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Abstract. Let A(y) ∼ A+
∑∞

k=1
αky

σk as y → 0+, where y is a discrete or continuous variable.

Assume that σk are known numbers that may be complex in general and that A(y) is known for
y ∈ (0, b] for some b > 0. The aim is to find or approximate A, the limit or antilimit of A(y) as y → 0+.
One very effective way of approximating A is by the Richardson extrapolation process that is defined

via the linear systems A(yl) = A
(j)
n +

∑n

k=1
αky

σk
l

, j ≤ l ≤ j + n. Here A
(j)
n are approximations

to A and αk are additional unknowns. The yl are picked such that y0 > y1 > y2 > · · · > 0
and liml→∞ yl = 0. In this paper we give a detailed analysis of the convergence and stability of

the column sequences {A(j)
n }∞j=0 with n fixed, when yl = c/(l + η)q for some positive c, η, and q.

Specifically, we prove that convergence takes place as j → ∞ and give the precise rate at which it
does. We also prove that the process is unstable and quantify its instability asymptotically. This
instability may be dealt with numerically by using high-precision floating-point arithmetic.
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1. Introduction.

1.1. Brief review of the Richardson extrapolation process. Let a function
A(y) be known and hence computable for y ∈ (0, b] with some b > 0, the variable
y being continuous or discrete. Assume, furthermore, that A(y) has an asymptotic
expansion of the form

A(y) ∼ A+
∞∑
k=1

αky
σk as y → 0+,(1.1)

where σk are known scalars satisfying

σk �= 0, k = 1, 2, . . . ; �σ1 < �σ2 < · · · ; lim
k→∞

�σk = +∞,(1.2)

and A and αk, k = 1, 2, . . . , are constants independent of y that are not necessarily
known.

From (1.1) and (1.2) it is clear that A = limy→0+ A(y) when this limit exists.
When limy→0+ A(y) does not exist, A is the antilimit of A(y) for y → 0+, and in
this case �σ1 ≤ 0 necessarily. In any case, A can be approximated very effectively by
the Richardson extrapolation process (REP) that is defined via the linear systems of
equations

A(yl) = A(j)
n +

n∑
k=1

αky
σk

l , j ≤ l ≤ j + n,(1.3)
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with the yl picked to satisfy

b ≥ y0 > y1 > y2 > · · · > 0 and lim
l→∞

yl = 0.(1.4)

Here A
(j)
n are the approximations to A and the αk are additional (auxiliary) unknowns.

In this paper we give a detailed analytical study of the convergence and stability

of the so-called column sequences {A(j)
n }∞j=0, with n fixed, when we pick yl = c/(l +

η)q, l = 0, 1, . . . , for some positive constants c, η, and q. That is, we analyze the

properties of A
(j)
n as j → ∞. Later in this section we shall give a detailed discussion

of why the application of REP with this choice of the yl is of practical importance
and deserves to be studied seriously.

As is known, A
(j)
n can be expressed in the form

A(j)
n =

n∑
i=0

γ
(j)
ni A(yj+i)(1.5)

for some γ
(j)
ni that depend only on the y

σk

l and that satisfy the linear system

n∑
i=0

γ
(j)
ni = 1 and

n∑
i=0

γ
(j)
ni y

σk
j+i = 0, k = 1, . . . , n.(1.6)

The quantity Γ
(j)
n defined by

Γ(j)
n =

n∑
i=0

|γ(j)
ni |(1.7)

is a very important constant that controls the numerical stability of A
(j)
n . It gives

a precise measure of sensitivity of A
(j)
n to errors (roundoff or other) in the A(yl).

Indeed, practically speaking, the difference between A
(j)
n and its computed value is

of the order of the largest of the absolute errors in A(yl), j ≤ l ≤ j + n, multiplied

by Γ
(j)
n . Therefore, there is great value to obtaining Γ

(j)
n or a reasonable estimate of

it simultaneously with A
(j)
n in order to assess the accuracy of the latter. Obviously,

Γ
(j)
n ≥ 1 for all j and n, and we would like Γ(j)

n not to grow to infinity as j → ∞ or
n → ∞. We shall say more on this topic in section 4.

For the general framework above, we refer the reader to Schneider [Sc] and Sidi
[Si7]. In particular, the equations in (1.6) were originally given in [Sc]. When the yl
are arbitrary, the A

(j)
n can be computed either by direct solution of the linear system

in (1.3) or by recursive means. The first recursive algorithm for this problem was
derived in [Sc] and, independently and by different methods, in H̊avie [H] and in
Brezinski [B]. This algorithm was named the E-algorithm in [B]. Another recursive
algorithm, the FS-algorithm, was derived more recently in Ford and Sidi [FS]. The
FS-algorithm turns out to be more economical computationally than the E-algorithm.
Finally, when σk+1 − σk = d, k = 1, 2, . . . , for some fixed d, the W -algorithm of Sidi

[Si2] is a most efficient means of computing the A
(j)
n in the presence of arbitrary yl’s.

When the yl are picked such that

yl = y0ω
l, l = 0, 1, . . . , for some y0 ∈ (0, b] and ω ∈ (0, 1),(1.8)
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the A
(j)
n can be computed very efficiently by the following algorithm due to Bulirsch

and Stoer [BS1]:

A
(j)
0 = A(yj), j = 0, 1, . . . ,(1.9)

A(j)
n =

A
(j+1)
n−1 − cnA

(j)
n−1

1− cn
, j = 0, 1, . . . , n = 1, 2, . . . ,

where we have defined

cn = ωσn , n = 1, 2, . . . .(1.10)

This is also the most extensively studied case of REP. In particular, it is known that,
with n fixed,

A(j)
n −A ∼

(
n∏

i=1

cn+µ − ci
1− ci

)
αn+µy

σn+µ

j as j → ∞,(1.11)

where αn+µ is the first nonzero αn+i with i ≥ 1. As is obvious from (1.11), the

sequence {A(j)
n }∞j=0 converges (to A) when �σn+µ > 0 more quickly than A(yl), l =

j, j + 1, . . . , j + n, which are used in constructing A
(j)
n ; see (1.3). In addition, the

extrapolation process is stable as Γ
(j)
n is independent of j and hence does not grow

with increasing j. We actually have

Γ(j)
n ≤

n∏
i=1

1 + |ci|
|1− ci| for all j and n.(1.12)

(In (1.12) equality holds when ci all have the same phase.) Imposing the additional
condition that �σk+1 − �σk ≥ d > 0, k = 1, 2, . . . , for some fixed d, it is possible

to prove very powerful convergence and stability results for A
(j)
n and Γ

(j)
n as n → ∞

with j fixed. As we shall not be dealing with this limiting process in this paper, we
skip these results and refer the reader to [BS1] for the case involving real σk’s and to
Sidi [Si9] for the case involving complex σk’s in general. (The functions A(y) treated
in [Si9] are actually more general than the one in (1.1).)

