + xf(x)g(x); (4.3)

where the function g(x) has the asymptotic expansion

g(x) ∼
∞∑
i=0

�ix−i as x → ∞; (4.4)

for some constants �i. Here I [f] = limx→∞ F(x) when R�¿ 0 and I [f] is the HFP of
∫∞
a f(t) dt

when R�60. In (4:4) �0 =−1=�.
From (4:1) there exists x̂∈ (a;∞) such that f(x) 6= 0 for x̂6x¡∞. If we assume; in addition;

that f(x) is in C∞(a;∞) and that its derivatives have asymptotic expansions for x → ∞ that
are obtained by di�erentiating (4:1) formally term by term; then the function B(�) = g(�−1) is in
C∞[0; x̂−1].

Proof. Let us �rst consider the case R�¿ 0. Then

F(x) =
∫ ∞

a
f(t) dt −

∫ ∞

x
f(t) dt; (4.5)

since
∫∞
a f(t) dt exists as an improper integral. Invoking (4.1), it can be shown that

∫∞
x f(t) dt has

the asymptotic expansion

∫ ∞

x
f(t) dt ∼ x−�

∞∑
i=0

�i
�+ i

x−i as x → ∞: (4.6)

Substituting (4.6) in (4.5), and using the fact that limx→∞ F(x) =
∫∞
a f(x) dx when R�¿ 0, we

obtain

F(x) ∼ I [f]− x−�
∞∑
i=0

�i
�+ i

x−i as x → ∞: (4.7)

Next, let us consider the case R�60. Let us now de�ne

f̂(x) = f(x)−
N−1∑
i=0

�ix−�−i−1 (4.8)
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for some integer N that satis�es R� + N ¿ 0. Therefore, f̂(x) = O(x−�−N−1) as x → ∞ so that∫∞
x f̂(t) dt exists as an improper integral. As a result, we can write for arbitrary u¿ 0

F(x) =
∫ u

a
f(t) dt +

∫ x

u

(
N−1∑
i=0

�it−�−i−1
)
dt +

∫ ∞

u
f̂(t) dt −

∫ ∞

x
f̂(t) dt: (4.9)

Similarly to the previous case, cf. (4.6), we have∫ ∞

x
f̂(t) dt ∼

∞∑
i=N

�i
�+ i

x−�−i as x → ∞: (4.10)

Substituting (4.10) in (4.9), we obtain (4.7), with I [f] this time given by

I [f] =
∫ u

a
f(t) dt +

N−1∑
i=0

�i
�+ i

u−�−i +
∫ ∞

u
f̂(t) dt; (4.11)

which is nothing but the HFP of the divergent integral
∫∞
a f(t) dt.

Finally, (4.3) and (4.4) follow from (4.1) and (4.7), the �i in (4.4) being uniquely de�ned by( ∞∑
i=0

�ix−i
)( ∞∑

i=0

�ix−i
)
=−

∞∑
i=0

�i
�+ i

x−i as x → ∞: (4.12)

That B(�) = g(�−1) is in C∞[0; x̂−1] under the additional di�erentiability conditions on f(x)
follows from the fact that B(�) satis�es the ordinary di�erential equation �(d=d�)B + q(�)B = −1
with q(�) = �(d=d�)log[�−1f(�−1)] ∼ ∑∞

i=0 qi�
i as � → 0+; q0 = � 6= 0, which is obtained by

di�erentiating (4.3) and invoking (4.1). We leave the details to the reader.

Note. From Theorem A.1 in the appendix it follows that if we denote by �(�) the convergent
integral

∫∞
a f(t) dt when R�¿ 0, then �(�) is analytic in � for R�¿ 0, and the HFP of the

divergent integral
∫∞
a f(t) dt when R�60 is the analytic continuation of �(�) into the left half

of the �-plane. Also this analytic continuation is a meromorphic function with a simple pole at
� = 0 with residue �0 and has additional simple poles at � = −i with residue �i whenever �i 6= 0,
i = 1; 2; : : : .
Comparing the asymptotic expansion of F(x) given in (4.3) and (4.4) with (1.1) and (1.2), and

drawing the analogy F(x)↔ A(y); x−1 ↔ y; xf(x)↔ �(y); r = 1, and I [f]↔ A, we realize that
the function F(y−1) is in F(1), in general, and it is in F(1)∞ with B(t)∈C∞[0; x̂−1] if f(x) satis�es the
additional di�erentiability conditions for x → ∞, whether ∫∞

