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The integral
∫ L
0 eiνφ(s,t)f (s) ds with a highly oscillatory kernel (largeν, ν is

up to 2000) is considered. This integral is accurately evaluated with an improved
trapezoidal rule and effectively transcribed using local Fourier basis and adaptive
multiscale local Fourier basis. The representation of the oscillatory kernel in these
bases is sparse. The coefficients after the application of local Fourier transform are
smoothed. Sometimes this enables us to obtain further compression with wavelets.
 2000 Academic Press

1. INTRODUCTION

Computation of oscillatory integrals occurring in scientific and engineering simulations
faces difficult problems. As compared to the nonoscillatory case, accurate evaluation of
such integrals requires at least a few grid points per oscillation.

For a one-dimensional integral∫ b

a

eiλφ(s)f (s) ds, (1.1)
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with largeλ and smooth (nonoscillating)f , there exist methods for fast evaluation, for
example, the method of stationary phase first developed in [21] and justified in [22].
Upon assumingλ large, we find that the rapid oscillation of exp{iλφ(s)} produces
cancellation of the integral everywhere except near the stationary points, where the
derivative φ′(s) vanishes. The method proved to be an effective tool in asymptotic
expansions and evaluations. However, it requires analytic work in each case (as it cannot be
applied automatically), does not reach high accuracy, and is not easily extended to higher
dimensions. There exist fast algorithms for special kinds of kernels without regularity
assumptions such as [18].

We consider the problem of the fast and accurate evaluation for the integral

(Tf )(t)=
∫ b

a

K(t, s)f (s) ds, (1.2)

whereK(t, s) is an oscillatory kernel andf is a smooth function. The kernel is of the type

K(t, s)= eiλφ(t,s). (1.3)

Such integrals arise in acoustic scattering [6] and other applications. Methods, which are
effective for evaluation of (1.1), if employed in the two-dimensional case (1.2), become
very expensive. If the oscillatory integral (1.2) is computed for eacht , even the choice of
a minimal number of grid points results in a large-scale matrix problem. Moreover, the
matrices obtained at the discretization step are dense, which leads to heavy computation
when matrix–vector multiplications are needed. Computation time can be reduced if a
sparse representation ofK(t, s) can be achieved in some basis. A sparse representation of
the kernels (1.3) with wavelets (which appeared to be an efficient tool for sparsification
of matrix–vector multiplications in many cases) could be expected. However, wavelet
representation of an oscillating matrix appears to be as dense as the original (probably
due to the fact thatK is oscillating everywhere); i.e., oscillatory kernels cannot be handled
efficiently by representing them in wavelet bases.

In [6] a numerical method for fast computation of the integral (1.2) with the kernel (1.3)
was described and it was shown analytically thatK(t, s) becomes sparse when represented
in appropriate local Fourier basis (LFB) (more precisely, the number of elements above a
threshold per row grows as logN , whereN is the number of grid points in each direction).

The purpose of the present paper is to address more carefully numerical issues arising
from [6] and to evaluate the actual numerical efficiency of these methods. In particular, we
consider an adaptive basis selection, optimized bell functions, and accurate quadratures.
In [6] the location of large coefficients in the matrix realization was related to the geometry
of the curve on which the integral is defined. The matrices obtained represent the oscillatory
interactions between regions on that curve. The operation count of the algorithm was
evaluated to beO(N logN).

Here we illustrate this method by numerical examples and develop the algorithm by
applying multiresolution local cosine bases which leads to representation of (1.3) with a
smaller number of coefficients above a threshold due to their adaptivity (about 3 to 4 times
fewer coefficients for accuracies 10−4 to 10−6 and 1024× 1024 grid points).
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The following integral operator was chosen in [6] as a model problem:∫ L

0
eiν|z(s)−z(t)|f (s) ds. (1.4)

Here ν ≥ 100, the number of grid pointsN ≥ 2νL, and z = z(s), 0≤ s ≤ L, is the
parametric representation of a closed curve. The segment[0,L] is divided intoM equal
intervals with centersai . Let bi(s) be a bell function supported in[ai−1, ai+2] satisfying

M∑
i=1

b2
i (s)= 1, bi(s)= bi−1(2ai − s).

The functions

Cki (s)= bi(s)
(

2

ai+1− ai
)1/2

cos

((
k + 1

2

)
π

s − ai
ai+1− ai

)
(1.5)

form an orthogonal basis ofL2([0,L]) [10]. (In the discrete version grid points are
chosen such thatai are midpoints between adjacents.) The matrix of coefficients contains
O(N logN) elements above a threshold [6]. There it was evaluated that the number of
elements above a threshold isO(N) provided the curve is smooth with bounded derivatives
up to a certain order.

The method presented in [6] provides a numerical algorithm of orderO(N logN) as
N→∞. However, to achieve a sparse representation of the oscillatory kernel amultiscale
adaptive local cosine transformis used rather than a one-level local cosine transform.

Multiscale adaptive use of the local cosine transform, as explained in Section 4, enables
the achievement of an impressive compact coding description of oscillatory data. For
example, it can be used either in low bit compression of oscillatory seismic data (image
compression as described in [4]) or in sparsification of operator kernels as in the case here.
The methodology for handling oscillatory integrals and seismic data is almost identical.
Therefore, the notion of a 2-D matrix which describes an operator kernel and the notion of
image will be used interchangeably. The development of the algorithm in the present paper
is independent of the geometry.

We recall that there are two problems when computing oscillatory integrals:

1. Integral (1.2) has to be accurately computed with a comparatively small number of
grid points.

2. The matrix obtained after the discretization of the kernel should be effectively
presented (sparse representation of the kernel).

The second problem has been discussed already. It is well known that for convergence
of a quadrature formula the number of grid points per oscillation should be greater than
two. Thus, our goal is to find the best quadrature which gives an admissible accuracy
for 8ν grid points only in each direction. For accurate computation of the integral we
apply animproved trapezoidal rulewhich is described in Section 2. This method allows
us to achieve accuracy of 10−6 to 10−7 for the computation of integral (1.4) when
N = 8ν = 1024 in each direction,L = 2π . This result can be improved when using
Richardson extrapolation. This method uses the quadratures obtained for coarser grids to
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sharpen the result in a finer grid. The problem of computing oscillatory integrals is that
computations with two or fewer grid points per oscillation are not relevant. Thus, for each
grid point there exists an optimal number of levels employed in Richardson extrapolation.
This is discussed in Section 2.4.

When compared to [6] the methods for computing the oscillatory integral (1.4) are
extended in the following direction:

1. An improved trapezoidal rule is applied for accurate computations of (1.4) for a
comparatively small number of grid points. Richardson extrapolation can be employed for
further improvement of convergence of the integral (1.4).

2. The matrix obtained after the discretization is presented using either a usual or a
multiscale local cosine transform.

The paper is organized as follows. In Section 2 the problem of accurate integration
is solved by choosing an appropriate quadrature formula. In Section 3 the local Fourier
(cosine) transform is applied to the discretization developed in Section 2. Numerical
examples are presented, with the analysis of sparsity for the matrix of coefficients obtained
by the transform. Section 4 describes a multiscale decomposition with local Fourier basis
providing an automatic choice of the best basis for a given matrix. The comparison of the
sparsities for matrices of coefficients obtained by the ordinary and multiscale transforms
are presented. In the conclusion further development of this method is discussed.

2. IMPROVED QUADRATURES FOR OSCILLATING INTEGRALS

2.1. Statement of the Problem

In this section we discuss the numerical approximation of integrals of the form

∫ L

0
K(t, s)f (s) ds. (2.1)

We assume thatf (s) ∈ CM [0,L], whereM is as large as needed, and thatK(t, s) is
continuous on[0,L] × [0,L] and differentiable as many times as needed in the closed
triangular domains

S+ =
{
(t, s) : 0≤ t ≤ s ≤ L} and S−

{
(t, s) : 0≤ s ≤ t ≤ L},

but (∂k/∂sk)K(t, s) is discontinuous across the diagonals = t , where it has a finite jump
discontinuity,k = 1,2, . . . , and we set

δi(t)= ∂i

∂si
K(t, t+)− ∂i

∂si
K(t, t−), i = 1,2, . . . . (2.2)

As an example, consider

K(t, s)= eiν|z(s)−z(t)|. (2.3)
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When the closed curve represented byz(s) is an ellipse with foci at±√a2− b2 and semi-
major and semi-minor axesa andb, we have withL= 2π

z(t)= a cos(t)+ ib sin(t),

|z(t)− z(s)| =√a2(cos(t)− cos(s))2+ b2(sin(t)− sin(s))2.
(2.4)

K(t, s) is continuous for allt, s ∈ [0,2π], as is obvious from (2.3). In particular,
K(t, t)= 1 for all t . Next,

|z(t)− z(s)| =
√
a2

(
−2 sin

t + s
2

sin
t − s

2

)2

+ b2

(
2 cos

t + s
2

sin
t − s

2

)2

= 2 sin
|t − s|

2

√
a2

(
sin

t + s
2

)2

+ b2

(
cos

t + s
2

)2

. (2.5)

Now sin(|t − s|/2) is differentiable for allt ands both inS+ and inS− but not across the
diagonals = t , where its partial derivatives have finite jump discontinuities. The term

9(t, s)=
√
a2

(
sin

t + s
2

)2

+ b2

(
cos

t + s
2

)2

(2.6)

is well defined and differentiable an infinite number of times for allt and s including
the lines = t , since[9(t, s)]2 in (2.6) never vanishes. This implies that(∂i/∂si)K(t, s),
i = 1,2, . . . , have finite jump discontinuities acrosss = t . The computation of the jump
turns out to be particularly simple. From

∂

∂s
|z(t)− z(s)| =


−cos

t − s
2
9(t, s)+ 2 sin

t − s
2

∂

∂s
9(t, s), s < t,

cos
s − t

2
9(t, s)+ 2 sin

s − t
2

∂

∂s
9(t, s), t < s,

(2.7)

and from the fact that

∂K

∂s
(t, s)= iν

(
∂

∂s
|z(t)− z(s)|

)
K(t, s),

we have

δ1(t)= iν
[(

∂

∂s
|z(t)− z(s)|

)∣∣∣∣
s=t+
−
(
∂

∂s
|z(t)− z(s)|

)∣∣∣∣
s=t−

]
= 2iν

√
a2 cos2 t + b2 sin2 t .

