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Abstract

Problems in unbounded domains are often solved numerically by truncating the infinite domain via an artificial
boundaryB and applying some boundary condition Bnwhich is called a Non-Reflecting Boundary Condition
(NRBC). Recently, a two-parameter hierarchy of optimal local NRBCs of increasing order has been developed. The
optimality is in the sense that the local NRBC best approximates the exact nonlocal Dirichlet-to-Neumann (DtN)
boundary condition in thé., norm for functions inC*. The optimal NRBCs are combined with finite element
discretization in the computational domain. Here theoreticalproperties of the resulting class of schemes are
examined. In particular, theorems are proved regarding the numerical stability of the schemes and their rates of
convergencel 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

There are many methods to solve boundary value problems in unbounded domains [7]. One popular
class of methods is that based on the use of artificial boundary conditions, which are also called absorbing
boundary conditions or Non-Reflecting Boundary Conditions (NRBCs), especially in the context of wave
problems [6]. The use of NRBCs comprises of three steps:
(a) Introduce an artificial boundady, which divides the original infinite domain into two domains:
a finite computational domaif? and an infinite residual domaiR.

(b) By analyzing the problem irD, obtain a relation or3 (exact or approximate) involving the
unknown functioru and its derivatives. Use this relation as a boundary conditio8,do obtain
a well-posed problem ite.

(c) Solve the problem ig2 numerically.
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Fig. 1. Setup of the DtN method for (a) a semi-infinite strip problem, (b) an exterior problem of scattering or
radiation from an obstacle.

Figs. 1(a) and (b) illustrate the typical setup for a problem in a semi-infinite strip (or a channel, or a
wave guide) and in the domain exterior to an obstacle or scatterer, respectively.

Most of the NRBCs which have been proposed in the literaturdogsd and approximate Perhaps
the most commonly used ones are the NRBCs of Engquist and Majda [4], and of Bayliss and Turkel [2].
A smaller number oéxact nonlocaNRBCs have been devised for various problems in infinite domains
[5,9,18-20,28,29]. For general linear elliptic problems, Keller and Givoli [10,22] devised an exact NRBC
on an artificial boundary3 of a simple shape (e.g., a circle in 2D or a sphere in 3D). This NRBC
involves the Dirichlet-to-Neumann (DtN) map @& and is thus called thBtN boundary conditionit
has been incorporated in a finite element scheme, resulting in the gBtiErinite Element metho{d],
[10,11,17]. More recently, the method was extended to treat classes of linear hyperbolic problems [8],
nonlinear elliptic problems [14,25] and nonlinear hyperbolic problems [13].

Despite the fact that exact nonlocal NRBCs may be extremely useful in many situations, there are
cases wheréocal NRBCs may be preferred. A discussion of the relative advantages and disadvantages
of local and nonlocal NRBCs can be found in [16]. The main conclusion from this comparison is that
there is place fobothtypes of NRBCs in computational schemes.

Recently, Givoli and Patlashenko [15] have constructed a hierarchyptinal local NRBCs of
increasing order. The approach is based on considering a local boundary condition of a given form
(a given “order”) with unknown coefficients, and asking the following questifnat is the best
choice for the unknown coefficients so that the local operator in the boundary condition be the best
approximation of the DtN mapn a certain norm? This question has been answered in [15]Gffa
framework, using thd., norm for functions that can be Fourier decomposed. The optimal conditions
constitute a two-parameter hierarchy; the two parameterdvaithe order of the boundary condition,
and M, the number of harmonics (or Fourier modes) taken into account. MexeN. The NRBCs with
M = N are the same as those constructed in [16,23,24] in a totally different manner.

