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Summary. In this work we present a novel class of semi-iterative methods
for the Drazin-inverse solution of singular linear systems, whether consistent
or inconsistent. The matrices of these systems are allowed to have arbitrary
index and arbitrary spectra in the complex plane. The methods we develop
are based on orthogonal polynomials and can all be implemented by 4-term
recursion relations independently of the index. We give all the computational
details of the associated algorithms. We also give a complete convergence
analysis for all methods.
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1 Introduction

Consider the linear system

Ax = b,(1.1)

where A ∈ C
N×N is singular and ind(A), the index of A, is arbitrary. We

recall that ind(A) is the size of the largest Jordan block of A corresponding
to its zero eigenvalue. Assume that the nonzero eigenvalues λj of A are in
general complex and lie in an open half-plane of the complex λ-plane whose
boundary is a straight line through the origin. In addition, allow (1.1) to be
consistent or inconsistent.

Our purpose here is to develop a class of semi-iterative methods for the
Drazin-inverse solution of (1.1), namely, the vector ADb, where AD is the
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Drazin inverse of the singular matrix A. In relation to the assumption that
(1.1) can be consistent or inconsistent, we recall that, when (1.1) is consistent
it has an infinity of solutions in the regular sense, but if ind(A) > 1 in
addition,ADbmay not always be a solution to (1.1) in the regular sense. For
the Drazin inverse and its properties see, e.g., Ben-Israel and Greville [BG]
or Campbell and Meyer [CM].

The problem of determining the Drazin-inverse solution of (1.1) by semi-
iterative methods has drawn some attention recently. A general theory that
gives necessary and sufficient conditions for convergence of semi-iterative
methods has been given in Eiermann, Marek, and Niethammer [EMN]. Fol-
lowing [EMN], Hanke and Hochbruck [HH] gave a Chebyshev-like method
for the special case in which ind(A) = 1 and the nonzero eigenvalues of
A are real and positive and known to lie in the interval [c − f, c + f ] with
0 < f < c. The approach of [HH] was extended by Climent, Neumann,
and Sidi [CNS] to the case in which ind(A) = a, a being arbitrary, and,
again, the nonzero eigenvalues of A are known to be real and positive and
in [c − f, c + f ] with 0 < f < c. Both [HH] and [CNS] contain a thor-
ough convergence analysis for one of the methods they develop and that is
related to Chebyshev polynomials. Both papers have been the main source
of inspiration for the present work. Finally, we would like to mention the
semi-iterative methods of Woźniakowski [W] and of Eiermann and Reichel
[ER] that were developed for the case in which ind(A) = 1. As noted in
[HH], both methods are based on the original Chebyshev acceleration.

The treatment of the case in which the spectrum ofA is complex has been
considered only recently in the M.Sc. thesis of Kanevsky [K]. The method of
[K] is based largely on [CNS], but turns out to be too involved and expensive
computationally. The approach we take to the general problem in this work
is substantially different from those of [HH], [CNS], and [K] even though
there are some similarities between them. In addition, the algorithms we
derive here are entirely different from those of [HH], [CNS], and [K]. As
far as computational costs are concerned, the methods in the present work
have the same cost as those of [HH] and [CNS] but are much less expensive
than that of [K].

The plan of this paper is as follows. In Sect. 2 we review the essential
points concerning semi-iterative methods for the Drazin-inverse solution of
singular systems. In Sect. 3 we give the construction of a sequence of poly-
nomials that are known as “residual polynomials”. When constructed ap-
propriately, these polynomials enable us to implement the associated semi-
iterative methods by 4-term recursion relations independently of the size of
ind(A). In Sect. 4 we give the computational details of one of the methods
that is directly related to Chebyshev polynomials and that we denote DCA
for short. In Sect. 5 we give the convergence theory of all the methods we
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develop in Sect. 3 in general and the method of Sect. 4 in particular. We are
able to give more refined results for the method of Sect. 4. Finally, in Sect. 6
we illustrate the use of DCA and the convergence theory of Sect. 4 with a
numerical example.

Our treatment makes extensive use of the theory of orthogonal polyno-
mial expansions.

By going through the details of the developments of the next sections
it becomes clear that everything will remain unchanged even if a is not
necessarily ind(A) but is an upper bound on ind(A).

Before going on we mention that Drazin inverses in general and Drazin-
inverse solutions of singular linear systems in particular arise in problems
of statistics such as determining steady states of Markov chains. They arise
also in the solution of problems in control theory and singular differential
and difference equations. See, e.g., Campbell and Meyer [CM, Chapters
9,10] and Campbell [C].

