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The integral [ ¢!"#-!) £(s) ds with a highly oscillatory kernel (large, v is
up to 2000) is considered. This integral is accurately evaluated with an improved
trapezoidal rule and effectively transcribed using local Fourier basis and adaptive
multiscale local Fourier basis. The representation of the oscillatory kernel in these
bases is sparse. The coefficients after the application of local Fourier transform are
smoothed. Sometimes this enables us to obtain further compression with wavelets.
[J 2000 Academic Press

1. INTRODUCTION

Computation of oscillatory integrals occurring in scientific and engineering simulations
faces difficult problems. As compared to the nonoscillatory case, accurate evaluation of
such integrals requires at least a few grid points per oscillation.

For a one-dimensional integral

b
/ G £(s)ds, (1.1)

a
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with large A and smooth (nonoscillating), there exist methods for fast evaluation, for
example, the method of stationary phase first developed in [21] and justified in [22].
Upon assumingh large, we find that the rapid oscillation of €xp¢(s)} produces
cancellation of the integral everywhere except near the stationary points, where the
derivative ¢’'(s) vanishes. The method proved to be an effective tool in asymptotic
expansions and evaluations. However, it requires analytic work in each case (as it cannot be
applied automatically), does not reach high accuracy, and is not easily extended to higher
dimensions. There exist fast algorithms for special kinds of kernels without regularity
assumptions such as [18].

We consider the problem of the fast and accurate evaluation for the integral

b
o= [ Koo (1.2)

whereK (¢, s) is an oscillatory kernel and is a smooth function. The kernel is of the type
K(t,s) =), (1.3)

Such integrals arise in acoustic scattering [6] and other applications. Methods, which are
effective for evaluation of (1.1), if employed in the two-dimensional case (1.2), become
very expensive. If the oscillatory integral (1.2) is computed for ga@ven the choice of

a minimal number of grid points results in a large-scale matrix problem. Moreover, the
matrices obtained at the discretization step are dense, which leads to heavy computation
when matrix—vector multiplications are needed. Computation time can be reduced if a
sparse representation &f(z, s) can be achieved in some basis. A sparse representation of
the kernels (1.3) with wavelets (which appeared to be an efficient tool for sparsification
of matrix—vector multiplications in many cases) could be expected. However, wavelet
representation of an oscillating matrix appears to be as dense as the original (probably
due to the fact thak is oscillating everywhere); i.e., oscillatory kernels cannot be handled
efficiently by representing them in wavelet bases.

In [6] a numerical method for fast computation of the integral (1.2) with the kernel (1.3)
was described and it was shown analytically tkigt, s) becomes sparse when represented
in appropriate local Fourier basis (LFB) (more precisely, the number of elements above a
threshold per row grows as ldg, whereN is the number of grid points in each direction).

The purpose of the present paper is to address more carefully numerical issues arising
from [6] and to evaluate the actual numerical efficiency of these methods. In particular, we
consider an adaptive basis selection, optimized bell functions, and accurate quadratures.
In [6] the location of large coefficients in the matrix realization was related to the geometry
of the curve on which the integral is defined. The matrices obtained represent the oscillatory
interactions between regions on that curve. The operation count of the algorithm was
evaluated to b& (N logN).

Here we illustrate this method by numerical examples and develop the algorithm by
applying multiresolution local cosine bases which leads to representation of (1.3) with a
smaller number of coefficients above a threshold due to their adaptivity (about 3 to 4 times
fewer coefficients for accuracies 19to 106 and 1024x 1024 grid points).
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The following integral operator was chosen in [6] as a model problem:

L
/ V=20l £ (5) ds. (1.4)
0

Here v > 100, the number of grid point& > 2vL, andz = z(s), 0<s < L, is the
parametric representation of a closed curve. The segffen{ is divided intoM equal
intervals with centers;. Letb; (s) be a bell function supported {a; _1, a;4 2] satisfying

M
D bAs)=1.  bi(s)=bi_1(2a; — ).
i=1

The functions

2 \Y? 1 —
C¥(s) = bi(s) [ —=——)  cos (k n —)ni (1.5)
ai+1— aj 2/ ajr1—a;

form an orthogonal basis df%([0, L]) [10]. (In the discrete version grid points are
chosen such that are midpoints between adjacent The matrix of coefficients contains
O(NlogN) elements above a threshold [6]. There it was evaluated that the number of
elements above a thresholddg N) provided the curve is smooth with bounded derivatives
up to a certain order.

The method presented in [6] provides a numerical algorithm of o@gy logN) as
N — oo. However, to achieve a sparse representation of the oscillatory kemdtiacale
adaptive local cosine transforia used rather than a one-level local cosine transform.

Multiscale adaptive use of the local cosine transform, as explained in Section 4, enables
the achievement of an impressive compact coding description of oscillatory data. For
example, it can be used either in low bit compression of oscillatory seismic data (image
compression as described in [4]) or in sparsification of operator kernels as in the case here.
The methodology for handling oscillatory integrals and seismic data is almost identical.
Therefore, the notion of a 2-D matrix which describes an operator kernel and the notion of
image will be used interchangeably. The development of the algorithm in the present paper
is independent of the geometry.

We recall that there are two problems when computing oscillatory integrals:

1. Integral (1.2) has to be accurately computed with a comparatively small number of
grid points.

2. The matrix obtained after the discretization of the kernel should be effectively
presented (sparse representation of the kernel).

The second problem has been discussed already. It is well known that for convergence
of a quadrature formula the number of grid points per oscillation should be greater than
two. Thus, our goal is to find the best quadrature which gives an admissible accuracy
for 8v grid points only in each direction. For accurate computation of the integral we
apply animproved trapezoidal rulevhich is described in Section 2. This method allows
us to achieve accuracy of 10 to 10~/ for the computation of integral (1.4) when
N = 8v = 1024 in each direction[ = 2r. This result can be improved when using
Richardson extrapolation. This method uses the quadratures obtained for coarser grids to
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sharpen the result in a finer grid. The problem of computing oscillatory integrals is that
computations with two or fewer grid points per oscillation are not relevant. Thus, for each
grid point there exists an optimal number of levels employed in Richardson extrapolation.
This is discussed in Section 2.4.

When compared to [6] the methods for computing the oscillatory integral (1.4) are
extended in the following direction:

1. An improved trapezoidal rule is applied for accurate computations of (1.4) for a
comparatively small number of grid points. Richardson extrapolation can be employed for
further improvement of convergence of the integral (1.4).

2. The matrix obtained after the discretization is presented using either a usual or a
multiscale local cosine transform.

The paper is organized as follows. In Section 2 the problem of accurate integration
is solved by choosing an appropriate quadrature formula. In Section 3 the local Fourier
(cosine) transform is applied to the discretization developed in Section 2. Numerical
examples are presented, with the analysis of sparsity for the matrix of coefficients obtained
by the transform. Section 4 describes a multiscale decomposition with local Fourier basis
providing an automatic choice of the best basis for a given matrix. The comparison of the
sparsities for matrices of coefficients obtained by the ordinary and multiscale transforms
are presented. In the conclusion further development of this method is discussed.

2. IMPROVED QUADRATURES FOR OSCILLATING INTEGRALS

2.1. Statement of the Problem

In this section we discuss the numerical approximation of integrals of the form

L
/ K(t,s)f(s)ds. (2.1)
0

We assume thaf (s) € CY[0, L], where M is as large as needed, and thaér, s) is
continuous on0, L] x [0, L] and differentiable as many times as needed in the closed
triangular domains

Sy={(t,s):0<t<s<L} and  S_{(t,5):0<s<t<L},

but (3¥/3s*)K (¢, s) is discontinuous across the diagomat ¢, where it has a finite jump
discontinuityk =1, 2, ..., and we set

i i

0 0
8;i(t)=—K(@,t+) — —K(t,t—), i=12,.... (2.2)
ast ast

As an example, consider

K(t,5) = ¢Vl (2.3)
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When the closed curve representec:ly) is an ellipse with foci at-+/a2 — b2 and semi-
major and semi-minor axesandb, we have withL = 2

z(t) = acogt) +ibsin(t),
12(1) — z(s)| = v/a2(cost) — cog(s))2 + b2(sin(r) — sin(s))2.