In the computational domai2 the finite element method is employed. AMf > 2, special finite
elements must be used, which possess high-order regularity BloAdhierarchy of such elements in
two and three dimensions has been devised in [12,16,24].
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In [15] the (N, M) hierarchy was constructed and some numerical experiments demonstrated the
performance of the resulting schemes. In this paper we examinthdoeetical properties of these
schemes. In particular, we analyze theiimerical stabilityandrates of convergence

Following is the outline of the paper. In Section 2 we briefly recall the construction of the optimal local
NRBCs. In Section 3 we prove a theorem on the numerical stability afNh@/) schemes. In Section 4
we derive an error estimate for tli&/, M) schemes, which is an extension of the estimate given in [16]
for the casev = M. We close with some remarks in Section 5. In the Appendix we discuss the properties
of the optimal coefficients, and we prove some lemmas which are used in the body of the paper.

2. Optimal local NRBCs

In this section we briefly summarize the construction of the optimal IgdalM) conditions
introduced in [15]. To fix ideas, we concentrate on the case shown in Fig. 1(b), namely a two-dimensional
exterior problem, wherg is a circle. However, these ideas carry over in a straightforward manner to other
configurations and to three dimensions.

We let R be the radius of the artificial boundaB; In the DtN method, we impose the DtN boundary
condition onB. This condition has the form

27
au > / / / /
_8_r(R,6)=(Mu)(9)=nz=% O/mn(Q,Q)M(R,Q)dQ, (1)

where

m,(0,0') = nZR cosn (6 —6). )

In (1), M is the DtN map, which is aonlocaloperator, and the prime after the sum indicates that a factor
of 1/2 multiplies the term witm = 0. In (2), theZ, are constants. For example, for Laplace equation,
Z, =n. See [7,10,11,22], and the summary in [16] for further details.

We wish to approximate the nonlocal operatdrby an Nth-orderlocal operator. Thus, we replace (1)

by
ou 1Y 02y
———(R,0)=(L 0)=— A, ——. 3
S (R, 0) = (Lyu)(©) R,,Z:o e ®)
Here theA, are constant coefficients. Now we ask the following question: how should the coefficients
A,,n=0,..., N, be chosen, such thaty is the “best approximation” aM?
We answer this question in thie, norm for functions inC*°. We consider the Fourier expansiongf

u=) '(u5cosjo +ujsinjo). 4)

M
=0

J

Here, M is a chosen number of modes, alWtl> N. Thus, the procedure described here constitutes a
two-parameter ¥/, M) family of schemes.
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Now, we apply both operatorst and L to the functionu whose expansion is given in (4). We take the
difference between the two, and calculate th€3) norm of this difference. This yields

M
2 T 12 s12 2
1M = Liullg= 7 2 (1 -+ 1 ) T (5)
j=
where
N
BN =2Z; > Au=D*j*. (6)

k=0

Suppose we have some estimate of the relative importance of the different maddéseaf examples
in [15]). In this case, we leW; be given positive weights, where

T . ) .
Wo= 2 (g +[upf),  Wy=m (P + ), j=1 M )
Then (5) gives
2 1 M ve 1 N2
== w181 = 8" o
]:

Here [|8"||w is the weightedEuclidean norm of the vectg8”, whose entries are defined by (6). If
nothing is known about the relative amplitudes of the modes ofie should simply take all the weights
to have value unity.

A necessary condition for the minimum QBNH%V is 8||ﬂN||%4,/8A1 =0forl=0,...,N. This gives
the linear symmetric system of equations

BA=P, 9)
where

M

P => W;Z;(-1j%, [=0,...,N, (10)
j=0
M

By=)» W;(=D)* 2k 1=0,... N. (11)
j=0

The solution of this system yields the desired coefficientsn the local boundary condition (3).
Itis convenient to define," " = (—1)* A;, emphasizing the fact that the optim| obtained from (9)
depend on the chosen paramet®rand M. Then (9)—(11) are rewritten as

N M

M
ZZWJJZ(]C-H)O{]iNM) :ijszZI’ l:O,,N (12)
k=0 j=0 j=0

With this notation, the local condition (3) is rewritten as
du 1Y 32
_ — n, (NM)
5 (R,0)=(Lyuu)(0) = R > (—D"ay