In the general case, whenz(s) is an arbitrary smooth closed curve without self-
intersections,K(t, s) in (2.3) is also continuous andK(t, t)= 1. Then

|z(t)− z(s)| = |t − s|
∣∣∣∣z(t)− z(s)t − s

∣∣∣∣
differs from zero and is differentiable an infinite number of times everywhere except along
the diagonal. At the diagonal(z(t)− z(s))/(t − s) tends to the derivative, which is a finite
nonzero value, so the first derivative of (2.3) ins has a finite jump across the diagonal that
originates from the factor|t − s|.
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2.2. Corrected Trapezoidal Rules

Let us proceed to the problem of the accurate evaluation of the integral with kernel (2.3).
The problem of the numerical approximation of integrals of the form described above
was recently considered in [20]. The approach of [20], in turn, was inspired by the earlier
work [19], and both approaches are based on the trapezoidal rule.

Pick a number of grid pointsN and leth = L/N and sk = kh, k = 0,1, . . . ,N (then
s0 = 0 andsN = 1). Fix t = si for any i, i ∈ {0,1, . . . ,N}. By the fact that the curve
represented byz(t) is closed,f (s) is periodic ins with periodL andK(t, s) is periodic
both int and ins with periodL. Consequently,K(t, s)f (s) is periodic ins with periodL,
and the trapezoidal rule approximationT (h) for

∫ L
0 K(t, s)f (s) ds can be written as

T (h)= h
N∑
j=1

K(si, sj )f (sj ). (2.8)

As shown in [20],T (h) has the asymptotic expansion

T (h, si)= (Tf )(si)+
p−1∑
µ=1

B2µ

(2µ)!
[
∂2µ−1

∂s2µ−1G(si,1)−
∂2µ−1

∂s2µ−1G(si,0)

]
h2µ

−
p−1∑
µ=1

B2µ

(2µ)!
[
∂2µ−1

∂s2µ−1G(si, si+)−
∂2µ−1

∂s2µ−1G(si, si−)
]
h2µ +M(p)

i h2p, (2.9)

whereG(t, s) ≡ K(t, s)f (s) and |M(p)
i | ≤ M(p), i = 0,1, . . . ,N , for someM(p) > 0.

HereBi are Bernoulli numbers. By the fact thatG(t, s) is periodic, the first summation in
(2.9) vanishes, and we have

T (h, si)= (Tf )(si)−
p−1∑
µ=1

B2µ

(2µ)!
[
∂2µ−1

∂s2µ−1G(si, si+)−
∂2µ−1

∂s2µ−1G(si, si−)
]
h2µ+M(p)

i h2p.

(2.10)
Note thatT (h, si)− (Tf )(si)=O(h2) ash→ 0.

We can improve the accuracy ofT (h, si) by adding to it first of all the term withµ= 1
in (2.10). By the fact that

∂

∂s
G(t, s)=

[
∂K

∂s
(t, s)

]
f (s)+K(t, s)f ′(s),

and using the valueB2=−1
6, we thus obtain the corrected trapezoidal ruleT̂ (h, si ) given

by

T̂ (h, si )= T (h, si)+ 1

12
δ1(si)f (si), (2.11)

with δi(t) as defined in (2.2). Obviously,̂T (h, si)− (Tf )(si)=O(h4) ash→ 0, and

T̂ (h, si )= (Tf )(si)−
p−1∑
µ=1

B2µ

(2µ)!
[
∂2µ−1

∂s2µ−1G(si, si+)−
∂2µ−1

∂s2µ−1G(si, si−)
]
h2µ+M(p)

i h2p.

(2.12)
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The accuracy of the method isO(h4) compared toO(h2) with the usual trapezoidal
rule. Further improvement of the convergence is discussed in Section 2.4.

2.3. Numerical Results for the Corrected Trapezoidal Rule

The computational results for the usual and the corrected trapezoidal rules are presented
below for two cases: (i) the kernel oscillates very slowly (ν = 1) and (ii) the kernel is
oscillatory (ν is up to 256). In the following numerical examples we compute

∫ 2π

0
sin
(
ν
√
(cos(t)− cos(s))2+ (sin(t)− sin(s))2

)
f (s) ds, (2.13)

which is a particular case of (2.3), (2.4) for the circle (a = b = 1), with f (t)= cost .
We will use the following measures to estimate the errors:

εMAX = max
1≤i≤N

|T (hi, s)− (Tf )(si)|,

εMSQ= 1

N

√√√√ N∑
i=1

(
T (hi, s)− (Tf )(si)

)2
,

εL2 =
√√√√∑N

i=1(T (hi, s)− (Tf )(si))2∑N
i=1(Tf )(si)

.

Table 1 illustrates the order of the regular and the corrected trapezoidal rules for integral
(2.13) andf (s)= coss in the nonoscillatory caseν = 1.

In Table 1 we observe a good fit between the numerical results and the theoretical
ones:O(h4) accuracy for the corrected trapezoidal rule compared toO(h2) for the usual
trapezoidal rule.

Now we consider the dependence of the accuracy on the number of oscillations of the
kernel. Table 2 presents the dependence of the errorεMAX on the number of oscillations.

TABLE 1
Comparison between the Accuracies of the Regular and the Accuracies of the Corrected

Trapezoidal Rules for Integral (2.13) with ν = 1 and with f (s)= coss

N Corrected trapezoidal rule Ratio Usual trapezoidal rule Ratio

εMAX εMSQ εL2 εN/2/εN εMAX εMSQ εL2 εN/2/εN

32 2.8e−6 2.0e−6 2.0e−5 1.0e−3 7.3e−4 7.1e−3
64 1.7e−7 1.2e−7 1.2e−6 16.5 2.6e−4 1.8e−4 1.8e−3 3.9

128 1.1e−8 7.7e−9 7.6e−8 15.5 6.4e−5 4.5e−5 4.4e−4 4.1
256 6.8e−10 4.8e−10 4.7e−9 16.2 1.6e−5 1.1e−5 1.1e−4 4.0
512 4.3e−11 3.0e−11 3.0e−10 15.8 4.0e−6 2.8e−6 2.8e−5 3.9

1024 2.7e−12 1.9e−12 1.8e−11 15.9 1.0e−6 7.1e−7 6.9e−6 4.1
2048 1.7e−13 1.2e−13 1.2e−12 15.9 2.5e−7 1.8e−7 1.7e−6 4.1
4096 1.2e−14 6.9e−15 6.8e−14 14.2 6.2e−8 4.4e−8 4.3e−7 4.0
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TABLE 2
Dependence of the ErrorεMAX on the Number of Oscillations for the Corrected Trapezoidal

Rule, whereN = 64,128,256

N ν = 2 ν = 4 ν = 8 ν = 16 ν = 32 ν = 64
εMAX εMAX ε4/ε2 εMAX ε8/ε4 εMAX ε16/ε8 εMAX ε32/ε16 εMAX ε64/ε32

64 6.0e−7 3.2e−6 5.3 2.2e−5 6.9 1.8e−4 8.2 1.8e−3 10.0 – –
128 3.7e−8 2.0e−7 5.4 1.4e−6 7.0 1.1e−5 7.9 9.0e−5 8.2 8.8e−4 9.8
256 2.3e−9 1.2e−8 5.2 8.6e−8 7.2 6.7e−7 7.8 5.4e−6 8.1 4.5e−5 8.3

From (2.12) we see that the error inT̂ (h, si ) behaves like[
∂3

∂s3
G(si, si+)− ∂3

∂s3
G(si, si−)

]
h4,

which for increasingν behaves likeO(ν3). Consequently, we expectεν/εν/2 to approach
23 = 8. The results of Table 2 provide the justification of this prediction, and we can see
that asν gets closer toN/2, the faster the loss of accuracy is. In [6] the number of grid
points necessary to compute the oscillatory integral (2.1) with (2.3) to a sufficient accuracy
is estimated by

N ≥ 2L. (2.14)

Table 3 presents the accuracy of the computation forN = 8ν,16ν, L= 2π .
We observe that the error slowly decays asν andN grow.