It is worth noting that the result in (1.11) remains valid also when the yl satisfy
liml→∞(yl+1/yl) = ω ∈ (0, 1) instead of (1.8). In this case we also have

lim
j→∞

Γ(j)
n ≤

n∏
i=1

1 + |ci|
|1− ci|(1.13)

instead of (1.12). These follow from Theorems 2.2 and 2.4 in [Si7].
Now sequences {yl} that satisfy (1.8) converge to 0 exponentially. This conver-

gence is especially quick when ω is not too close to 1. In most practical situations
ω = 1/2 is the common choice. Again in most cases of interest computing A(y) for
very small values of y either is very costly or entails a great loss of significance in
finite-precision arithmetic. To cope with this problem the extrapolation process can
also be carried out with a sequence {yl} that tends to zero less quickly than exponen-
tially. A very common choice used in many instances has been the harmonic sequence
yl = c/(l+ 1), l = 0, 1, 2, . . . . Even though the process is not stable numerically with
this sequence of yl’s, it can be used effectively with high-precision arithmetic, i.e.,
when A(yl) are computed with significantly high precision.
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An area in which this turns out to be important is that of numerical integration
of regular or singular functions over a hypercube or hypersimplex in R

N . Here y
corresponds to the integration stepsize, A(y) to the (offset) trapezoidal rule approxi-
mation, and A to the value of the integral, and the expansion in (1.1) is the generalized
Euler–Maclaurin expansion for the corresponding integral. For example, for the one-

dimensional integral I =
∫ 1

0
xµ(1− x)

ν
f(x) dx, where �µ > −1 and �ν > −1 and

f ∈ C∞[0, 1], we have, with h = 1/n, where n is a positive integer,

M(h) ∼ I +

∞∑
k=1

αkh
µ+k +

∞∑
k=1

βkh
ν+k as h → 0(1.14)

for some constants αk and βk. HereM(h) may be the midpoint rule approximation to
I, for example. Even more involved expansions arise in multidimensional integration
of singular functions. Most of the expansions that result from such integrals are of the
form given in (1.1) provided the integrand functions have only algebraic singularities
at corners, edges, or surfaces of the domain of integration, while more complicated
expansions may arise in some cases. For generalized Euler–Maclaurin expansions of
one-dimensional singular integrals see Navot [N] and Lyness and Ninham [LN]. For
multidimensional integrals with corner singularities see Lyness [Ly], and with line
or edge singularities see Sidi [Si3]. For a review of the applications to numerical
integration see Davis and Rabinowitz [DR] and Sidi [Si5]. It must be mentioned
that, in even moderate dimensions N , the use of sequences {yl} as in (1.8) becomes
practically impossible as the number of integrand evaluations entailed in this usage
becomes prohibitively large.

To the best of our knowledge, no analysis of A
(j)
n when the yl are as in this paper

has been given in the literature for the general case of arbitrary σk, real or complex.
It is the purpose of this paper to present a rigorous convergence and stability theory

precisely for this general case that pertains to the column sequences {A(j)
n }∞j=0 with

n fixed. We mention that a theory of the case in which σk = kτ, k = 1, 2, . . . , for
some arbitrary real τ > 0, is already contained in that presented in [BS1] and [BS2].
Actually, the theory of both of these papers considers arbitrary yl’s. We note that the
techniques of [BS1] and [BS2] are not applicable to our problem. In particular, they
cannot be applied to the numerical integration problems described in the previous
paragraph. Convergence and stability results for the case in which σk = σ0 + k, k =
1, 2, . . . , with arbitrary σ0 and for the choice yl = c/(l+1), l = 0, 1, . . . , are contained
in the theory of the Levin [L] transformations that was presented in Sidi [Si1]. For a
summary of these results see Theorem 4.1 of [Si7].

In the next section, we give important technical preliminaries toward the proofs
of the main convergence and stability results. Theorems 2.3 and 2.5, which are the
main results of this section, are of interest in themselves.

With the help of the results of section 2, in section 3 we state and prove the
main stability and convergence theorems of this work. These theorems are stated in
simple and elegant form, despite the fact that the mathematical problems are highly
nonlinear and complex. In particular, we show the following:

1. All column sequences {A(j)
n }∞j=0 are unstable.

2. If �σn+1 > 0, then {A(j)
n }∞j=0 converges to A even though the process is

unstable.
3. Each column sequence is at least as good as the ones preceding it.
Finally, in section 4 we demonstrate some of the results of section 3 with numerical
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examples.
It is important to mention that the results of section 2, which form the key to

everything, are obtained by employing a very general technique that was originally
developed in Sidi, Ford, and Smith [SFS] within the context of vector extrapolation
methods and that is of interest in itself. With suitable extensions and refinements this
technique was used subsequently in several works by the author and other researchers
in vector extrapolation methods (see, e.g., [Si4], [SB], and [Le]), in Krylov subspace
methods for eigenvalue problems (see, e.g., [Si8]), and also in Padé approximants
(see [Si6]). An important advantage of it is that it enables us to obtain complete
asymptotic expansions that can be used to derive theoretical results that are best
possible asymptotically. The theorems of section 3 are of this form.

We close this section with the following two lemmas that will be used in our proofs
later. The first of these lemmas was stated and proved as Lemma A.1 in the appendix
of [SFS] and is an integral part of the technique of [SFS] that we are about to employ.

Lemma 1.1. Let i1, . . . , ik be positive integers, and assume that the scalars vi1,...,ik
are odd under an interchange of any two indices i1, . . . , ik. Let ti,j , i ≥ 1, 1 ≤ j ≤ k,
be scalars. Then

N∑
i1=1

· · ·
N∑

ik=1

(
k∏

p=1

tip,p

)
vi1,...,ik =

∑
1≤i1<i2<···<ik≤N

∣∣∣∣∣∣∣∣∣

ti1,1 ti2,1 · · · tik,1
ti1,2 ti2,2 · · · tik,2
...

...
...

ti1,k ti2,k · · · tik,k

∣∣∣∣∣∣∣∣∣
vi1,...,ik .

Lemma 1.2. Let Qi(x) =
∑i

j=0 aijx
j, with aii �= 0, i = 0, 1, . . . , n, and let

xi, i = 0, 1, . . . , n, be arbitrary points. Then∣∣∣∣∣∣∣∣∣

Q0(x0) Q0(x1) · · · Q0(xn)
Q1(x0) Q1(x1) · · · Q1(xn)

...
...

...
Qn(x0) Qn(x1) · · · Qn(xn)

∣∣∣∣∣∣∣∣∣
=

(
n∏

i=0

aii

)
V (x0, x1, . . . , xn),(1.15)

where V (x0, x1, . . . , xn) =
∏

0≤i<j≤n(xj − xi) is a Vandermonde determinant.
Proof. As can easily be seen, it is enough to consider the case aii = 1, i =

0, 1, . . . , n. Let us now perform the following elementary row transformations in the
determinant on the left-hand side of (1.15):
for i = 1, 2, . . . , n do
for j = 0, 1, . . . , i− 1 do
multiply (j + 1)st row by aij and subtract from (i+ 1)st row

end for
end for

The result is the Vandermonde determinant V (x0, x1, . . . , xn).