‘ (13)
n=0 892
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We have derived this result for the two-dimensional exterior problem (Fig. 1(b)). However, similar
results hold for other configurations as well. In the case skmi-infinite strip(Fig. 1(a)) with the
boundary conditions = 0 on the two semi-infinite rays (a case which will be referred to later), it is
natural to change the ranges of the indices in (12) (see [15,16Rries from 1 toM, whereask and!
vary from 0 toN — 1. Thus, (12) is replaced by the linear system

N M M
Z Z Wij(k+1)—4aIENM) _ Z W,Z;j27% 1=1,...,N. (14)
k=1 j=1 j=1

Also, (13) is replaced by

ou _ N 0 (NM) 92—y,
—a(xo, y) = (Lyuu)(y) = 2(—1) a, 5y20 D
on the boundarys, which is defined by = xq, 0< y < b (see Fig. 1(a)).
We remark that in the special case= M, the optimal coefficients!" " reduce to those obtained (in
a totally different manner) in [16,23,24]. In this case it is easily shown that the welightirop out of
the formulation.

(15)

3. Numerical stability

We now consider the numerical scheme that consists in using the finite element method to solve the
given PDE ins2 together with the local boundary condition (13) or (15)®&nNe assume that the partial
differential operator governing ife is self-adjoint and positive. Thus, Laplace’s equation, the modified
Helmholtz equation and the equations of static linear elasticity fit into the analysis that follows, whereas
the Helmholtz equation and the advection—diffusion equation do not. For concreteness we focus our
attention on the case of a semi-infinite strip (Fig. 1(a)) with the boundary conditief® on the two
semi-infinite rays, although the analysis can easily be extended to other configurations.

The weak formulation of the problem can be written in the form: RirelS such that for alw € Sg,

a(w,u) +byy(w, u) =c(w). (16)

HereS and Sy are appropriate function spaces;, -) andbyy, (-, -) are symmetric bilinear forms, and
c(-) is alinear form. Thei(-, -) andc(-) terms are standard, whereas #ig, (-, -) term is the contribution
of the condition (15) orB. The expression for the latter is easily obtained (cf. [16]):

N " lw "y
byy(w,u) = wLNMudB=Za(NM) —_— dy. a7
J =t n J aynfl 8yn71

The numerical stability of standard finite element schemes for well-posed boundary value problems
with symmetric positive operators is closely related to the factdhat) is positive definite, namely that
a(w", w") > 0 for any functionw” in the finite element space that is not identically zero [21,27]. Then
the a(-, -)-form induces the “energy normw”|| = (a(w”, w"))¥/2. On the discrete level this property
implies that the finite element stiffness matrix is positive definite. When the boundarytayitw, )
is included in the weak form (16), it is desirable to know whether ) + by (-, -) remains positive
definite. A sufficient condition for this is thaty, (w”, w”) > 0 for anyw”, which we prove next.
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First we prove:

Lemma 1. Let ™" satisfy (14) with Z; = f(j?), where f € C[0, oo] and f € CV (0, o0) such that
(=171 (x) > O0forall x > 0.
() If N=12andM is arbitrary, or N =M =4,6,8, ..., then

N
Za’(lNM)kZ(n—l) >0, k=12 .... (18)
n=1

(i) IncaseM > N =4,6,8,...,then(18) holds withk =M, M +1, M +2,....
Proof. The results follow directly from Lemmas A.2 and A.4 in the Appendixa
Now we have:

Theorem 1. Assume the conditions of LemrhaThen, for any Fourier decomposable function we
havebyy (w, w) > 0, when(i) M is arbitrary andN = 1,2, or (i) M =N =4,6,8,..., or (ii) M is
arbitrary and N =4,6,8,... (N < M) and also

N
Zar(lNM)kﬂn*l)}o, k=2,3,.... M —1.
n=1

Proof. We expandw in a Fourier series:
ad _kmy
w = wy SIN——.