(2.4)

K (t,s) is continuous for allz,s € [0,27], as is obvious from (2.3). In particular,
K(t,t) =1 forall z. Next,

2 2
ot = t -
|Z(l)_Z(S)|:\/a2<—25|n—+SS|n 2S> +b2<2cos—J2rssm S)

2 2

2 2
|t — t t
:25|n| 2S|\/a2<sm¥> +b2(cos?> . (2.5)

Now sin(|z — s|/2) is differentiable for alk ands both in S, and inS_ but not across the
diagonals = ¢, where its partial derivatives have finite jump discontinuities. The term

2 2
\D(t,s)z\/cﬂ(sin?) +b2<cost~2H) (2.6)

is well defined and differentiable an infinite number of times forra#ind s including
the lines = ¢, since[¥(z, 5)]2 in (2.6) never vanishes. This implies th@t /3s')K (¢, s),

i =1,2, ..., have finite jump discontinuities across= . The computation of the jump
turns out to be particularly simple. From

t—s

2

— S

— COS
2 0s

W(t,s)+2sin U(t,s), s <t,

)
a—lz(l) —z2(9)] = (2.7)
N

— . s—1td
cosT\IJ(t,s)JrZsmsTg\I!(t,s), t<s,
and from the fact that

oK ) )
—(t,s) =1V<—|Z(t) —Z(S)|>K(t,S),
as as

0 0
51(t)=iVK—a IZ(t)—Z(S)|> - (—Iz(t)—z(S)|>
s s=t+ ds

.
= 2ivva2co@1 + b2sirt.

In the general case, wher(s) is an arbitrary smooth closed curve without self-
intersectionsK (¢, s) in (2.3) is also continuous anki(z, 1) = 1. Then

we have

j2(6) — 2($)| = |t — 51 M

-

differs from zero and is differentiable an infinite number of times everywhere except along
the diagonal. At the diagoné&t(¢) — z(s))/(t — s) tends to the derivative, which is a finite
nonzero value, so the first derivative of (2.3fihas a finite jump across the diagonal that
originates from the factgr — s|.
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2.2. Corrected Trapezoidal Rules

Let us proceed to the problem of the accurate evaluation of the integral with kernel (2.3).
The problem of the numerical approximation of integrals of the form described above
was recently considered in [20]. The approach of [20], in turn, was inspired by the earlier
work [19], and both approaches are based on the trapezoidal rule.

Pick a number of grid point®’ and leth = L/N ands; = kh, k=0,1,..., N (then
so =0 andsy =1). Fixt =s; foranyi, i € {0,1,..., N}. By the fact that the curve
represented by(z) is closed,f (s) is periodic ins with period L andK (z, s) is periodic
both int and ins with periodL. Consequentlyk (z, s) f (s) is periodic ins with periodL,
and the trapezoidal rule approximatidtiz) for fOL K (t,s)f(s)ds can be written as

N
T(hy=h)_ K(si.s))f(s)). (2.8)

j=1
As shown in [20],7 (h) has the asymptotic expansion

2u—1 82”“ 1

T (h, sl)—<Tf)(sl)+Z  @u [a 51 GGin D) — G(sl,O)}hzﬂ

el : il 2 (P) 2
Z(Zu)' |:352“ 1G(sl,sl+) 52— lG(Sl,Sl ):|h “-}-Mi h%r, (2.9)

where G(t,s) = K(t,5) f(s) and [M”| < MP, i =0,1,..., N, for someM» > 0.
Here B; are Bernoulli numbers. By the fact th@t(z, s) is periodic, the first summation in
(2.9) vanishes, and we have

= BZM aZM_l 21 21 (p) 2[7
T(h’s")z(Tf)(s")_Zl<2m! {WG(&',SH—) Py lG(s,,s,—)}h +M"h
‘,L:

(2.10)
Note thatT (h, s;) — (T f)(s;) = O (h?) ash — 0.
We can improve the accuracy 6f%, s;) by adding to it first of all the term withx = 1
in (2.10). By the fact that

a K
a_G(t9S): |:_(t7s):|f(s)+K(t9S)f/(S)7
s as

and using the valud, = — ¢, we thus obtain the corrected trapezoidal fite, s;) given
by
T(h si)=T(h,s;) + Sl(sl)f(sl (2-11)

with §;(¢) as defined in (2.2). Obwousli(h, 5i) — (Tf)(si) = O(h* ash — 0, and

- = By, [ 9%1 2put 2 (P) ;2
T(hosi) = (THs)— Y 2w [—aszﬂ_lG(s,,s,—i—) g Ot si) |2+ M.
l[,:

(2.12)
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The accuracy of the method 8 (k%) compared toO (h2) with the usual trapezoidal
rule. Further improvement of the convergence is discussed in Section 2.4.

2.3. Numerical Results for the Corrected Trapezoidal Rule

The computational results for the usual and the corrected trapezoidal rules are presented
below for two cases: (i) the kernel oscillates very slowly={ 1) and (ii) the kernel is
oscillatory @ is up to 256). In the following numerical examples we compute

2
/ sin(v\/(cos(t) — cog(s))2 + (sin(r) — sin(s))z) f(s)ds, (2.13)
0

which is a particular case of (2.3), (2.4) for the circde{ b = 1), with f(r) = cosr.
We will use the following measures to estimate the errors:

emax = max |T (hi,s) — (T f)(si)l,
1<i<N

1 N
emsQ =~ | 2 (T(hi ) = (T))(s0)",
i=1
XN (T i, s) — (T)(si))?
6‘[,2— .

SN (TF)si)

Table 1illustrates the order of the regular and the corrected trapezoidal rules for integral
(2.13) andf (s) = coss in the nonoscillatory case= 1.

In Table 1 we observe a good fit between the numerical results and the theoretical
ones:0 (h*) accuracy for the corrected trapezoidal rule compare€ to?) for the usual
trapezoidal rule.

Now we consider the dependence of the accuracy on the number of oscillations of the
kernel. Table 2 presents the dependence of the gt on the number of oscillations.

TABLE 1
Comparison between the Accuracies of the Regular and the Accuracies of the Corrected
Trapezoidal Rules for Integral (2.13) with v =1 and with f(s) = coss

N Corrected trapezoidal rule Ratio Usual trapezoidal rule Ratio
EMAX EMSQ €2 ENJ2/EN EMAX EMSQ &2 ENJ2/EN
32 28e-6 2.0e-6 20e-5 1.0e-3 7.3e-4 7.1e-3
64 17e-7 12e-7 12e-6 16.5 2.6e-4 1.8e-4 1.8e-3 3.9
128 11e-8 7.7e-9 7.6e—8 155 6.4e-5 4.5e-5 4.4e-4 4.1
256 68e-10 48e-10 47e-9 16.2 1.6e5 1.1e-5 l.le-4 4.0
512 43e-11 30e-11 30e-10 15.8 4.0e-6 2.8e-6 2.8e-5 3.9
1024 27e-12 19e-12 18e-11 15.9 1.0e-6 7.1e-7 6.9e-6 4.1
2048 17e-13 12e-13 12e-12 15.9 2.5e7 1.8e-7 1.7e-6 4.1

4096 12e-14 69e-15 68e-14 14.2 6.2e-8 4.4e-8 4.3e-7 4.0
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TABLE 2
Dependence of the Errorepax on the Number of Oscillations for the Corrected Trapezoidal
Rule, where N = 64, 128 256

N v=2 v=4 v=2_8 v=16 v=232 v =064
EMAX  EMAX  £4/€2 EMAX  £8/€4 EMAX  €16/€8 EMAX  €32/€16 EMAX  £64/€32

64 6.0e-7 3.2¢e-6 53 225 69 18e4 82 1.8e-3 100 - -
128 3.7¢-8 2.0e-7 54 1l4e6 7.0 1lle5 7.9 9.0e-5 82 8.8e-4 9.8
256 23e9 12e-8 52 86e8 7.2 6.7e7 7.8 5.4e-6 81 4.5e-5 8.3

From (2.12) we see that the erroritii, s;) behaves like

33 33 4

ﬁG(Si,SH‘) - ﬁG(Si,Si—) h™,

which for increasing behaves likeD (v3). Consequently, we expeet/e, 2 to approach

2% = 8. The results of Table 2 provide the justification of this prediction, and we can see
that asv gets closer taVv/2, the faster the loss of accuracy is. In [6] the number of grid
points necessary to compute the oscillatory integral (2.1) with (2.3) to a sufficient accuracy
is estimated by

N=2L. (2.14)

Table 3 presents the accuracy of the computatiomfet 8v, 16v, L = 27.
We observe that the error slowly decaysandN grow.