2. Technical preliminaries.

2.1. General framework. As mentioned in the previous section, throughout
this work we shall consider the extrapolation process in which the yl are picked such
that

yl =
c

(l + η)
q , l = 0, 1, 2, . . . , for some c > 0, η > 0, and q > 0.(2.1)

Obviously, this is slightly more general than the harmonic sequence we mentioned in
the previous section. Note also that these yl’s satisfy (1.4) and also liml→∞(tl+1/tl) =
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1. As will become clear soon, the presence of the parameters η and q does not
complicate the mathematics in any way. In addition, we will see in the next section

that both the convergence and the stability properties of A
(j)
n improve with increasing

q. Thus, the parameter q may be of significance in practice.
To simplify the analysis as much as possible we will adopt the approach and

notation of Sidi [Si7].
Let us define the sequences gk ≡ {gk(l)}∞l=0 by

gk(l) = yσk

l , l = 0, 1, 2, . . . ,(2.2)

and define also for an arbitrary sequence b ≡ {b(l)}∞l=0

f (j)
n (b) =

∣∣∣∣∣∣∣∣∣

g1(j) g2(j) · · · gn(j) b(j)
g1(j + 1) g2(j + 1) · · · gn(j + 1) b(j + 1)
...

...
...

...
g1(j + n) g2(j + n) · · · gn(j + n) b(j + n)

∣∣∣∣∣∣∣∣∣
.(2.3)

Let us also define the sequences a ≡ {a(l)}∞l=0, I ≡ {I(l)}∞l=0, and r ≡ {r(l)}∞l=0 via,
respectively,

a(l) = A(yl), I(l) = 1, and r(l) = a(l)−A, l = 0, 1, . . . .(2.4)

Then, with the help of Cramer’s rule, we have from (1.3),

A(j)
n =

f
(j)
n (a)

f
(j)
n (I)

,(2.5)

and, therefore,

A(j)
n −A =

f
(j)
n (r)

f
(j)
n (I)

.(2.6)

Substituting r(j) =
∑s

k=1 αkgk(j) + εs(j), where εs(j) = O(gs+1(j)) as j → ∞, as
follows from (1.1) and (1.4), and using the fact that f

(j)
n (gk) = 0, k = 1, 2, . . . , n, we

have

A(j)
n −A =

s∑
k=n+1

αk
f

(j)
n (gk)

f
(j)
n (I)

+
f

(j)
n (εs)

f
(j)
n (I)

.(2.7)

Finally, setting for an arbitrary sequence b,

χ(j)
n (b) =

f
(j)
n (b)

f
(j)
n (I)

=

n∑
i=0

γ
(j)
ni b(j + i),(2.8)

we reexpress (2.7) in the form

A(j)
n −A =

s∑
k=n+1

αkχ
(j)
n (gk) + χ(j)

n (εs).(2.9)

Thus, we need to analyze the asymptotic behavior of the quantities χ
(j)
n (gk), k ≥ n+1,

and χ
(j)
n (εs) for j → ∞. By (2.8), it is clear that we need to study the behavior of

the determinants f
(j)
n (gk), k ≥ n+ 1, and f

(j)
n (I) and f

(j)
n (εs).
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As for Γ
(j)
n , we note that

γ
(j)
ni =

N
(j)
ni

f
(j)
n (I)

, i = 0, 1, . . . , n,(2.10)

where N
(j)
ni is the cofactor of b(j + i) in the determinant f

(j)
n (b). Thus, we need to

analyze γ
(j)
ni , i = 0, 1, . . . , n, for j → ∞.

As it turns out, the treatments of χ
(j)
n (εs) and Γ

(j)
n can be unified in a simple

fashion.

2.2. Analysis of χ(j)
n (gk). Let us begin by defining

u =
1

j + η
and νi = −qσi, i = 1, 2, . . . .(2.11)

Then, for each i,

gi(j + p) = gi(j)(1 + pu)
νi , p = 0, 1, 2, . . . .(2.12)

Next, substituting (2.12) in the determinant expression for f
(j)
n (gk) with k ≥ n + 1,

we have

(2.13)

f (j)n (gk) =

∣∣∣∣∣∣∣∣∣∣

g1(j) g2(j) · · · gn(j) gk(j)
g1(j)(1 + 1u)ν1 g2(j)(1 + 1u)ν2 · · · gn(j)(1 + 1u)νn gk(j)(1 + 1u)νk

g1(j)(1 + 2u)ν1 g2(j)(1 + 2u)ν2 · · · gn(j)(1 + 2u)νn gk(j)(1 + 2u)νk

...
...

...
...

g1(j)(1 + nu)ν1 g2(j)(1 + nu)ν2 · · · gn(j)(1 + nu)νn gk(j)(1 + nu)νk

∣∣∣∣∣∣∣∣∣∣
.

Factoring out gi(j) from the ith column, i = 1, . . . , n, and gk(j) from the last column,
and invoking the binomial expansion (1 + z)

ν
=
∑∞

i=0

(
ν
i

)
zi that converges absolutely

and uniformly for |z| < 1, we next obtain for u < 1/n, hence for j ≥ n,

(2.14)

f
(j)
n (gk)∏n

i=0
gi(j)

=

∣∣∣∣∣∣∣∣∣∣∣

∑
i1

(
ν1
i1

)
(0u)i1

∑
i2

(
ν2
i2

)
(0u)i2 · · · ∑

in

(
νn
in

)
(0u)in

∑
i0

(
ν0
i0

)
(0u)i0∑

i1

(
ν1
i1

)
(1u)i1

∑
i2

(
ν2
i2

)
(1u)i2 · · · ∑

in

(
νn
in

)
(1u)in

∑
i0

(
ν0
i0

)
(1u)i0∑

i1

(
ν1
i1

)
(2u)i1

∑
i2

(
ν2
i2

)
(2u)i2 · · · ∑

in

(
νn
in

)
(2u)in

∑
i0

(
ν0
i0

)
(2u)i0

...
...

...
...∑

i1

(
ν1
i1

)
(nu)i1

∑
i2

(
ν2
i2

)
(nu)i2 · · · ∑

in

(
νn
in

)
(nu)in

∑
i0

(
ν0
i0

)
(nu)i0

∣∣∣∣∣∣∣∣∣∣∣
,

where
∑

i stands for
∑∞

i=0 throughout. Note that
∑

i

(
ν
i

)
0i = 1 in the first row

with the understanding that 00 ≡ 1 and 0i = 0 for i = 1, 2, . . . . Also note that we
have written g0(j) instead of gk(j) and ν0 instead of νk. This simplifies our notation
considerably, as we shall see soon.

By the multilinearity property of determinants, we can move the summations
outside the determinant. Factoring out

(
νp

ip

)
uip from the pth column, p = 1, 2, . . . , n,

and
(
ν0

i0

)
ui0 from the last column, we have

f
(j)
n (gk)∏n
i=0 gi(j)

=
∑
i0

∑
i1

· · ·
∑
in

[
n∏

p=0

(
νp
ip

)]( n∏
p=0

uip

)
Yi0,i1,...,in ,(2.15)
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where we have defined

Yi0,i1,...,in =

∣∣∣∣∣∣∣∣∣∣∣

0i1 0i2 · · · 0in 0i0

1i1 1i2 · · · 1in 1i0

2i1 2i2 · · · 2in 2i0

...
...