2.4. Improvement of the Convergence by Richardson Extrapolation (Romberg
Integration)

The accuracy of the corrected trapezoidal rule can be improved by applying the
Richardson extrapolation (Romberg integration). The description of this method is
contained, for example, in [17]. The idea of this method is the following. The convergence
of the quadrature can be essentially improved if together with a finer grid some coarser

TABLE 3
The Accuracy for the Corrected Trapezoidal Rule and the Oscillatory Kernels withN = 8ν,16ν

N ν =N/16 εMAX εMSQ εL2 ν =N/8 εMAX εMSQ εL2

16 1 4.6e−5 3.2e−5 3.2e−4 2 1.6e−4 1.1e−4 4.0e−4
32 2 9.6e−6 6.8e−6 2.4e−5 4 5.2e−5 3.7e−5 2.9e−4
64 4 3.2e−6 2.2e−6 1.8e−5 8 2.2e−5 1.6e−5 6.7e−4

128 8 1.4e−6 9.8e−7 4.2e−5 16 1.1e−5 7.6e−6 2.7e−4
256 16 6.7e−7 4.7e−7 1.7e−5 32 5.4e−6 3.8e−6 1.8e−4
512 32 3.3e−7 2.3e−7 1.1e−5 64 2.7e−6 1.9e−6 4.1e−5

1024 64 1.6e−7 1.2e−7 2.5e−6 128 1.3e−6 9.4e−7 3.6e−5
2048 128 8.2e−8 5.8e−8 2.2e−6 256 6.6e−7 4.7e−7 2.6e−5
4096 256 3.9e−8 2.7e−8 1.5e−6 512 3.1e−7 2.2e−7 1.5e−5
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TABLE 4
Comparison among the Accuracies of Integration for the Kernel (2.13), withν = 1, Obtained
by the Regular Trapezoidal Quadrature, the Corrected Trapezoidal Quadrature, and the

Algorithm Using Two Grids Simultaneously

N Corrected two-step rule Corrected trapezoidal rule Usual trapezoidal rule

εMAX εMSQ εL2 εMAX εMSQ εL2 εMAX εMSQ εL2

32 4.2e−8 3.0e−8 2.9e−7 2.8e−6 2.0e−6 2.0e−5 1.0e−3 7.3e−4 7.1e−3
64 6.4e−10 4.5e−10 4.4e−9 1.7e−7 1.2e−7 1.2e−6 2.6e−4 1.8e−4 1.8e−3

128 9.9e−12 7.0e−12 6.9e−11 1.1e−8 7.7e−9 7.6e−8 6.4e−5 4.5e−5 4.4e−4
256 1.6e−13 1.1e−13 1.1e−12 6.8e−10 4.8e−10 4.7e−9 1.6e−5 1.1e−5 1.1e−4
512 2.2e−14 2.2e−15 2.2e−14 4.3e−11 3.0e−11 3.0e−10 4.0e−6 2.8e−6 2.8e−5

1024 2.4e−15 7.0e−16 6.9e−15 2.7e−12 1.9e−12 1.8e−11 1.0e−6 7.1e−7 6.9e−6

grids are included in the quadrature. The asymptotic expansion ofT (h, si) contains the
powersh4, h6, h8, etc. The Richardson extrapolation can thus be applied as follows:

1. Pickh0= L and definehk = h0/2k, k = 1,2, . . . .
2. ComputeT (k)0 = T̂ (hk, si ), k = 0,1, . . . , whereT̂ (h, si ) is defined by (2.11).
3. ComputeT ((k)m for m= 1,2, . . . by the recursion

T (k)m =
T
(k+1)
m−1 − cmT (k)m−1

1− cm , cm =
(1

4

)m+1
. (2.15)

HereT (k)m are approximations to(Tf )(si) andT (k)m − (Tf )(si)=O(4−(m+2)k) ask→∞.
In our computations we have takenm = 1 (two-step) andm = 2 (three-step algorithm

applying two grids simultaneously). This improves the accuracy in the following way:
if the original quadrature hasO(h4) convergence (as in our case), then by applying two
grids (say, 16 and 32 points per interval) the accuracy ofO(h6) can be achieved; three
grids giveO(h8) accuracy. However, for oscillatory integrals we cannot employ too many

TABLE 5
Accuracies of Integration for Oscillatory Kernels (2.13), with N = 8ν, Obtained by the

Algorithm Using Two Grids Simultaneously

ν N εMAX εMSQ εL2

1 8 3.6e−4 2.5e−4 2.5e−3
2 16 2.4e−5 1.7e−5 6.1e−5
4 32 4.1e−6 2.9e−6 2.3e−5
8 64 1.3e−6 9.2e−7 3.9e−5

16 128 5.6e−7 4.0e−7 1.4e−5
32 256 2.7e−7 1.9e−7 9.0e−6
64 512 1.3e−7 9.5e−8 2.1e−6

128 1024 6.7e−8 4.8e−8 1.8e−6
256 2048 3.6e−8 2.5e−8 1.4e−6
512 4096 3.7e−8 2.6e−8 1.8e−6
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TABLE 6
Accuracy of the Richardson Extrapolation

ν N Corrected trapezoidal rule Two-step rule Three-step rule

εMAX εN/2/εN εMAX εN/2/εN εMAX εN/2/εN

8 32 3.8e−4 – 1.2e−4 - 2.9e−4 –
64 2.2e−5 17.2 1.3e−6 92.3 6.0e−7 415

128 1.4e−6 15.7 1.9e−8 68.4 1.5e−9 400
256 8.6e−8 16.3 2.9e−10 65.5 5.4e−12 278
512 5.4e−9 15.9 4.5e−12 64.4 2.1e−14 257

1024 3.4e−10 15.9 7.1e−14 63.4 1.0e−15 21

16 32 3.6e−3 – 1.0e−3 – 4.0e−5 –
64 1.8e−4 20.0 4.9e−5 20.4 6.6e−5 0.6

128 1.1e−5 14.4 5.6e−7 87.5 2.0e−7 330
256 6.7e−7 16.4 8.2e−9 68.3 5.6e−10 357
512 4.2e−8 16.0 1.3e−10 63.1 2.0e−12 280

1024 2.6e−9 16.2 2.0e−12 65.0 8.1e−15 247

32 64 1.8e−3 – 2.7e−3 – 3.8e−3 –
128 9.0e−5 20 2.3e−5 117 1.9e−5 200
256 5.4e−6 16.7 2.7e−7 85.2 8.7e−8 218
512 3.3e−7 16.4 4.0e−9 67.5 2.5e−10 348

1024 2.1e−8 15.7 6.1e−11 65.6 9.3e−13 269
2048 1.3e−9 16.2 9.6e−13 63.5 4.3e−15 216

64 128 8.8e−4 – 3.9e−3 – 5.2e−3 –
256 4.5e−5 19.6 1.1e−5 354 5.0e−5 104
512 2.7e−6 16.7 1.3e−7 84.6 4.2e−8 1190

1024 1.7e−7 15.9 2.0e−9 65.0 1.2e−10 350
2048 1.0e−8 17.0 3.0e−11 66.7 4.6e−13 261

128 256 4.4e−4 – 3.9e−3 – 5.1e−3 –
512 2.2e−5 20.0 5.6e−6 696 5.7e−5 89.5

1024 1.3e−6 16.9 6.7e−8 83.6 2.1e−8 2714
2048 8.2e−8 15.9 9.8e−10 68.4 6.2e−11 339

256 512 2.2e−4 – 3.6e−3 – 4.6e−3 –
1024 1.1e−5 20 2.8e−6 1286 5.4e−5 85.2
2048 6.7e−7 16.4 3.3e−8 84.8 1.0e−8 5400

grids simultaneously since for very coarse grids (less than 2 to 3 points per oscillation)
the result of the integration is not relevant and does not improve the one obtained for
the finer grid. Tables 4 and 5 demonstrate the accuracy ofν = 1 for variousn and the
accuracy forN = 8ν. Table 6 illustrates the search for the best integration formula for
variousν, N ≥ 2ν (corrected trapezoidal rule and two-step and three-step Richardson
extrapolation are applied).

We can see from Table 6 that, for example, forν = 128 andN = 2ν both two-step
and three-step rules are less accurate than one-step rules; forN = 4ν = 512 the best result
(error= 5.6×10−6) is obtained by the two-step rule, while the results of the three-step rule
are even worse than those obtained by the corrected trapezoidal rule; forN = 8ν each step
adds to the accuracy. Thus, by applying simultaneously three grids the accuracyO(10−8)

for the integration can be achieved forν = 128, N = 8ν = 1024. A similar effect can be
observed for otherν.
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3. DECOMPOSITION IN LOCAL FOURIER BASES (LFB) AND SPARSITY ANALYSIS

3.1. Local Fourier Bases

The local Fourier basis can capture well oscillatory patterns (see, for example, [3, 4, 6])
in contrast to wavelets or multiwavelets; therefore we attempt to get effective computation
of the oscillatory integral by representing its kernel in LFB; i.e., we computed the following
coefficients,

A
i,j
k,l =

∫ 2π

0

∫ 2π

0
K(t, s)Cik(t)C

j
l (s) ds dt, (3.1)

B
i,j

k,l =
∫ 2π

0

∫ 2π

0
K(t, s)Sik(t)S

j

l (s) ds dt, (3.2)

where

Cik(s)= bi(s)
(

2

ai+1− ai
)1/2

cos

((
k + 1

2

)
π

s − ai
ai+1− ai

)
, (3.3)

Sik(s)= bi(s)
(

2

ai+1− ai
)1/2

sin

((
k + 1

2

)
π

s − ai
ai+1− ai

)
. (3.4)

Let [0,2π] be divided intoM intervalsIi = (ai, ai + 1) andbi(s) be a collection of
smooth window (bell) functions supported inIi−1 ∪ Ii ∪ Ii+1 such that

M∑
i=1

b2
i (s)= 1,

bi(s)= bi−1(2ai − s).
A discrete system of basis functions is constructed. LetN be the number of discretization

points. Following [6] we chooseN ≥ 2νL, i.e., N ≥ 4πν. In all the numerical
implementations we assumedN = 8ν.