2 General background and motivation

Beginning with an arbitrary initial vector x0 and its residual vector r0 =
b−Ax0, all semi-iterative methods generate the vectors x1, x2, . . . , through

xm = x0 + qm−1(A)r0,(2.1)

where qm−1(λ) is a polynomial in λ of degree at most m− 1. Let us define

pm(λ) = 1 − λqm−1(λ).(2.2)

We call pm(λ) the mth residual polynomial since

rm = b−Axm = pm(A)r0.(2.3)

Note also that
pm(0) = 1.(2.4)

As is shown in [EMN], necessary and sufficient conditions for the con-
vergence of the sequence {xm} are

lim
m→∞ p(i)

m (0) = 0, i = 1, . . . , a; a = ind(A),(2.5)

and
lim

m→∞ p(i)
m (λj) = 0, i = 0, 1, . . . , kj − 1,(2.6)

whereλj are the nonzero eigenvalues ofA and kj = ind(A−λjI). In [CNS]
the conditions of (2.5) are satisfied by picking pm(λ) such that

p(i)
m (0) = 0, i = 1, . . . , a, for all m = 0, 1, . . . .(2.7)
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Polynomials pm(λ) satisfying (2.4) and (2.7) were considered previously in
[HH] for the case a = 1.

For convenience let us denote byΠm the family of polynomials of degree
at most m, and define

Π0
m = {p ∈ Πm : p(0) = 1 and p(i)(0) = 0, i = 1, . . . , a}.(2.8)

That is to say, Π0
m is the collection of all polynomials of degree at most m

that satisfy (2.4) and (2.7). Note also that pm(λ) = 1 is the only member of
Π0

m for m = 0, 1, . . . , a.
As in [CNS], in the present work too the polynomials pm(λ) are in Π0

m

and, therefore, are necessarily of the form

pm(λ) = 1 − λa+1v(λ), v ∈ Πm−a−1, m ≥ a+ 1.(2.9)

Now that we have decided to choose pm(λ) to be a polynomial in Π0
m,

we must make sure that the condition in (2.6) is satisfied, for without it we
will not have a convergent method. We, therefore, dwell on this issue in the
remainder of this section.

Let Ω be a closed domain in the complex λ-plane that contains only the
nonzero eigenvalues of A, and define

||f ||Ω = max
λ∈Ω

|f(λ)|.(2.10)

Then, the sequence {pm(λ)} will satisfy (2.6) if it also satisfies

lim
m→∞ ||p(i)

m ||Ω = 0, i = 0, 1, . . . , k̂ − 1; k̂ = max{kj : λj /= 0}.(2.11)

But, by a result due to Pommerenke [P],

||p′
m||Ω ≤ Km2||pm||Ω,(2.12)

for some constant K > 0 that is independent of m and pm. Therefore,
{pm(λ)} will satisfy (2.11) if it satisfies

lim
m→∞

(
m2k̂−2||pm||Ω

)
= 0.(2.13)

Of course, if ||pm||Ω = O(e−κmν
) as m → ∞ for some κ > 0 and ν > 0,

then (2.13) and hence (2.6) will be satisfied. The polynomials of [HH] and
[CNS] achieve precisely this. Keeping this in mind and drawing on the
approach and results of Manteuffel [M] concerning Chebyshev acceleration
for nonsingular systems whose matrices have complex spectra, we now
propose the following course for the singular systems described in the first
paragraph of Sect. 1.

Since the nonzero eigenvalues of the matrixA in (1.1) are assumed to lie
in an open half-plane of the complex λ-plane whose boundary is a straight
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line through the origin, we can enclose these eigenvalues in a closed domain
Ω that consists of an ellipse and its interior, and still ensure that the origin
is neither in the interior of Ω nor on its boundary.

Let c, c±f , and ρ be, respectively, the center, foci, and sum of the semi-
axes of this ellipse. Here c and f are in general complex and ρ is real and
positive. Let us denote this ellipse by E(c, f, ρ). Thus, Ω = int E(c, f, ρ) ∪
E(c, f, ρ). In the remainder of this work we shall take Ω to be exactly as
described in this paragraph.

Recall that we want to have lim
m→∞ ||pm||Ω = 0. The best way of achieving

this is, obviously, by picking pm(λ) such that ||pm||Ω = min
p∈Π0

m

||p||Ω for all

m. However, pm(λ) determined this way, in general, do not lead to efficient
recursive algorithms for {xm}. If, however, we replace the maximum norm
|| · ||Ω by an L2-norm on Ω, we may be able to arrive at such a recursion
relation. We now go a step further and replace the L2-norm on Ω by an
L2-norm on the straight line segment joining the foci c − f and c + f of
the ellipse E(c, f, ρ). Of course, the hope is that the polynomials pm(λ)
obtained in this way will also satisfy (2.13).

An important point to mention concerning Ω is that, as the origin is
neither in its interior nor on its boundary, the straight line segment joining
the foci c− f and c+ f of E(c, f, ρ) does not contain the origin either.

3 Construction of pm(λ) and xm

Letw(λ) be an admissible weight function on [c−f, c+f ], the straight line
segment joining c−f and c+f . That is to say,w(λ) ≥ 0 forλ ∈ [c−f, c+f ].
Define the inner product (· , ·) and norm || · || as in

(F,G) =
∫ c+f

c−f
w(λ)F (λ)G(λ) |dλ| and ||F || =

√
(F, F ).(3.1)

Here |dλ| denotes the line element along [c − f, c + f ]. Parameterizing
[c− f, c+ f ] by λ = c+ ft, t ∈ [−1, 1], what we mean by

∫ c+f
c−f H(λ) |dλ|

is, of course,

∫ c+f

c−f
H(λ) |dλ| = |f |

∫ 1

−1
H(c+ ft) dt.

