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A CONVERGENCE AND STABILITY STUDY
OF THE ITERATED LUBKIN TRANSFORMATION

AND THE θ-ALGORITHM

AVRAM SIDI

Abstract. In this paper we analyze the convergence and stability of the iter-
ated Lubkin transformation and the θ-algorithm as these are being applied to
sequences {An} whose members behave like An ∼ A+ ζn/(n!)r

∑∞
i=0 αin

γ−i

as n → ∞, where ζ and γ are complex scalars and r is a nonnegative in-
teger. We study the three different cases in which (i) r = 0, ζ = 1, and
γ 6= 0, 1, . . . (logarithmic sequences), (ii) r = 0 and ζ 6= 1 (linear sequences),
and (iii) r = 1, 2, . . . (factorial sequences). We show that both methods accel-
erate the convergence of all three types of sequences. We show also that both
methods are stable on linear and factorial sequences, and they are unstable
on logarithmic sequences. On the basis of this analysis we propose ways of
improving accuracy and stability in problematic cases. Finally, we provide a
comparison of these results with analogous results corresponding to the Levin
u-transformation.

1. Introduction and background

The purpose of this work is to contribute to our understanding of how the iterated
W -transformation of Lubkin [7] and the θ-algorithm of Brezinski [2] accelerate the
convergence of some important classes of infinite sequences {An}. The sequences
that we have in mind are the following:

1. Logarithmic sequences for which

An ∼ A+
∞∑
i=0

αin
γ−i as n→∞; α0 6= 0, γ 6= 0, 1, 2, . . . .(1.1)

Here A = limn→∞ An when <γ < 0. When <γ ≥ 0, A is the antilimit of
{An}.

2. Linear sequences for which

An ∼ A+ ζn
∞∑
i=0

αin
γ−i as n→∞; α0 6= 0, ζ 6= 1.(1.2)

Here A = limn→∞ An when (a) |ζ| < 1 or (b) |ζ| = 1 and <γ < 0. Otherwise,
A is the antilimit of {An}.
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3. Factorial sequences for which

An ∼ A+
ζn

(n!)r
∞∑
i=0

αin
γ−i as n→∞; α0 6= 0, r = 1, 2, . . . .(1.3)

Here A = limn→∞An always.

Of these, the classes of logarithmic and linear sequences have provided re-
searchers with important test grounds for the comparative study of convergence
acceleration methods, including the Shanks transformation [9] (or the equivalent
ε-algorithm of Wynn [18]), the θ-algorithm, the iterated W -transformation, the
Levin [5] transformations, and so on. See, e.g., Smith and Ford [15], [16] and Van
Tuyl [17].

If we let a0 = A0 and an = ∆An−1 = An −An−1, n = 1, 2, . . . , then we realize
that the an grow as in

an ∼
∞∑
i=0

ein
γ−1−i as n→∞; e0 = γα0 6= 0, γ 6= 0, 1, . . . (for (1.1)),

(1.4)

an ∼ ζn
∞∑
i=0

ein
γ−i as n→∞; e0 = (1− ζ−1)α0 6= 0, ζ 6= 1 (for (1.2)),

(1.5)

an ∼
ζn

(n!)r
∞∑
i=0

ein
γ+r−i as n→∞; e0 = −ζ−1α0 6= 0, r = 1, 2, . . . (for (1.3)).

(1.6)

(Of course, the ei are different in each of (1.4)–(1.6).) Furthermore, the an satisfy
2-term recursion relations of the form

an+1 = c(n)an,(1.7)

where c(n) satisfies asymptotically

c(n) ∼ 1 + (γ − 1)n−1 + c2n
−2 + · · · as n→∞; γ 6= 0, 1, 2, . . . (in (1.1)),

(1.8)

c(n) ∼ ζ
(
1 + γn−1 + c2n

−2 + · · ·
)

as n→∞; ζ 6= 1 (in (1.2)),
(1.9)

c(n) ∼ ζn−r
(
1 + γn−1 + c2n

−2 + · · ·
)

as n→∞; r = 1, 2, . . . (in (1.3)),
(1.10)

Conversely, if the an satisfy (1.7) with (1.8) or (1.9) or (1.10), then they have as-
ymptotic expansions that are given exactly as in (1.4) or (1.5) or (1.6), respectively.
This has been shown in Ford [4, p. 70].