To get better performance we use the optimized bells that were developed by [15] which
minimize the number of local Fourier coefficients necessary for their representation (3.5).
These bells generalize the Coifman–Meyer (CM) construction [10] by extending the choice
of the bell functions. Each bell is defined on three adjacent intervals as shown in Scheme 1,

SCHEME 1. The collection of bell functions. Each bell is defined on three adjacent intervals.
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FIG. 1. The form of the bell for the steepnessk = 2,6,11, respectively.

where each one is given by

bk(x)=


1
2

(
1+∑k−1

n=0gn sin(n+ 1
2)πx

)
for all −1

2 ≤ x ≤ 1
2,

1
2

(
1+∑k−1

n=0(−1)ngn cos(n+ 1
2)πx

)
for all 1

2 ≤ x ≤ 3
2,

0 otherwise

(3.5)

where the coefficientsgn are the solutions of a linear system and its values fork = 0, . . . ,11
are tabulated in [15]. Herek is a parameter that characterizes the smoothness of the bell
and its steepness at the sides. Figure 1 illustrates the forms of the bells fork = 1,6,11.

The basis which was built corresponds to the discretization of the continuous basis
functions whereN discretization pointsxj are taken such thatai are midpoints between
adjacentxj .

The kernels and their discretizations were chosen so that they correspond to the corrected
trapezoidal rule which was described in Section 2.2.

3.2. Numerical Results: Sparsity, Error Estimates, and Comparison with Wavelets

Tables 7 and 8 present the number of coefficients above a thresholdε in the
representation of the kernel

G(t, s)= sin
(
ν
√
(cos(t)− cos(s))2+ (sin(t)− sin(s))2

)
, t, s ∈ [0,2π],

in local Fourier basis. The discretization which corresponds to the corrected trapezoidal
rule was described in Section 2.2, i.e.,

Gij = 2π

N
G(ti, tj )+ ν 2π2

3N2
,

where the grid points are equispacedti = 2πi/N . Table 7 presents the number of
significant coefficients in the LFB kernel representation and the accuracy obtained (the
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TABLE 7
Sparsity of the Representation of the Oscillatory Kernel (N = 8ν is a Number of Points in
Each Direction) in LFB and the Accuracy Obtained with the Corrected Trapezoidal Rule (2.12)

When the Coefficients below the Threshold Are Neglected

Threshold ν of N of Total Coefficients Integration Accuracy with
ε exp. points coefficients aboveε % error thresholding

1e−3 8 64 4096 2067 50% 2.2e−5 2.6e−3
32 256 65536 7269 11% 5.4e−6 4.8e−3

128 1024 1048576 17654 1.7% 1.3e−6 2.8e−3
1e−4 8 64 4096 3381 91% 2.2e−5 2.0e−4

32 256 65536 20304 31% 5.4e−6 4.1e−4
128 1024 1048576 66307 6.3% 1.3e−6 4.3e−4

1e−5 8 64 4096 3932 96% 2.2e−5 3.5e−5
32 256 65536 33947 52% 5.4e−6 7.5e−5

128 1024 1048576 159943 15% 1.3e−6 1.3e−4
1e−6 8 64 4096 4073 99% 2.2e−5 2.2e−5

32 256 65536 50217 77% 5.4e−6 1.0e−5
128 1024 1048576 300998 29% 1.3e−6 1.5e−5

1e−7 8 64 4096 4093 99% 2.2e−5 2.2e−5
32 256 65536 58773 90% 5.4e−6 5.5e−6

128 1024 1048576 513705 49% 1.3e−6 2.0e−6

Note.“Integration error” describes the accuracy of the quadrature, while the “accuracy” column gives the com-
putation error when all the coefficients below a certain threshold are neglected.

TABLE 8
Comparison between the Sparsity Representation of the Oscillatory Kernel (N = 1024) Both

in Local Fourier Basis and the Multiwavelet Basis

Threshold ν of Integration Accuracy with LFB coefficients> ε Multiwavelet
ε exp. error thresholding per row coefficients per row

1e−3 1 2.7e−12 4.8e−3 4.5 2
4 4.8e−11 4.0e−3 4.8 5

16 2.6e−9 3.9e−3 6.9 19
64 1.6e−7 3.9e−3 12.7 63

128 1.3e−6 2.8e−3 17.2 97
1e−4 1 2.7e−12 1.2e−3 18.4 6

4 4.8e−11 1.5e−3 17.4 14
16 2.6e−9 5.5e−4 21.8 46
64 1.6e−7 1.2e−3 45.9 184

128 1.3e−6 4.3e−4 64.8 306
1e−5 1 2.7e−12 1.7e−4 47.6 15

4 4.8e−11 2.6e−4 48.8 30
16 2.6e−9 1.4e−4 66.1 87
64 1.6e−7 1.5e−4 118.0 280

128 1.3e−6 1.3e−4 156.2 389
1e−6 1 2.7e−12 2.7e−5 112.3 30

4 4.8e−11 1.9e−5 115.7 56
16 2.6e−9 1.8e−5 140.1 138
64 1.6e−7 1.5e−5 218.6 348

128 1.3e−6 3.6e−5 293.9 425
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maximal error) when the coefficients below the threshold are ignored. This accuracy is
compared with the accuracy obtained after integration (without thresholding). The sparsity
is estimated both by the number of coefficients above a threshold and the percent of
significant coefficients.

For accuracies 10−5 to 10−6 the error obtained after thresholding is close to the error
of the integration quadrature. Thus, forν = 128 and number of grid pointsN = 1024 it is
senseless to consider accuracies less than 10−6 (see Table 3). One can see that if all the
coefficients below a certain thresholdε are omitted, the error obtained is close toε. Due to
the oscillatory nature of the kernel there is nearly no accumulation of error.

Table 8 describes the dependence of the sparsity onν, whereN = 1024. In addition to
LFB we use multiwavelets [1] with four vanishing moments. The last column in the table
gives the number of multiwavelet coefficients per row above the chosen threshold which
can be compared with the sixth column that presents the number of elements above the
threshold after the LFB.

We observe that for smallν (ν < 16) the number of wavelet coefficients above a
threshold is less than the number of LFB coefficients, while for largeν (ν > 16) LFB
gives a more compact representation for the kernel. This illustrates the fact that wavelet
representation is not efficient for highly oscillatory integral kernels.

3.3. Sparsification of the Kernel by Local Fourier Bases: Theoretical Estimates

We compute the following integral

T (f (x))=
∫ 1

0
eiνφ(x,y)f (y) dy, (3.6)

whereφ is a smooth function satisfying∣∣∣∣∂α+βφ(x, y)∂xα∂yβ

∣∣∣∣≤ C. (3.7)

If a one-dimensional function is decomposed with local cosine basis, each coefficient
of such a decomposition corresponds to a certain location (window)q and a certain
frequencyp. Let us assume that we haveN = 4ν discretization points (less than two
points per oscillation would not work) and

√
N = 2

√
ν bells (windows for local cosine

transform). Then, the number of the windowq is such that 0≤ q < 2
√
ν and frequencyp

is such that 0≤ p < 2
√
ν.

Let us denote bycq = q/(2√ν) the origin of theq th interval and bydq = (q +
1/2)/(2

√
ν) the center of theq th window and bell. Then the basis function corresponding

to locationq and frequencyp is

Cq,p(x)= 2
√
νb(2
√
ν(x − dq))cos

((
p+ 1

2

)
π(x − cq)2√ν

)
, (3.8)

whereb(x) is a bell function.
The collection of functionsCq,p forms an orthogonal basis. Thus the interaction between

two windowsq andq ′ and two frequenciesp andp′ is given by the expression
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G(q ′,p′)(q,p) = 〈Cq ′,p′, T (Cq,p)〉

= 2
√
ν

∫ 1

0

∫ 1

0
eiνφ(x,y)b

(
(x − dq ′)2

√
ν
)
b
(
(y − dq)2√ν

)
× cos

((
p′ + 1

2

)
π

(
x − q ′

2
√
ν

)
2
√
ν

)
× cos

((
p+ 1

2

)
π

(
y − q

2
√
ν

)
2
√
ν

)
dx dy. (3.9)

By the change of variables

s = (x − dq ′)2
√
ν, t = (y − dq)2√ν, (3.10)

we obtain

2x
√
ν = s + dq ′2

√
ν⇒ x = s

2
√
ν
+ dq ′ ⇒ x = s

2
√
ν
+ q

′ + 1/2

2
√
ν

,

2y
√
N = t + dq2

√
ν⇒ y = t

2
√
ν
+ dq⇒ y = t

2
√
ν
+ q + 1/2

2
√
ν
.

The boundaries fort ands are

s1=−q ′ − 1

2
≤ s ≤ 2

√
N − q ′ − 1

2
= s2, t1=−q − 1

2
≤ s ≤ 2

√
N − q − 1

2
= t2,
(3.11)

and

x − q ′

2
√
ν
= x − q

′ + 1/2

2
√
ν
+ 1

4
√
ν
= s

2
√
ν
+ 1

4
√
ν
, (3.12)

y − q

2
√
ν
= x − q + 1/2

2
√
ν
+ 1

4
√
ν
= t

2
√
ν
+ 1

4
√
ν
. (3.13)

The change of variables (3.10) turns (3.9) into the following integral:

1

2
√
ν

∫ t2

t1

∫ s2

s1

exp

{
iνφ

(
q ′

2
√
ν
+ s

2
√
ν
,
q

2
√
ν
+ t

2
√
ν

)}
×b(s)b(t)cos

((
p′ + 1

2

)
π

(
s − 1

2

))
cos

((
p+ 1

2

)
π

(
t − 1

2

))
ds dt.