In addition, we will need the inner product (· , ·)′ and norm || · ||′ that
are defined as in

(F,G)′ = (F, |λ|2a+2G) and ||F ||′ =
√

(F, F )′,(3.2)
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and the polynomials φk(λ), k = 0, 1, . . . , that are orthogonal with respect
to (· , ·)′, i.e., that satisfy

(φk, φl)′ =
∫ c+f

c−f
w(λ)|λ|2a+2 φk(λ)φl(λ) |dλ| = 0 if k /= l.(3.3)

(Of course, φk(λ) is of degree exactly k for each k.) Obviously, we can pick
the φk(λ) to be real on [c− f, c+ f ]. Equivalently, φk(c+ ft) is real for t
real.

We now would like to pick the residual polynomial pm(λ) to satisfy

||pm|| = min
p∈Π0

m

||p||.(3.4)

Theorem 3.1 The minimization problem in (3.4) admits a unique solution
pm ∈ Π0

m that is given as

pm(λ) = 1 − λa+1vm(λ) with vm(λ) =
m−a−1∑

k=0

δkφk(λ),(3.5)

where δk are independent of m and are given by

δk =
(φk, λ

−a−1)′

(φk, φk)′ , k = 0, 1, . . . .(3.6)

In addition, (pm, λ
a+j) = 0, j = 1, . . . ,m− a.

Proof. Using the fact that everyp ∈ Π0
m is of the formp(λ) = 1−λa+1v(λ),

v ∈ Πm−a−1, we first have

||p||2 =
∫ c+f

c−f
w(λ)

∣
∣1 − λa+1v(λ)

∣
∣2 |dλ|(3.7)

=
∫ c+f

c−f
w(λ)|λ|2a+2 ∣∣λ−a−1 − v(λ)

∣
∣2 |dλ|

=
(||λ−a−1 − v||′)2

.

Substituting (3.7) in (3.4), we have

min
p∈Π0

m

||p|| = min
v∈Πm−a−1

||λ−a−1 − v||′.(3.8)

That is to say, we are actually looking for a best polynomial approximation
v(λ) in Πm−a−1 to the function λ−a−1 that is an L2 function in the norm
|| · ||′. (Note that λ−a−1 is analytic on [c− f, c+ f ] since the origin is not
contained in [c− f, c+ f ].) We know that there exists a unique polynomial

v ∈ Πm−a−1, vm say, that solves (3.8), and vm(λ) =
m−a−1∑

k=0
δkφk(λ), with

δk being independent ofm and given by (3.6). We leave the rest to the reader.
�
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Since φk(λ) are orthogonal polynomials, they satisfy a 3-term recursion
relation of the form

φk+1(λ) = (αkλ+ βk)φk(λ) + γkφk−1(λ), k = 1, 2, . . . ,(3.9)

for some scalars αk, βk, and γk. We will now use this to obtain a recursion
relation among the pm(λ) that will enable us to construct the sequence {xm}
in a very efficient manner.

Let us define the polynomials um(λ) by

um(λ) =
pm(λ) − pm+1(λ)

λ
, m ≥ a.(3.10)

It is clear from Theorem 3.1 that

um(λ) = λa[vm+1(λ) − vm(λ)] = λaδm−aφm−a(λ).(3.11)

Theorem 3.2 The um(λ) satisfy the 3-term recursion relation

um(λ) = (ωmλ+ µm)um−1(λ) + νmum−2(λ), m ≥ a+ 2,(3.12)

where

ωm = αm−a−1
δm−a

δm−a−1
, µm = βm−a−1

δm−a

δm−a−1
, and(3.13)

νm = γm−a−1
δm−a

δm−a−2
.

Proof. The proof can be done by substituting (3.11) in (3.9). �

With the results of Theorems 3.1 and 3.2 available to us, we now go on
to the recursive computation of the xm.

Theorem 3.3 The sequence {xm} defined in Sect. 1 can be computed from
the 4-term recursion relation

xm+1 = xm + ωmA(xm − xm−1) + µm(xm − xm−1)(3.14)

+νm(xm−1 − xm−2), m ≥ a+ 2,

with the initial conditions

xa = x0, xa+1 = xa + δ0φ0(A)Aar0, and(3.15)

xa+2 = xa+1 + δ1φ1(A)Aar0.
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Proof. From (2.1), (2.2), and (3.10), we first note that

xm+1 − xm = [qm(A) − qm−1(A)]r0 = um(A)r0.(3.16)

Invoking now Theorem 3.2 in (3.16), the result in (3.14) follows. As for the
initial conditions in (3.15), they follow from x0 = x1 = · · · = xa and from

xm = x0 +
m−a−1∑

k=0

δkφk(A)Aar0, m ≥ a+ 1,(3.17)

which is a consequence of

qm−1(λ) = λavm(λ) =
m−a−1∑

k=0

δkφk(λ)λa.(3.18)
�

Looking at the expressions that define the constants αk, βk, γk, and δk,
we realize that when c and f are arbitrary complex numbers, they will be
complex in general. In one case of interest to us in solving (1.1) a simpli-
fication takes place if c is real and f is purely imaginary and the weight
function w(λ) is chosen suitably.