2.4. Improvement of the Convergence by Richardson Extrapolation (Romberg
Integration)

The accuracy of the corrected trapezoidal rule can be improved by applying the
Richardson extrapolation (Romberg integration). The description of this method is
contained, for example, in [17]. The idea of this method is the following. The convergence
of the quadrature can be essentially improved if together with a finer grid some coarser

TABLE 3

The Accuracy for the Corrected Trapezoidal Rule and the Oscillatory Kernels withN = 8v, 16v

N v=N/16 EMAX EMSQ &p2 v=N/8 EMAX EMSQ &p2
16 1 4.6e-5 3.2e-5 3.2e-4 2 1.6e-4 l.1le-4 4.0e-4
32 2 9.6e-6 6.8e-6 2.4e-5 4 5.2e-5 3.7e-5 2.9e-4
64 4 3.2e-6 2.2e-6 1.8e-5 8 2.2e-5 1.6e-5 6.7e-4
128 8 1.4e-6 9.8e-7 4.2e-5 16 1.1e-5 7.6e-6 2.7e-4
256 16 6.7e-7 4.7e-7 1.7e-5 32 5.4e-6 3.8e-6 1.8e-4
512 32 3.3e7 2.3e-7 1.1e-5 64 2.7e-6 1.9e-6 4.1e-5
1024 64 1.6e7 1.2e-7 2.5e-6 128 1.3e-6 9.4e-7 3.6e-5
2048 128 8.2e8 5.8e-8 2.2e-6 256 6.6e-7 4.7e-7 2.6e-5

4096 256 3.9e8 2.7e-8 1.5e-6 512 3.1le-7 2.2e-7 1.5e-5
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TABLE 4
Comparison among the Accuracies of Integration for the Kernel (2.13), withv = 1, Obtained
by the Regular Trapezoidal Quadrature, the Corrected Trapezoidal Quadrature, and the
Algorithm Using Two Grids Simultaneously

N Corrected two-step rule Corrected trapezoidal rule Usual trapezoidal rule

EMAX EMSQ &r2 EMAX EMSQ Er2 EMAX EMSQ &r2

32 42e-8 3.0e-8 29e-7 2.8e-6 2.0e-6 2.0e-5 1.0e-3 7.3e-4 7.1e-3
64 64e-10 45e-10 44e-9 17e-7 12e-7 12e-6 2.6e-4 18e-4 1.8e-3
128 99e-12 70e-12 69e-11 1le-8 7.7e-9 7.6e—-8 6.4e-5 4.5e-5 4.4e-4
256 16e-13 1le-13 1lle-12 68e-10 48e-10 47e-9 1.6e-5 1l.le-5 1l.le-4
512 22e-14 22e-15 22e-14 43e-11 30e-11 30e-10 4.0e6 28e6 28e5
1024 24e-15 7.0e-16 69e-15 27e-12 19e-12 18e-11 1.0e6 7.le-7 6.9e-6

grids are included in the quadrature. The asymptotic expansidi(/afs;) contains the
powersh?, k8, 18, etc. The Richardson extrapolation can thus be applied as follows:

1. Pickho = L and defindiy = ho/2K, k=1,2, . ...
2. Computel\ = 7' (hg, ), k=0,1,..., wheref (h, s;) is defined by (2.11).
3. ComputéT,,S(k) form=1,2, ... by the recursion

T&+D _ &)

- ” 1\ m+1
T® = m 11_cm m-1 Cm = (4_1) ) (2.15)
m

HereT, X are approximations tr ) (s;) andT, X — (T f)(s;) = O (4~ ™ +2ky ask — oo.

In our computations we have taken= 1 (two-step) andn = 2 (three-step algorithm
applying two grids simultaneously). This improves the accuracy in the following way:
if the original quadrature ha® (h*) convergence (as in our case), then by applying two
grids (say, 16 and 32 points per interval) the accurac®¢i°) can be achieved; three
grids give O (h®) accuracy. However, for oscillatory integrals we cannot employ too many

TABLE 5
Accuracies of Integration for Oscillatory Kernels (2.13), with N = 8v, Obtained by the
Algorithm Using Two Grids Simultaneously

v N EMAX EMSQ &p2
1 8 3.6e-4 2.5e-4 2.5e-3
2 16 2.4e-5 1.7e-5 6.1le-5
4 32 4.1e-6 2.9e-6 2.3e-5
8 64 1.3e-6 9.2e-7 3.9e-5
16 128 5.6e-7 4.0e-7 1.4e-5
32 256 2.7e7 1.9e-7 9.0e-6
64 512 1.3e7 9.5e-8 2.1e-6
128 1024 6.7¢8 4.8e-8 1.8e-6
256 2048 3.6e8 2.5e-8 1.4e-6

512 4096 3.7e8 2.6e-8 1.8e-6
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TABLE 6
Accuracy of the Richardson Extrapolation
v N Corrected trapezoidal rule Two-step rule Three-step rule
EMAX eNJ2/EN EMAX eNJ2/EN EMAX eNJ2/EN

8 32 38e-4 - 12e-4 - 29e-4 -
64 22e-5 17.2 13e-6 92.3 60e—7 415

128 1l4e-6 15.7 19e-8 68.4 15e-9 400
256 86e-8 16.3 29e-10 65.5 54e-12 278

512 54e-9 15.9 45e-12 64.4 2le-14 257

1024 34e-10 15.9 7le-14 63.4 10e-15 21

16 32 36e-3 - 10e-3 - 40e-5 -
64 18e-4 20.0 49e-5 20.4 66e—5 0.6

128 1lle-5 14.4 56e—-7 87.5 20e-7 330

256 67e-7 16.4 82e-9 68.3 56e—-10 357

512 42e-8 16.0 13e-10 63.1 20e-12 280

1024 26e-9 16.2 20e-12 65.0 8le—15 247

32 64 18e-3 - 27e-3 - 38e-3 -
128 90e-5 20 23e-5 117 19e-5 200

256 54e-6 16.7 27e-7 85.2 87e-8 218

512 33e-7 16.4 40e-9 67.5 25e-10 348

1024 21e-8 15.7 6le-11 65.6 93e-13 269

2048 13e-9 16.2 96e-13 63.5 43e-15 216

64 128 88e—4 - 39%e-3 - 52e-3 -
256 45e-5 19.6 1le-5 354 50e-5 104
512 27e—6 16.7 13e-7 84.6 42e-8 1190

1024 17e-7 15.9 20e-9 65.0 12e-10 350

2048 10e-8 17.0 30e-11 66.7 46e-13 261

128 256 44e-4 - 39%e-3 - 5le-3 -
512 22e-5 20.0 56e—6 696 57e-5 89.5
1024 13e-6 16.9 67e-8 83.6 2le-8 2714

2048 82e-8 15.9 98e-10 68.4 62e-11 339

256 512 2e-4 - 36e-3 - 46e-3 -
1024 1le-5 20 28e—6 1286 54e-5 85.2
2048 67e—7 16.4 33e-8 84.8 10e-8 5400

grids simultaneously since for very coarse grids (less than 2 to 3 points per oscillation)
the result of the integration is not relevant and does not improve the one obtained for
the finer grid. Tables 4 and 5 demonstrate the accuracy=-efl for variousn and the
accuracy forN = 8v. Table 6 illustrates the search for the best integration formula for
variousv, N > 2v (corrected trapezoidal rule and two-step and three-step Richardson
extrapolation are applied).

We can see from Table 6 that, for example, fo= 128 andN = 2v both two-step
and three-step rules are less accurate than one-step rulds=feh = 512 the best result
(error= 5.6 x 1079) is obtained by the two-step rule, while the results of the three-step rule
are even worse than those obtained by the corrected trapezoidal rule=@v each step
adds to the accuracy. Thus, by applying simultaneously three grids the accurb@y?)
for the integration can be achieved foe= 128 N = 8v = 1024. A similar effect can be
observed for other.
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3. DECOMPOSITION IN LOCAL FOURIER BASES (LFB) AND SPARSITY ANALYSIS

3.1. Local Fourier Bases

The local Fourier basis can capture well oscillatory patterns (see, for example, [3, 4, 6])
in contrast to wavelets or multiwavelets; therefore we attempt to get effective computation
of the oscillatory integral by representing its kernel in LFB; i.e., we computed the following
coefficients,

. 2r  p27w ) .
Agp= /O /0 K (. 5)CL()C] (s)ds (3.1)
. 2r 271 ) .
By = /O fo K(t,5)SL()S] (s)dsdt, (3.2)
where
i 2 12 1 s —a
Ck(S) —bl‘(S) <m> COS((k + E)T[iai_,’_l p ) s (33)
. 5 1/2 1 s
Si () =bi(s) <7) sin((k+ —)ni). (3.4)
ai+1—aj 2/ ajt1—a;

Let [0, 2] be divided intoM intervalsl; = (a;,a; + 1) andb;(s) be a collection of
smooth window (bell) functions supportedin 1 U I; U I; 1 such that

M
> b =1,
i=1

bi(s) =bi_1(2a; — ).