Let us expand functionνφ into Taylor series:

νφ

(
q ′

2
√
ν
+ s

2
√
ν
,
q

2
√
ν
+ t

2
√
ν

)
= νφ

(
q ′

2
√
ν
,
q

2
√
ν

)
+
√
ν

2

[
∂φ

∂q ′

(
q ′

2
√
ν
,
q

2
√
ν

)
s + ∂φ

∂q

(
q ′

2
√
ν
,
q

2
√
ν

)
t

]
+ rνqq ′(s, t).

Therefore, the residual has the following form:

rνqq ′(s, t)= νφ
(
q ′

2
√
ν
+ s

2
√
ν
,
q

2
√
ν
+ t

2
√
ν

)
− νφ

(
q ′

2
√
ν
,
q

2
√
ν

)
−
√
ν

2

[
∂φ

∂q ′

(
q ′

2
√
ν
,
q

2
√
ν

)
s + ∂φ

∂q

(
q ′

2
√
ν
,
q

2
√
ν

)
t

]
. (3.14)
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We assume|s| < 1, |t| < 1, which corresponds to overlapping less than half a window.
This provides the convergence of the Taylor series. The original integral, which defines the
interaction between two windows, has the following form,

1

2
√
ν
eiνφ(q

′/(2√ν),q/(2√ν))
∫ t2

t1

∫ s2

s1

β(s, t)

× cos

((
p′ + 1

2

)
π
(
s + 1

2

))
cos

((
p+ 1

2

)
π
(
t + 1

2

))
ei(As+Bt) ds dt, (3.15)

where

β(s, t)= b(s)b(t)eirνqq′ (s,t) (3.16)

and the coefficientsA,B are

A=
√
ν

2

∂φ

∂q ′

(
q ′

2
√
ν
,
q

2
√
ν

)
, B =

√
ν

2

∂φ

∂q

(
q ′

2
√
ν
,
q

2
√
ν

)
. (3.17)

In addition to local cosine bases, the function can be expanded into local sine bases. We
next represent cos as a combination of exponentials. To compute (3.15) we have to evaluate
the following integral:

1

2
√
N
eiνφ(q

′/(2√ν),q/(2√ν))∑
±

∫ t2

t1

∫ s2

s1

β(s, t)exp

{
i

[
±
(
p′ + 1

2

)
π

(
s + 1

2

)
+As

]}

× exp

{
i

[
±
(
p+ 1

2

)
π
(
t + 1

2

)
+Bt

]}
ds dt

= 1

2
√
ν

exp

{
iνφ

(
q ′

2
√
ν
,
q

2
√
ν

)}∑
±

exp

{
±i
(
p′ + 1

2

)π
2

}
exp

{
±i
(
p+ 1

2

)π
2

}

×
∫ t2

t1

∫ s2

s1

β(s, t)exp

{
i

[
±
(
p′ + 1

2

)
π +A

]
s

}
exp

{
i

[
±
(
p+ 1

2

)
π +B

]
t

}
ds dt

= 1

2
√
ν

exp

{
iνφ

(
q ′

2
√
ν
,
q

2
√
ν

)}∑
±

exp

{
±i
(
p′ + 1

2

)π
2

}
exp

{
±i
(
p+ 1

2

)π
2

}

× β̂
(
A±

(
p′ + 1

2

)
π,B ±

(
p+ 1

2

)
π

)
. (3.18)

Let us evaluatêβ(ξ, η), which is a Fourier transform of

β(x, y)= b(x)b(y)eirνqq′(x,y),

whererν
qq ′(x, y) is the residual after the linear approximation (3.14).

We claim that there exists such a constantK that|rν
qq ′(x, y)| ≤K and

∣∣∣∣ ∂i+j∂xi∂yj
rν(x, y)

∣∣∣∣≤ K

(
√
ν)i+j

. (3.19)

We observe that the residual

rνqq ′(x, y)= ν
[
φ(x, y)− φ

(
q ′

2
√
ν
,
q

2
√
ν

)
−As −Bt

]



OSCILLATORY INTEGRALS WITH MULTISCALE LFB 35

has a leading term which is a sum of three terms,

N

[
a

(
s

2
√
ν

)2

+ b
(

t

2
√
ν

)2

+ c st
4ν

]
,

where

a = 1

4

∂2φ

∂q ′2

(
q ′

2
√
ν
,
q

2
√
ν

)
, b= 1

2

∂2φ

∂q ′∂q

(
q ′

2
√
ν
,
q

2
√
ν

)
,

c= 1

4

∂2φ

∂q2

(
q ′

2
√
ν
,
q

2
√
ν

)
.

(3.20)

Each of the terms is a constant; therefore the residual is bounded. The derivative of the
residual is a sum of four terms; each of them is the third partial derivative ofφ (in t , s, or
mixed) with an appropriate coefficient multiplied by

si tj√
N
, i + j = 4.

The third derivatives ofφ are bounded due to the assumptions; consequently

∂rν
qq ′(s, t)

∂s
=O

(
1√
ν

)
.

Similarly all the partial derivatives ofrν
qq ′(s, t) of orderk areO(1/νk/2), which proves

(3.19).
The function

β(s, t)= b(s)b(t)eirνqq′ (s,t)

is bounded together with all the partial derivatives ofβ up to orderM:∣∣∣∣∂i+jβ(s, t))∂si∂tj

∣∣∣∣≤ C, i + j ≤M. (3.21)

It is known that if a functionf is bounded together with its derivatives∣∣∣∣∂i+j f (s, t)∂si∂tj

∣∣∣∣≤ C, i + j ≤M, (3.22)

then the Fourier transforms of these derivatives are also bounded:∣∣∣∣ ̂(
∂i+j f (s, t)
∂si∂tj

)∣∣∣∣= ∣∣f̂ (ξ, η)ξ iηj ∣∣≤ C1. (3.23)

Moreover, ∣∣f̂ (ξ, η)ξ iηj ∣∣≤ C1

1+max(|ξ |, |η|)M .
Thus ∣∣β̂(ξ, η)ξ iηj ∣∣≤ C1

1+max(|ξ |, |η|)M .
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This means that for largeξ, η the Fourier coefficients are negligible. For example, ifξ or
η > 10 then ∣∣β̂(ξ, η)∣∣≤ C1

1+ 10M
,

which means that the coefficients corresponding to frequencies|ξ | + |η| > 10 are
negligible. Thus there is only a constant numberC2 of significant Fourier coefficients for
each of the two windows corresponding toq and q ′. We have 2

√
ν windows, so there

are 4ν pairs of interactions for windows located atq andq ′ (0< q,q ′ ≤ 2
√
ν); not more

thanC2 coefficients above a certain threshold for each interaction lead to 4νC2 significant
coefficients among the total of 16ν2 coefficients. Thus, the total number of coefficients
above a threshold isO(N), whereN is a number of grid points in each direction.

We have already observed that nearly all the coefficients in the power of the exponents
in (3.18) are between−10 and 10:∣∣∣∣(p′ + 1

2

)
±
√
ν

2π

∂φ

∂q ′

(
q ′

2
√
ν
,
q

2
√
ν

)∣∣∣∣≤ 10

π
≈ 3, (3.24)

∣∣∣∣(p+ 1

2

)
±
√
ν

2

∂φ

∂q

(
q ′

2
√
ν
,
q

2
√
ν

)∣∣∣∣≤ 10

π
≈ 3. (3.25)

Thus the neighborhood of the strongest interaction can be found: first, from (3.24) the
domain ofq can be computed (p′, q ′ are given and we are looking for frequenciesp and
locationsq which interact essentially with a chosen frequencyp′ and locationq ′); second,
the computed domain forq is substituted into (3.25) and thus the domain forp can be
evaluated. For findingp,q the nondegeneration condition is assumed:

det


∂2φ

∂x2 (x, y)
∂2φ

∂x∂y
(x, y)

∂2φ

∂x∂y
(x, y)

∂2φ

∂y2 (x, y)

 6= 0.

For each domain of pairs(q,p) we find domain of pairs(q ′,p′) interacting with it. We
deal not with points but with “clouds” (corresponding to close locations and frequencies).
Such an approach is natural in quantum mechanics where we can follow not the points but
only the clouds.

In Section 3.4 the number of significant coefficients after LFB of the function

β(x, y)= b(x)b(y)eirνqq′(x,y)

is evaluated numerically.

3.4. Numerical Estimates for the LFB of the Residual: Dependence on the Bell and the
Form of the Curve

We evaluate numerically the following integrals:

G(p,q),(p′,q ′) =
∫ 1

0
b(x)b(y)ei(p+1/2)xei(p

′+1/2)ye
irν
qq′ (x,y) dx dy, (3.26)

which is the LFB of the residual.
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TABLE 9
Number of Coefficients with an Imaginary Part above a Threshold in Blocks128× 128, with

64 Points Overlapping,ν = 2048

Location of the block 10−5 10−6 10−7 10−8

At the diagonal 804 1264 1543 2271
Below or above the diagonal 169 662 1068 1747
Other blocks 15–30 27–50 50–65 150–350

As a model problem we take the case as in [6], when the total number of points in
each direction is 1282 = 1014= 16384, 1282 windows, and the overlapping of 64 points
from each end of the window. The chosen bell from the family (3.5) isk = 10. Most of
the significant coefficients describe the interaction of a window with itself, which belongs
to the diagonal blocks or to the blocks adjacent to the diagonal. Inside the window the
significant coefficients correspond topp′ being small (see (3.23)).

