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Abstract

Problems in unbounded domains are often solved numerically by truncating the infinite domain via an artificial
boundaryB and applying some boundary condition onB, which is called a Non-Reflecting Boundary Condition
(NRBC). Recently, a two-parameter hierarchy of optimal local NRBCs of increasing order has been developed. The
optimality is in the sense that the local NRBC best approximates the exact nonlocal Dirichlet-to-Neumann (DtN)
boundary condition in theL2 norm for functions inC∞. The optimal NRBCs are combined with finite element
discretization in the computational domain. Here thetheoreticalproperties of the resulting class of schemes are
examined. In particular, theorems are proved regarding the numerical stability of the schemes and their rates of
convergence. 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

There are many methods to solve boundary value problems in unbounded domains [7]. One popular
class of methods is that based on the use of artificial boundary conditions, which are also called absorbing
boundary conditions or Non-Reflecting Boundary Conditions (NRBCs), especially in the context of wave
problems [6]. The use of NRBCs comprises of three steps:

(a) Introduce an artificial boundaryB, which divides the original infinite domain into two domains:
a finite computational domainΩ and an infinite residual domainD.

(b) By analyzing the problem inD, obtain a relation onB (exact or approximate) involving the
unknown functionu and its derivatives. Use this relation as a boundary condition onB, to obtain
a well-posed problem inΩ .

(c) Solve the problem inΩ numerically.
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(a) (b)

Fig. 1. Setup of the DtN method for (a) a semi-infinite strip problem, (b) an exterior problem of scattering or
radiation from an obstacle.

Figs. 1(a) and (b) illustrate the typical setup for a problem in a semi-infinite strip (or a channel, or a
wave guide) and in the domain exterior to an obstacle or scatterer, respectively.

Most of the NRBCs which have been proposed in the literature arelocal andapproximate. Perhaps
the most commonly used ones are the NRBCs of Engquist and Majda [4], and of Bayliss and Turkel [2].
A smaller number ofexact nonlocalNRBCs have been devised for various problems in infinite domains
[5,9,18–20,28,29]. For general linear elliptic problems, Keller and Givoli [10,22] devised an exact NRBC
on an artificial boundaryB of a simple shape (e.g., a circle in 2D or a sphere in 3D). This NRBC
involves the Dirichlet-to-Neumann (DtN) map onB, and is thus called theDtN boundary condition. It
has been incorporated in a finite element scheme, resulting in the generalDtN Finite Element method[7],
[10,11,17]. More recently, the method was extended to treat classes of linear hyperbolic problems [8],
nonlinear elliptic problems [14,25] and nonlinear hyperbolic problems [13].

Despite the fact that exact nonlocal NRBCs may be extremely useful in many situations, there are
cases wherelocal NRBCs may be preferred. A discussion of the relative advantages and disadvantages
of local and nonlocal NRBCs can be found in [16]. The main conclusion from this comparison is that
there is place forboth types of NRBCs in computational schemes.

Recently, Givoli and Patlashenko [15] have constructed a hierarchy ofoptimal local NRBCs of
increasing order. The approach is based on considering a local boundary condition of a given form
(a given “order”) with unknown coefficients, and asking the following question:What is the best
choice for the unknown coefficients so that the local operator in the boundary condition be the best
approximation of the DtN map, in a certain norm? This question has been answered in [15] in aC∞
framework, using theL2 norm for functions that can be Fourier decomposed. The optimal conditions
constitute a two-parameter hierarchy; the two parameters areN , the order of the boundary condition,
andM , the number of harmonics (or Fourier modes) taken into account. HereM >N . The NRBCs with
M =N are the same as those constructed in [16,23,24] in a totally different manner.

In the computational domainΩ the finite element method is employed. IfN > 2, special finite
elements must be used, which possess high-order regularity alongB. A hierarchy of such elements in
two and three dimensions has been devised in [12,16,24].
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In [15] the (N,M) hierarchy was constructed and some numerical experiments demonstrated the
performance of the resulting schemes. In this paper we examine thetheoretical properties of these
schemes. In particular, we analyze theirnumerical stabilityandrates of convergence.