Theorem 3.4 Let c be real and f be purely imaginary, and pick w(λ) to
have the symmetry property

w(c− ft) = w(c+ ft), 0 ≤ t ≤ 1.(3.19)

Then δk is real for even k and purely imaginary for odd k. In addition, αk

and βk are purely imaginary and γk is real, while ωm, µm, and νm all turn
out to be real.

Proof. We analyze first the δk by studying the expression in (3.6). Obviously,
(φk, φk)′ = (||φk||′)2 > 0. Next,

(φk, λ
−a−1)′ =

∫ c+f

c−f
w(λ)φk(λ)λa+1 |dλ|(3.20)

= |f |
a+1∑

j=0

(
a+ 1
j

)
ca+1−j

×
∫ 1

−1
w(c+ ft)φk(c+ ft)(−ft)j dt,

where we have made use of the fact that λ = c−ftwhen λ = c+ft and of
the fact thatφk(λ) is real forλ ∈ [c−f, c+f ]. By (3.19),φk(c+ft) is an even
or odd function of t if k is even or odd, respectively. As a result, in (3.20), the
terms with j + k odd vanish, which, by the fact that f is purely imaginary,
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implies that (φk, λ
−a−1)′ is real when k is even, and purely imaginary or

zero when k is odd. This completes the proof of the assertion on the δk.
We next take a look at the αk, βk, and γk. Recall that ψk(t) ≡ φk(c + ft)
are real polynomials for t real and, as already shown, ψk(t) is even or odd
depending on whether k is even or odd respectively. As a result, the ψk(t)
satisfy the 3-term recursion relation

ψk+1(t) = α̂ktψk(t) + γ̂kψk−1(t)(3.21)

with α̂k and γ̂k real. Letting now λ = c+ ft in (3.9), and comparing with
(3.21), we see that

α̂k = fαk, 0 = c αk + βk, and γ̂k = γk.

Consequently,αk andβk are purely imaginary, whileγk is real. The assertion
about ωm, µm, and νm now follows by invoking (3.13). This completes the
proof. �

Theorem 3.4 has an important implication with regard to the actual com-
putation of the vectors xm. Suppose that the matrix A in (1.1) is real. This
means that the nonzero eigenvalues of A are either real or they come in
complex conjugate pairs. If the nonzero eigenvalues of A all have positive
(or negative) real parts, then they can all be contained on or in the interior
of an ellipse E(c, f, ρ) whose center c is real positive (or real negative) and
whose foci are c± f , f being either real or purely imaginary, such that the
origin is neither on E(c, f, ρ) nor in its interior. In case f is real, everything
turns out to be real naturally. In case f is purely imaginary, we can cause the
ωm, µm, and νm to be real by choosing w(λ) to satisfy (3.19). The global
implication of all this is that if Ax = b is a real system, the computation of
the xm through (3.14) can be carried out in real arithmetic.

3.1 The general algorithm

Based on the developments above, we now have the following algorithm for
computing the xm.

Algorithm 3.1.

Step 1. Pick an admissible weight function w(λ) on [c − f, c + f ], and
compute the coefficients αk, βk, and γk in the 3-term recursion
relation of the corresponding orthogonal polynomials φk(λ) with
respect to the inner product (· , ·)′. (See (3.2) and (3.9).)

Step 2. Compute the coefficients δk in the expansion (3.5) by (3.6).
Step 3. Compute the coefficients ωm, µm, and νm via (3.13).
Step 4. Compute the xm via (3.14) and (3.15).
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3.2 Computational remarks

It is clear from (3.13) that in order to be able to use the recursion relation in
(3.14) and (3.15) we need (i) the coefficients αk, βk, and γk in the recursion
relation of (3.9) among theφk(λ), and (ii) the δk defined in (3.5) and (3.6). In
some cases these are available or can be computed without much difficulty.

In this respect the following observation concerning the δk is useful.
By the fact that φk(λ) ≡ ψk(t) is real when λ ∈ [c − f, c + f ] (hence
t = (λ− c)/f ∈ [−1, 1]) we can write

(φk, λ
−a−1)′ = |f |

∫ 1

−1
ŵ(c+ ft)ψk(t)(c+ ft)−a−1 dt(3.22)

= −f−a−1 1
a!
da

dza
Λk(z),

where ŵ(λ) ≡ w(λ)|λ|2a+2, z = −c/f , and Λk(z) is the function of the
second kind corresponding to ψk(t), namely,

Λk(z) = |f |
∫ 1

−1
ŵ(c+ ft)

ψk(t)
z − t

dt.(3.23)

It is known that if the ψk(t) satisfy the recursion relation

ψk+1(t) = (α̂kt+ β̂k)ψk(t) + γ̂kψk−1(t), k ≥ 1,(3.24)

then the Λk(z) satisfy

Λk+1(z) = (α̂kz + β̂k)Λk(z) + γ̂kΛk−1(z), k ≥ 1,(3.25)

the difference being only in the initial conditions ψ0(t) and ψ1(t) in (3.24)
and Λ0(z) and Λ1(z) in (3.25), respectively. As for the derivatives of the
Λk(z) these can be computed by differentiating the recursion relation in

(3.25) and using the appropriate initial conditions, namely,
di

dzi
Λ0(z),

di

dzi
Λ1(z), i = 1, . . . , a.