First consider a circle:

z(s)= cos(2πs)+ i sin(2πs). (3.27)

The number of significant coefficients in (3.26) varies and it depends on the distance of
a block from the diagonal.

The total number of coefficients with the imaginary part above the threshold 10−5 is
about 0.18%, above 10−6 it is less than 0.5% of all coefficients, and for 10−7 it is less than
0.8%. The absolute value of the real parts is even less, so the same estimates are valid for
both of them.

If the residual does not contain the second derivatives inx and iny, the matrix obtained
after the application of LFB is sparser: 0.18% of the coefficients above the threshold 10−5,
0.35% above 10−6, and 0.55% above 10−7 (see Table 9).

Table 10 describes the dependence of the number of coefficients above a threshold on
the steepness of the bell [15] for a block on the diagonal.

We observe that with a steeper bell function the number of significant coefficients is
less. However, for a smooth bell coefficients of the LFB transform of the residual are a
smooth function or can be easily reduced to a smooth function which can be additionally
compressed, for example, by application of wavelets. If a bell is steep, the LFB transform
of the bell is an oscillatory function and so is the LFB transform of the residual. A bell with

TABLE 10
Number of Coefficients with an Imaginary Part above a Threshold in a Diagonal Block

128× 128, with 64 Points Overlapping,ν = 2048for Various Steepness of the Bell

Steepness of the bell 10−2 10−3 10−4 10−5 10−6 10−7 10−8

2 1225 7379 16384 16384 16384 16384 16384
4 303 755 2090 15490 16383 16384 16384
7 36 292 776 1048 1938 8926 16384

10 36 67 332 804 1264 1543 2271
11 38 63 266 773 1054 1529 1994
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FIG. 2. The imaginary part after the expansion in LFB of the residual of the diagonal block for a bell with
steepnessk = 2 for the full range of coefficients and the range[−0.1;0.1].

a small steepness number is not smooth (see Fig. 1); however, its local Fourier transform
is easily reduced to smooth functions: for example, the coefficients located at odd/even
places in each direction form four (odd inx/odd in y, even/odd, odd/even, even/even)
smooth functions. Figures 2 and 3 present the odd/odd coefficients of the local Fourier
transform (imaginary part) of the residual for the diagonal block: first, in all the values of
coefficients and second, for the range of values from−0.1 to 0.1.

Next we consider the dependence of the number of coefficients above a threshold on the
number of grid pointsN , whereν = N/8. Table 11 presents the number of coefficients
above a threshold for a diagonal block, while Table 12 presents it for a block which is far
away from the diagonal.

The theoretical estimate for the number of significant coefficients wasO(N) (see
Section 3.3). Here we observe that for a diagonal block the number of significant
coefficients is doubled when the number of points

√
N in each direction is doubled.

Besides, the number of diagonal blocks grows as
√
N . Thus, the contribution of the

diagonal blocks (which is the same for each block on the diagonal due to the symmetry
of the circle) has an order ofO(N). The same estimate is valid for the blocks near
the diagonal. The number of coefficients above a certain threshold in blocks, which are
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FIG. 3. The imaginary part of the local Fourier transform of the residual for the bell with steepnessk = 10
for the full range of coefficients and the range[−0.1;0.1]. The transform was applied to the diagonal block.

nonadjacent to the diagonal, is approximately constant (in fact, it even decreases for large
threshold with the growth ofN ). The total number of blocks is

√
N
√
N = N . Therefore,

the contribution of these blocks does not exceedO(N); in fact it is even less. Due to the
slow growth in the number of significant coefficients, the percentage of such coefficients

TABLE 11
The Number of Coefficients with an Imaginary Part above a Threshold in Diagonal Blocks of

Various Sizes, where the Overlapping is Half a Window,ν =N/8
Block size\ Threshold ν 10−3 10−4 10−5 10−6 10−7 10−8

16× 16= 256 32 36 67 106 141 170 218
32× 32= 1024 128 47 91 170 249 339 448
64× 64= 4096 512 57 183 404 598 749 1006

128× 128= 16384 2048 67 332 804 1264 1543 2271
256× 256= 65536 8192 87 606 1589 2570 3198 4827
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TABLE 12
The Number of Coefficients with an Imaginary Part above a Threshold in Blocks of Various
Sizes Which Are Far Away from the Diagonal, where the Overlapping is Half a Window,

ν =N/8
Block size\ Threshold ν 10−3 10−4 10−5 10−6 10−7 10−8

16× 16= 256 32 12 20 31 62 101 134
32× 32= 1024 128 7 16 27 46 90 176
64× 64= 4096 512 5 12 22 37 71 241

128× 128= 16384 2048 5 11 18 35 59 321
256× 256= 65536 8192 3 8 17 26 49 115

decays quickly: from 24%(N = 256) to 0.03% (N = 65,536), if a block is distant from
the diagonal, and from 55%(N = 256) to 3.9% (N = 65,536) for diagonal blocks.

Consider now an elliptic curve. Here there is no leading contribution by the diagonal or
adjacent to the diagonal blocks. As a model example the following ellipse was chosen:

x2

a2 +
y2

b2 , a = 3, b= 0.5.

All the blocks can be classified into two types: those corresponding to strongly interacting
windows and those corresponding to weakly interacting windows.

The total number of coefficients with an imaginary part above the threshold 10−5 is less
than 0.2%, above 10−6 it is less than 0.4% of all coefficients, and for 10−7 it is not more
than 0.7% (see Table 13).

Table 14 presents the number of significant coefficients for a certain block with strong
interaction for various eccentricities of the ellipse.

3.5. Smoothing of Functions by Local Fourier Transform

We consider LFB expansion of the residual (3.26). We observe that it is still oscillatory
(see Fig. 3). There are at least two main reasons why oscillations arise: first, the bell is
shifted with respect to the basis function, and second, the Fourier transform of the bell is
not, generally speaking, a smooth function (see Fig. 4).

The first source of oscillations can be eliminated as follows,

G(p,q),(p′,q ′) =
∫ 1

0

∫ 1

0
b
(
2
√
ν(x − dq ′)

)
e
i(p′+1/2)π(x−cq′)

×b(2√ν(y − dq))ei(p′+1/2)π(y−cq)eir
ν
qq′ (x,y) dx dy, (3.28)

TABLE 13
The Number of Coefficients with an Imaginary Part above the Threshold in Blocks128× 128,

where Overlapping is 64 Points,ν = 2048, and the Eccentricity of the Ellipse is3/0.5

Type of block 10−5 10−6 10−7 10−8

Strong interaction 80–150 100–200 150–250 350–600
Weak interaction 0–40 0–70 3–90 60–300
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TABLE 14
The Number of Coefficients with an Imaginary Part above the Threshold in Blocks128× 128,

where Overlapping is 64 Points,ν = 2048, for Ellipses with Various Eccentricities a/b

a : b 10−5 10−6 10−7 10−8

1 : 1 18 33 49 251
1.2 : 0.8 35 51 86 370
2 : 0.7 76 98 137 318
3 : 0.5 114 160 220 370
4 : 0.4 150 214 299 564
5 : 0.1 192 280 383 758
3 : 2 71 101 154 405

3 : 1.5 95 130 178 553
3 : 1 104 151 202 398

3 : 0.5 114 160 220 370
3 : 0.1 107 161 419 223

wherecq = 1/(2
√
ν) is the left end of theq th window anddq = cq+1/(4

√
ν) is the center

of theq th window. Integral (3.28) can be rewritten as follows,

G(p,q),(p′,q ′) = ei(p′+1/2)π(dq′−cq′ )
(∫ 1

0

∫ 1

0
b
(
2
√
ν(x − dq ′)

)
ei(p

′+1/2)π(x−dq′)

×b(2√ν(y − dq))ei(p′+1/2)π(y−dq)eir
ν
qq′ (x,y)

)
× ei(p+1/2)π(dq−cq ) dx dy, (3.29)

FIG. 4. The real part of the LFB transform of the kernel (2.1)K(t, s)≡ 1 and the bell with steepness 10 in
the range of values[−0.1;0.1].
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where in the integral the bells and the basis functions are centered at the same point. Denote

apq = ei(p+1/2)π(dq−cq ).

We can represent the matrix of coefficientsG = G(p,q),(p′,q ′) as a product of three
matrices,

G=AUA, (3.30)

whereA is a diagonal matrix withapq at the diagonal. The components ofU are

u(p,q),(p′,q ′) =
∫ 1

0

∫ 1

0
b
(
2
√
ν(x − dq ′)

)
e
i(p′+1/2)π(x−dq′)

×b(2√ν(y − dq))ei(p′+1/2)π(y−dq)eir
ν
qq′ (x,y) dx dy. (3.31)

For these integrals the centers of the bell and basis functions coincide. If the transform
of the bell is smooth and the residual is small, then the matrix obtained is smooth and
can be additionally compressed, for example, by wavelets. This is the case of the bell of
a Gaussian type (see [6]) or a bell which is considered here with a low steepnessk. For
example, the LFB transform of the diagonal block with the bell corresponding tok = 2 in
Fig. 2 was obtained for a bell centered at the centers of basis functions. This is equivalent
to the multiplication ofG in (3.30) by the diagonal matrixA−1 from the left and from
the right. Such a matrix can be additionally compressed, for example, if the transform of
the diagonal block is expanded with the biorthogonal wavelets [7] (odd and even elements
separately). Table 15 presents the number of coefficients above thresholds 10−5 and 10−6

after LFB expansion withk = 2 and additionally compressed by orthogonal wavelets. The
matrix, which is expanded, is a diagonal block of the kernel corresponding to a circle and
the ellipse with axes 3 and 0.5.