Following is the outline of the paper. In Section 2 we briefly recall the construction of the optimal local
NRBCs. In Section 3 we prove a theorem on the numerical stability of the(N,M) schemes. In Section 4
we derive an error estimate for the(N,M) schemes, which is an extension of the estimate given in [16]
for the caseN =M . We close with some remarks in Section 5. In the Appendix we discuss the properties
of the optimal coefficients, and we prove some lemmas which are used in the body of the paper.

2. Optimal local NRBCs

In this section we briefly summarize the construction of the optimal local(N,M) conditions
introduced in [15]. To fix ideas, we concentrate on the case shown in Fig. 1(b), namely a two-dimensional
exterior problem, whereB is a circle. However, these ideas carry over in a straightforward manner to other
configurations and to three dimensions.

We letR be the radius of the artificial boundaryB. In the DtN method, we impose the DtN boundary
condition onB. This condition has the form

−∂u
∂r
(R, θ)= (Mu)(θ)≡

∞∑
n=0

′
2π∫
0

mn
(
θ, θ ′

)
u
(
R,θ ′

)
dθ ′, (1)

where

mn
(
θ, θ ′

)= Zn

πR
cosn

(
θ − θ ′). (2)

In (1),M is the DtN map, which is anonlocaloperator, and the prime after the sum indicates that a factor
of 1/2 multiplies the term withn = 0. In (2), theZn are constants. For example, for Laplace equation,
Zn = n. See [7,10,11,22], and the summary in [16] for further details.

We wish to approximate the nonlocal operatorM by anN th-orderlocal operator. Thus, we replace (1)
by

−∂u
∂r
(R, θ)= (LNu)(θ)≡ 1

R

N∑
n=0

An
∂2nu

∂θ2n
. (3)

Here theAn are constant coefficients. Now we ask the following question: how should the coefficients
An, n= 0, . . . ,N , be chosen, such thatLN is the “best approximation” ofM?

We answer this question in theL2 norm for functions inC∞. We consider the Fourier expansion ofu,

u=
M∑
j=0

′(ucj cosjθ + usj sinjθ
)
. (4)

Here,M is a chosen number of modes, andM > N . Thus, the procedure described here constitutes a
two-parameter (N,M) family of schemes.
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Now, we apply both operatorsM andL to the functionu whose expansion is given in (4). We take the
difference between the two, and calculate theL2(B) norm of this difference. This yields

∣∣∣∣(M−LN)u∣∣∣∣20= π

R2

M∑
j=0

′(∣∣ucj ∣∣2+ ∣∣usj ∣∣2)∣∣βNj ∣∣2, (5)

where

βNj = Zj −
N∑
k=0

Ak(−1)kj2k. (6)

Suppose we have some estimate of the relative importance of the different modes ofu (see examples
in [15]). In this case, we letWj be given positive weights, where

W0' π2
(∣∣uc0∣∣2+ ∣∣us0∣∣2), Wj ' π(∣∣ucj ∣∣2+ ∣∣usj ∣∣2), j = 1, . . . ,M. (7)

Then (5) gives

∣∣∣∣(M−LN)u∣∣∣∣20' 1

R2

M∑
j=0

Wj

∣∣βNj ∣∣2≡ 1

R2

∣∣∣∣βN ∣∣∣∣2
W
. (8)

Here ||βN ||W is the weightedEuclidean norm of the vectorβN , whose entries are defined by (6). If
nothing is known about the relative amplitudes of the modes ofu, one should simply take all the weights
to have value unity.