a f(t) dt exists as an improper integral
or not. Thus I [f] can be approximated very e�ciently by applying GREP(1). But GREP(1) for this
case is nothing but the D(1)-transformation, and the relevant approximations A( j)n to I [f] are now
denoted by D(1; j)n .
Speci�cally, the sequence of approximations D(1; j)n to I [f] generated by the D(1)-transformation

are de�ned by the linear equations

F(xl) = D(1; j)n + xlf(xl)
n−1∑
i=0

��ix
−i
l ; j6l6j + n; (4.13)

derived from (4.3) with (4.4), where the xl are picked such that a¡x0¡x1¡x2¡: : : ; and
liml→∞ xl=∞: Here the �nite integrals F(xl) are computed numerically. One good and economical
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way of doing this is by computing the integrals 3F(xl) =
∫ xl
xl−1
f(t) dt; l = 0; 1; : : : ; with x−1 ≡ a,

by a �xed- and low-order Gauss–Legendre quadrature formula, and then by using the fact that
F(xl) =

∑l
i=03F(xi).

A very useful property of the D(1)-transformation that transpires from the de�ning equations in
(4.13) is that the user need not know the exact value of �. The only input that he needs is a
procedure for computing f(x).
We note that the D(1)-transformation was originally designed for convergent integrals. That it can

be used for computing the HFP of divergent integrals was not known previously; it is based directly
on Theorem 4.1.
So far the xi in (4.13) are arbitrary. If we pick them as in

xi = x0=!i; i = 1; 2; : : : ; for some x0¿a and some !∈ (0; 1); (4.14)

then all of the results of Section 2 pertaining to stability hold. Similarly, Theorems 3.1 and 3.2 hold.
By imposing suitable growth conditions on the derivatives of x�+1f(x) at in�nity, we can cause the
constants �̂n;3 in (3.15) to grow as in case (ii) of Theorem 3.3. In particular, if f(x) is nonvanishing
for x¿x̂ and analytic on [x̂;∞) including x =∞, then B(�) is analytic on [0; x̂−1], which implies
that max06�6x̂−1 |B(n)(�)=n!| = O(Rn) as n → ∞ for some R¿ 0. Thus �̂n;3 grows at a rate much
smaller than that considered in Theorem 3.3, ensuring that Theorem 3.3 holds as well.
With the xl �xed as in (4.14), the D(1)-transformation can be modi�ed by replacing the terms

xlf(xl) in the de�ning equations (4.13) by 3F(xl) =
∫ xl
xl−1
f(t) dt. This is possible since F(xl) has

the asymptotic expansion

F(xl) ∼ I [f] +3F(xl)
∞∑
i=0

�′i x
−i
l as l→ ∞; (4.15)

where �′i are some constants. The validity of (4.15) can be shown by combining

3F(xl) ∼ x−�l
∞∑
i=0

�i
�+ i

(!−�−i − 1)x−il as l→ ∞; (4.16)

that follows from (4.7), with (4.7) itself. This modi�cation of the D(1)-transformation, just as the
D(1)-transformation, does not require any knowledge of �.
When the exact value of � is known, another modi�cation of the D(1)-transformation can be given

in which the terms xlf(xl) in (4.13) are now replaced by x−�l . The new set of de�ning equations
are, of course, derived from the asymptotic expansion in (4.7).
For completeness we note that the D(1)-transformation and its two modi�cations can be imple-

mented via the W -algorithm by replacing tl and a(tl) by x−1l and F(xl) respectively, and ’(tl) by
xlf(xl) for the D(1)-transformation and by 3F(xl) and x−�l for the modi�cations of the D(1)-trans-
formation.
Before we end this section we would like to recall that the D(1)-transformation is the simplest

form of the Levin–Sidi D(m)-transformation that is de�ned via the linear systems of equations

F(xl) = D(m;j)n +
m∑
k=1

xkl f
(k−1)(xl)

nk−1∑
i=0

��kix
−i
l ; j6l6j + N; (4.17)
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Table 1a
Numerical results for the integral