The procedure above becomes especially suitable for those choices of
w(λ) that give φk(λ) in terms of the classical orthogonal polynomials. For
example, if we choose

w(λ) = |λ|−2a−2|λ− c− f |µ|λ− c+ f |ν , µ, ν > −1,(3.26)

then φk(λ) = P
(µ,ν)
k ((λ − c)/f), where P (µ,ν)

k (t) are the Jacobi polyno-
mials, and their 3-term recursion relation is simple and available. We can
cause (3.19) to be satisfied and hence Theorem 3.4 to hold if we choose
µ = ν = ρ − 1

2 in (3.26). In this case φk(λ) = C
(ρ)
k ((λ − c)/f), where
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C
(ρ)
k (t) are the ultraspherical (Gegenbauer) polynomials. In the next section

we look at the most obvious special case of this for which ρ = 0 and ψk(t)
are the Chebyshev polynomials of the first kind, although other special cases
such as that of Chebyshev polynomials of the second kind (ρ = 1) and that
of Legendre polynomials (ρ = 1

2 ) can be considered with the same ease.

4 The Drazin-Chebyshev acceleration (DCA)

Let us choose

w(λ) = |λ|−2a−2 (|λ− c− f | |λ− c+ f |)−1/2 .(4.1)

With this w(λ), the inner product (· , ·)′ becomes

(F,G)′ =
∫ c+f

c−f

F (λ)G(λ)
√|λ− c− f | |λ− c+ f | |dλ|(4.2)

=
∫ 1

−1

1√
1 − t2

F (c+ ft)G(c+ ft) dt.

Thenφk(λ) = Tk((λ−c)/f), whereTk(t) is the kth Chebyshev polynomial
of the first kind, and satisfies the recursion relation

Tk+1(t) = 2tTk(t) − Tk−1(t), k ≥ 1,(4.3)

with the initial conditions

T0(t) = 1 and T1(t) = t.(4.4)

Therefore, αk, βk, and γk are readily available through

αk =
2
f
, βk = −2c

f
, and γk = −1.(4.5)

For determining the δk we need (φk, φk)′ and (φk, λ
−a−1)′. First,

(φk, φk)′ =
∫ 1

−1

[Tk(t)]
2

√
1 − t2

dt =
{
π if k = 0,
π
2 if k /= 0.(4.6)

Next,

(φk, λ
−a−1)′ =

∫ 1

−1

Tk(t)√
1 − t2

(c+ ft)−a−1 dt(4.7)

=
f−a−1

a!
da

dza

{∫ 1

−1

Tk(t)√
1 − t2

(t− z)−1 dt

}
;

z = − c

f
	∈ [−1, 1].
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But (see [L], p. 299)
∫ 1

−1

Tk(t)√
1 − t2

(z − t)−1 dt =
2π

q − q−1 q
−k,(4.8)

k = 0, 1, . . . ; z 	∈ [−1, 1],

where q ≡ q(z) satisfies

q2 − 2zq + 1 = 0 and |q| > 1.(4.9)

Combining (4.6)–(4.8), we thus have

δk =






−2
f−a−1

a!
da

dza

(
1

q − q−1

)
if k = 0,

−4
f−a−1

a!
da

dza

(
q−k

q − q−1

)
if k /= 0.

(4.10)

That is to say, the δk are also readily available. Note that as a is normally a
small integer, the computation of δk is quite simple. All we need for this is
da

dza
Hk(q(z)), where Hk(q) = q−k/(q − q−1). For instance, when a = 1

we have
d

dz
Hk(q(z)) = H ′

k(q(z))q
′(z), where q′(z) can be obtained by

differentiating q2 − 2zq + 1 = 0. Specifically, q′(z) = q/(q − z). We can
compute the higher-order derivatives of Hk(q(z)) similarly.

In Theorem 5.2 we give the polynomials pm(λ) for w(λ) as in (4.1) in
closed form.

Let us now look at two special cases:

(i) c and f are both real, and 0 < f < c.
In this case z = −c/f < −1, hence

q = z −
√
z2 − 1 = −



 c

f
+

√(
c

f

)2

− 1



 ,

and everything is real.
(ii) c is real positive and f is purely imaginary, f = i|f |.

In this case z = −c/f = ic/|f |, hence

q = z +
√
z2 − 1 = i



 c

|f | +

√(
c

|f |
)2

+ 1



 ,

where we have taken
√−1 = +i. That is, both z and q are purely

imaginary.
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For convenience we give here the algorithm resulting from the choice of
w(λ) as in (4.1).