A necessary condition for the minimum of||βN ||2W is ∂||βN ||2W/∂Al = 0 for l = 0, . . . ,N . This gives
the linear symmetric system of equations

BA=P , (9)

where

Pl =
M∑
j=0

WjZj (−1)lj2l, l = 0, . . . ,N, (10)

Blk =
M∑
j=0

Wj(−1)(k+l)j2(k+l), k, l = 0, . . . ,N. (11)

The solution of this system yields the desired coefficientsAk in the local boundary condition (3).
It is convenient to defineα(NM)k = (−1)kAk , emphasizing the fact that the optimalAk obtained from (9)

depend on the chosen parametersN andM . Then (9)–(11) are rewritten as

N∑
k=0

M∑
j=0

Wjj
2(k+l)α(NM)k =

M∑
j=0

WjZjj
2l , l = 0, . . . ,N. (12)

With this notation, the local condition (3) is rewritten as

−∂u
∂r
(R, θ)= (LNMu)(θ)≡ 1

R

N∑
n=0

(−1)nα(NM)n

∂2nu

∂θ2n
. (13)
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We have derived this result for the two-dimensional exterior problem (Fig. 1(b)). However, similar
results hold for other configurations as well. In the case of asemi-infinite strip(Fig. 1(a)) with the
boundary conditionu = 0 on the two semi-infinite rays (a case which will be referred to later), it is
natural to change the ranges of the indices in (12) (see [15,16]):j varies from 1 toM , whereask andl
vary from 0 toN − 1. Thus, (12) is replaced by the linear system

N∑
k=1

M∑
j=1

Wjj
2(k+l)−4α

(NM)
k =

M∑
j=1

WjZjj
2l−2, l = 1, . . . ,N. (14)

Also, (13) is replaced by

−∂u
∂x
(x0, y)= (LNMu)(y)≡

N∑
n=1

(−1)nα(NM)n

∂2(n−1)u

∂y2(n−1)
, (15)

on the boundaryB, which is defined byx = x0, 06 y 6 b (see Fig. 1(a)).
We remark that in the special caseN =M , the optimal coefficientsα(NM)k reduce to those obtained (in

a totally different manner) in [16,23,24]. In this case it is easily shown that the weightsWj drop out of
the formulation.

3. Numerical stability

We now consider the numerical scheme that consists in using the finite element method to solve the
given PDE inΩ together with the local boundary condition (13) or (15) onB. We assume that the partial
differential operator governing inΩ is self-adjoint and positive. Thus, Laplace’s equation, the modified
Helmholtz equation and the equations of static linear elasticity fit into the analysis that follows, whereas
the Helmholtz equation and the advection–diffusion equation do not. For concreteness we focus our
attention on the case of a semi-infinite strip (Fig. 1(a)) with the boundary conditionu = 0 on the two
semi-infinite rays, although the analysis can easily be extended to other configurations.

The weak formulation of the problem can be written in the form: Findu ∈ S such that for allw ∈ S0,

a(w,u)+ bNM(w,u)= c(w). (16)

HereS andS0 are appropriate function spaces,a(·, ·) andbNM(·, ·) are symmetric bilinear forms, and
c(·) is a linear form. Thea(·, ·) andc(·) terms are standard, whereas thebNM(·, ·) term is the contribution
of the condition (15) onB. The expression for the latter is easily obtained (cf. [16]):

bNM(w,u)=
∫
B

wLNMudB =
N∑
n=1

α(NM)n

∫
B

(
∂n−1w

∂yn−1

)(
∂n−1u

∂yn−1

)
dy. (17)

The numerical stability of standard finite element schemes for well-posed boundary value problems
with symmetric positive operators is closely related to the fact thata(·, ·) is positive definite, namely that
a(wh,wh) > 0 for any functionwh in the finite element space that is not identically zero [21,27]. Then
the a(·, ·)-form induces the “energy norm”||wh|| = (a(wh,wh))1/2. On the discrete level this property
implies that the finite element stiffness matrix is positive definite. When the boundary termbNM(w,u)

is included in the weak form (16), it is desirable to know whethera(·, ·) + bNM(·, ·) remains positive
definite. A sufficient condition for this is thatbNM(wh,wh)> 0 for anywh, which we prove next.
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First we prove:

Lemma 1. Let α(NM)n satisfy(14) with Zj = f (j2), wheref ∈ C[0,∞] and f ∈ CN(0,∞) such that
(−1)j−1f (j)(x) > 0 for all x > 0.