However, for bells with a smallk the number of coefficients above thresholds 10−5

to 10−8 is large. Even after the compression by wavelets there are more significant
coefficients than after LFB expansion with a steep bell withk = 10 (see Table 9).

On the contrary, if we choose a steep bell (k = 10,11), the number of coefficients above
thresholds 10−6 to 10−8 is small (0.5–1.5%). However, the matrix obtained is oscillatory
even if the bells and the basis functions are centered at the same points. This is stipulated

TABLE 15
The Number of Coefficients above a Threshold in a Diagonal Block after LFB Expansion with
k = 2 and after the Additional Expansion with Biorthogonal Wavelets, where the Curve is

either a Circle or an Ellipse and the Eccentricity of the Ellipse is3/0.5

Type of Threshold Number of coefficients Number of coefficients after
curve ε after LFB LFB+wavelets

circle 10−5 6202 755
10−6 8290 1312

ellipse 10−5 6058 607
3.0/0.5 10−6 8688 1504
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by the oscillatory character of the transform of the bell. Denote byb̂

b̂(p)=
∫ 1

0
b
(
2
√
ν(x − dq)

)
ei(p+1/2)π(x−dq) dx (3.32)

the local Fourier transform of the bell, which obviously does not depend onq . Let us
choose a smooth functionϕ(p) such that the ratioϕ(p)/b̂(p) is not very big and not very
small; for example,

0.01<

∣∣∣∣ϕ(p)
b̂(p)

∣∣∣∣< 100.

If the residual is small, then the coefficientsu in (3.31) are close to the transform of the
bell; thus the coefficients

v(p,q),(p′,q ′) = ϕ(p)
b̂(p)

∫ 1

0

∫ 1

0
b
(
2
√
ν(x − dq ′)

)
e
i(p′+1/2)π(x−dq′) dx

× ϕ(p
′)

b̂(p′)
b
(
2
√
ν(y − dq)

)
ei(p

′+1/2)π(y−dq)eir
ν
qq′ (x,y) dy (3.33)

form a smooth function. Consequently, (3.30) can be rewritten as

G=AFVFA, (3.34)

where the elementsv(p,q),(p′,q ′) of the matrixV are defined by (3.33) andF is a diagonal
matrix with

fp = b̂(p)

ϕ(p)
(3.35)

at the diagonal (the same for eachq). Figure 5 compares the matricesU andV for a
nondiagonal block. The number of points in the window is 128× 128.U is oscillatory
while V is smooth. In Fig. 6 matricesU andV are shown at a higher resolution: between
−10−6 and 10−6.

There are two open problems connected with the smoothing of matrixV obtained by
LFB expansion. The first problem is how a diagonal block or a block corresponding to a
significant residual can be smoothed. The second problem is how smooth matrixU can
be additionally compressed. For blocks which are far away from the diagonal the number

FIG. 5. The real part of the left-upper corners (30 points in each direction) of matricesU andV which are
defined by the bell with steepnessk = 10. The transform was applied to a block far away from the diagonal.
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FIG. 6. The real part of the left-upper corners (30 points in each direction) of matricesU andV which are
defined by bell with steepnessk = 10 for the range of coefficients[−10−6,10−6]. The transform was applied to
a block far away from the diagonal.

of coefficients above 10−7 is about 55 (of 16,384) and matrix functionV is very steep;
thereforeV cannot be additionally compressed by a wavelet or some other expansion.

4. MULTISCALE DECOMPOSITION WITH LOCAL FOURIER BASES

Multiscale LFB may transcribe a better compact description of an oscillatory kernel
by utilization of the best-basis mechanism of the multiscale LFB. In this section purely
real methods are developed for fast computation of oscillatory integrals. The effective
representation is achieved by constructing an adaptive basis.

4.1. Adaptive Local Cosine for Kernel Compression

The smooth local trigonometric basis is used in the algorithm in the following way:
Initially, we apply the local trigonometric transform (or basis). Then, the best-basis
methodology [12] is applied on a tree of local trigonometric expansions.

4.1.1. Adaptive local trigonometric bases.We are interested in a local time-frequency
analysis of the kernel. In order to analyze the local frequency content of the kernel, we
first cut the support of the kernel into adjacent blocks. Then a local Fourier analysis is
performed inside each block. To obtain a better frequency localization, we do not cut
abruptly the signal, but we use a smooth window function to localize the segment of
interest.

First we review the construction of one-dimensional smooth localized trigonometric
bases [10, 2]. These functions are cosines with good localization in both position and
Fourier space. We consider a coverR =⋃n=+∞

n=−∞[an, an+1[. We writeln = an+1− an and
cn = (an+an+1)/2. Around eachan we define a neighborhood of radiusε. Let r be a ramp
function such that

r(t)=
{

0 if t ≤−1,
1 if t ≥ 1

(4.1)

and

r2(t)+ r2(−t)= 1, ∀t ∈ R. (4.2)



OSCILLATORY INTEGRALS WITH MULTISCALE LFB 45

FIG. 7. Ramp functionr , and bump functionv.

We define the smooth orthogonal projectionPInf of a one-dimensional signalf as
follows [2, 10]:

PInf (x)=


r2(x − an)f (x)+ r(x − an)r(an − x)

if an − ε ≤ x < an + εf (2an − x)
f (x) if an + ε ≤ x < an+1− ε
r2(an+1− x)f (x)− r(x − an+1)r(an+1− x)f (2an+1− x)

if an+1− ε ≤ x < an+1+ ε.

(4.3)

We use the result that the projection of contiguous intervals is equal to the sum of the
projections:

PIn ⊕PIn+1 = PIn∪In+1. (4.4)

Consequently,

L2(R)=
⊕
n∈Z

PInL
2(R). (4.5)

Furthermore, the projection is as smooth as the original function: iff ∈ Cd(R), then
PInf has a unique continuous extension inCd(R) that is supported in the interval
[an − ε, an+1+ ε] [2] (see Scheme 1). We consider the collection of cosine functions:

cj,n = cos

[
2k+ 1

2

π

|In| (x − an)
]
.

In their discrete form these functions correspond to the DCT-IV:

X(k)=
√

2

N

N−1∑
n=0

x(n)cos

[
(2n+ 1)(2k+ 1)π

4N

]
, k = 0, . . . ,N − 1. (4.6)

If we multiply thecj,n by the ramp, on each side ofIn, then we obtain a basis ofPInL
2(R):

wk,n =
√

2

|In| r(x − an)r(an+1− x)cos

[
2k+ 1

2

π

|In| (x − an)
]
. (4.7)

To get better performance we use the bells that were developed by [15]. This bell
generalizes the Coifman–Meyer (CM) LFB [10] by extending the choice of the bell
functions. The orthonormality of the CM bells was dropped, as was done in [3].
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This produces a family of smooth local trigonometric bases that efficiently compresses
trigonometric functions. Any such basis is, in general, not orthogonal, but any element
of the dual basis differs from the corresponding element of the original basis only by the
shape of the bell. Numerical examples demonstrate that in many cases the proposed bases
provide substantially better (up to a factor of two) compression than the standard CM bells.
This is certainly true for seismic data [4]. We used the bell (3.5) from [15].

4.1.2. Implementation by folding.In practice, in order to expand a functionf into the
basiswj,n we do not calculate the correlation betweenf and the basis{wj,n}. Instead we
transformf restricted to[an−ε, an+1+ε] into a smooth periodic function onto[an, an+1]
and expand it into the basis{cj,n}. To do this we fold the overlapping parts of the window
bn and of the bumpv back into the interval, across the endpoints of the interval, with some
folding and unfolding operators. The advantage of the procedure is that we can preprocess
the data with the folding operators and then use a fast DCT to calculate the expansion into
the basis{cj,n}.

UNITARY FOLDING AND UNFOLDING. We define the unitary folding operatorUan and
its adjoint, the unfolding operatorU∗an , as follows:

Uanf (t)=

r( an−t

ε
)f (t)− r( t−an

ε
)f (2an− t), if an − ε < t < an,

r( t−an
ε
)f (t)+ r( an−t

ε
)f (2an− t), if an < t < an + ε,

f (t), otherwise;
(4.8)

U∗anf (t)=
 r(

an−t
ε
)f (t)+ r( t−an

ε
)f (2an− t), if an − ε < t < an,

r( t−an
ε
)f (t)− r( an−t

ε
)f (2an− t), if an < t < an + ε,

f (t), otherwise.

(4.9)

Figures 8 and 9 show the result of the folding and unfolding operators.

The algorithm to expand a functionf into the basiswk,n is thus:

– Apply the transformUan to f .
– ApplyUan+1 toUanf .
– ExpandUan+1 Uanf , which is now living on[an, an+1], into the DCT IV basis.

FIG. 8. Result of the folding operator.



OSCILLATORY INTEGRALS WITH MULTISCALE LFB 47

FIG. 9. Result of the unfolding operator.

The reconstruction algorithm that recovers the functionf is:

– Apply an inverse DCT-IV to the coefficients. This givesUan+1 Uanf , which is living
on [an, an+1], the DCT IV basis.

– Apply the transformU∗an .
– ApplyU∗an+1

.

4.1.3. Adaptive segmentation.As explained in [2] we can adaptively select the size
and location of the windows[an, an+1) with the best basis algorithm. We consider a
functionf with finite support. We divide the support into two intervals, and we consider
the local cosine basis associated with each interval. We then further decompose each
interval into two subintervals and consider the local cosine bases associated with this finer
subdivision.