A discrete system of basis functions is constructed N_be the number of discretization
points. Following [6] we chooseV > 2vL, i.e., N > 4zv. In all the numerical
implementations we assumad= 8v.

To get better performance we use the optimized bells that were developed by [15] which
minimize the number of local Fourier coefficients necessary for their representation (3.5).
These bells generalize the Coifman—Meyer (CM) construction [10] by extending the choice
of the bell functions. Each bell is defined on three adjacent intervals as shown in Scheme 1,

AN
I

SCHEME 1. The collection of bell functions. Each bell is defined on three adjacent intervals.
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FIG. 1. The form of the bell for the steepneks= 2, 6, 11, respectively.

where each one is given by

3(1+ X hZggnsin(n + )7 x) forall -3 <x <3,
be(¥) = 3(1+ X h 5(~1)"gacosin + H)mx)  forall 3 <x <3, (3.5)
0 otherwise

where the coefficients, are the solutions of a linear system and its valueg ter0, ..., 11
are tabulated in [15]. Herk is a parameter that characterizes the smoothness of the bell
and its steepness at the sides. Figure 1 illustrates the forms of the bélls-fbr6, 11.

The basis which was built corresponds to the discretization of the continuous basis
functions whereV discretization points;; are taken such that are midpoints between

adjacenty;.
The kernels and their discretizations were chosen so that they correspond to the corrected

trapezoidal rule which was described in Section 2.2.

3.2. Numerical Results: Sparsity, Error Estimates, and Comparison with Wavelets
Tables 7 and 8 present the number of coefficients above a threshatd the

representation of the kernel

G(t,s)= sin(v\/(cos(t) —€09(s))2 + (sin(t) — sin(s))z), t,s €0, 2],

in local Fourier basis. The discretization which corresponds to the corrected trapezoidal

rule was described in Section 2.2, i.e.,
27 2n2
GIJ_ G(tlatj)+v3N2?

where the grid points are equispacgd= 2zi/N. Table 7 presents the number of
significant coefficients in the LFB kernel representation and the accuracy obtained (the
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TABLE 7
Sparsity of the Representation of the Oscillatory Kernel (v = 8v is a Number of Points in
Each Direction) in LFB and the Accuracy Obtained with the Corrected Trapezoidal Rule (2.12)
When the Coefficients below the Threshold Are Neglected

Threshold v of N of Total Coefficients Integration Accuracy with
e exp. points coefficients above % error thresholding

le-3 8 64 4096 2067 50% 2.26 2.6e-3
32 256 65536 7269 11% 5.46 4.8e-3

128 1024 1048576 17654 1.7% 13 2.8e-3

le-4 8 64 4096 3381 91% 2.26 2.0e-4
32 256 65536 20304 31% 546 4.1e-4

128 1024 1048576 66307 6.3% 1-3# 4.3e-4

le-5 8 64 4096 3932 96% 2.26 3.5e-5
32 256 65536 33947 52% 546 7.5e-5

128 1024 1048576 159943 15% 13 1.3e-4

le-6 8 64 4096 4073 99% 2.26 2.2e-5
32 256 65536 50217 7% 546 1.0e-5

128 1024 1048576 300998 29% 13 1.5e-5

le-7 8 64 4096 4093 99% 2.26 2.2e-5
32 256 65536 58773 90% 546 5.5e-6

128 1024 1048576 513705 49% 13 2.0e-6

Note.“Integration error” describes the accuracy of the quadrature, while the “accuracy” column gives the com-
putation error when all the coefficients below a certain threshold are neglected.

TABLE 8
Comparison between the Sparsity Representation of the Oscillatory KernelN = 1024 Both
in Local Fourier Basis and the Multiwavelet Basis

Threshold v of Integration Accuracy with LFB coefficients ¢ Multiwavelet

& exp. error thresholding per row coefficients per row

le-3 1 27e-12 4.8e-3 45 2

4 48e-11 4.0e-3 4.8 5

16 26e-9 3.9e-3 6.9 19

64 16e-7 3.9e-3 127 63

128 13e-6 2.8e-3 172 97

le-4 1 27e-12 1.2e-3 184 6

4 48e-11 1.5e-3 174 14

16 26e-9 5.5e-4 218 46

64 16e-7 1.2e-3 459 184

128 13e-6 4.3e-4 64.8 306

le-5 1 27e-12 1.7e-4 476 15

4 48e-11 2.6e-4 488 30

16 26e-9 l.4e-4 66.1 87

64 16e-7 1.5e-4 1180 280

128 13e-6 1.3e-4 1562 389

le-6 1 27e-12 2.7e-5 1123 30

4 48e-11 1.9e-5 1157 56

16 26e-9 1.8e-5 1401 138

64 16e-7 1.5e-5 2186 348

128 13e-6 3.6e-5 2939 425
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maximal error) when the coefficients below the threshold are ignored. This accuracy is
compared with the accuracy obtained after integration (without thresholding). The sparsity
is estimated both by the number of coefficients above a threshold and the percent of
significant coefficients.

For accuracies 10 to 10°° the error obtained after thresholding is close to the error
of the integration quadrature. Thus, fioe= 128 and number of grid point§ = 1024 it is
senseless to consider accuracies less thaf (dke Table 3). One can see that if all the
coefficients below a certain threshaldre omitted, the error obtained is closet®ue to
the oscillatory nature of the kernel there is nearly no accumulation of error.

Table 8 describes the dependence of the sparsity, ahereN = 1024. In addition to
LFB we use multiwavelets [1] with four vanishing moments. The last column in the table
gives the number of multiwavelet coefficients per row above the chosen threshold which
can be compared with the sixth column that presents the number of elements above the
threshold after the LFB.

We observe that for small (v < 16) the number of wavelet coefficients above a
threshold is less than the number of LFB coefficients, while for larde > 16) LFB
gives a more compact representation for the kernel. This illustrates the fact that wavelet
representation is not efficient for highly oscillatory integral kernels.

3.3. Sparsification of the Kernel by Local Fourier Bases: Theoretical Estimates

We compute the following integral

1
TN = [y, (3.6)
whereg is a smooth function satisfying

3P (x, y)

<C. 3.7
Ix*9yh 3.7)

If a one-dimensional function is decomposed with local cosine basis, each coefficient
of such a decomposition corresponds to a certain location (windowahd a certain
frequencyp. Let us assume that we hawe = 4v discretization points (less than two
points per oscillation would not work) andN = 2,/v bells (windows for local cosine
transform). Then, the number of the windgwis such that G< ¢ < 2,/v and frequency
is such that &< p < 2\/v.

Let us denote by, = ¢/(2,/v) the origin of theqth interval and byd, = (¢ +
1/2)/(24/v) the center of thgth window and bell. Then the basis function corresponding
to locationg and frequency is

1
Cyop () = 202/ (x — dy)) cos( (p n E)Tr(x - cq)2ﬁ> , (3.8)

whereb(x) is a bell function.
The collection of function§, , forms an orthogonal basis. Thus the interaction between
two windowsg andgq’ and two frequenciep andp’ is given by the expression
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= <Cq’,p/, T(Cq,p))
1 ,1

=2ﬁ/ / eMPEp ((x — dy)24W)b((y — dg)2y/V)
0 JO

/

X COS((p/ + %)7‘[ <x - 2%)2\5)
X Cos<<p + %)n( - Ziﬁ)zﬁ> dxdy. (3.9)

By the change of variables

G'.p)a.p

s=(x— dq/)Zﬁ, t=(y—dy2Jv, (3.10)
we obtain
s q +1/2
2x = d, 2 = d [
Vv=s+dy2Jv=x= 2\/_+ r=x 2«/—+2\/5
t q+1/2

2yV/N =1 +d,2 = dy :
YWN =t +d2/v=y= 2f+ =Y=35t 2n

The boundaries far ands are
1 1
:—q——<s§2vN—q—§=t2,

1 1
S1=—61/—§§SS2\/N—61/—§=S2, 1 5=
(3.11)
and
q’ q' +1/2 1 s 1
_a _ , 3.12
YTo AT T 2h Yas T o2s Tas (3.12)
1/2 1 t 1
1 g+l (3.13)

SN N N A NN
The change of variables (3.10) turns (3.9) into the following integral:
e (G e s
— 1%
2 by Sy TN 2 T2 2 T 2
, 1 1 1 1
xb(s)b(t)COS((p +§)n(s—§> coS <p+§>ﬂ(t—§> dsdt.