...
...

ni1 ni2 · · · nin ni0

∣∣∣∣∣∣∣∣∣∣∣
.(2.16)

Note that the multiple sum on the right-hand side of (2.15) converges absolutely and
uniformly in u for u < 1/n, hence uniformly in j for j ≥ n, since each of the series in

(2.14) does. We are now ready to prove the following interesting result on f
(j)
n (gk).

Lemma 2.1. With Yi0,i1,...,in as defined in (2.16), f
(j)
n (gk)/ [

∏n
i=0 gi(j)] can be

expanded in a power series in u as in

f
(j)
n (gk)∏n
i=0 gi(j)

=

∞∑
0≤i0<i1<···<in

Yi0,i1,...,inZ
ν0,ν1,...,νn

i0,i1,...,in

(
n∏

p=0

uip

)
,(2.17)

where we have also defined

Zν0,ν1,...,νn

i0,i1,...,in
=

∣∣∣∣∣∣∣∣∣

(
ν0

i0

) (
ν1

i0

) · · · (
νn

i0

)(
ν0

i1

) (
ν1

i1

) · · · (
νn

i1

)
...

...
...(

ν0

in

) (
ν1

in

) · · · (
νn

in

)

∣∣∣∣∣∣∣∣∣
.(2.18)

This series converges absolutely and uniformly in u for u < 1/n, and hence uniformly
in j for j ≥ n. In addition, this power series is also an asymptotic expansion as
u → 0 (equivalently, as j → ∞), whose behavior is given by the asymptotic equality

f
(j)
n (gk)

[
∏n

i=1 gi(j)] gk(j)
∼ V (ν1, ν2, . . . , νn, νk)

(
n∏

p=1

j−p

)
as j → ∞,(2.19)

where V (ξ1, ξ2, . . . , ξn) denotes the Vandermonde determinant

V (ξ1, ξ2, . . . , ξn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
ξ1 ξ2 · · · ξn
ξ2
1 ξ2

2 · · · ξ2
n

...
...

...
ξn−1
1 ξn−1

2 · · · ξn−1
n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(ξj − ξi).(2.20)

Proof. The product (
∏n

p=0 u
ip) is a symmetric function of i0, i1, . . . , in. The

determinant Yi0,i1,...,in , on the other hand, is odd under an interchange of any two of
the indices i0, i1, . . . , in, since such an interchange is equivalent to an interchange of
two columns. Therefore, (

∏n
p=0 u

ip)Yi0,i1,...,in is odd under an interchange of any two
of the indices i0, i1, . . . , in. This being the case, we can apply Lemma 1.1 to (2.15) to
obtain (2.17). That the multiple series in (2.17) converges absolutely and uniformly in
u for u < 1/n, and hence in j for j ≥ n, is immediate. Let us now recall that a power
series

∑∞
n=0 an(z − z0)

n
that converges absolutely and uniformly for |z − z0| < ρ is

the Taylor series of a function analytic for |z− z0| < ρ, and that a Taylor series of an
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analytic function about z0 is also its asymptotic expansion in powers of (z − z0) for
z → z0. We therefore conclude that the power series in (2.17) is also an asymptotic
expansion of the left-hand side as u → 0, hence as j → ∞. Thus, its behavior as
j → ∞ is determined by the terms in which (

∏n
p=0 u

ip) is most dominant as u → 0,

or, equivalently, by the terms for which
∑n

p=0 ip is smallest possible. It seems this
will be achieved only by the term with i0 = 0, i1 = 1, i2 = 2, . . . , in = n, provided
Y0,1,...,n Zν0,ν1,...,νn

0,1,...,n �= 0, in which case

f
(j)
n (gk)∏n
i=0 gi(j)

∼ Y0,1,...,n Zν0,ν1,...,νn

0,1,...,n

(
n∏

p=0

up

)
as j → ∞.(2.21)

Indeed, recalling our definition that 00 ≡ 1 and 0i = 0 for i = 1, 2, . . . , (2.16) gives

Y0,1,...,n = (−1)n(n!)V (1, 2, . . . , n) = (−1)n
(

n∏
i=1

i!

)
�= 0.(2.22)

Also, since
(
ν
i

)
is a polynomial of degree exactly i in ν given by

(
ν
i

)
= ν(ν−1) · · · (ν−

i+ 1)/i!, Lemma 1.2 applies and we have

Zν0,ν1,...,νn

0,1,...,n =

(
n∏

i=1

i!

)−1

V (ν0, ν1, . . . , νn),(2.23)

and since the νi are all distinct, V (ν0, ν1, . . . , νn) �= 0, as a consequence of which, we
have Zν0,ν1,...,νn

0,1,...,n �= 0 as well. Combining (2.22) and (2.23) in (2.21), and noting that
u ∼ j−1 as j → ∞, the result in (2.19) follows.

We now turn to f
(j)
n (I). Comparing the determinant representation of f

(j)
n (I)

with that of f
(j)
n (gk), we realize that the former is obtained from (2.13) by replacing

gk(j) by 1 and νk by 0 in the last column there, with everything else remaining the
same. Realizing also that νi �= 0, i = 1, 2, . . . , we obtain the following result from
Lemma 2.1.

Lemma 2.2. f
(j)
n (I)/ [

∏n
i=1 gi(j)] can be expanded as a power series in u in the

form

f
(j)
n (I)∏n
i=1 gi(j)

=

∞∑
0≤i0<i1···<in

Yi0,i1,...,inZ
0,ν1,...,νn

i0,i1,...,in

(
n∏

p=0

uip

)
,(2.24)

which converges absolutely and uniformly in j for j ≥ n, and its behavior for large j
is given by the asymptotic equality

f
(j)
n (I)∏n
i=1 gi(j)

∼ V (ν1, . . . , νn, 0)

(
n∏

p=1

j−p

)
as j → ∞.(2.25)

The Yi0,i1,...,in and Z0,ν1,...,νn

i0,i1,...,in
in (2.24) are precisely as given in (2.16) and (2.18),

respectively.

Combining the two lemmas above, we obtain the following theorem on the χ
(j)
n (gk).

Theorem 2.3. For fixed n, χ
(j)
n (gk), k ≥ n+ 1, satisfy

χ(j)
n (gk) ∼

(
n∏

i=1

σi − σk
σi

)
gk(j) as j → ∞.(2.26)
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Consequently, {χ(j)
n (gk)}

∞
k=n+1 is an asymptotic sequence as j → ∞, i.e.,

lim
j→∞

χ
(j)
n (gk+1)

χ
(j)
n (gk)

= 0, k = n+ 1, n+ 2, . . . .(2.27)

It is interesting to observe from (2.26) that χ
(j)
n (gk) is proportional to gk(j) as

j → ∞, the constant of proportionality being [∏n
i=1(σi − σk)/σi].