∫∞
1
f(t) dt of Example 5.1 with �=0:5+10 i, obtained via the D(1)-transformation with

xl = 2l+1; l= 0; 1; : : : . Here �̂n ≡ �̂n(�;!)

n xn |F(xn)− 1| |D(1;0)n − 1| �(0)n |�(0)n − �̂n|=�̂n
1 4.00D+00 9.43D−01 1.54D−01 3.00D+00 7.11D−02
2 8.00D+00 8.00D−01 5.23D−02 5.92D+00 1.72D−01
3 1.60D+01 6.29D−01 8.58D−03 7.70D+00 1.21D−01
4 3.20D+01 4.71D−01 7.21D−04 8.58D+00 6.89D−02
5 6.40D+01 3.43D−01 3.10D−05 9.00D+00 3.65D−02
6 1.28D+02 2.46D−01 6.76D−07 9.20D+00 1.88D−02
7 2.56D+02 1.75D−01 7.41D−09 9.30D+00 9.51D−03
8 5.12D+02 1.25D−01 4.08D−11 9.35D+00 4.79D−03
9 1.02D+03 8.82D−02 1.12D−13 9.38D+00 2.40D−03
10 2.05D+03 6.24D−02 1.55D−16 9.39D+00 1.20D−03
11 4.10D+03 4.42D−02 1.07D−19 9.39D+00 6.02D−04
12 8.19D+03 3.12D−02 3.70D−23 9.40D+00 3.01D−04
13 1.64D+04 2.21D−02 6.38D−27 9.40D+00 1.51D−04
14 3.28D+04 1.56D−02 5.51D−31 9.40D+00 7.53D−05
15 6.55D+04 1.10D−02 1.84D−33 9.40D+00 3.77D−05
16 1.31D+05 7.81D−03 8.84D−34 9.40D+00 1.88D−05
17 2.62D+05 5.52D−03 7.72D−34 9.40D+00 9.42D−06
18 5.24D+05 3.91D−03 6.39D−35 9.40D+00 4.71D−06
19 1.05D+06 2.76D−03 3.77D−34 9.40D+00 2.35D−06
20 2.10D+06 1.95D−03 5.26D−34 9.40D+00 1.18D−06

where D(m;j)n is the approximation to I [f] and �ki are additional unknowns, n stands for the integer
vector (n1; n2; : : : ; nm), and N =

∑m
k=1 nk . (The de�nition of the D

(m)-transformation through (4.17) is
slightly di�erent from the original de�nition in [4] and more user-friendly as well.) Note that the
only input necessary for this transformation is f(i)(x); i=0; 1; : : : ; m−1. The D(m)-transformation has
proved to be one of the most e�ective acceleration methods for computing in�nite-range integrals
of varying degrees of complexity. Although it has been mainly used to accelerate the convergence
of in�nite-range convergent integrals, numerical experiments done by the author have shown that
the D(m)-transformation with m¿2 is capable of producing very good approximations to the HFPs
of divergent integrals that can be much more complicated than the ones treated in this section.
In the next section we provide examples to which the D(2)-transformation is applicable but the
D(1)-transformation is not.

5. Numerical examples

We now give two sets of examples to which the D(1)- and D(2)-transformations are applicable.
To keep things simple we have picked the functions f(x) to be the derivatives of some easily
computable functions so that F(x) =

∫ x
a f(t) dt is known analytically. The computations for this

section were carried out in quadruple precision arithmetic.
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Table 1b
Numerical results for the integral

∫∞
1
f(t) dt of Example 5.1 with � = 10 i, obtained via the D(1)-transformation with

xl = 2l+1; l= 0; 1; : : : . Here �̂n ≡ �̂n(�;!)