Let us expand functiong into Taylor series:

”‘p(zqf NN 2tf> |
=035 5) + 7 g (2 20)* 5 (2 2 )] e

Therefore, the residual has the following form:
TP G SR N B Y G A
rqq’(s”)_”¢(2ﬁ+2ﬁ’2ﬁ+2ﬁ> v¢(2ﬁ’2ﬁ>

«/— 8¢> 9 (4 g
- = )¢l 14
2[ 25 ) Tag\amam ) (3.19)
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We assumeés| < 1, |7] < 1, which corresponds to overlapping less than half a window.
This provides the convergence of the Taylor series. The original integral, which defines the
interaction between two windows, has the following form,

12 52
oIV /(2/0)./2/0) / / Bs.1)
2/v n Js

x cos((p’ + %)n (s + %)) cos<(p + %)n (t + %))e"(*‘”m) dsdt, (3.15)

B(s, 1) = b(s)b(r)e" s " (3.16)

where

and the coefficientd, B are

‘ggj (2f 2qf> B_izﬂzf 2qf> 540

In addition to local cosine bases, the function can be expanded into local sine bases. We
next represent cos as a combination of exponentials. To compute (3.15) we have to evaluate
the following integral:

i ivp(q V), N /tz/sz ; / } }

ZWe 0@/ ))§ L B(s, 1) expy i :i:(p +2>n(s+2>+As
><eXp{i[ﬂ:(pr%)n(H—%)+Bt]}dsdt
_exp{zvq)(z\/_ zi]/_ }Zexp{i,(p/—i—%

. 1 1
/
x,B(A:l:(p +§)7T,B:I:(p+§)7r). (3.18)
Letus evaluateﬁ(s, n), which is a Fourier transform of

B(x.y) =bx)b(y)eaw ™

wherer{‘]’q/ (x, y) is the residual after the linear approximation (3.14).
We claim that there exists such a constKrIlhat|r;q/ (x,y)| <K and

aH—j

3.19
‘8 o (3.19)

e ”“(I)lﬂ

We observe that the residual

’;q/(x’y)=V{¢(x,y)—¢< 1 —) —As—Bt}
v Vv
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has a leading term which is a sum of three terms,

bl (e 2]

where

a_1¥¢<¢ q) b_lﬁ¢<q’ q)
T 4992\ 2w 2N )] T 23q9g \2v 2 )’
1% q ¢

C‘ZEF<ZEGZE)

Each of the terms is a constant; therefore the residual is bounded. The derivative of the
residual is a sum of four terms; each of them is the third partial derivatige(of ¢, s, or
mixed) with an appropriate coefficient multiplied by

(3.20)

sit
VN’

The third derivatives op are bounded due to the assumptions; consequently

8r;q/(s, n =0 i .
s Jv
Similarly all the partial derivatives af;q,(s, 1) of orderk are O(1/v¥/?), which proves

(3.19).
The function

i+j=4

Bls.1) = b()b(t)e' "
is bounded together with all the partial derivativegadfp to orderM:

C, i+j<M. (3.21)

’3i+jﬂ(5,f)) _
dsiot] -

Itis known that if a functionf is bounded together with its derivatives

<C, i+j<M, (3.22)

3 (s, 1)
asiots

then the Fourier transforms of these derivatives are also bounded:

9+ £ (s, A o
(#7750 < mew o
Moreover,
o o C1
i
T | = e
Thus

C1
X(€, [nhM~

B me'n| < g
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This means that for largg n the Fourier coefficients are negligible. For examplé, dr
n > 10 then
B m| = —=
PI=10
which means that the coefficients corresponding to frequenéies- |n| > 10 are
negligible. Thus there is only a constant numberof significant Fourier coefficients for
each of the two windows correspondinggoand ¢’. We have 2/v windows, so there
are 4 pairs of interactions for windows located@andq’ (0 < ¢, ¢’ < 2,/v); not more
thanCs coefficients above a certain threshold for each interaction leaddg dignificant
coefficients among the total of 16 coefficients. Thus, the total number of coefficients
above a threshold i© (N), whereN is a number of grid points in each direction.
We have already observed that nearly all the coefficients in the power of the exponents
in (3.18) are between 10 and 10;

LWL Ve (d g |10

3 i (o)== =2 (829
1N Wae [ ¢ ¢ 10 _

(0 3) =5 5 (o) =7 =2 429

Thus the neighborhood of the strongest interaction can be found: first, from (3.24) the
domain ofg can be computedy(, ¢’ are given and we are looking for frequencjesnd
locationsg which interact essentially with a chosen frequeptwand locatiorny’); second,

the computed domain fay is substituted into (3.25) and thus the domain focan be
evaluated. For finding, ¢ the nondegeneration condition is assumed:

92¢ 9%¢
W(X, y) m()ﬁ y)

det #0.
929 929

axay(-x7y) W(X’)’)

For each domain of pairg;, p) we find domain of pairgg’, p’) interacting with it. We
deal not with points but with “clouds” (corresponding to close locations and frequencies).
Such an approach is natural in quantum mechanics where we can follow not the points but
only the clouds.

In Section 3.4 the number of significant coefficients after LFB of the function

Blx.y) = bx)b(y)e ™
is evaluated numerically.

3.4. Numerical Estimates for the LFB of the Residual: Dependence on the Bell and the
Form of the Curve

We evaluate numerically the following integrals:
1 v
G(P-,({),(P/-,({/) :/ b(x)b(y)el(P+l/2)xel(P +l/2)ye”qq/(x»y)dxdy’ (326)
0

which is the LFB of the residual.
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TABLE 9
Number of Coefficients with an Imaginary Part above a Threshold in Blocks128 x 128 with
64 Points Overlapping,v = 2048

Location of the block 10° 106 107 1078

At the diagonal 804 1264 1543 2271
Below or above the diagonal 169 662 1068 1747
Other blocks 15-30 27-50 50-65 150-350

As a model problem we take the case as in [6], when the total number of points in
each direction is 128= 10'4 = 16384, 128 windows, and the overlapping of 64 points
from each end of the window. The chosen bell from the family (3.%)4s10. Most of
the significant coefficients describe the interaction of a window with itself, which belongs
to the diagonal blocks or to the blocks adjacent to the diagonal. Inside the window the
significant coefficients correspond pp’ being small (see (3.23)).

First consider a circle:

z(s) = coq2ms) +isin(2rs). (3.27)

The number of significant coefficients in (3.26) varies and it depends on the distance of
a block from the diagonal.

The total number of coefficients with the imaginary part above the thresholel i$0
about 0.18%, above 16 it is less than 0.5% of all coefficients, and for ¥t is less than
0.8%. The absolute value of the real parts is even less, so the same estimates are valid for
both of them.

If the residual does not contain the second derivativasand iny, the matrix obtained
after the application of LFB is sparser: 0.18% of the coefficients above the threshdld 10
0.35% above 10°, and 0.55% above 10 (see Table 9).

Table 10 describes the dependence of the number of coefficients above a threshold on
the steepness of the bell [15] for a block on the diagonal.

We observe that with a steeper bell function the number of significant coefficients is
less. However, for a smooth bell coefficients of the LFB transform of the residual are a
smooth function or can be easily reduced to a smooth function which can be additionally
compressed, for example, by application of wavelets. If a bell is steep, the LFB transform
of the bell is an oscillatory function and so is the LFB transform of the residual. A bell with

TABLE 10
Number of Coefficients with an Imaginary Part above a Threshold in a Diagonal Block
128 x 128 with 64 Points Overlapping, v = 2048for Various Steepness of the Bell

Steepness of the bell 18 10-3 1074 10-5 106 1077 108
2 1225 7379 16384 16384 16384 16384 16384
4 303 755 2090 15490 16383 16384 16384
7 36 292 776 1048 1938 8926 16384
10 36 67 332 804 1264 1543 2271

11 38 63 266 773 1054 1529 1994
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FIG. 2. The imaginary part after the expansion in LFB of the residual of the diagonal block for a bell with
steepnesg = 2 for the full range of coefficients and the range0.1; 0.1].

a small steepness number is not smooth (see Fig. 1); however, its local Fourier transform
is easily reduced to smooth functions: for example, the coefficients located at odd/even
places in each direction form four (odd kfodd in y, even/odd, odd/even, even/even)
smooth functions. Figures 2 and 3 present the odd/odd coefficients of the local Fourier
transform (imaginary part) of the residual for the diagonal block: first, in all the values of
coefficients and second, for the range of values fre@nl to 0.1.