(i) If N = 1,2 andM is arbitrary, orN =M = 4,6,8, . . . , then

N∑
n=1

α(NM)n k2(n−1) > 0, k = 1,2, . . . . (18)

(ii) In caseM >N = 4,6,8, . . . , then(18) holds withk =M,M + 1,M + 2, . . . .

Proof. The results follow directly from Lemmas A.2 and A.4 in the Appendix.2
Now we have:

Theorem 1. Assume the conditions of Lemma1. Then, for any Fourier decomposable functionw, we
havebNM(w,w)> 0, when(i) M is arbitrary andN = 1,2, or (ii) M = N = 4,6,8, . . . , or (iii) M is
arbitrary andN = 4,6,8, . . . (N <M) and also

N∑
n=1

α(NM)n k2(n−1) > 0, k = 2,3, . . . ,M − 1 .

Proof. We expandw in a Fourier series:

w =
∞∑
k=1

wk sin
kπy

b
.

We substitute this expansion in (17) and make use of the orthogonality of the sines to get

bNM(w,w)= b2
N∑
n=1

α(NM)n

∞∑
k=1

w2
kk

2(n−1). (19)

A sufficient condition forbNM(w,w) to be non-negative is thus

N∑
n=1

α(NM)n k2(n−1) > 0 for k = 1,2, . . . .

But this condition is indeed satisfied by Lemma 1.2
Note that the extra condition for the caseN < M in Theorem 1 can be verified by performing a

finite number (M − 2) of computations. (See [16] for examples of such computations.) Our numerical
experiments with different values ofM,N and various sets of weightsWj , suggest that this condition is
satisfied in general, although we do not have a proof of this at the time of writing.

A consequence of this theorem is thatthe optimal local boundary conditions withN = 1 or N even
and anyM are numerically stable.On the other hand, the conditions withN 6= 1 odd are potentially
unstable. Numerical experiments [15,16] show that this is indeed the case. Moreover, the same behavior
is observed for the Helmholtz equation which is beyond the scope of this analysis.
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4. Error estimate

When the optimal local NRBC (13) or (15) is incorporated in afinite elementscheme, the resulting
method involves four computational parameters:h, the mesh parameter, which is roughly the size of the
largest element in the mesh;p, the polynomial degree of the finite element space;N , the order of the
local NRBC; andM , the number of Fourier modes taken into account. We consider here anh-type finite
element method, wherep is small and fixed and the error is reduced by reducingh (i.e., by refining
the mesh). Our goal is to determine the rate of convergence of the method as a function of these four
parameters.

In [16], Givoli et al. have derived an error estimate for a sequence of NRBCs that happen to coincide
with the optimal conditions (13) and (15)whenN =M (although they were constructed in a different
way in [16]). This error estimate can be stated as follows:

Theorem 2 (The caseN =M). If (a)N is 1 or even(i.e., the NRBC is stable), (b) the coefficientsα(NN)n

satisfy(14), and(c) u ∈Hr(Ω) wherer >max(1,2N − 2) andr > p+ 1, then

||e||16 (C1h
p +C2N

−µ)||u||r , (20)

whereµ=min(r − 1, r − 2N + 2).

Here e is the error, i.e., the difference between the exact and finite element solutions,Hr is the
Sobolev space of orderr , || · ||r is the norm in this space, andC1 andC2 are constants. The first term
on the right-hand side of (20) is the standard finite element error estimate, whereas the second term
shows the rate of convergence with respect toN . The parameterr is the degree of smoothness of the
exact solutionu. If u is infinitely smooth, thenµ→∞, which indicates exponential convergence inN .
Numerical experiments [16] show agreement with the estimate (20).