We substitute this expansion in (17) and make use of the orthogonality of the sines to get

N

b oo
bw(w, w) =33 e wik* Y, (19)
n=1 k=1

A sufficient condition forby, (w, w) to be non-negative is thus

N
Zar(lNM)kZ(nfl) >0 fork=1,2....
n=1

But this condition is indeed satisfied by Lemma 13

Note that the extra condition for the cade< M in Theorem 1 can be verified by performing a
finite number 4 — 2) of computations. (See [16] for examples of such computations.) Our numerical
experiments with different values of, N and various sets of weigh#;, suggest that this condition is
satisfied in general, although we do not have a proof of this at the time of writing.

A consequence of this theorem is thikaé optimal local boundary conditions withi =1 or N even
and anyM are numerically stableOn the other hand, the conditions witi=£ 1 odd are potentially
unstable. Numerical experiments [15,16] show that this is indeed the case. Moreover, the same behavio
is observed for the Helmholtz equation which is beyond the scope of this analysis.
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4. Error estimate

When the optimal local NRBC (13) or (15) is incorporated ifirite elemenscheme, the resulting
method involves four computational parametérsthe mesh parameter, which is roughly the size of the
largest element in the mesh; the polynomial degree of the finite element spa¥e;ithe order of the
local NRBC; andM, the number of Fourier modes taken into account. We consider héraygae finite
element method, wherg is small and fixed and the error is reduced by reducin@e., by refining
the mesh). Our goal is to determine the rate of convergence of the method as a function of these four
parameters.

In [16], Givoli et al. have derived an error estimate for a sequence of NRBCs that happen to coincide
with the optimal conditions (13) and (18henN = M (although they were constructed in a different
way in [16]). This error estimate can be stated as follows:

Theorem 2 (The caseV = M). If (a) N is 1 or ever(i.e., the NRBC is stabje(b) the coefficients V")
satisfy(14), and(c) u € H" (£2) wherer > max(1, 2N — 2) andr > p + 1, then

llelly < (C1h? + C2N7F)[|ull,, (20)
wherep =min(r — 1,r — 2N + 2).

Here e is the error, i.e., the difference between the exact and finite element solutions the
Sobolev space of ordert, || - ||, is the norm in this space, anch and C, are constants. The first term
on the right-hand side of (20) is the standard finite element error estimate, whereas the second termr
shows the rate of convergence with respecNtoThe parameter is the degree of smoothness of the
exact solutioru. If u is infinitely smooth, them — oo, which indicates exponential convergenceMn
Numerical experiments [16] show agreement with the estimate (20).

The proof of Theorem 2 [16] is quite long, but most of it does not depend on the properties of the
coefficientsa,. The only part in the proof that involves theg can be summarized by the following
lemma (see [16, Section 7.6]):

Lemma 2 (The caseV = M). For anyw, andu,,

N
Z (Z a(NN) 2(m— D) Wyl — annun
n=1

n=1
where(C is a constant that does not depend@n

o0
<C D PN Pw,u,l, (21)
n=N+1

TN:

Proof. The proof in [16] does not actually show th@tis independent oV, and therefore we give here
the full proof. Making the substitutio® y (x) = SN _, « VM x"=1 we first observe that

m=1
N
Up — E nwyy,

n=1

Ty = < Z |QN ||wnun|

n=N+1

sinceQy(n?) =n,n=1,..., N. The proof can now be completed by invoking Lemma A.8]

Now we extend the error estimate (20) to the cése- N. To this end, we first extend Lemma 2 to
this case:
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Lemma 3 (The caseM > N). Let M > N > 1 and assume that th#, satisfy the growth condition
W, ~ An~*"=D asn — oo, whereA > 0 is some constant independentfand M. If M — N < K,
whereK is fixed hence independentd@fand M, andZ; = j, j =1, 2, ..., then, for anyw, andu,,

o0 N M
M) 2(m—1
n=1

n=1 \m=1

o
<C> N Plw,uyl, (22)
n=1

UNME

where(C is a constant that does not depend@rand M.