Next we consider the dependence of the number of coefficients above a threshold on the
number of grid pointsV, wherev = N/8. Table 11 presents the number of coefficients
above a threshold for a diagonal block, while Table 12 presents it for a block which is far
away from the diagonal.

The theoretical estimate for the number of significant coefficients @é¥) (see
Section 3.3). Here we observe that for a diagonal block the number of significant
coefficients is doubled when the number of poirt®v in each direction is doubled.
Besides, the number of diagonal blocks grows+&8. Thus, the contribution of the
diagonal blocks (which is the same for each block on the diagonal due to the symmetry
of the circle) has an order of(N). The same estimate is valid for the blocks near
the diagonal. The number of coefficients above a certain threshold in blocks, which are
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FIG. 3. The imaginary part of the local Fourier transform of the residual for the bell with steepred®
for the full range of coefficients and the range0.1; 0.1]. The transform was applied to the diagonal block.

nonadjacent to the diagonal, is approximately constant (in fact, it even decreases for large
threshold with the growth o). The total number of blocks i’ N+/N = N. Therefore,

the contribution of these blocks does not excée@); in fact it is even less. Due to the

slow growth in the number of significant coefficients, the percentage of such coefficients

TABLE 11
The Number of Coefficients with an Imaginary Part above a Threshold in Diagonal Blocks of
Various Sizes, where the Overlapping is Half a Windowy = N /8

Block size\ Threshold v 1073 1074 105 106 1077 108
16 x 16 = 256 32 36 67 106 141 170 218
32x 32=1024 128 47 91 170 249 339 448
64 x 64= 4096 512 57 183 404 598 749 1006

128x 128= 16384 2048 67 332 804 1264 1543 2271
256 x 256 = 65536 8192 87

606 1589 2570 3198 4827
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TABLE 12
The Number of Coefficients with an Imaginary Part above a Threshold in Blocks of Various
Sizes Which Are Far Away from the Diagonal, where the Overlapping is Half a Window,

v=N/8
Block size\ Threshold v 1073 104 1075 1076 1077 1078
16 x 16 = 256 32 12 20 31 62 101 134
32x 32= 1024 128 7 16 27 46 90 176
64 x 64 = 4096 512 5 12 22 37 71 241
128x 128= 16384 2048 5 11 18 35 59 321
256 x 256 = 65536 8192 3 8 17 26 49 115

decays quickly: from 24%N = 256) to 0.03% (V = 65,536), if a block is distant from
the diagonal, and from 5598V = 256) to 3.9% (V = 65,536) for diagonal blocks.

Consider now an elliptic curve. Here there is no leading contribution by the diagonal or
adjacent to the diagonal blocks. As a model example the following ellipse was chosen:

2 2
433 a=3.  b=05

All the blocks can be classified into two types: those corresponding to strongly interacting
windows and those corresponding to weakly interacting windows.

The total number of coefficients with an imaginary part above the threshoflig¢less
than 0.2%, above 1@ it is less than 0.4% of all coefficients, and for 70t is not more
than 0.7% (see Table 13).

Table 14 presents the number of significant coefficients for a certain block with strong
interaction for various eccentricities of the ellipse.

3.5. Smoothing of Functions by Local Fourier Transform

We consider LFB expansion of the residual (3.26). We observe that it is still oscillatory
(see Fig. 3). There are at least two main reasons why oscillations arise: first, the bell is
shifted with respect to the basis function, and second, the Fourier transform of the bell is
not, generally speaking, a smooth function (see Fig. 4).

The first source of oscillations can be eliminated as follows,

1l o -
Gp.g).(p'a" ZA /0 b(2J/v(x —dy))e' P AT
X b(25/0(y — dy))e P HYDTO=e) e D gy gy (3.28)
TABLE 13

The Number of Coefficients with an Imaginary Part above the Threshold in Blocksl28 x 128,
where Overlapping is 64 Pointsy = 2048 and the Eccentricity of the Ellipse is3/0.5

Type of block 10° 106 1077 108

Strong interaction 80-150 100-200 150-250 350-600
Weak interaction 0-40 0-70 3-90 60-300
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TABLE 14
The Number of Coefficients with an Imaginary Part above the Threshold in Blocksl28 x 128
where Overlapping is 64 Pointspy = 2048 for Ellipses with Various Eccentricities a/b

a:b 10°° 1076 1077 108
1:1 18 33 49 251
1.2:08 35 51 86 370
2:0.7 76 98 137 318
3:05 114 160 220 370
4:04 150 214 299 564
5:0.1 192 280 383 758
3:2 71 101 154 405
3:15 95 130 178 553
3:1 104 151 202 398
3:05 114 160 220 370
3:0.1 107 161 419 223

wherec, = 1/(2,/v) is the left end of the th window andi, = ¢, +1/(4\/v) is the center
of thegth window. Integral (3.28) can be rewritten as follows,

. 1 1 Ly
Gip.g)ipg)= ¢! P dy—cy) (f / b(2y/v(x — dq’))e’(p 1/ (x—=dy)
o Jo

X b(24/0(y — dy))e! P HHDTOd) oy ”*”)

w A PHYDT aco) gy gy (3.29)

'LFB_of_bell_JO° —

50
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100

FIG. 4. The real part of the LFB transform of the kernel (2KLjz, s) = 1 and the bell with steepness 10 in
the range of valueg-0.1; 0.1].
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where in the integral the bells and the basis functions are centered at the same point. Denote

g = ¢! PHYDT=cy),

We can represent the matrix of coefficier@®s= G, ) (,4) as a product of three
matrices,

G=AUA, (3.30)

whereA is a diagonal matrix witla,, at the diagonal. The componentslofare

1 01
i(p'+1/2 —d s
Up.g).(p'.q") ZA /0 b(Zﬁ(x _dq/))el(p+ fam=dy)

X b (20 (y — dy)) e P TDTOd 0y OV g gy (3.31)

For these integrals the centers of the bell and basis functions coincide. If the transform
of the bell is smooth and the residual is small, then the matrix obtained is smooth and
can be additionally compressed, for example, by wavelets. This is the case of the bell of
a Gaussian type (see [6]) or a bell which is considered here with a low stedprfess
example, the LFB transform of the diagonal block with the bell correspondihg+@ in
Fig. 2 was obtained for a bell centered at the centers of basis functions. This is equivalent
to the multiplication ofG in (3.30) by the diagonal matrid~1 from the left and from
the right. Such a matrix can be additionally compressed, for example, if the transform of
the diagonal block is expanded with the biorthogonal wavelets [7] (odd and even elements
separately). Table 15 presents the number of coefficients above threshotdsnt10°
after LFB expansion witlk = 2 and additionally compressed by orthogonal wavelets. The
matrix, which is expanded, is a diagonal block of the kernel corresponding to a circle and
the ellipse with axes 3 and 0.5.

However, for bells with a smalt the number of coefficients above thresholds 210
to 108 is large. Even after the compression by wavelets there are more significant
coefficients than after LFB expansion with a steep bell with 10 (see Table 9).