2.3. Analysis of γ
(j)
ni and χ(j)

n (εs). Let us replace the last column of the

determinant f
(j)
n (b) in (2.3) by an arbitrary fixed vector (v0, v1, . . . , vn) and denote

the resulting determinant by f̂
(j)
n (v). Next, let us observe that f̂

(j)
n (v) is obtained

from (2.13) by replacing the last column in (2.13) by the vector (v0, v1, . . . , vn)
T
. By

repeating the steps that lead from (2.13) to (2.16), we obtain

f̂
(j)
n (v)∏n
i=1 gi(j)

=
∑
i1

· · ·
∑
in

[
n∏

p=1

(
νp
ip

)]( n∏
p=1

uip

)
Ŷi1,...,in(v),(2.28)

where we have defined

Ŷi1,...,in(v) =

∣∣∣∣∣∣∣∣∣∣∣

0i1 0i2 · · · 0in v0

1i1 1i2 · · · 1in v1

2i1 2i2 · · · 2in v2

...
...

...
...

ni1 ni2 · · · nin vn

∣∣∣∣∣∣∣∣∣∣∣
.(2.29)

Making use of Lemma 1.1 again, we obtain from (2.29) the power series in u

f̂
(j)
n (v)∏n
i=1 gi(j)

=

∞∑
0≤i1<···<in

Ŷi1,...,in(v) Z
ν1,...,νn

i1,...,in

(
n∏

p=1

uip

)
(2.30)

that converges absolutely and uniformly for u < 1/n. Since this is also an asymptotic
expansion as u → 0, with the dominant term being that for which i1 = 0, i2 =
1, . . . , in = n− 1, we have

f̂
(j)
n (v)∏n
i=1 gi(j)

∼ Ŷ0,1,...,n−1(v) Z
ν1,ν2,...,νn

0,1,...,n−1

(
n−1∏
p=1

up

)
as j → ∞,(2.31)

provided the right-hand side is nonzero. Expanding Ŷ0,1,...,n−1(v) with respect to its
last column, we have

Ŷ0,1,...,n−1(v) =

n∑
i=0

(−1)n+i
vi V (0, 1, . . . , i− 1, i+ 1, . . . , n)(2.32)

=

(
n−1∏
i=1

i!

)
n∑

i=0

(−1)n+i

(
n

i

)
vi.

Also, analogously to (2.23),

Zν1,ν2,...,νn

0,1,...,n−1 =

(
n−1∏
i=1

i!

)−1

V (ν1, ν2, . . . , νn).(2.33)
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Combining (2.32) and (2.33) in (2.31) and invoking (2.11) we have the following

result on f̂
(j)
n (v).

Lemma 2.4. Provided
∑n

i=0 (−1)n+i(n
i

)
vi �= 0, f̂ (j)

n (v) satisfies the asymptotic
equality

f̂
(j)
n (v)∏n
i=1 gi(j)

∼ V (ν1, ν2, . . . , νn)

[
n∑

i=0

(−1)n+i

(
n

i

)
vi

](
n−1∏
p=1

j−p

)
as j → ∞.(2.34)

We now use Lemma 2.4 to state the following result concerning γ
(j)
ni and χ

(j)
n (εs).

Theorem 2.5. (i) For each i = 0, 1, . . . , n, γ
(j)
ni satisfies the asymptotic equality

γ
(j)
ni ∼ (−1)n−i

(
n

i

)( n∏
p=1

σp

)−1(
j

q

)n

as j → ∞.(2.35)

(ii) χ
(j)
n (εs) satisfies

χ(j)
n (εs) = O(jngs+1(j)) as j → ∞.(2.36)

Proof. The proof of part (i) follows from the fact that f̂
(j)
n (v)/f

(j)
n (I) =

∑n
i=0 γ

(j)
ni vi

and from (2.34) and (2.25). The proof of part (ii) follows from the fact that χ
(j)
n (εs) =∑n

i=0 γ
(j)
ni εs(j + i) and from (2.35) and gk(j + i) = O(gk(j)) as j → ∞ for each k and

for each finite i.
Note that (2.35) is the best that we can obtain for γ

(j)
ni asymptotically. We believe

that (2.36) is also the best that can be obtained for χ
(j)
n (εs) under the given conditions.

3. Main results. We now present the main stability and convergence theorems
of this work. We only would like to recall that limy→0+ A(y) is not assumed to exist.
In other words, A may be the limit or antilimit of A(y) as y → 0+.

Theorem 3.1. With the yl as in (2.1), the extrapolation process that produces

the sequence {A(j)
n }∞j=0 with n fixed is unstable in the sense that supj Γ

(j)
n = ∞.

Specifically, we have the asymptotic equality

Γ(j)
n ∼

(
n∏

p=1

|σp|
)−1(

2j

q

)n

as j → ∞.(3.1)

Proof. The asymptotic equality in (3.1) follows from part (i) of Theorem 2.5
above.

Theorem 3.2. Let A(y) be as in the first paragraph of section 1. Then A
(j)
n −A

has the genuine asymptotic expansion

A(j)
n −A ∼

∞∑
k=n+1

αkχ
(j)
n (gk) as j → ∞.(3.2)

Remark. Comparing (3.2) with (2.9), one may be led to believe erroneously that
(3.2) follows from (2.9) in a trivial way by letting s → ∞ in the latter. This is far
from being the case as (3.2) needs to be proved in a rigorous manner. As we show
in the proof below, Theorems 2.3 and 2.5 that were obtained with considerable effort
are the key to establishing the validity of (3.2).
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Proof. To prove that (3.2) is valid we must first show that its right-hand side
makes sense as an asymptotic expansion. That this is indeed the case follows from

the fact that {χ(j)
n (gk)}

∞
k=n+1 is an asymptotic sequence as j → ∞, which was proved

in Theorem 2.3. Next, we must show that, for any integer N ≥ n+ 1, there holds

A(j)
n −A−

N∑
k=n+1

αkχ
(j)
n (gk) = O(χ(j)

n (gN+1)) as j → ∞.(3.3)

By the assumption in (1.2) that limk→∞ �σk = +∞, there exists an integer s > N
for which

�σs+1 ≥ �σN+1 +
n

q
.(3.4)

Let us rewrite (2.9) in the form

A(j)
n −A−

N∑
k=n+1

αkχ
(j)
n (gk) =

s∑
k=N+1

αkχ
(j)
n (gk) + χ(j)

n (εs).(3.5)

Now

s∑
k=N+1

αkχ
(j)
n (gk) = O(χ(j)

n (gN+1)) = O(gN+1(j)) as j → ∞(3.6)

by Theorem 2.3, and

χ(j)
n (εs) = O(jngs+1(j)) = O(gN+1(j)) = O(χ(j)

n (gN+1)) as j → ∞(3.7)

by part (ii) of Theorem 2.5, (2.2), (3.4), and Theorem 2.3. Substituting (3.6) and
(3.7) in (3.5), we obtain (3.3). This completes the proof.