Proof. Making the substitutiorPy (x) = >-_, a¥xm=1 we first observe that

m=1
M o
Uvm = Z [Pym (n2> — n]w,u, + Z Py (nz)wnu,, < Sy + S,
n=1 n=M+1
where
M o0
5122 | Pym (n%) = n|lwau,| and S;= Z | Pre (n2) || witt, .
n=M+1

Applying part (iii)(b) of Lemma A.4, and using the fact thatx) = /x <xV~1forx > 1whenN > 1,
we have| Py (x)| < Exx™~1 for x > x); = M? whenN > 2, with E, > 0 a constant independent if
and M. From this we conclude that, whev > 2,

o
2AN-1
S2a<Ez Y 0V Plwu,).
n=M+1

We next proceed t8;. First, we have

S1 < (Zrlwn nl> 1g)la<1>§4WWn!PNM(n2) —nl)

Now Py (x) satisfies (A.6) in the Appendix. Setting(x) = Oy (x) = Pyy(x) in (A.6) and recalling
thatQy(n?®) =n,n=1,..., N, we obtain

M M 1/2
(;Wn[PNM(nz)—nf) <<_21W,,[QN(n2)_n]2) .

Applying Lemma A.3 withf (x) = /x to Qn(x) and again usmg the fact thagfr < x"~1forx > 1when
N > 1, we obtain Qy (x) — /x| < E'x¥~1for x > xy = N?, whereE’ > 0 is a constant independent of
N andM. As a result,

( i W, [ Pass (%) — n]2>

1/2

172 1/2

M
E( > Wnn4(Nl)> for N > 2.

n=N+1
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By the asymptotic growth condition imposed 8, we haveW,n*V—b ~ A asn — oo, as a result of
which
M 1/2
( Z Wnn4(N1)> < E"
n=N+1
for some constant” > 0 independent oV and M wheneverM — N < K with K fixed. By the same
growth condition on théV, we also have

1 1,
(N-1)
~ —n asn — 0o,
W, VA
from which
M 1 M
Z —lwnun| < EWZnZ(Nil)lwnunL
n=1"V W" n=1

whereE” > 0 is a constant independent §fand M. Combining all this, we obtain

M
S1<Ery n® N Vlw,u,|
n=1
with E; = E'E"E" > 0 a constant independent §fandM. Letting C = max{E,, E»}, the resultin (22)
now follows. O

This lemma again leads to the error estimate given in Theorem 2. Note, however, that additional
assumptions are made here regarding the asymptotic behavior of the w&jglaisd that the difference
M — N is required to be bounded. These assumptions are reasonable in light of the numerical experiments
presented in [15].

We have also proved a slightly more general version of Lemma 3, where the asymptotic behavior of
the weights isW, ~ An~*"-1-9 asn — oo, with 0 < ¢ < 1. Moreover, ife < 3/4 then the requirement
M — N < K can be dropped, thus enabling us to vArandM arbitrarily. The proof of this more general
lemma is somewhat lengthy, and therefore we shall not give it here.

5. Concluding remarks

We have considered a two-parameter hierarchy of local approximate NRBCs that have been
constructed in [15], for the numerical solution of elliptic boundary value problems in unbounded
domains. These NRBCs are optimal in the sense that they best approximate the exact nonlocal Dirichlet-
to-Neumann (DtN) boundary condition far* functions in theL, norm. The optimal local NRBC
may be of low order but still represent high-order modes. We have analyzed the stability and accuracy
properties of these NRBCs, and obtained some theoretical results which are compatible with those of the
numerical experiments performed in [15,16].

One research direction that is worth pursuing is deriving optimal local NRBCs which are based on
optimization with respect to norms other than thg norm. One possibility in the latter context is to
work in the spaceé? ~/2, where the DtN map and the local differential operator are bounded [3]. Another
area of investigation is the construction of optimal local NRBCs for time-dependent wave propagation
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problems. This can be done within the framework of a number of schemes, including the ones described
in[1,8].