On the contrary, if we choose a steep belH 10, 11), the number of coefficients above
thresholds 10° to 10-8 is small (0.5-1.5%). However, the matrix obtained is oscillatory
even if the bells and the basis functions are centered at the same points. This is stipulated

TABLE 15
The Number of Coefficients above a Threshold in a Diagonal Block after LFB Expansion with
k = 2 and after the Additional Expansion with Biorthogonal Wavelets, where the Curve is
either a Circle or an Ellipse and the Eccentricity of the Ellipse is3/0.5

Type of Threshold Number of coefficients Number of coefficients after
curve & after LFB LFB+wavelets
circle 10°° 6202 755
1076 8290 1312
ellipse 105 6058 607

3.0/0.5 106 8688 1504
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by the oscillatory character of the transform of the bell. Denoté by
A 1 .
b(p) = / b(23/v(x — dy))e! P27 =dy) g (3.32)
0

the local Fourier transform of the bell, which obviously does not depend.dret us
choose a smooth functign(p) such that the rati@(p)/b(p) is not very big and not very
small; for example,

YW1 100
b(p)

If the residual is small, then the coefficiemtén (3.31) are close to the transform of the
bell; thus the coefficients

0.01<

o(p) [t i(p'+1/2)m(x—d 1)
V(p.g).(p'q") = b(p Jo Jo b(2/v(x —dy))e 7 dx

/ L) ;
S (2 — )l OOy (329
p

form a smooth function. Consequently, (3.30) can be rewritten as

G=AFVFA, (3.34)

where the elements, . (.4, Of the matrixV' are defined by (3.33) and is a diagonal
matrix with
PRLC)
@(p)

at the diagonal (the same for eagh Figure 5 compares the matricés and V for a
nondiagonal block. The number of points in the window is ¥2828. U is oscillatory
while V is smooth. In Fig. 6 matricel§ andV are shown at a higher resolution: between
—~10%and 10°®.

There are two open problems connected with the smoothing of métobtained by
LFB expansion. The first problem is how a diagonal block or a block corresponding to a
significant residual can be smoothed. The second problem is how smooth Biater
be additionally compressed. For blocks which are far away from the diagonal the number

(3.35)

’matrix_U_30' — ‘matrix_V_30' —

FIG. 5. The real part of the left-upper corners (30 points in each direction) of maticasd V which are
defined by the bell with steepneks= 10. The transform was applied to a block far away from the diagonal.
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‘'matrix_U_30° — | ‘matrix_V_30 —

FIG. 6. The real part of the left-upper corners (30 points in each direction) of matricasd V which are
defined by bell with steepness= 10 for the range of coefficienfs-10~6, 10-6]. The transform was applied to
a block far away from the diagonal.

of coefficients above 10 is about 55 (of 16,384) and matrix functidn is very steep;
thereforeV cannot be additionally compressed by a wavelet or some other expansion.

4. MULTISCALE DECOMPOSITION WITH LOCAL FOURIER BASES

Multiscale LFB may transcribe a better compact description of an oscillatory kernel
by utilization of the best-basis mechanism of the multiscale LFB. In this section purely
real methods are developed for fast computation of oscillatory integrals. The effective
representation is achieved by constructing an adaptive basis.

4.1. Adaptive Local Cosine for Kernel Compression

The smooth local trigonometric basis is used in the algorithm in the following way:
Initially, we apply the local trigonometric transform (or basis). Then, the best-basis
methodology [12] is applied on a tree of local trigonometric expansions.

4.1.1. Adaptive local trigonometric basesWe are interested in a local time-frequency
analysis of the kernel. In order to analyze the local frequency content of the kernel, we
first cut the support of the kernel into adjacent blocks. Then a local Fourier analysis is
performed inside each block. To obtain a better frequency localization, we do not cut
abruptly the signal, but we use a smooth window function to localize the segment of
interest.

First we review the construction of one-dimensional smooth localized trigonometric
bases [10, 2]. These functions are cosines with good localization in both position and
Fourier space. We consider a covee ngtg[an, an+1[. We writel,, = a,+1 — a, and
¢n = (ap +a,+1)/2. Around eacla,, we define a neighborhood of radizid_etr be a ramp
function such that

0 if r < -1,
r(t):{l ift>1 (4.1)

and

r2(t) +r¥(—1)=1,  VteR. (4.2)
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r( —tg)
0.5
v(t)

\ |
—£ 0 €

FIG. 7. Ramp function-, and bump functiorv.

We define the smooth orthogonal projecti®y, f of a one-dimensional signgf as
follows [2, 10]:

rz(x —an) f(x)+rx —ayr(a, —x)
if a, —e <x <ay,+ef(2a, —x)
P f(x)=1q f(x) ifa,+e<x<apy1—¢ (4.3)
r2(ant1—x) f () = r(x = anp)r(@nt1 — x) f (2541 — x)
if ay41—6<x<ays1+e.

We use the result that the projection of contiguous intervals is equal to the sum of the
projections:

P, ® Pp,., = Pr,ul, - (4.4)
Consequently,
L*(R) =P P, L*(R). (4.5)
nez

Furthermore, the projection is as smooth as the original functiorf: & C?(R), then
P;, f has a unique continuous extension @ (R) that is supported in the interval
[an, — e, an+1 + €] [2] (see Scheme 1). We consider the collection of cosine functions:

cos 2k+1 n( )
Cin=— X —d .
”” 2 | "

In their discrete form these functions correspond to the DCT-IV:

(2n + 1)(2k + Dz B
X (k) = \/72x()cos{ AN } k=0,...,N—1. (4.6)

If we multiply thec; , by the ramp, on each side bf, then we obtain a basis &%, L%(R):

2
u)k, =
"V L

To get better performance we use the bells that were developed by [15]. This bell
generalizes the Coifman—Meyer (CM) LFB [10] by extending the choice of the bell
functions. The orthonormality of the CM bells was dropped, as was done in [3].

2k+1 «
2 ||

—ay)r(ay+1 — x) COS{ (x—ap)|. 4.7)
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This produces a family of smooth local trigonometric bases that efficiently compresses
trigonometric functions. Any such basis is, in general, not orthogonal, but any element
of the dual basis differs from the corresponding element of the original basis only by the
shape of the bell. Numerical examples demonstrate that in many cases the proposed bases
provide substantially better (up to a factor of two) compression than the standard CM bells.
This is certainly true for seismic data [4]. We used the bell (3.5) from [15].

4.1.2. Implementation by folding.In practice, in order to expand a functighinto the
basisw; , we do not calculate the correlation betwegiand the basi$w; ,}. Instead we
transformy restricted tda, — ¢, a,+1 + €] into a smooth periodic function onta,,, a,+1]
and expand it into the basfs; ,}. To do this we fold the overlapping parts of the window
b, and of the bump back into the interval, across the endpoints of the interval, with some
folding and unfolding operators. The advantage of the procedure is that we can preprocess
the data with the folding operators and then use a fast DCT to calculate the expansion into
the basiqc; .}

UNITARY FOLDING AND UNFOLDING. We define the unitary folding operatd,, and
its adjoint, the unfolding operatdr; , as follows:

r(=) £ (1) — r(52) f(2a, — 1), if ay —e <t <ay,
Uay f (1) =S r (58 £ (1) +r () f(2a, — 1), (fay <t <ay+e, (4.8)
£, otherwise;

r(=) f(0) 4 r(52) f(2a, — 1), if a, —e <t <ay,
Up fO) = r(E2) f() —r(2D) f(2an — 1), ifan<t<a,+e, (4.9)
f@), otherwise.
Figures 8 and 9 show the result of the folding and unfolding operators.

The algorithm to expand a functighinto the basisuvy , is thus:

— Apply the transfornt/,, to f.

— Apply Ug, ., to Uy, -

— ExpandU,, ., U,, f, which is now living on[ay,, a,+1], into the DCT IV basis.

10

-200 -100 o} 100 200

FIG. 8. Result of the folding operator.
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-200 -100 0 100 200

FIG. 9. Result of the unfolding operator.

The reconstruction algorithm that recovers the functfois:

— Apply aninverse DCT-IV to the coefficients. This givés, ., U,, f, whichis living
on(ay, a,+1], the DCT IV basis.
— Apply the transfornU;; .

— Apply Ug 1

4.1.3. Adaptive segmentationAs explained in [2] we can adaptively select the size
and location of the windows$a,, a,+1) with the best basis algorithm. We consider a
function f with finite support. We divide the support into two intervals, and we consider
the local cosine basis associated with each interval. We then further decompose each
interval into two subintervals and consider the local cosine bases associated with this finer
subdivision.

By applying this decomposition recursively we obtain a homogeneous binary tree-
structured decomposition as shown in Fig. 10.

For each interval, or node in the binary tree, we calculate the set of coefficients in the
subblock. If we associate a cost for each node of the tree, based on the set of coefficients,
then we can find an optimal segmentation. Using a divide and conquer algorithm, groups
of connected nodes are pruned if their total cost is greater than the cost of their father [12].

FIG.10. One-dimensional binary tree decomposition. Within each interval the signal is expanded into a local
DCT. The optimal segmentation is then searched for.
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The process is recursively applied from the bottom to the top of the tree, and a global
optimal tree is then found.