Corollary. Under the conditions of Theorem 3.2, A
(j)
n −A satisfies the asymp-

totic equality

A(j)
n −A ∼

[
αn+µ

(
n∏

i=1

σi − σn+µ

σi

)
cσn+µ

]
j−qσn+µ as j → ∞,(3.8)

where αn+µ is the first nonzero αn+i with i ≥ 1.
Proof. The proof of (3.8) is achieved by combining (3.2) with (2.26) and then

using (2.1).
Before going on we would like to comment on the results above. From Theorem

3.1 it is clear that Γ
(j)
n , being proportional to q−n as j → ∞, will decrease when q

is increased, even though limj→∞ Γ
(j)
n = ∞. Thus, by increasing q we can cause the

column sequences to have better stability properties. (Numerical experience seems to

suggest that this is the case also for the diagonal sequences {A(j)
n }∞n=0 with j fixed.)

We next turn to Theorem 3.2 and its corollary. Let us compare the asymptotic

expansion of A
(j)
n −A that is given in (3.2) with that of A(yj)−A, namely, with

A(yj)−A ∼
∞∑
k=1

αkgk(j) as j → ∞,(3.9)
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which follows from (1.1) and (2.2). Theorem 3.2 thus tells us that, in generating

A
(j)
n , REP “eliminates” the first n terms, αky

σk , k = 1, . . . , n, from the asymptotic
expansion of A(y)−A. The corollary to Theorem 3.2, on the other hand, says that the

error A
(j)
n −A, as j → ∞, is exactly of the order of the first nonzero term following the

term αngn(j) in (3.9). Thus, in case αm+1 �= 0, αm+2 = · · · = αs = 0, and αs+1 �= 0,
we have

A(j)
n −A = o(A(j)

m −A) as j → ∞, m+ 1 ≤ n ≤ s,(3.10)

A
(j)
s+1 −A = o(A(j)

s −A) as j → ∞.

In addition, the sequences {A(j)
n }∞j=0, m + 1 ≤ n ≤ s, all have the same kind of

asymptotic behavior as j → ∞ in the sense that

A(j)
n −A ∼ θnj

−qσs+1 as j → ∞, m+ 1 ≤ n ≤ s,(3.11)

for some nonzero constants θn.
Finally, as both Γ

(j)
n and A

(j)
n − A are directly proportional to the product∏n

i=1 |σi|−1, we conclude that it is easier to extrapolate A(y) when σk are large.
One practical situation in which this becomes relevant is that of σk = σ0 + kd for
some d > 0. Here the larger �σ0 the better the convergence and stability properties

of the column sequences {A(j)
n }∞j=0, despite the fact that A

(j)
n − A = O(y

�σ0+(n+1)d
j )

as j → ∞ for any value of �σ0. (Again, numerical experience seems to suggest that

this is the case also for the diagonal sequences {A(j)
n }∞n=0 with j fixed.)

Both Theorem 3.2 and its corollary are valid under (1.1). When (1.1) does not
hold, but instead we have, for some finite and largest possible integer s,

A(y) = A+
s∑

k=1

αky
σk +O(yσs+1) as y → 0+,(3.12)

with (1.2) still valid, substantial changes need to be made in the convergence results

for A
(j)
n . These are summarized in Theorem 3.3, the proof of which is similar to that

of Theorem 3.2 and is left to the reader.
Theorem 3.3. Assume that A(y) is as in the previous paragraph and define σ̂

by

σ̂ = min

{
�σs+1 − n

q
,�σn+1

}
.(3.13)

Then

A(j)
n −A = O(yσ̂j ) as j → ∞ for all n.(3.14)

In addition, when n < s and αn+µ is the first nonzero αn+i with i ≥ 1 in (3.12), (3.8)
holds provided

�σs+1 > �σn+µ +
n

q
.(3.15)

We have been informed by one of the referees that in the special case where
σk = k, k = 1, 2, . . . , and yl = c/(l + 1), l = 0, 1, . . . , when n ≤ s/2, (3.14) of
Theorem 3.3 reduces to Lemma 2.15 on p. 54 of Crouzeix and Mignot [CM]. In this
case σ̂ = n+ 1 in (3.13).
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4. A numerical example. In this section we present a numerical example to
demonstrate the results of Theorems 3.1 and 3.2 of the previous section. Before we do
this, however, we would like to discuss the subject of stability in some detail. Through

this discussion the significance of the quantity Γ
(j)
n will also become clear.

Let us assume that REP is being applied with the quantities A(yl) replaced by
Al = A(yl) + εl, l = 0, 1, . . . . (That is to say, for each l, εl is the error committed

in the computation of A(yl).) Let us denote the resulting approximations by A
(j)

n .

Obviously, the errors in A
(j)

n and A
(j)
n are related to each other through the inequality

|A(j)

n −A| ≤ |A(j)

n −A(j)
n |+ |A(j)

n −A|.(4.1)

By the fact that A
(j)
n =

∑n
i=0 γ

(j)
ni A(yj+i) and A

(j)

n =
∑n

i=0 γ
(j)
ni Aj+i, we also have

|A(j)

n −A(j)
n | =

∣∣∣∣∣
n∑

i=0

γ
(j)
ni εj+i

∣∣∣∣∣ ≤ Γ(j)
n ε; ε = max{|εl| : j ≤ l ≤ j + n}.(4.2)

Therefore, substituting (4.2) in (4.1), we obtain

|A(j)

n −A| ≤ Γ(j)
n ε+ |A(j)

n −A|(4.3)

for the absolute error, and when A �= 0,

|A(j)

n −A|
|A| ≤ Γ(j)

n

ε

|A| +
|A(j)

n −A|
|A|(4.4)

for the relative error. The inequality in (4.3) implies that, practically speaking, the

absolute error in A
(j)

n is at least of the order of the corresponding theoretical error in

A
(j)
n , but it may be as large as Γ

(j)
n ε if this quantity dominates. (Note that, being the

theoretical error, A
(j)
n −A is not affected by the errors εl committed in the computation

of the A(yl) and is expected to tend to 0 as j or n → ∞.)
When A �= 0, the inequality in (4.4) can be used to obtain a good estimate

of the relative error in A
(j)

n . Suppose that the A(yl) have been computed to an
accuracy of r significant decimal digits. Thus, ε is of order 10−rE, where E =

max{|A(yl)|, j ≤ l ≤ j + n}. If the extrapolation process converges, then A ≈ A
(j)
n .

Combining these, we obtain 10−rE/|A(j)
n | as a good estimate of ε/|A| that can

be used in (4.4). In particular, if limy→0+ A(y) = A �= 0, then ε/|A| is of or-
der 10−r for all practical purposes. If, in addition, Γ

(j)
n is of order 10s for some

positive integer s, then we see that the relative error in A
(j)

n is of order 10s−r if

r > s, i.e., A
(j)

n and A agree to at most r − s significant decimal digits, even though

|A(j)
n − A|/|A| may be very small. In other words, we have lost s of these digits

when computing A
(j)

n . Of course, if r ≤ s, then A
(j)

n will be completely incor-

rect. This shows that the quality of A
(j)

n is poor when r is small and improves as
r increases. Thus, if computations in a certain precision do not produce satisfac-
tory results, then we may be able to remedy the situation by doubling the preci-
sion.