Appendix. Properties of the coefficientsy(V )

We start with the cas&y = M for which the equations in (14) become
N
Za]ENN)jZ(k—l):Zj, j=1...,N, (A1)
k=1

independently of the weight¥;. In this caseD y (x) = >0, " x*~ 1 is a polynomial of interpolation

to a function £ (x) at the pointst; = j?, j =1,..., N, such thatf(x;) = Z; for all j. For the general
case in which O< x; < xp < --- < xy but x; are arbitrary otherwise, the following lemma has been
proved in [26].

Lemma A.1. Let f(x) be such that

(@) f e CJ0, X] for someX > 0 with f(0) > 0, and

(b) feCM(,X)with (=1)/1fP(x)>0forxe(,X),j=1,...,N.

Let 0 < x; < xz < --- < xy < X with x; arbitrary otherwise. If Qy(x) = X8 ,o"Vx*1 is a
polynomial of interpolation tof (x) atxs, ..., xy, then the following are true

(i) o™, oY .., have the sign patters-, +, —, +, —, +, ...

(i) With f(x) = /x andx; = j2,j =1,2,..., fromwhichz; = j forall j, we havga""’| < C for
all k and N, whereC is some constant independentkoéind N. Moreover,lim y_, 5 at* ™’
for some constarit;, andlimy_, .\ ) = 0, wherek is hold fixed in both cases.

(i) With f(x) andx; as in part(ii), the/, condition number of the linear system(i.1) is at best
O(N?N=2) and at worstO(N?¥-1) as N — oo.

For more refined statements of the results of Lemma A.1 we refer the reader to [26].

Lemma A.2. Let f(x) andx; satisfy conditionga) and(b) of LemmaA.1. Then
(i) for N =1,2, we haveQ y(x) > 0for all x >0, and
(i) for N > 4 and even, we hav@®y(x;) = f(x;) >0, j =1,...,N, and Qy(x) > O for all
x € (xy, X) orx €[0, x1) as well.

Proof. Part (i) follows from the fact tha,""’ > 0 for N = 1, 2. Part (ii) follows from the fact that
f(x) > 0 for x € (0, X) that is guaranteed by (0) > 0 and f'(x) > 0 for x € (0, X), and from the
relation

S E®)) T

N [[x—x) for somet (x) e (minfxy, x}, maxixy, x}), (A.2)
. i=1

which is a rearrangement of the error formula for polynomial interpolatian.

On(x) = f(x) —

By imposing certain growth conditions on thfé" (x) we can derive a useful upper bound |@hy (x)],
to which we now turn.
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Lemma A.3. Let f(x) and thex; be as in Lemm&.2, and assume, in addition, that
fO)

sup <Dk k=12,..., (A.3)
>xl k!

for someD > 0 and§ > 0. Then there exists a constafit> 0 independent oN such that
|On()| < ExV™1 forx > max(1, xy_1}. (A.4)

Proof. Let us consider the Newton form @f y (x), namely,

N k-1
Onv) = flx)+ Y flrnxa, ..., x] [ (x —x).
k=2 i=1

wheref[x1, xo, ..., x] is the divided difference of (x) over the set of pointsxy, x», ..., x;}. Obviously,

N
|ONv(x)| < <|f(X1)| +Z|f[xl,xz,---,xk]|>xlvl for x > max{1, xy_1}.

k=2
But
(k=1
flx1, xo, .o, x] = f(kfg_?:) for someg;, € (x1, x1),

which, upon invoking the growth condition (A.3) off*~Y (x), becomes
| flea,xo, x| S DG =D, k=23,...,
Consequently, for alt > max{1, xy_1} we have

N oo
|On ()| < (f(xl) +D (Z(k - 1>—1—5>>xN‘1 < (f(m +D (Zk‘1_5>>xN‘1,

k=2 k=1
(Note that> "2 ; k~1% is a convergent series.) This completes the proof with

E:f(x1)+D<Zk”>. O

k=1

Note that Lemma A.3 applies to the functigitx) = x%, 0 < § < 1, withx; > 1, for which (A.3) holds,
as can easily be verified.