Conversely again, if an are as in (1.4) or (1.5) or (1.6) and An =
∑n

k=0 ak,
n = 0, 1, . . . , then the An have asymptotic expansions that are given exactly as in
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(1.1) or (1.2) or (1.3), respectively. This follows from the following results:

An ∼ A+ nan+1

∞∑
i=0

βin
−i as n→∞; β0 = γ−1 6= 0 for (1.4),(1.11)

An ∼ A+ an+1

∞∑
i=0

βin
−i as n→∞; β0 = (ζ − 1)−1 6= 0 for (1.5),(1.12)

An ∼ A+ an+1

(
−1 +

∞∑
i=r

βin
−i

)
as n→∞; βr = −ζ 6= 0 for (1.6).(1.13)

The expansions in (1.11) and (1.12) were given by the author in [10] and [11] for
convergent

∑∞
k=0 ak. The result in (1.11) for divergent

∑∞
k=0 ak was given in [13],

where the nature of the antilimit A and its precise value are also provided. The
result in (1.12) for divergent

∑∞
k=0 ak was given in [12] for the case |ζ| = 1, ζ 6= 1,

where it is shown that the antilimit A is the Abel sum of
∑∞

k=0 ak, namely, A =
limτ→1−

∑∞
k=0 akτ

k. A is also the analytic continuation to |ζ| = 1 of f(ζ), the
function that is defined by the power series

∑∞
k=0 ckζ

k, cn = anζ
−n, n = 0, 1, . . . ,

and that is analytic for |ζ| < 1. In [12] it is shown in addition that (1.12) holds also
when |ζ| > 1, ζ 6∈ [1,+∞), if an = ζnnph(n), where p is a nonnegative integer and
h(n) =

∫∞
0
e−ntϕ(t) dt, ϕ(t) being a function of exponential order for which an has

an asymptotic expansion of the form given in (1.5). In this case A, the antilimit
of {An}, is f(ζ), described above, that is now defined and analytic for all ζ in the
complex plane cut along [1,+∞).

The result in (1.13) is new and can be proved as follows: Since {An} converges
when an is as in (1.6), we have An − A = −

∑∞
k=n+1 ak and

∑∞
k=n+1 ak is a

convergent series. Invoking (1.7), we can write

An −A = −an+1

1 +
∞∑
k=1

k∏
j=1

c(n+ j)

 .
By (1.10) the term inside the square brackets has an asymptotic expansion of the
form 1 +

∑∞
i=r σin

−i as n → ∞, with σr = ζ. This produces (1.13). (We must
note, however, that an expansion of the form An ∼ A+an+1

∑∞
i=0 βin

−i as n→∞
is already contained in the paper [10] for the case in which {An} satisfies (1.3).)

The results in (1.11)–(1.13) will be used later in proving theorems on the con-
vergence and convergence acceleration of the (iterated) W -transformation and the
θ-algorithm. It must be noted here that the fact that β1 = · · · = βr−1 = 0 in
(1.13) is of great importance in the convergence theorems of the next two sections.
Without this knowledge one cannot show that there is convergence acceleration, for
example.

We now turn to the definitions of the W - and iterated W -transformations and
the θ-algorithm.