The proof of Theorem 2 [16] is quite long, but most of it does not depend on the properties of the
coefficientsαn. The only part in the proof that involves theαn can be summarized by the following
lemma (see [16, Section 7.6]):

Lemma 2 (The caseN =M). For anywn andun,

TN ≡
∣∣∣∣∣
∞∑
n=1

(
N∑
m=1

α(NN)m n2(m−1)

)
wnun −

N∑
n=1

nwnun

∣∣∣∣∣6 C
∞∑

n=N+1

n2(N−1)|wnun|, (21)

whereC is a constant that does not depend onN .

Proof. The proof in [16] does not actually show thatC is independent ofN , and therefore we give here
the full proof. Making the substitutionQN(x)=∑N

m=1α
(NN)
m xm−1, we first observe that

TN =
∣∣∣∣∣
∞∑
n=1

QN(n
2)wnun −

N∑
n=1

nwnun

∣∣∣∣∣6
∞∑

n=N+1

∣∣QN

(
n2)∣∣|wnun|,

sinceQN(n
2)= n, n= 1, . . . ,N . The proof can now be completed by invoking Lemma A.3.2

Now we extend the error estimate (20) to the caseM >N . To this end, we first extend Lemma 2 to
this case:
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Lemma 3 (The caseM > N ). Let M > N > 1 and assume that theWn satisfy the growth condition
Wn ∼ An−4(N−1) asn→∞, whereA > 0 is some constant independent ofN andM . If M −N 6 K ,
whereK is fixed hence independent ofN andM , andZj = j , j = 1,2, . . . , then, for anywn andun,

UNM ≡
∣∣∣∣∣
∞∑
n=1

(
N∑
m=1

α(NM)m n2(m−1)

)
wnun −

M∑
n=1

nwnun

∣∣∣∣∣6 C
∞∑
n=1

n2(N−1)|wnun|, (22)

whereC is a constant that does not depend onN andM .

Proof. Making the substitutionPNM(x)=∑N
m=1α

(NM)
m xm−1, we first observe that

UNM =
∣∣∣∣∣
M∑
n=1

[
PNM

(
n2)− n]wnun + ∞∑

n=M+1

PNM
(
n2)wnun

∣∣∣∣∣6 S1+ S2,

where

S1=
M∑
n=1

∣∣PNM(n2)− n∣∣|wnun| and S2=
∞∑

n=M+1

∣∣PNM(n2)∣∣|wnun|.
Applying part (iii)(b) of Lemma A.4, and using the fact thatf (x)=√x 6 xN−1 for x > 1 whenN > 1,

we have|PNM(x)|6 E2x
N−1 for x > xM =M2 whenN > 2, withE2 > 0 a constant independent ofN

andM . From this we conclude that, whenN > 2,

S26E2

∞∑
n=M+1

n2(N−1)|wnun|.

We next proceed toS1. First, we have

S16
(

M∑
n=1

1√
Wn

|wnun|
)

max
16n6M

(√
Wn

∣∣PNM(n2)− n∣∣)

6
(

M∑
n=1

1√
Wn

|wnun|
)(

M∑
n=1

Wn

[
PNM

(
n2)− n]2)1/2

.

Now PNM(x) satisfies (A.6) in the Appendix. SettingR(x) =QN(x) = PNN(x) in (A.6) and recalling
thatQN(n

2)= n, n= 1, . . . ,N , we obtain(
M∑
n=1

Wn

[
PNM

(
n2)− n]2)1/2

6
(

M∑
n=N+1

Wn

[
QN

(
n2)− n]2)1/2

.