Let us now look at the problem of summation of the series
∑∞

k=1 k
−z whether

it converges or not. As is well-known, this series converges for �z > 1 and defines
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the Riemann zeta function ζ(z), and ζ(z) can be continued analytically to the whole
z-plane with the exception of the point z = 1 where it has a simple pole with residue
1. It is also known that, provided z �= 1,

S̃n =

n−1∑
k=1

k−z ∼ ζ(z) +
1

1− z

∞∑
i=0

(
1− z

i

)
Bin

−z−i+1 as n → ∞,(4.5)

where Bi are the Bernoulli numbers.
Letting y = n−1 and defining A(y) = S̃n, we thus see that A(y) satisfies (1.1)

with A = ζ(z) and σk = z + k − 2, k = 1, 2, . . . , and that y is a discrete variable
that takes on the values 1, 1/2, 1/3, . . . . Also, z �= 1, 0,−1,−2, . . . , in this case. Since
αk = (1−z)−1

(
1−z
k−1

)
Bk−1, k = 1, 2, . . . ; B2i+1 = 0, i = 1, 2, . . . ; and Bi �= 0 otherwise,

it follows from (4.5) that α4 = α6 = α8 = · · · = 0, while the rest of the αk are nonzero.
We have applied REP to A(y) with yl = 1/(l+ 1), l = 0, 1, . . . , and with various

values of z for which
∑∞

k=1 k
−z may be convergent or divergent. Thus, the approxi-

mation A
(j)
n is obtained from the terms k−z, k = 1, 2, . . . , j+n+1, i.e., from the first

j + n+ 1 terms of the infinite series.
The results of Table 1 (that have been obtained in quadruple-precision arithmetic)

concern the convergence of the column sequences and illustrate Theorem 3.1 and
Theorem 3.2. Since α6 = 0 but α7 �= 0, we have by the corollary to Theorem

3.1 that ∆
(j)
5 ∼ C5y

�σ7
j as j → ∞, where we have defined ∆(j)

n = |A(j)
n − A|/|A|.

Consequently, ∆
(j)
5 /∆

(2j)
5 ∼ (yj/y2j)

�σ7 ∼ 2�σ7 as j → ∞. Similarly, by Theorem
3.2, we have Γ

(2j)
5 /Γ

(j)
5 ∼ 2n as j → ∞. The numbers in Table 1 can be used to verify

these conclusions.
Table 2 concerns the diagonal sequences. In Table 2 we see first that double-

precision approximations A
(0)

n (d) to A = ζ(z) deteriorate due to the fact that Γ
(0)
n

are becoming exceedingly large. Next we see that quadruple-precision approximations

A
(0)

n (q) do achieve much better accuracy using the same number of terms of the infinite
series

∑∞
k=1 k

−z.
Table 3 concerns the diagonal sequences as well. Its results (that have been

obtained in double-precision arithmetic) show that better stability and also accuracy
prevails when |�σk| are increased, as was mentioned in the previous section.

5. Concluding remarks. In this work we have discussed and analyzed the
application of REP to functions A(y) that are of the form given in (1.1) and (1.2),
with arbitrary and in general complex σk, to determine (or approximate) A, the limit
or antilimit of A(y) as y → 0+. One may wonder whether methods other than REP
can be applied to treat the same problem and how they compare with REP. We
conclude this paper by commenting on this question.

As far as is known to us, there is one additional method that can be used for this
purpose and this method is the Shanks [Sh] transformation (ST) that can best be
implemented via the ε-algorithm of Wynn [W]. In connection with this the following
are true:

1. Only ST can be applied when the σk are not known, provided we take yl =
y0ω

l for some ω ∈ (0, 1). If the σk are known, then REP can also be applied
with the same yl and is much more economical than ST. Both methods are
stable with this choice of the yl.

2. Only REP can be applied with arbitrary yl �= y0ω
l, provided the σk are

known. In this case REP is defined via the linear systems of (1.3).
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Table 1

Relative errors ∆
(j)
5 = |A(j)

5 − A|/|A| and Γ
(j)
5 , j = 0(10)190, for z = 2 (convergent {S̃n}),

z = 1 + 10 i (divergent but bounded {S̃n}), and z = 0.5 (divergent and unbounded {S̃n}).

z = 2 z = 1 + 10 i z = 0.5
j

∆
(j)
5 Γ

(j)
5 ∆

(j)
5 Γ

(j)
5 ∆

(j)
5 Γ

(j)
5

0 1.05D − 05 3.02D + 02 1.96D − 04 1.40D + 00 1.78D − 04 6.94D + 03
10 1.05D − 09 1.28D + 05 4.05D − 09 1.45D + 02 9.03D − 08 4.48D + 06
20 2.19D − 11 1.95D + 06 1.23D − 10 2.09D + 03 4.24D − 09 7.05D + 07
30 1.83D − 12 1.14D + 07 1.41D − 11 1.20D + 04 6.02D − 10 4.13D + 08
40 2.94D − 13 4.18D + 07 2.89D − 12 4.39D + 04 1.43D − 10 1.52D + 09
50 6.92D − 14 1.17D + 08 8.27D − 13 1.23D + 05 4.58D − 11 4.28D + 09
60 2.09D − 14 2.76D + 08 2.94D − 13 2.89D + 05 1.78D − 11 1.01D + 10
70 7.49D − 15 5.73D + 08 1.22D − 13 5.99D + 05 7.98D − 12 2.09D + 10
80 3.07D − 15 1.08D + 09 5.67D − 14 1.13D + 06 3.96D − 12 3.96D + 10
90 1.39D − 15 1.91D + 09 2.87D − 14 1.99D + 06 2.12D − 12 6.97D + 10
100 6.83D − 16 3.17D + 09 1.56D − 14 3.31D + 06 1.21D − 12 1.16D + 11
110 3.58D − 16 5.03D + 09 8.96D − 15 5.24D + 06 7.31D − 13 1.84D + 11
120 1.98D − 16 7.67D + 09 5.40D − 15 7.99D + 06 4.60D − 13 2.80D + 11
130 1.15D − 16 1.13D + 10 3.38D − 15 1.18D + 07 3.00D − 13 4.14D + 11
140 6.93D − 17 1.62D + 10 2.19D − 15 1.69D + 07 2.01D − 13 5.94D + 11
150 4.32D − 17 2.27D + 10 1.46D − 15 2.37D + 07 1.39D − 13 8.31D + 11
160 2.78D − 17 3.12D + 10 1.00D − 15 3.25D + 07 9.82D − 14 1.14D + 12
170 1.84D − 17 4.19D + 10 7.01D − 16 4.37D + 07 7.09D − 14 1.53D + 12
180 1.24D − 17 5.55D + 10 5.01D − 16 5.78D + 07 5.21D − 14 2.03D + 12
190 8.55D − 18 7.24D + 10 3.64D − 16 7.54D + 07 3.89D − 14 2.65D + 12