Two convenient representations of the W -transformation on {Ak} are given by

Wj({As}) =
∆2(Aj/∆Aj)
∆2(1/∆Aj)

=
∆(Aj+1 ×∆(1/∆Aj))

∆2(1/∆Aj)
, j = 0, 1, . . . .(1.14)
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This transformation is normally applied in iterated form as in

B
(j)
0 = Aj , j = 0, 1, . . . ,(1.15)

B
(j)
n+1 = Wj({B(s)

n }), j, n = 0, 1, . . . .

Thus B
(j)
1 = Wj({As}). In addition, B(j)

n is determined from Aj+k, k =
0, 1, . . . , 3n.

The θ-algorithm on {Ak} is defined via the recursion relations

θ
(j)
−1 = 0, θ

(j)
0 = Aj , j = 0, 1, . . . ,(1.16)

θ
(j)
2n+1 = θ

(j+1)
2n−1 +

1

∆θ(j)
2n

,

θ
(j)
2n+2 = θ

(j+1)
2n +

∆θ(j+1)
2n ×∆θ(j+1)

2n+1

∆2θ
(j)
2n+1

, j, n = 0, 1, . . . ,

where ∆θ(j)
p = θ

(j+1)
p − θ(j)

p for all j and p.
Note that θ(j)

2n is determined from Aj+k, k = 0, 1, . . . , 3n, just like B(j)
n .

Using the fact that θ(j)
1 = 1/∆Aj in (1.16), it can be shown after some algebra

that

θ
(j)
2 = Wj({As}).(1.17)

This fact was first noted by Drummond [3]. Also, from the fact that the Levin
u-transformation on {Ak} produces the approximations u(j)

n to A as in

u(j)
n =

∆n(jn−2Aj/∆Aj)
∆n(jn−2/∆Aj)

,(1.18)

see Sidi [10], it is clear that

u
(j)
2 = Wj({As}),(1.19)

and this was first observed by Bhowmick, Bhattacharya, and Roy [1].
Sablonnière [8] and Van Tuyl [17] have provided the convergence analysis for the

sequences {B(j)
n }
∞
j=0 as these are obtained from logarithmic sequences {Ak} in (1.1).

(In fact, both papers deal with sequences {Ak} for which An ∼ A+
∑∞

i=0 αin
γ−i/s

as n → ∞, where s = 1, 2, . . . . In [8] explicit treatment is given for s = 2,
while in [17] s is any integer.) The convergence analysis of the sequences {θ(j)

2n }
∞
j=0

from logarithmic sequences {Ak} has been given in [17]. We are not aware of
analogous studies pertaining to the linear and factorial sequences in (1.2) and (1.3).
Furthermore, no results on the stability of the sequences {B(j)

n }
∞
j=0 and {θ(j)

2n }
∞
j=0

have been obtained so far. Our purpose in the present work is to provide these
missing analyses. We give the convergence and stability theories of the sequences
{B(j)

n }
∞
j=0 and {θ(j)

2n }∞j=0 as these are obtained from the logarithmic, linear, and
factorial sequences {Ak} given in (1.1)–(1.3). A nice feature of our analysis is that
the treatments of the three fundamentally different classes (linear, logarithmic,
factorial) are unified and simplified. In addition, based on the stability analyses
of {B(j)

n }
∞
j=0 and {θ(j)

2n }
∞
j=0 from linear sequences {Ak}, we are able to conclude

that the strategy proposed in [12] for power series and Fourier series near points
of singularity can be applied very effectively here too. All this is done in Sections
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2–4. The study of the convergence of the W -transformation that is the subject of
Section 2 turns out to be of great importance in the developments of Sections 3
and 4.

Finally, in Section 5 we provide a detailed comparison of our results on the
iterated Lubkin transformation and the θ-algorithm with the corresponding results
pertaining to the Levin u-transformation.

2. Convergence analysis of the iterated Lubkin transformation

We start with the W -transformation of (1.14).