Applying Lemma A.3 withf (x)=√x toQN(x) and again using the fact that
√
x 6 xN−1 for x > 1 when

N > 1, we obtain|QN(x)−√x|6E′xN−1 for x > xN =N2, whereE′ > 0 is a constant independent of
N andM . As a result,(

M∑
n=1

Wn

[
PNM

(
n2)− n]2)1/2

6E′
(

M∑
n=N+1

Wnn
4(N−1)

)1/2

for N > 2.
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By the asymptotic growth condition imposed onWn we haveWnn
4(N−1) ∼ A asn→∞, as a result of

which(
M∑

n=N+1

Wnn
4(N−1)

)1/2

6E′′

for some constantE′′ > 0 independent ofN andM wheneverM −N 6K with K fixed. By the same
growth condition on theWn we also have

1√
Wn

∼ 1√
A
n2(N−1) asn→∞,

from which
M∑
n=1

1√
Wn

|wnun|6E′′′
M∑
n=1

n2(N−1)|wnun|,

whereE′′′ > 0 is a constant independent ofN andM . Combining all this, we obtain

S16E1

M∑
n=1

n2(N−1)|wnun|

withE1=E′E′′E′′′ > 0 a constant independent ofN andM . LettingC =max{E1,E2}, the result in (22)
now follows. 2

This lemma again leads to the error estimate given in Theorem 2. Note, however, that additional
assumptions are made here regarding the asymptotic behavior of the weightsWn, and that the difference
M−N is required to be bounded. These assumptions are reasonable in light of the numerical experiments
presented in [15].

We have also proved a slightly more general version of Lemma 3, where the asymptotic behavior of
the weights isWn ∼An−4(N−1−ε) asn→∞, with 06 ε 6 1. Moreover, ifε < 3/4 then the requirement
M−N 6K can be dropped, thus enabling us to varyN andM arbitrarily. The proof of this more general
lemma is somewhat lengthy, and therefore we shall not give it here.

5. Concluding remarks

We have considered a two-parameter hierarchy of local approximate NRBCs that have been
constructed in [15], for the numerical solution of elliptic boundary value problems in unbounded
domains. These NRBCs are optimal in the sense that they best approximate the exact nonlocal Dirichlet-
to-Neumann (DtN) boundary condition forC∞ functions in theL2 norm. The optimal local NRBC
may be of low order but still represent high-order modes. We have analyzed the stability and accuracy
properties of these NRBCs, and obtained some theoretical results which are compatible with those of the
numerical experiments performed in [15,16].

One research direction that is worth pursuing is deriving optimal local NRBCs which are based on
optimization with respect to norms other than theL2 norm. One possibility in the latter context is to
work in the spaceH−1/2, where the DtN map and the local differential operator are bounded [3]. Another
area of investigation is the construction of optimal local NRBCs for time-dependent wave propagation
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problems. This can be done within the framework of a number of schemes, including the ones described
in [1,8].

Appendix. Properties of the coefficientsα(NM)n

We start with the caseN =M for which the equations in (14) become
N∑
k=1

α
(NN)
k j2(k−1) = Zj, j = 1, . . . ,N, (A.1)

independently of the weightsWj . In this caseQN(x)=∑N
k=1α

(NN)
k xk−1 is a polynomial of interpolation

to a functionf (x) at the pointsxj = j2, j = 1, . . . ,N , such thatf (xj ) = Zj for all j . For the general
case in which 0< x1 < x2 < · · · < xN but xj are arbitrary otherwise, the following lemma has been
proved in [26].

Lemma A.1. Letf (x) be such that
(a) f ∈C[0,X] for someX > 0 with f (0)> 0, and
(b) f ∈CN(0,X) with (−1)j−1f (j)(x) > 0 for x ∈ (0,X), j = 1, . . . ,N .

Let 0 < x1 < x2 < · · · < xN < X with xj arbitrary otherwise. IfQN(x) = ∑N
k=1α

(NN)
k xk−1 is a

polynomial of interpolation tof (x) at x1, . . . , xN , then the following are true:
(i) α(NN)1 , α

(NN)
2 , . . . , have the sign pattern+,+,−,+,−,+, . . . .