n xn |F(xn)− 1| |D(1;0)n − 1| �(0)n |�(0)n − �̂n|=�̂n
1 4.00D+00 1.33D+00 1.82D−01 2.98D+00 5.20D−02
2 8.00D+00 1.60D+00 1.11D−01 8.27D+00 1.82D−01
3 1.60D+01 1.78D+00 2.82D−02 1.25D+01 1.64D−01
4 3.20D+01 1.88D+00 3.43D−03 1.47D+01 9.60D−02
5 6.40D+01 1.94D+00 2.10D−04 1.57D+01 5.12D−02
6 1.28D+02 1.97D+00 6.51D−06 1.62D+01 2.64D−02
7 2.56D+02 1.98D+00 1.01D−07 1.65D+01 1.34D−02
8 5.12D+02 1.99D+00 7.88D−10 1.66D+01 6.74D−03
9 1.02D+03 2.00D+00 3.08D−12 1.66D+01 3.38D−03
10 2.05D+03 2.00D+00 6.00D−15 1.67D+01 1.69D−03
11 4.10D+03 2.00D−00 5.86D−18 1.67D+01 8.47D−04
12 8.19D+03 2.00D+00 2.86D−21 1.67D+01 4.24D−04
13 1.64D+04 2.00D+00 6.99D−25 1.67D+01 2.12D−04
14 3.28D+04 2.00D+00 8.53D−29 1.67D+01 1.06D−04
15 6.55D+04 2.00D+00 3.27D−31 1.67D+01 5.30D−05
16 1.31D+05 2.00D+00 6.79D−32 1.67D+01 2.65D−05
17 2.62D+05 2.00D+00 2.24D−31 1.67D+01 1.33D−05
18 5.24D+05 2.00D+00 2.85D−31 1.67D+01 6.63D−06
19 1.05D+06 2.00D+00 3.00D−32 1.67D+01 3.31D−06
20 2.10D+06 2.00D+00 4.83D−31 1.67D+01 1.66D−06

Example 5.1. Let us consider the integrals
∫∞
a f(t) dt with

f(x) =
d
dx
[x−�v(x)] = x−�−1[− �v(x) + xv′(x)]; (5.1)

where v(x) is an arbitrary di�erentiable function that has an asymptotic expansion of the form

v(x) ∼
∞∑
i=0

vix−i as x → ∞; v0 6= 0; (5.2)

and v′(x) has an asymptotic expansion obtained by di�erentiating (5.2) term by term. From (5.1)
we immediately have

F(x) =
∫ x

a
f(t) dt = x−�v(x)− a−�v(a): (5.3)

Furthermore, f(x) satis�es all the conditions of Theorem 4.1 and thus we have

I [f] =−a−�v(a) for � 6= 0;−1;−2; : : : : (5.4)

In the computations that we report below we took a=1 and v(x) =−2x=(1+ x), so that I [f] = 1
for all values of � 6= 0;−1;−2; : : : .
In Tables 1a–1c we give xn; |F(xn) − 1|; |D(1;0)n − 1|; �(0)n , and |�(0)n − �̂n(�;!)|=�̂n(�;!), for

�=0:5+10 i; �=10 i; and �=−0:5 respectively, obtained with !=0:5. In the �rst case the integral∫∞
a f(t) dt exists as an improper integral, while in the second and third cases it diverges with
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Table 1c
Numerical results for the integral

∫∞
1
f(t) dt of Example 5.1 with � = −0:5, obtained via the D(1)-transformation with

xl = 2l+1; l= 0; 1; : : : . Here �̂n ≡ �̂n(�;!)

n xn |F(xn)− 1| |D(1;0)n − 1| �(0)n |�(0)n − �̂n|=�̂n
1 4.00D+00 1.89D+00 1.08D+00 5.70D+00 2.20D−02
2 8.00D+00 3.20D+00 3.72D+00 5.05D+01 4.86D−01
3 1.60D+01 5.03D+00 1.43D+00 6.15D+01 1.35D−01
4 3.20D+01 7.53D+00 4.10D−01 8.71D+01 1.43D−01
5 6.40D+01 1.10D+01 6.05D−02 1.11D+02 8.23D−02
6 1.28D+02 1.58D+01 4.27D−03 1.27D+02 4.16D−02
7 2.56D+02 2.25D+01 1.46D−04 1.36D+02 2.11D−02
8 5.12D+02 3.19D+01 2.47D−06 1.40D+02 1.08D−02
9 1.02D+03 4.52D+01 2.07D−08 1.43D+02 5.45D−03
10 2.05D+03 6.39D+01 8.65D−11 1.44D+02 2.74D−03
11 4.10D+03 9.05D+01 1.80D−13 1.44D+02 1.38D−03
12 8.19D+03 1.28D+02 1.87D−16 1.45D+02 6.89D−04
13 1.64D+04 1.81D+02 9.70D−20 1.45D+02 3.45D−04
14 3.28D+04 2.56D+02 2.51D−23 1.45D+02 1.73D−04
15 6.55D+04 3.62D+02 3.26D−27 1.45D+02 8.63D−05
16 1.31D+05 5.12D+02 2.80D−29 1.45D+02 4.32D−05
17 2.62D+05 7.24D+02 5.47D−29 1.45D+02 2.16D−05
18 5.24D+05 1.02D+03 3.23D−29 1.45D+02 1.08D−05
19 1.05D+06 1.45D+03 6.41D−30 1.45D+02 5.39D−06
20 2.10D+06 2.05D+03 6.81D−29 1.45D+02 2.70D−06