Theorem 2.1. (i) Let {Ak} be as in (1.1), and let β2+µ (µ ≥ 0) be the first nonzero
βi with i ≥ 2 in (1.11). Then

Wj({As})−A ∼
∞∑
i=0

wij
γ−2−µ−i as j →∞; w0 = α0β2+µ

(µ+ 1)(µ+ 2)
γ − 1

6= 0.

(2.1)

(ii) Let {Ak} be as in (1.2), and let β1+µ (µ ≥ 0) be the first nonzero βi with
i ≥ 1 in (1.12). Then

Wj({As})−A∼ζj
∞∑
i=0

wij
γ−3−µ−i as j→∞; w0 =α0β1+µ

(µ+1)(µ+2)
ζ− 1

ζ2 6=0.

(2.2)

(iii) Let {Ak} be as in (1.3). Then

Wj({As})−A ∼
ζj

(j!)r

∞∑
i=0

wij
γ−3r−2−i as j →∞; w0 = α0ζ

3r(r + 1) 6= 0.

(2.3)

Part (i) of Theorem 2.1 was already given in [7]. All three of (2.1)–(2.3) also
follow from the analogous results of [10] and [11] that pertain to the Levin trans-
formations. They can be proved by observing that

Wj({As})−A =
∆2((Aj −A)/∆Aj)

∆2(1/∆Aj)
,(2.4)

and by invoking (1.11)–(1.13) and (1.4)–(1.6). In addition, we need the following
facts that we will use again later in this work: Let

g(n) ∼
∞∑
i=0

gin
δ−i as n→∞; g0 6= 0.(2.5)

First, if δ 6= 0,

∆g(n) ∼
∞∑
i=0

ĝin
δ−i−1 as n→∞; ĝ0 = δg0 6= 0,(2.6)

and if δ = 0 and gν is the first nonzero gi with i ≥ 1,

∆g(n) ∼
∞∑
i=ν

ĝin
−i−1 as n→∞; ĝν = −νgν 6= 0.(2.7)
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Next, if ζ 6= 1,

∆[ζng(n)] ∼ ζn
∞∑
i=0

ĝin
δ−i as n→∞; ĝ0 = (ζ − 1)g0 6= 0.(2.8)

Finally, if p = 1, 2, . . . ,

∆[(n!)pζng(n)] ∼ (n!)pζn
∞∑
i=0

ĝin
δ+p−i as n→∞; ĝ0 = ζg0 6= 0.(2.9)

∆
[
ζn

(n!)p
g(n)

]
∼ ζn

(n!)p
∞∑
i=0

ĝin
δ−i as n→∞; ĝ0 = −g0.(2.10)

It follows from Theorem 2.1 that the W -transformation accelerates the con-
vergence of logarithmic, linear, and factorial sequences, the acceleration of linear
sequences being more effective in general. Specifically,

Wj({As})−A
Aj+i −A

= O(j−2) as j →∞, i fixed (in (1.1)),(2.11)

Wj({As})−A
Aj+i −A

= O(j−3) as j →∞, i fixed (in (1.2)),(2.12)

Wj({As})−A
Aj+3 − A

∼ r(r + 1)j−2 as j →∞, (in (1.3)).(2.13)

Note that since Wj({As}) is constructed from Aj+i, 0 ≤ i ≤ 3, we should compare
Wj({As})−A with Aj+i−A, 0 ≤ i ≤ 3. When {Ak} is as in (1.1) or (1.2), Aj+i−A
are all of the same order with arbitrary fixed i. When {Ak} is as in (1.3), however,
Wj({As})−A must be compared with Aj+3−A, the smallest of Aj+i−A, 0 ≤ i ≤ 3,
as j →∞, and this is what we have done in (2.13).

Finally, from (2.1) it is clear that, whether {Ak} in (1.1) converges or not,
Wj({As}) converges to A if <γ < 2. Similarly, from (2.2) we see that Wj({As})
converges to A when |ζ| = 1 provided <γ < 3, whether {Ak} in (1.2) converges or
not.