4.1.4. Two-dimensional caseln the two-dimensional case we define two partitions
of R,

n=-+00 k=400
U [an, ansal and U [b, bk+l[-
n=—o0 k=—o00

We write h, = a,+1 — a, andl,, = by+1 — b,,. We then consider the tiling obtained
by the lattice cubega,, a,11[®[bn, br+1[. We consider the separable tensor products of
basesw,, ; andw, x. The sequence;, ; ® w, « is an orthonormal basis fdr?(R?).

4.1.5. Adaptive tiling of the image.As explained above we can adaptively select the
size and location of the windows

laj,aj+1[®[bm, bryal

with the best basis algorithm. We consider only tilings that can be generated from separable
bases. We divide the image into four subsquares, and we consider the local cosine basis
associated with this tiling. We then further decompose each square into four subsquares
and consider the local cosine bases associated with this finer tiling.

By applying this decomposition recursively we obtain a homogeneous quadtree-
structured decomposition as shown in Fig. 11.

As in the one-dimensional case, for each subblock, or node of the quadtree, we calculate
the set of coefficients in the subblock. We associate a cost for each node of the tree, based
on the set of coefficients, and we find an optimal segmentation of the kernel.

X
/f

FIG. 11. Quadtree decomposition of the image. Within each block the image is expanded into a local DCT.
The optimal tiling is then searched for.
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TABLE 16
Parameters for the Construction of the Multiscale LFB
Number Size of Overlapping Steepness Number of
of points the window of the bell levels
64 x 64 16 16 2 2
256 x 256 32 32 10 3
1024 x 1024 64 64 10 3
2048x 2048 128 128 10 3
4096x 4096 128 128 10 3

4.2. Numerical Results from the Application of the Multiscale Local Fourier Bases

The input parameters used are shown in Table 16.

Table 17 compares between the sparsity levels between the matrix kernel after using
LFB (no multiresolution) and the matrix expanded in multiscale LFB (MLFB).

We observe the efficiency of the multiresolution approach. To illustrate the idea of
the adaptive multiscale bases, we present the best basis grid chosen fox 1024
discretization points. The window is of size 32 with an overlapping of 16 points.

The chosen adaptive grid is symmetric with respect to the main diagonal. The highest
resolution (the smallest boxes) correspond to the windows at the opposite sides of the same
diameter, which have the strongest interaction (Fig. 12).

Table 18 illustrates the dependence of the number of coefficients above a threshold on
the number of point®/ in each direction when in the exponent is constant.

TABLE 17
Comparison between the Sparsity Levels of the Oscillatory Kernel ¥ = 8v is the Number of
Grid Points in Each Direction) in Local Fourier Basis and in Multiresolution Local Fourier
Basis with Best-Basis Methodology

Number of Number of Number of Number of Ratio

Threshold coefficients- ¢ coefficients> ¢ coefficients per row coefficients per row LFB

€ v N after LFB after MLFB after LFB after MLFB MLFB
le-3 8 64 2067 254 33 4.0 8.1
32 256 7269 1706 28 6.7 4.3
128 1024 17654 7736 g 7.6 2.3
le-4 8 64 3381 906 53 142 3.7
32 256 20304 3992 79 156 5.1
128 1024 66307 21836 @31 213 3.0
le-5 8 64 3932 2658 64 415 1.5
32 256 33947 10984 132 429 3.1
128 1024 159943 48028 156 469 3.3
le-6 8 64 4073 3954 68 618 1.0
32 256 50217 17208 198 67.2 2.9

128 1024 300998 78332 294 86 3.8
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+

+

FIG. 12. Grid of the best-basis description of the multiscale LFB with 1024 points in each direction where
the curve is a circle.

Thus, forv = 128 andN = 4096 there are less than 2% coefficients above’ 1The
number of significant coefficients approximately doubles when the total number of grid
points is multiplied by four (for small thresholds; for 1®to 10~4 the growth is slower).

Now consider the elliptic curve which corresponds to the following integral:

G(t,s) = sin(v\/az(cos(t) — co95))2 + b2(sin(t) — sin(s))z) , t,s €0, 2x].

It is expected that due to the partial loss of symmetry the representation of this kernel
in multiresolution local cosine bases will be less sparse than for the circle. Below are
the results for various sizes and eccentricities of the ellipse. For discretization a simple
trapezoidal quadrature was applied (without a special treatment for the discontinuity of
the first derivative on the diagonal). The number of points in the kernel for the following

TABLE 18
Number of Coefficients above Thresholdsl0—3 to 10~7 for Constant in the Exponential
Function (2.1) v = 128and Number of Grid Points in Each Direction N ~ 512—4096

Bell width  Steepness Number of coefficients above threshold

N v + overlap of bell Levels 10° 1074 1075 1076 1077
512 128 6464 10 3 4044 10216 23708 34047 43359
1024 128 64-64 10 3 7736 21836 48028 78332 101840
2048 128 128128 10 3 7732 22144 48364 95940 135780
4096 128  128-128 10 2 12669 47144 109792 198890 327938
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TABLE 19
Sparsity of the Representation of the Kernel for Ellipse in Multiresolution LCB for 1024 Grid
Points in Each Direction, v = 128, where Window Size is 64 Points with 32 Points Overlapping

Coefficients Threshold
a b 1073 104 105 106 1077

2.0 10 Total 12748 35068 102510 289222 529806
% 1.2 3.4 10.0 28.2 51.7

0.8 0.6 Total 8774 24470 80340 251682 467298
% 0.84 2.3 7.8 24.5 44.6

0.7 05 Total 7832 21740 72456 234868 440712
% 0.7 2.1 7.0 22.4 42.0

0.3 01 Total 5856 15324 59542 196730 378236
% 0.6 1.5 5.7 18.8 36.1

0.3 0.2 Total 4480 11261 50210 180244 361072
% 0.4 1.1 4.8 17.2 34.4

0.1 0.05 Total 2768 7450 39150 134898 282958
% 0.3 0.7 3.7 13.1 27.0

0.08 006 Total 2066 6372 23861 104115 249833
% 0.2 0.6 2.3 9.9 23.8

0.02 001 Total 756 2768 11124 51256 145177
% 0.07 0.3 1.0 5.0 13.8

example was 1024 1024 ,v = 128, the window size was 64 in both directions, overlapping
was 32, steepness equal to 2, with four resolution levels.

5. SUMMARY AND DISCUSSION

The results of the present paper can be summarized as follows.

1. The kernel of the oscillatory integral (1.4) has a discontinuous derivative. For
accurate computation of this integral the corrected trapezoidal rules developed in [20, 19]
were applied. As a result an accuracy of 1@an be achieved foN = 1024 v = 128
(i.e., four grid points per oscillation).

2. For fast evaluation, the matrix, which was obtained after the discretization, is
represented with local Fourier basis. The theoretical estimate of the number of coefficients
above a threshold in the matrix representatio®igV). The numerical results verify this
estimate and demonstrate that LFB should be applied (rather than multiwavelets) to achieve
a sparse representation of oscillatory kernels.

3. Avariety of bells for LFB was considered. The numerical experiments show that the
number of coefficients above a threshold in the LFB expansion decreases when the bell
becomes smoother and steeper. Thus, for one of the steepest bells in the family [15], which
has a smooth matching with 1 in the middle and zero in the sidles, 16384 v = 4096
there are only about 0.18% of all the coefficients above®10.35% are above 18, and
0.55% are above 10. For bells which are not steep and smooth there are from 25 to 90%
of coefficients above 10.
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4. In [6] it was illustrated that the LFB expansion of the oscillatory kernel is a smooth
function. This phenomenon seems to be valid for bells which are not steep (their first
derivatives are not large). For smooth and steep bells the LFB expansion is oscillatory.
A smoothing procedure was developed for such oscillatory matrices.

5. Multiscale local Fourier bases provide adaptive representation of oscillatory kernels.
Numerical examples demonstrate that for threshold$ 10106, a number of grid points
1024x 1024 andv = 128 the above expansion contains three times fewer points above a
threshold than the LFB expansion.

Further work is in progress along the following lines:

1. The same method is applied via tensor product to 2-D and 3-D operators.

2. We investigate interactions among regions where the integral is defined. In the fast
multipole method (FMM) the connections among the regions were applied to generate
faster algorithms by compact coding of the coefficients. We strive to achieve effective
coding of oscillatory integrals similar to FMM.

3. A more general class of bases [8, 16] with more parameters can be used.
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