HFP equal to 1. Although what we report here is only the results obtained by using the (original)
D(1)-transformation, the two modi�cations perform almost identically.
When �= 0:5 + 10 i; {F(xn)} converges to I [f] = 1. When �= 10 i; {F(xn)} does not converge

but is bounded. Finally, when �=−0:5; {F(xn)} diverges and is unbounded.

Example 5.2. Let us now consider the integrals
∫∞
a f(t) dt with

f(x) =
d
dx
[x−� log(1 + x)v(x)]; (5.5)

where v(x) is exactly as in Example 5:1. Thus we have

F(x) =
∫ x

a
f(t) dt = x−� log(1 + x)v(x)− a−� log(1 + a)v(a): (5.6)

Clearly, limx→∞F(x) exists only when R�¿ 0, and

I [f] =−a−� log(1 + a)v(a) for � 6= 0;−1;−2; : : : ; (5.7)

is limx→∞ F(x) when R�¿ 0 and the antilimit of F(x) for x → ∞ otherwise. (The antilimit is the
HFP of

∫∞
a f(t) dt in this example too.)

By expanding F(x) given in (5.6) for x → ∞, we realize that its asymptotic behavior is more
complicated than that given in Theorem 4.1, cf. especially (4.7). Therefore, we do not expect the
D(1)-transformation to be e�ective in this example. The D(2)-transformation, with the xl picked as in
(4.14), is very e�ective, however.
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Table 2
Numerical results for the integral

∫∞
1
f(t) dt of Example 5.2 with �=0:5 and �=−0:5, obtained via the D(2)-transformation

with xl = 2l+1; l= 0; 1; : : :

�= 0:5 �=−0:5
� x2� |F(x2�)− 1| |D(2;0)(�;�) − 1| |F(x2�)− 1| |D(2;0)(�;�) − 1|
1 8.00D+00 4.98D−01 4.03D−01 3.98D+00 7.54D−01
2 3.20D+01 4.32D−01 1.97D−02 1.38D+01 3.98D+00
3 1.28D+02 3.07D−01 9.28D−04 3.94D+01 3.38D+00
4 5.12D+02 1.99D−01 3.59D−06 1.02D+02 5.10D+00
5 2.05D+03 1.21D−01 8.48D−09 2.49D+02 1.01D−01
6 8.19D+03 7.18D−02 2.52D−12 5.88D+02 1.10D−03
7 3.28D+04 4.14D−02 3.57D−16 1.36D+03 2.90D−06
8 1.31D+05 2.35D−02 7.01D−21 3.08D+03 1.89D−09
9 5.24D+05 1.31D−02 6.13D−26 6.88D+03 3.07D−13
10 2.10D+06 7.25D−03 7.45D−32 1.52D+04 1.24D−17
11 8.39D+06 3.97D−03 6.77D−33 3.33D+04 1.25D−22
12 3.36D+07 2.16D−03 1.18D−32 7.24D+04 3.68D−25
13 1.34D+08 1.17D−03 4.65D−33 1.56D+05 6.26D−26
14 5.37D+08 6.26D−04 1.01D−33 3.36D+05 1.87D−24

In the computations that we report below we took a=1 and v(x)=Kx=(1+x), where K=−2= log 2,
so that I [f] = 1 for all values of � 6= 0;−1;−2; : : : .
In Table 2 we give the x2�; |F(x2�)− 1|, and |D(2;0)(�;�) − 1| for �= 0:5 and �=−0:5, obtained with

!= 0:5 in (4.14).
The sequence {F(xl)} converges for � = 0:5 and diverges and is unbounded for � = −0:5. The

computations also show that the extrapolation procedure is numerically very stable even though we
have no theory of stability for the D(2)-transformation.
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Appendix. HFP as analytic continuation