By applying this decomposition recursively we obtain a homogeneous binary tree-
structured decomposition as shown in Fig. 10.

For each interval, or node in the binary tree, we calculate the set of coefficients in the
subblock. If we associate a cost for each node of the tree, based on the set of coefficients,
then we can find an optimal segmentation. Using a divide and conquer algorithm, groups
of connected nodes are pruned if their total cost is greater than the cost of their father [12].

FIG. 10. One-dimensional binary tree decomposition. Within each interval the signal is expanded into a local
DCT. The optimal segmentation is then searched for.
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The process is recursively applied from the bottom to the top of the tree, and a global
optimal tree is then found.

4.1.4. Two-dimensional case.In the two-dimensional case we define two partitions
of R,

n=+∞⋃
n=−∞

[an, an+1[ and
k=+∞⋃
k=−∞

[bm,bk+1[.

We write hn = an+1 − an and lm = bk+1 − bm. We then consider the tiling obtained
by the lattice cubes[an, an+1[⊗[bm,bk+1[. We consider the separable tensor products of
baseswm,j andwn,k . The sequencewm,j ⊗wn,k is an orthonormal basis forL2(R2).

4.1.5. Adaptive tiling of the image.As explained above we can adaptively select the
size and location of the windows

[aj , aj+1[⊗[bm,bk+1[

with the best basis algorithm. We consider only tilings that can be generated from separable
bases. We divide the image into four subsquares, and we consider the local cosine basis
associated with this tiling. We then further decompose each square into four subsquares
and consider the local cosine bases associated with this finer tiling.

By applying this decomposition recursively we obtain a homogeneous quadtree-
structured decomposition as shown in Fig. 11.

As in the one-dimensional case, for each subblock, or node of the quadtree, we calculate
the set of coefficients in the subblock. We associate a cost for each node of the tree, based
on the set of coefficients, and we find an optimal segmentation of the kernel.

FIG. 11. Quadtree decomposition of the image. Within each block the image is expanded into a local DCT.
The optimal tiling is then searched for.
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TABLE 16
Parameters for the Construction of the Multiscale LFB

Number Size of Overlapping Steepness Number of
of points the window of the bell levels

64× 64 16 16 2 2
256× 256 32 32 10 3

1024× 1024 64 64 10 3
2048× 2048 128 128 10 3
4096× 4096 128 128 10 3

4.2. Numerical Results from the Application of the Multiscale Local Fourier Bases

The input parameters used are shown in Table 16.
Table 17 compares between the sparsity levels between the matrix kernel after using

LFB (no multiresolution) and the matrix expanded in multiscale LFB (MLFB).
We observe the efficiency of the multiresolution approach. To illustrate the idea of

the adaptive multiscale bases, we present the best basis grid chosen for 1024× 1024
discretization points. The window is of size 32 with an overlapping of 16 points.

The chosen adaptive grid is symmetric with respect to the main diagonal. The highest
resolution (the smallest boxes) correspond to the windows at the opposite sides of the same
diameter, which have the strongest interaction (Fig. 12).

Table 18 illustrates the dependence of the number of coefficients above a threshold on
the number of pointsN in each direction whenν in the exponent is constant.

TABLE 17
Comparison between the Sparsity Levels of the Oscillatory Kernel (N = 8ν is the Number of
Grid Points in Each Direction) in Local Fourier Basis and in Multiresolution Local Fourier

Basis with Best-Basis Methodology

Number of Number of Number of Number of Ratio
Threshold coefficients> ε coefficients> ε coefficients per row coefficients per row LFB/

ε ν N after LFB after MLFB after LFB after MLFB MLFB

1e−3 8 64 2067 254 32.3 4.0 8.1
32 256 7269 1706 28.4 6.7 4.3

128 1024 17654 7736 17.2 7.6 2.3

1e−4 8 64 3381 906 52.8 14.2 3.7
32 256 20304 3992 79.3 15.6 5.1

128 1024 66307 21836 64.8 21.3 3.0

1e−5 8 64 3932 2658 61.4 41.5 1.5
32 256 33947 10984 132.6 42.9 3.1

128 1024 159943 48028 156.2 46.9 3.3

1e−6 8 64 4073 3954 63.6 61.8 1.0
32 256 50217 17208 196.2 67.2 2.9

128 1024 300998 78332 294 76.5 3.8
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FIG. 12. Grid of the best-basis description of the multiscale LFB with 1024 points in each direction where
the curve is a circle.

Thus, forν = 128 andN = 4096 there are less than 2% coefficients above 10−7. The
number of significant coefficients approximately doubles when the total number of grid
points is multiplied by four (for small thresholds; for 10−3 to 10−4 the growth is slower).

Now consider the elliptic curve which corresponds to the following integral:

G(t, s)= sin
(
ν
√
a2(cos(t)− cos(s))2+ b2(sin(t)− sin(s))2

)
, t, s ∈ [0,2π].

It is expected that due to the partial loss of symmetry the representation of this kernel
in multiresolution local cosine bases will be less sparse than for the circle. Below are
the results for various sizes and eccentricities of the ellipse. For discretization a simple
trapezoidal quadrature was applied (without a special treatment for the discontinuity of
the first derivative on the diagonal). The number of points in the kernel for the following

TABLE 18
Number of Coefficients above Thresholds10−3 to 10−7 for Constant in the Exponential

Function (2.1)ν = 128and Number of Grid Points in Each Direction N ∼ 512−4096

Bell width Steepness Number of coefficients above threshold

N ν + overlap of bell Levels 10−3 10−4 10−5 10−6 10−7

512 128 64+64 10 3 4044 10216 23708 34047 43359
1024 128 64+64 10 3 7736 21836 48028 78332 101840
2048 128 128+128 10 3 7732 22144 48364 95940 135780
4096 128 128+128 10 2 12669 47144 109792 198890 327938
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TABLE 19
Sparsity of the Representation of the Kernel for Ellipse in Multiresolution LCB for 1024 Grid
Points in Each Direction,ν = 128, where Window Size is 64 Points with 32 Points Overlapping

Coefficients Thresholdε

a b 10−3 10−4 10−5 10−6 10−7

2.0 1.0 Total 12748 35068 102510 289222 529806
% 1.2 3.4 10.0 28.2 51.7

0.8 0.6 Total 8774 24470 80340 251682 467298
% 0.84 2.3 7.8 24.5 44.6

0.7 0.5 Total 7832 21740 72456 234868 440712
% 0.7 2.1 7.0 22.4 42.0

0.3 0.1 Total 5856 15324 59542 196730 378236
% 0.6 1.5 5.7 18.8 36.1

0.3 0.2 Total 4480 11261 50210 180244 361072
% 0.4 1.1 4.8 17.2 34.4

0.1 0.05 Total 2768 7450 39150 134898 282958
% 0.3 0.7 3.7 13.1 27.0

0.08 0.06 Total 2066 6372 23861 104115 249833
% 0.2 0.6 2.3 9.9 23.8

0.02 0.01 Total 756 2768 11124 51256 145177
% 0.07 0.3 1.0 5.0 13.8

example was 1024×1024,ν = 128, the window size was 64 in both directions, overlapping
was 32, steepness equal to 2, with four resolution levels.

5. SUMMARY AND DISCUSSION

The results of the present paper can be summarized as follows.

1. The kernel of the oscillatory integral (1.4) has a discontinuous derivative. For
accurate computation of this integral the corrected trapezoidal rules developed in [20, 19]
were applied. As a result an accuracy of 10−7 can be achieved forN = 1024, ν = 128
(i.e., four grid points per oscillation).

2. For fast evaluation, the matrix, which was obtained after the discretization, is
represented with local Fourier basis. The theoretical estimate of the number of coefficients
above a threshold in the matrix representation isO(N). The numerical results verify this
estimate and demonstrate that LFB should be applied (rather than multiwavelets) to achieve
a sparse representation of oscillatory kernels.

3. A variety of bells for LFB was considered. The numerical experiments show that the
number of coefficients above a threshold in the LFB expansion decreases when the bell
becomes smoother and steeper. Thus, for one of the steepest bells in the family [15], which
has a smooth matching with 1 in the middle and zero in the sides,N = 16384, ν = 4096
there are only about 0.18% of all the coefficients above 10−5, 0.35% are above 10−6, and
0.55% are above 10−7. For bells which are not steep and smooth there are from 25 to 90%
of coefficients above 10−7.



52 A. AVERBUCH ET AL.

4. In [6] it was illustrated that the LFB expansion of the oscillatory kernel is a smooth
function. This phenomenon seems to be valid for bells which are not steep (their first
derivatives are not large). For smooth and steep bells the LFB expansion is oscillatory.
A smoothing procedure was developed for such oscillatory matrices.

5. Multiscale local Fourier bases provide adaptive representation of oscillatory kernels.
Numerical examples demonstrate that for thresholds 10−4 to 10−6, a number of grid points
1024× 1024 andν = 128 the above expansion contains three times fewer points above a
threshold than the LFB expansion.

Further work is in progress along the following lines:

1. The same method is applied via tensor product to 2-D and 3-D operators.
2. We investigate interactions among regions where the integral is defined. In the fast

multipole method (FMM) the connections among the regions were applied to generate
faster algorithms by compact coding of the coefficients. We strive to achieve effective
coding of oscillatory integrals similar to FMM.

3. A more general class of bases [8, 16] with more parameters can be used.
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