The following theorem concerns the repeated W -transformation as defined in
(1.15) and can be proved by repeated application of Theorem 2.1. This is possible
since the asymptotic expansion ofWj({As}) as j →∞ in Theorem 2.1 is of precisely
the same nature as that of Aj .

Theorem 2.2. (i) If {Ak} is as in (1.1), then

B(j)
n −A ∼

∞∑
i=0

gnij
γn−i as j →∞, gn0 6= 0,(2.14)

with γ0 = γ, γk = γk−1 − 2 − µk, k = 1, 2, . . . , where µk are some nonnegative
integers, hence <γk ≤ <γ − 2k, k = 1, 2, . . . .

(ii) If {Ak} is as in (1.2), then

B(j)
n −A ∼ ζj

∞∑
i=0

gnij
γn−i as j →∞, gn0 6= 0,(2.15)

with γ0 = 0, γk = γk−1 − 3 − µk, k = 1, 2, . . . , where µk are some nonnegative
integers, hence <γk ≤ <γ − 3k, k = 1, 2, . . . .
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(iii) If {Ak} is as in (1.3), then

B(j)
n −A ∼

ζj

(j!)r

∞∑
i=0

gnij
γn−i as j →∞, gn0 = α0[ζ3r(r + 1)]n 6= 0,(2.16)

with γk = γ − k(3r + 2), k = 0, 1, . . . .

Part (i) of Theorem 2.1 was already given in [8] and [17]. Parts (ii) and (iii) are
new.

Clearly, the repeated W -transformation accelerates the convergence of logarith-
mic, linear, and factorial sequences. Even when <γ ≥ 0, hence {Ak} in (1.1)
diverges, {B(j)

n }
∞
j=0 will converge to A for every n > 1

2<γ in part (i) of Theorem

2.2. Similarly, when {Ak} is as in (1.2) with |ζ| = 1, {B(j)
n }
∞
j=0 will converge to A

for every n > 1
3<γ in part (ii) of Theorem 2.2, even when {Ak} diverges.

In addition, analogously to (2.11)–(2.13), we have

B
(j)
n+1 −A

B
(j+i)
n −A

= O(j−2) as j →∞, i fixed (in (1.1)),(2.17)

B
(j)
n+1 −A

B
(j+i)
n −A

= O(j−3) as j →∞, i fixed (in (1.2)),(2.18)

B
(j)
n+1 −A

B
(j+3)
n −A

∼ r(r + 1)j−2 as j →∞ (in (1.3)).(2.19)

In other words, the sequence {B(j)
n+1}

∞
j=0

converges more quickly than {B(j)
n }
∞
j=0 for

each n in all cases.

3. Convergence analysis of the θ-algorithm

Due to the complexity of the recursion relation in (1.16), the analysis of the
θ-algorithm turns out to be quite involved. Specifically, we have two different types
of sequences to worry about, namely, {θ(j)

2n }
∞
j=0 and {θ(j)

2n+1}
∞
j=0

, and the two are
coupled nonlinearly. Luckily, a very rigorous analysis of both types of sequences
can be given, and we turn to it now.

We start by expressing θ(j)
2n+2 in (1.16) in different forms.

Lemma 3.1. θ(j)
2n+2 can be expressed as in

θ
(j)
2n+2 =

1

∆2θ
(j)
2n+1

{
Wj({θ(s)

2n })×∆2(1/∆θ(j)
2n ) + ∆(θ(j+1)

2n ×∆θ(j+1)
2n−1 )

}
(3.1)

and

θ
(j)
2n+2 =

∆(θ(j+1)
2n ×∆θ(j)

2n+1)

∆2θ
(j)
2n+1

.(3.2)

Proof. From (1.16) we first have

θ
(j)
2n+2 =

θ
(j+1)
2n ×∆2θ

(j)
2n+1 + ∆θ(j+1)