(ii) Withf (x)=√x andxj = j2, j = 1,2, . . . , from whichZj = j for all j , we have|α(NN)k |6C for
all k andN , whereC is some constant independent ofk andN . Moreover,limN→∞ α(NN)k = α̂k
for some constant̂αk, and limN→∞ α

(NN)
N−k = 0, wherek is hold fixed in both cases.

(iii) With f (x) andxj as in part(ii) , the l1 condition number of the linear system in(A.1) is at best
O(N2N−2) and at worstO(N2N−1) asN→∞.

For more refined statements of the results of Lemma A.1 we refer the reader to [26].

Lemma A.2. Letf (x) andxj satisfy conditions(a)and(b) of LemmaA.1. Then
(i) for N = 1,2, we haveQN(x) > 0 for all x > 0, and
(ii) for N > 4 and even, we haveQN(xj ) = f (xj ) > 0, j = 1, . . . ,N , and QN(x) > 0 for all

x ∈ (xN ,X) or x ∈ [0, x1) as well.

Proof. Part (i) follows from the fact thatα(NN)k > 0 for N = 1,2. Part (ii) follows from the fact that
f (x) > 0 for x ∈ (0,X) that is guaranteed byf (0) > 0 andf ′(x) > 0 for x ∈ (0,X), and from the
relation

QN(x)= f (x)− f
(n)(ξ(x))

N !
N∏
i=1

(x − xi) for someξ(x) ∈ (min{x1, x},max{xN, x}), (A.2)

which is a rearrangement of the error formula for polynomial interpolation.2
By imposing certain growth conditions on thef (k)(x) we can derive a useful upper bound on|QN(x)|,

to which we now turn.



A. Sidi, D. Givoli / Applied Numerical Mathematics 33 (2000) 327–340 337

Lemma A.3. Letf (x) and thexj be as in LemmaA.2, and assume, in addition, that

sup
x>x1

∣∣∣∣f (k)(x)k!
∣∣∣∣6Dk−1−δ, k = 1,2, . . . , (A.3)

for someD > 0 andδ > 0. Then there exists a constantE > 0 independent ofN such that∣∣QN(x)
∣∣6ExN−1 for x >max{1, xN−1}. (A.4)

Proof. Let us consider the Newton form ofQN(x), namely,

QN(x)= f (x1)+
N∑
k=2

f [x1, x2, . . . , xk]
k−1∏
i=1

(x − xi),

wheref [x1, x2, . . . , xk] is the divided difference off (x) over the set of points{x1, x2, . . . , xk}. Obviously,

∣∣QN(x)
∣∣6(∣∣f (x1)

∣∣+ N∑
k=2

∣∣f [x1, x2, . . . , xk]
∣∣)xN−1 for x >max{1, xN−1}.

But

f [x1, x2, . . . , xk] = f
(k−1)(ξk)

(k − 1)! for someξk ∈ (x1, xk),

which, upon invoking the growth condition (A.3) onf (k−1)(x), becomes∣∣f [x1, x2, . . . , xk]
∣∣6D(k− 1)−1−δ, k = 2,3, . . . ,

Consequently, for allx >max{1, xN−1} we have

∣∣QN(x)
∣∣6(f (x1)+D

(
N∑
k=2

(k− 1)−1−δ
))

xN−1 <

(
f (x1)+D

( ∞∑
k=1

k−1−δ
))

xN−1.

(Note that
∑∞
k=1 k

−1−δ is a convergent series.) This completes the proof with

E = f (x1)+D
( ∞∑
k=1

k−1−δ
)
. 2

Note that Lemma A.3 applies to the functionf (x)= xδ , 0< δ < 1, withx1> 1, for which (A.3) holds,
as can easily be verified.