We now turn to the treatment of the cae> N in Eq. (14). Replacing? and Z; in these equations
by x; and f(x;), respectively, we now have the more general problem

M
SOW[Pyw(x) — fap]xit=0, I=1,...,N, (A.5)
j=1

where we have denoteRly, (x) = Z,ﬂ"zl a,ENM)x"*l. This is to sayPyu (x) is a least-squares polynomial
approximation tof (x) in the sense that

ZW [Py (x) — £ ZW] R(x;)— f(x)]° foranyR(x) e my_1, (A.6)
j=1 j=1
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where 7, denotes the set of polynomials of degree at mas{With this notation we also have
Pyn(x) = Q0n(x).)
Lemma A.4 contains the main results concernitg, (x).

LemmaA.4. Let f(x) andx; be as in Lemm&.2 and let Pyy (x) (N < M) be the solution tqA.5).
Then the following are true
(i) There existv pointsy{™™ ..., y""™ in [x1, x)] at which Py, (x) interpolatesf (x). As a result,
(NM) (NM) (NM) .
a; o, ..,ay  have the sign patters-, +, —, 4+, —, ...
(i) Pyy(x) >0forall x >0whenN = 1,2 and Py (x) > 0 for x € [x,, X) or x € [0, x;] when
N=46,8,....
(iii) If, in addition, (A.3) holds for somé& > 0, then
@) 0< Py (x) = fFOi™) < f(x) for x > xy > 3™, and

(0) |Pyy(x)| < f(x) + ExN~1 for all x > max(1, x}, whereE > 0'is a constant independent
of M andN, andN > 2.

Proof. Part (i) follows from Lemma A.5 that we state next and from part (i) of Lemma A.1. Part (ii)
follows from Lemma A.2. Part (iii)(a) is an immediate consequencg(@) being positive and increasing
for x > 0. To prove part (iii)(b) we proceed as in the proof of Lemma A.3. We first have that

| Pym(x)| < f(yiNM)) + ExN"1 forall x > max1, xy},

whereE = D(32°, k~17%). The result now follows by (y{""") < f(xm) < f(x) forx > xy. O

Lemma A.5. Lete(x) be continuous offu, b], and leta < x1 < --- < xy < b. If

M
Z Wje(xj)xifl

j=1

0, [I=1,...,N,

forsomeN <M andW; >0, j=1,..., M, theneithere(x;) =0, j =1,..., M, or there existV points
Y1, ..., yn N [x1, xp], for whiche(y;) =0, j =1,..., N, ande(x) changes sign at the;.

Proof. We start with the observation that

M

> Wie(xpi(x;)=0 foranyr(x) € my_1. (A7)

j=1
Lettingz(x) =1 in (A.7), we conclude that either @(x;) =0, j =1,..., M, or (ii) some of thee(x;)
are positive and some are negative. In case (i) there is nothing to prove. In case (ii) we haye)that
must change sign ofiy, x;,) at least once. We will show thaix) changes sign ofix, x,) at least
N times. Suppose it changes sign exaetliimes,r < N, at the pointsyy, ..., y.. Then we can write
e(x) =q(x)e(x), whereg(x) =[]:_;(x — y;) ande(x) is of one sign on(x1, x)/). Asr < N —1, we can
let7(x) = ¢(x) in (A.7) and thus obtaify~}_, W;e(x;)[g(x;)]? = 0. This implies thaé(x;)[q (x;)]* =0,
Jj =1 ..., M, which, in turn, implies that(x;) =0, j =1,..., M, contrary to our assumption that
not all e(x;) are zero. Therefore, we must hawve= N. The rest of the proof is easy and is left to the
reader. O
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