2n ×∆θ(j+1)
2n+1

∆2θ
(j)
2n+1

.(3.3)
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Substituting ∆θ(j+1)
2n = θ

(j+2)
2n − θ(j+1)

2n and ∆2θ
(j)
2n+1 = ∆θ(j+1)

2n+1 − ∆θ(j)
2n+1 in the

numerator of (3.3), we obtain (3.2). Next, substituting θ(j)
2n+1 = θ

(j+1)
2n−1 + 1/∆θ(j)

2n in
the numerator of (3.3), we have

θ
(j)
2n+2 =

∆(θ(j+1)
2n ×∆(1/∆θ(j)

2n )) + ∆(θ(j+1)
2n ×∆θ(j+1)

2n−1 )

∆2θ
(j)
2n+1

.(3.4)

Letting now n = 0 and recalling that θ(j)
−1 = 0, θ(j)

0 = Aj , and hence θ(j)
1 = 1/∆Aj,

we have from (3.4) and (1.14) that

θ
(j)
2 =

∆(Aj+1 ×∆(1/∆Aj))
∆2(1/∆Aj)

= Wj({As}).(3.5)

(This is nothing but (1.17).) Using this in (3.4), the result in (3.1) follows.

The representation of θ(j)
2n+2 given in (3.1) of Lemma 3.1 and Theorem 2.1 enable

us to analyze in a unified manner the convergence of the sequences {θ(j)
2n }
∞
j=0 for all

three cases of {An} described in (1.1)–(1.3).

Theorem 3.2. (i) If {Ak} is as in (1.1), then

θ
(j)
2n −A ∼

∞∑
i=0

gnij
γn−i as j →∞, gn0 6= 0,(3.6)

θ
(j)
2n+1 ∼

∞∑
i=0

hnij
−γn−i+1 as j →∞, hn0 = 1/(γngn0) 6= 0,(3.7)

with γ0 = γ, γk = γk−1 − 2 − µk, k = 1, 2, . . . , where µk are some nonnegative
integers, hence <γk ≤ <γ − 2k, k = 1, 2, . . . .

(ii) If {Ak} is as in (1.2), then

θ
(j)
2n −A ∼ ζj

∞∑
i=0

gnij
γn−i as j →∞, gn0 6= 0,(3.8)

θ
(j)
2n+1 ∼ ζ−j

∞∑
i=0

hnij
−γn−i as j →∞, hn0 = 1/[(ζ − 1)gn0] 6= 0,(3.9)

with γ0 = γ, γk = γk−1 − 3 − µk, k = 1, 2, . . . , where µk are some nonnegative
integers, hence <γk ≤ <γ − 3k, k = 1, 2, . . . .

(iii) If {Ak} is as in (1.3), then

θ
(j)
2n −A ∼

ζj

(j!)r
∞∑
i=0

gnij
γn−i as j →∞, gn0 = α0[ζ3r(r + 1)]

n 6= 0,(3.10)

θ
(j)
2n+1 ∼ ζ−j(j!)

r
∞∑
i=0

hnij
−γn−i as j →∞, hn0 = −1/gn0 6= 0,(3.11)

with γ0 = γ, γk = γ− k(3r+ 2), k = 1, 2, . . . . Thus, in this case we also have that
limj→∞

[
(θ(j)

2n −A)/(B(j)
n −A)

]
= 1.
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Remark. Part (i) of this theorem was given in [17]. Parts (ii) and (iii) seem to be
new. The γn in (3.6) and (3.8) are not necessarily the same as those in (2.14) and
(2.15) respectively.

Proof. Here we shall give a detailed proof of part (ii) of the theorem. The proofs
of part (i) and part (iii) can be achieved by following the steps of the proof of part
(ii) and by making the appropriate substitutions there.