We now turn to the treatment of the caseM >N in Eq. (14). Replacingj2 andZj in these equations
by xj andf (xj ), respectively, we now have the more general problem

M∑
j=1

Wj

[
PNM(xj )− f (xj )]xl−1

j = 0, l = 1, . . . ,N, (A.5)

where we have denotedPNM(x)=∑N
k=1α

(NM)
k xk−1. This is to say,PNM(x) is a least-squares polynomial

approximation tof (x) in the sense that
M∑
j=1

Wj

[
PNM(xj )− f (xj )]26 M∑

j=1

Wj

[
R(xj )− f (xj )]2 for anyR(x) ∈ πN−1, (A.6)
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where πr denotes the set of polynomials of degree at mostr . (With this notation we also have
PNN(x)=QN(x).)

Lemma A.4 contains the main results concerningPNM(x).

Lemma A.4. Let f (x) andxj be as in LemmaA.2 and letPNM(x) (N <M) be the solution to(A.5).
Then the following are true:

(i) There existN pointsy(NM)1 , . . . , y
(NM)
N in [x1, xM ] at whichPNM(x) interpolatesf (x). As a result,

α
(NM)
1 , α

(NM)
2 , . . . , α

(NM)
N have the sign pattern+,+,−,+,−, . . . .

(ii) PNM(x) > 0 for all x > 0 whenN = 1,2 andPNM(x) > 0 for x ∈ [xm,X) or x ∈ [0, x1] when
N = 4,6,8, . . . .

(iii) If, in addition, (A.3) holds for someδ > 0, then
(a) 0<P1M(x)= f (y(1M)1 )6 f (x) for x > xM > y(1M)1 , and
(b) |PNM(x)| < f (x)+ ẼxN−1 for all x >max{1, xM}, whereẼ > 0 is a constant independent

ofM andN , andN > 2.

Proof. Part (i) follows from Lemma A.5 that we state next and from part (i) of Lemma A.1. Part (ii)
follows from Lemma A.2. Part (iii)(a) is an immediate consequence off (x) being positive and increasing
for x > 0. To prove part (iii)(b) we proceed as in the proof of Lemma A.3. We first have that∣∣PNM(x)∣∣< f (y(NM)1

)+ ẼxN−1 for all x >max{1, xM},
whereẼ =D(∑∞k=1 k

−1−δ). The result now follows byf (y(NM)1 )6 f (xM)6 f (x) for x > xM . 2
Lemma A.5. Let e(x) be continuous on[a, b], and leta 6 x1< · · ·< xM 6 b. If

M∑
j=1

Wje(xj )x
l−1
j = 0, l = 1, . . . ,N,

for someN <M andWj > 0, j = 1, . . . ,M , then eithere(xj )= 0, j = 1, . . . ,M , or there existN points
y1, . . . , yN in [x1, xM ], for whiche(yj )= 0, j = 1, . . . ,N , ande(x) changes sign at theyj .

Proof. We start with the observation that
M∑
j=1

Wje(xj )t (xj )= 0 for anyt (x) ∈ πN−1. (A.7)

Letting t (x)≡ 1 in (A.7), we conclude that either (i)e(xj )= 0, j = 1, . . . ,M , or (ii) some of thee(xj )
are positive and some are negative. In case (i) there is nothing to prove. In case (ii) we have thate(x)

must change sign on(x1, xM) at least once. We will show thate(x) changes sign on(x1, xM) at least
N times. Suppose it changes sign exactlyr times,r < N , at the pointsy1, . . . , yr . Then we can write
e(x)= q(x)ê(x), whereq(x)=∏r

i=1(x − yi) andê(x) is of one sign on(x1, xM). As r 6N − 1, we can
let t (x)= q(x) in (A.7) and thus obtain

∑M
j=1Wjê(xj )[q(xj )]2= 0. This implies that̂e(xj )[q(xj )]2= 0,

j = 1, . . . ,M , which, in turn, implies thate(xj ) = 0, j = 1, . . . ,M , contrary to our assumption that
not all e(xj ) are zero. Therefore, we must haver > N . The rest of the proof is easy and is left to the
reader. 2
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