Theorem A.1. Let H (x) be de�ned on [a;∞) for some a¿ 0 and satisfy

H (x) =
N−1∑
i=0

�ix−�i +O(x−�N ) as x → ∞; (A.1)

where N is some positive integer and

�i 6= 0; i = 0; 1; : : : ; and 0 = �0¡R�1¡R�2¡ · · · : (A.2)
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De�ne the function �(�) via the convergent integral

�(�) =
∫ ∞

a
x−�−1H (x) dx; R�¿ 0: (A.3)

Then the following assertions are true.
(i) �(�) is an analytic function of � for R�¿ 0.
(ii) �(�) has an analytic continuation for R�¿ − R �N that has simple poles at � = 0;−�1;

−�2; : : : ;−�N−1; with corresponding residues �0; �1; �2; : : : ; �N−1.
(iii) When −R �N ¡R�60 but � 6= 0;−�1;−�2; : : : ; the HFP of the divergent integral

∫∞
a x−�−1

H (x) dx is nothing but the analytic continuation of �(�).

Proof. From (A.1) and (A.2) it is clear that H (x)=O(1) as x → ∞. Making the change of variable
of integration x = aet , (A.3) can be expressed via the Laplace transform

�(�) = a−�
∫ ∞

0
e−�tH (aet) dt; R�¿ 0: (A.4)

Applying the standard theory of Laplace transforms to (A.4), see, e.g., [1, p. 265], part (i) of the
theorem follows.
Substituting (A.1) into (A.3) and again making the change of variables x = aet , we next obtain

�(�) =
N−1∑
i=0

�i
a−�−�i

�+ �i
+ a−(�+�N )

∫ ∞

0
e−(�+�N )tRN (aet) dt; R�¿ 0; (A.5)

where we have de�ned

RN (x) =

[
H (x)−

N−1∑
i=0

�ix−�i
]
x�N : (A.6)

Now the summation on the right hand side of (A.5) is analytic everywhere in the �-plane except at
� = −�i where it has a simple pole with residue �i; i = 0; 1; : : : ; N − 1. As for the integral on the
right-hand side of (A.5), again, by the standard theory of Laplace transforms, and also by the fact
that RN (x) =O(1) as x → ∞, it is an analytic function of � for R�¿−R �N . Thus the right-hand
side of (A.5) is a meromorphic function of � for R�¿−R �N , while its left-hand side is analytic
for R�¿ 0. Consequently, the right-hand side of (A.5) is the analytic continuation of �(�) de�ned
by (A.3) to the half plane R�¿− R �N . This proves part (ii).
Part (iii) follows by realizing that the right-hand side of (A.5) is also the HFP of the divergent

integral
∫∞
a x−�−1H (x) dx when −R �N ¡R�60 but � 6= 0;−�1;−�2; : : : .

Obviously, the integrals of Example 5.1 in Section 5 of the present work are covered by this
theorem with �i = i; i = 0; 1; 2; : : : .
Note that Theorem A.1 can be generalized in a straightforward manner to the case in which �i in

(A.1) is replaced by a polynomial in log x of some arbitrary order ki−1 for each i and the condition
on the �i in (A.2) is replaced by the weaker condition 0=�06R �16R �26 · · ·6R �N−1¡R �N .
Under these conditions parts (i) and (iii) of the theorem do not change. Part (ii) is modi�ed in that
the analytic continuation of �(�) now has poles at 0;−�1; : : : ;−�N−1, of respective multiplicities
k0; k1; : : : ; kN−1. The integrals of Example 5.2 in Section 5 are covered by this generalization of
Theorem A.1.
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Remark. A result similar to Theorem A.1 is proved in [2, Chapter 3, pp. 48–49] for integrals of
the form

∫∞
0 x�’(x) dx, where ’∈C(−∞;+∞) and has bounded support. Our result is di�erent from

that of [2] in that H (x) has an asymptotic expansion in arbitrary powers of x as x → ∞ and is
not required to be di�erentiable at x =∞, whereas the analogous ’(x) of [2] is assumed to be
di�erentiable for all �nite x. (Note that x=∞ in Theorem A.1 is analogous to x=0 in [2].) Besides,
our conditions on H (x) can be generalized further as mentioned in the previous paragraph.
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