Algorithm 4.1. (Drazin-Chebyshev Acceleration (DCA))

Input: (i) a, c, f .
(ii) A procedure for computing the δk by (4.10) with z = −c/f

and q defined as in (4.9).
(iii) A procedure for computing Av for any given vector v.

Step 1. Pick an arbitrary vector x0 and compute r0 = b − Ax0 and u =
Aar0.

Step 2. Set xa = x0 and compute ∆a ≡ xa+1 − xa = δ0u and set

xa+1 = xa +∆a and ∆a+1 ≡ xa+2 − xa+1 =
δ1
f

(Au− cu) and

set xa+2 = xa+1 +∆a+1.
Step 3. For m = a+ 2, a+ 3, . . . , until convergence compute

∆m =
2
f

δm−a

δm−a−1
A∆m−1 − 2c

f

δm−a

δm−a−1
∆m−1 − δm−a

δm−a−2
∆m−2

and set xm+1 = xm +∆m.

Before closing this section, we would like to note that the weight function
considered in [CNS] (with real positive c and f ) is

w(λ) = λ−a[(λ− c+ f)(c+ f − λ)]−1/2, 0 < f < c,

that is different from the one in (4.1). (The case with a = 1 is already in
[HH], as mentioned earlier.) Surprisingly, the solution for pm(λ) with this
weight function can be expressed in terms of Chebyshev polynomials in a
relatively simple way. The analogous weight function for complex c and f
would be

w(λ) = |λ|−a(|λ− c− f | |λ− c+ f |)−1/2.

It would be interesting to know whether we can express the corresponding
pm(λ) in terms of Chebyshev polynomials, as was done in [CNS] for 0 <
f < c. This seems to be an intriguing mathematical problem whose solution
is not immediate, and our efforts so far have not been successful.

5 Convergence analysis

In order to be able to carry out the error analysis, we need some new notation.
We shall denote by Ŝ the direct sum of the invariant subspaces of A

corresponding to its nonzero eigenvalues, and by S̃, its invariant subspace
corresponding to its zero eigenvalue. Thus, Ŝ is R(Aa), the range of Aa,
and S̃ is N (Aa), the null space ofAa. Every vector in C

N can be expressed
as the sum of two unique vectors, one in Ŝ and the other in S̃.
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If we write b = b̂ + b̃, where b̂ ∈ Ŝ and b̃ ∈ S̃, then ADb, the Drazin-
inverse solution of Ax = b, is the unique vector in Ŝ that satisfies the
consistent system Ax = b̂. Similarly, let us write x0 = x̂0 + x̃0, where
x̂0 ∈ Ŝ and x̃0 ∈ S̃. Then from Theorem 4.1 in [CNS] we have

xm −ADb− x̃0 = pm(A)(x̂0 −ADb),(5.1)

so that the convergence of {xm} hinges on the convergence of pm(A)(x̂0 −
ADb) to zero. Continuing exactly as is done following Theorem4.1 in [CNS],
and using (2.12), we obtain

||pm(A)(x̂0 −ADb)|| ≤ Km2(k̂−1)||pm||Ω;(5.2)

k̂ = max{kj : λj ∈ σ(A)\{0}},
where || · ||Ω is as defined in (2.10), K > 0 is some constant that depends
only on A and x̂0, and σ(A) stands for the spectrum of A. Therefore, the
rate of convergence of xm to (ADb + x̃0) is determined by the rate of
convergence of ||pm||Ω to zero. Below we shall give a thorough analysis of
the convergence of the sequence {||pm||Ω}.

In Chapter 12 of Szegő [Sz] the following definition is given: A func-
tion h(θ) is said to belong to the class G if it is defined, nonnegative, and
measurable on [−π, π] and the integrals

∫ π
−π h(θ) dθ and

∫ π
−π | log h(θ)| dθ

converge, the first integral being positive.

Theorem 5.1 Let w(λ) be such that h(θ) ≡ w(c+ f cos θ)| sin θ| is in the
class G. Then

lim sup
m→∞

(||pm||Ω)1/m ≤ ρ

ρ0
,(5.3)

where ρ0 is the sum of the semi-axes of the ellipse whose center and foci are
c and c± f and that passes through the origin. Consequently,

lim sup
m→∞

(||xm −ADb− x̃0||
)1/m ≤ ρ

ρ0
.(5.4)

Remark. Obviously, E(c, f, ρ) and E(c, f, ρ0) are confocal ellipses, the for-
mer being completely in the interior of the latter and ρ < ρ0.