Table 2

Relative (floating-point) errors ∆
(0)
n = |A(0)

n − A|/|A| and Γ
(0)
n , n = 1(1)20, for z = 2 (con-

vergent {S̃n}) and z = 0.5 (divergent and unbounded {S̃n}). ∆
(0)
n (d) and ∆

(0)
n (q) are computed,

respectively, in double precision (approximately 16 decimal digits) and in quadruple precision (ap-
proximately 35 decimal digits).

z = 2 z = 0.5
n

∆
(0)
n (d) ∆

(0)
n (q) Γ

(0)
n ∆

(0)
n (d) ∆

(0)
n (q) Γ

(0)
n

1 2.16D − 01 2.16D − 01 3.00D + 00 6.53D − 01 6.53D − 01 5.83D + 00
2 1.21D − 02 1.21D − 02 9.00D + 00 8.79D − 02 8.79D − 02 5.77D + 01
3 8.61D − 04 8.61D − 04 2.83D + 01 5.95D − 03 5.95D − 03 3.21D + 02
4 1.90D − 05 1.90D − 05 9.17D + 01 6.93D − 04 6.93D − 04 1.54D + 03
5 1.05D − 05 1.05D − 05 3.02D + 02 1.78D − 04 1.78D − 04 6.94D + 03
6 6.80D − 07 6.80D − 07 1.01D + 03 5.10D − 06 5.10D − 06 2.99D + 04
7 7.50D − 08 7.50D − 08 3.39D + 03 2.90D − 06 2.90D − 06 1.25D + 05
8 1.56D − 08 1.56D − 08 1.15D + 04 3.96D − 07 3.96D − 07 5.13D + 05
9 3.64D − 10 3.65D − 10 3.93D + 04 1.46D − 08 1.38D − 08 2.07D + 06
10 1.78D − 10 1.83D − 10 1.35D + 05 5.98D − 09 8.75D − 09 8.26D + 06
11 4.65D − 11 2.15D − 11 4.63D + 05 9.49D − 09 6.37D − 10 3.26D + 07
12 1.04D − 10 6.38D − 13 1.60D + 06 2.22D − 08 9.32D − 11 1.28D + 08
13 3.68D − 10 3.62D − 13 5.54D + 06 2.56D − 08 2.07D − 11 4.97D + 08
14 1.16D − 09 2.38D − 14 1.92D + 07 8.22D − 08 4.40D − 13 1.92D + 09
15 3.21D − 09 3.03D − 15 6.69D + 07 4.48D − 07 3.18D − 13 7.38D + 09
16 7.68D − 09 6.18D − 16 2.33D + 08 2.55D − 07 3.94D − 14 2.83D + 10
17 1.84D − 08 1.28D − 17 8.14D + 08 6.79D − 06 1.55D − 15 1.08D + 11
18 6.30D − 08 7.78D − 18 2.85D + 09 4.69D − 05 8.29D − 16 4.10D + 11
19 2.93D − 07 9.02D − 19 9.97D + 09 2.07D − 04 5.58D − 17 1.55D + 12
20 1.27D − 06 3.05D − 20 3.50D + 10 7.38D − 04 8.50D − 18 5.87D + 12
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Table 3

Relative (double-precision floating-point) errors ∆
(0)
n = |A(0)

n − A|/|A| and Γ
(0)
n , n = 1(1)20, for z = 1.5 and z = 1.5 + 20 i (convergent {S̃n}) and for

z = −0.5 and z = −0.5 + 20 i (divergent {S̃n}).

z = 1.5 z = 1.5 + 20 i z = −0.5 z = −0.5 + 20 i
n

∆
(0)
n Γ

(0)
n ∆

(0)
n Γ

(0)
n ∆

(0)
n Γ

(0)
n ∆

(0)
n Γ

(0)
n

1 3.07D − 01 5.83D + 00 2.24D − 01 1.62D + 00 1.63D + 00 2.09D + 00 8.90D − 01 1.40D + 00
2 2.30D − 02 2.20D + 01 2.05D − 01 1.51D + 00 3.99D − 01 1.83D + 01 7.91D − 01 2.21D + 00
3 1.64D − 03 8.03D + 01 1.96D − 01 2.45D + 00 2.19D − 02 2.68D + 02 7.44D − 01 2.00D + 00
4 6.99D − 05 2.91D + 02 7.58D − 02 3.09D + 00 6.75D − 03 1.99D + 03 8.58D − 01 4.49D + 00
5 2.67D − 05 1.05D + 03 8.32D − 03 1.64D + 00 1.36D − 03 1.20D + 04 1.46D − 01 2.51D + 00
6 1.46D − 06 3.78D + 03 9.89D − 04 1.23D + 00 1.95D − 05 6.46D + 04 1.85D − 02 1.47D + 00
7 2.55D − 07 1.36D + 04 1.13D − 04 1.08D + 00 3.73D − 05 3.24D + 05 2.44D − 03 1.17D + 00
8 4.54D − 08 4.90D + 04 1.26D − 05 1.08D + 00 3.84D − 06 1.55D + 06 3.11D − 04 1.09D + 00
9 3.78D − 10 1.76D + 05 1.38D − 06 1.23D + 00 4.05D − 07 7.14D + 06 3.89D − 05 1.17D + 00
10 6.79D − 10 6.34D + 05 1.51D − 07 1.54D + 00 3.62D − 07 3.20D + 07 4.80D − 06 1.43D + 00
11 4.04D − 11 2.28D + 06 1.66D − 08 2.13D + 00 7.43D − 07 1.40D + 08 5.89D − 07 1.93D + 00
12 3.60D − 10 8.19D + 06 1.83D − 09 3.20D + 00 1.26D − 06 6.04D + 08 7.20D − 08 2.86D + 00
13 9.47D − 10 2.94D + 07 2.02D − 10 5.16D + 00 1.74D − 06 2.56D + 09 8.79D − 09 4.62D + 00
14 1.81D − 09 1.06D + 08 2.24D − 11 8.91D + 00 4.32D − 05 1.07D + 10 1.07D − 09 8.01D + 00
15 5.09D − 10 3.80D + 08 2.50D − 12 1.63D + 01 4.99D − 04 4.43D + 10 1.31D − 10 1.48D + 01
16 2.10D − 08 1.36D + 09 2.80D − 13 3.15D + 01 3.49D − 03 1.82D + 11 1.61D − 11 2.91D + 01
17 1.53D − 07 4.90D + 09 3.24D − 14 6.36D + 01 2.00D − 02 7.40D + 11 1.95D − 12 6.01D + 01
18 7.61D − 07 1.76D + 10 3.51D − 15 1.34D + 02 1.11D − 01 2.99D + 12 1.47D − 13 1.30D + 02
19 3.14D − 06 6.33D + 10 1.06D − 14 2.95D + 02 5.82D − 01 1.19D + 13 8.22D − 14 2.93D + 02
20 1.16D − 05 2.27D + 11 3.09D − 14 6.69D + 02 2.77D + 00 4.85D + 13 1.62D − 13 6.86D + 02
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