Proof. From Theorem 3.1 we know that pm(λ) = 1 − λa+1vm(λ) so that

|pm(λ)| = |λa+1| |λ−a−1 − vm(λ)|.(5.5)

Upon invoking the maximum modulus principle, (5.5) gives

||pm||Ω ≤ C

(
max

λ∈E(c,f,ρ)
|λ−a−1 − vm(λ)|

)
;(5.6)

C = max
λ∈E(c,f,ρ)

|λa+1|.
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Again from Theorem 3.1 we know that vm(λ) is the (m− a− 1)st partial

sum of the orthogonal polynomial expansion
∞∑

k=0
δkφk(λ) of λ−a−1 with

respect to the inner product (· , ·)′.
For convenience we now switch to the variable t, t = (λ − c)/f . In

this variable we have φk(λ) = φk(c + ft) ≡ ψk(t), k = 0, 1, . . . , and
λ−a−1 = (c + ft)−a−1 ≡ X(t). The ellipses E(c, f, ρ) and E(c, f, ρ0) in
the λ-plane are mapped to the ellipses E(0, 1, ρ/|f |) and E(0, 1, ρ0/|f |),
respectively in the t-plane. Thus

(5.7)

max
λ∈E(c,f,ρ)

|λ−a−1 − vm(λ)| = max
t∈E(0,1,ρ/|f |)

∣
∣
∣
∣
∣
X(t) −

m−a−1∑

k=0

δkψk(t)

∣
∣
∣
∣
∣
.

Now since h(θ) is in the class G, so is ĥ(θ) = h(θ)|c+ f cos θ|2a+2. Also,
since λ−a−1 is analytic in int E(c, f, ρ0), X(t) is analytic in

int E(0, 1, ρ0/|f |). Therefore, from Theorem 12.7.3 in [Sz],
∞∑

k=0
δkψk(t)

converges to X(t) uniformly in every compact subset in the interior of
E(0, 1, ρ0/|f |), and we have

X(t) −
m−a−1∑

k=0

δkψk(t) =
∞∑

k=m−a

δkψk(t)(5.8)

for all t in the interior of E(0, 1, ρ0/|f |).
Consequently, by the fact that E(0, 1, ρ/|f |) ⊂ int E(0, 1, ρ0/|f |), there
holds

max
t∈E(0,1,ρ/|f |)

∣
∣
∣
∣
∣
X(t) −

m−a−1∑

k=0

δkψk(t)

∣
∣
∣
∣
∣

(5.9)

≤
∞∑

k=m−a

|δk|
(

max
t∈E(0,1,ρ/|f |)

|ψk(t)|
)
.

Let us pick the φk(λ), hence ψk(t), to be orthonormal, i.e.,

(φk, φl)′ = |f |
∫ 1

−1
w(c+ ft)|c+ ft|2a+2ψk(t)ψl(t) dt(5.10)

=
{

1 if k = l,
0 if k /= l.

Then, from Theorem 12.1.2 in [Sz], there exists a unique function U(ζ),
analytic for |ζ| > 1 with U(∞) > 0, such that, when t is in the complex
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plane cut along the real interval [−1, 1], and ζ is that root of t = 1
2(ζ+ ζ−1)

satisfying |ζ| > 1, there holds

ψk(t) ∼ U(ζ)ζk as k → ∞.(5.11)

Furthermore, (5.11) holds uniformly for |ζ| ≥ R > 1. Note also that when
λ is on E(c, f, ρ), t is on E(0, 1, ρ/|f |) and the corresponding ζ satisfies
|ζ| = ρ/|f |. As a result,

max
t∈E(0,1,ρ/|f |)

|ψk(t)| ≤ L

(
ρ

|f |
)k

for all k.(5.12)

Here L > 0 is some constant independent of k. Next, from the proof of
Theorem 12.7.3 in [Sz], we have lim sup

k→∞
|δk|1/k ≤ ρ0/|f |, so that, with

ε > 0 but arbitrarily close to zero,

|δk| ≤
( |f |
ρ0

+ ε

)k

for all sufficiently large k.(5.13)

Combining (5.12) and (5.13) in (5.9), we obtain, for all sufficiently largem,

(5.14)

max
t∈E(0,1,ρ/|f |)

∣
∣
∣
∣
∣
X(t) −

m−a−1∑

k=0

δkψk(t)

∣
∣
∣
∣
∣
≤ L

∞∑

k=m−a

[( |f |
ρ0

+ ε

)
ρ

|f |
]k

,

from which (5.3) follows. Combining (5.3) with (5.1) and (5.2), (5.4) fol-
lows. �

A sharper result can be obtained for the special case of DCA treated in
Sect. 4. This we do in the next theorem where we also give a closed-form
expression for the corresponding polynomials pm(λ).

Theorem 5.2 Let w(λ) be as in (4.1). Then

(5.15)

pm(λ) = 2
(
λ

f

)a+1 1
a!
da

dza

{
q−m+a

q − q−1
qTm−a(t) − Tm−a−1(t)

t− z

}
,

where t = (λ− c)/f , z = −c/f , and q is as in (4.9), and

||pm||Ω = O (ma(ρ/ρ0)m) as m → ∞.(5.16)

Consequently,

xm −ADb− x̃0 = O
(
ma+2(k̂−1)(ρ/ρ0)m

)
as m → ∞.(5.17)
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Proof. We start with

pm(λ) = λa+1

[

λ−a−1 −
m−a−1∑

k=0

δkφk(λ)

]

(5.18)

= λa+1

[

(c+ ft)−a−1 −
m−a−1∑

k=0

δkTk(t)

]

.

Substituting (4.10) and

(c+ ft)−a−1 =
f−a−1

a!
da

dza
(t− z)−1, z = − c

f
,(5.19)

in (5.18), we obtain

pm(λ) =
(
λ

f

)a+1 1
a!

da

dza
Q(5.20)

with Q defined by

Q =
1

t− z
+

4
q − q−1

m−a−1∑′

k=0

q−kTk(t),(5.21)

where
n∑′

k=0
dk ≡ 1

2d0 +
n∑

k=1
dk. Now when 1 − 2tσ + σ2 /= 0,

s−1∑′

k=0

σkTk(t) =
1 − σ2

2(1 − 2tσ + σ2)
− σs Ts(t) − σTs−1(t)

1 − 2tσ + σ2 .(5.22)

By (5.22) and the fact that q2 + 1 = 2zq, we have

m−a−1∑′

k=0

q−kTk(t) =
q − q−1

4(z − t)
− q−m+a qTm−a(t) − Tm−a−1(t)

2(z − t)
,(5.23)

which, upon substituting in (5.21), gives

Q =
2q−m+a

q − q−1
qTm−a(t) − Tm−a−1(t)

t− z
.(5.24)

The result in (5.15) now follows. To prove (5.16), we start by observing
that ||pm||Ω is achieved on E(c, f, ρ) in the λ-plane and on E(0, 1, ρ/|f |) in

the t-plane. We next observe that the operator
da

dza
does not affect Tm−a(t)

and Tm−a−1(t) as these are independent of z. Now when t ∈ E(0, 1, ρ/|f |),
|Tk(t)| ∼ 1

2(ρ/|f |)k as k → ∞. Since λ = 0 when t = z,
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Table 1.

number of iterations max. error on E1 max. error on E2 max. error on E3

5 3.3 0.5 8.7 × 10−2

10 0.4 9.6 × 10−3 2.8 × 10−5

15 3.0 × 10−2 9.1 × 10−5 4.6 × 10−9

20 1.7 × 10−3 6.7 × 10−7 5.8 × 10−13

25 7.7 × 10−5 4.3 × 10−9 6.4 × 10−17

30 3.2 × 10−6 2.5 × 10−11

35 1.2 × 10−7 1.4 × 10−13

40 4.3 × 10−9 7.4 × 10−16

45 1.4 × 10−10

50 4.4 × 10−12

55 1.4 × 10−13

60 5.4 × 10−15

65 1.9 × 10−16

z ∈ E(0, 1, ρ0/|f |), and since 1
2(q + q−1) = z, we have |q| = ρ0/|f |.

Finally,
da

dza
(q−m) = O(maq−m) as m → ∞. Combining all these in

(5.15) the proof of (5.16) can now be completed. The proof of (5.17) is
achieved by combining (5.16) with (5.1) and (5.2). �

6 Numerical example

We now illustrate the theory of the previous section with a numerical exam-
ple. In this example we take A to be a real N ×N block-diagonal matrix,
where N = 2(n1 + n2 + n3) + 5, whose first n1 + n2 + n3 blocks are of

the form

(
a

(i)
k b

(i)
k

−b(i)k a
(i)
k

)

while its last two blocks are

(
0 ε1
0 0

)
and




0 ε2 0
0 0 ε2
0 0 0



 .

Therefore, A has n1 + n2 + n3 pairs of complex conjugate eigenvalues
of the form a

(i)
k ± i b(i)k . We distribute these eigenvalues in the complex

plane as follows: The first n1 pairs of them are located on the ellipse E1 =
E(11, i

√
11, 11), the next n2 pairs of them are located on the ellipse E2 =

E(11, i
√

11, 3+2
√

5) that is in the interior of E1, and the last n3 pairs of the
eigenvalues are situated on the degenerate ellipse E3 = E(11, i

√
11,

√
11)

in the interior of E2. Thus all three ellipses are confocal with center at c = 11
and foci at c ± f = 11 ± i

√
11 and, therefore, have their semi-major axes

perpendicular to the real axis. We choose a(i)
k = 11 + αi cos(k − 1)θi, and

b
(i)
k = βi sin(k − 1)θi, k = 1, . . . , ni, where αi and βi are the semi-axes
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of the corresponding ellipse Ei, and θi = π/(ni − 1), i = 1, 2, 3. Next, we
take the vector b̂ to be the product Ax̂, where x̂ = ( 1 . . . 1︸ ︷︷ ︸

2(n1+n2+n3)

0 . . . 0︸ ︷︷ ︸
5

)T.

Then we add to b̂ a vector b̃whose first 2(n1 +n2 +n3) entries are zero and
the last 5 are arbitrary. We take x0 = 0 so that the solution will be purely
ADb = x̂.

In Table 1 we present some of the results we obtained by applying DCA
to the systemAx = b = b̂+ b̃with a = 2 and n1 = 10, n2 = 5, and n3 = 5.

By the theory developed in the previous sections the errors in the first
2n1 components of the solution converge to zero at the rate ofm2(0.489)m,
those in the next 2n2 components at the rate of m2(0.332)m, and those in
the next 2n3 at the rate of m2(0.147)m. The last 5 components are zero in
all xm, m = a, a+ 1, . . . , as is clear from (5.1).
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