We proceed by induction on n. From the fact that θ(j)
0 = Aj and by (1.2) it

is clear that (3.8) holds for n = 0 with γ0 = γ and g00 = α0 6= 0. From this
and from the fact that θ(j)

1 = 1/∆Aj it follows that (3.9) holds for n = 0 with
h00 = 1/[(ζ − 1)α0] 6= 0. Let us now assume that (3.8) and (3.9) hold, and prove
that they hold with n replaced by n+ 1.

We begin by observing that equality is maintained in (1.16) if we subtract A
from the θ(s)

2p there. As a result of this and of Lemma 3.1, we can write

θ
(j)
2n+2 −A

(3.12)

=
1

∆2θ
(j)
2n+1

{
[Wj({θ(s)

2n })−A]∆2(1/∆θ(j)
2n ) + ∆[(θ(j+1)

2n −A)(∆θ(j+1)
2n−1 )]

}
.

Now by part (ii) of Theorem 2.1 we have

Pj ≡Wj({θ(s)
2n })−A ∼ ζj

∞∑
i=0

pij
γn−3−i as j →∞,(3.13)

and

Qj ≡ ∆2(1/∆θ(j)
2n ) ∼ ζ−j

∞∑
i=0

qij
−γn−i as j →∞.(3.14)

Thus

PjQj ∼
∞∑
i=0

u′ij
−3−i as j →∞.(3.15)

Next, by the induction hypothesis we have

Rj ≡ θ(j+1)
2n −A ∼ ζj

∞∑
i=0

rij
γn−i as j →∞,(3.16)

and

Sj ≡ ∆θ(j+1)
2n−1 ∼ ζ−j

∞∑
i=0

sij
−γn−1−i as j →∞,(3.17)

and hence

∆(RjSj) ∼
∞∑
i=0

u′′i j
γn−γn−1−i−1 as j →∞.(3.18)
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Consequently, by the induction hypothesis that γn = γn−1 − 3 − µn for some
nonnegative integer µn, we have

Uj = PjQj −∆(RjSj) ∼
∞∑
i=0

uij
−3−i as j →∞.(3.19)

In addition, since θ(j)
2n+1 satisfies (3.9) by the induction hypothesis,

Vj ≡ ∆2θ
(j)
2n+1 ∼ ζ−j

∞∑
i=0

vij
−γn−i as j →∞, v0 = (ζ−1 − 1)

2
hn0 6= 0.(3.20)

Combining (3.19) and (3.20) in (3.12), we obtain

θ
(j)
2n+2 −A =

Uj
Vj
∼ ζj

∞∑
i=0

g′ij
γn−3−i as j →∞,(3.21)

which gives the desired result for θ(j)
2n+2, namely,

θ
(j)
2n+2 −A ∼ ζj

∞∑
i=0

gn+1,ij
γn+1−i as j →∞, gn+1,0 6= 0,(3.22)

with γn+1 = γn − 3− µn+1 for some nonnegative integer µn+1.
As for θ(j)

2n+3, we start with

θ
(j)
2n+3 = θ

(j+1)
2n+1 +

1

∆θ(j)
2n+2

.(3.23)

By the induction hypothesis we first have

θ
(j+1)
2n+1 ∼ ζ−j

∞∑
i=0

h′ij
−γn−i as j →∞, h′0 = hn0/ζ 6= 0.(3.24)

Next, by (3.22) we have

1

∆θ(j)
2n+2

∼ ζ−j
∞∑
i=0

h′′i j
−γn+1−i as j →∞, h′′0 = 1/[(ζ − 1)gn+1,0] 6= 0.(3.25)

Combining (3.24) and (3.25) in (3.23), and recalling that γn+1−γn = −3−µn+1 ≤
−3, we first have the asymptotic equality

θ
(j)
2n+3 ∼

1

∆θ(j)
2n+2

as j →∞,(3.26)

and, as a result,

θ
(j)
2n+3 ∼ ζ−j

∞∑
i=0

hn+1,ij
−γn+1−i as j →∞, hn+1,0 = h′′0 ,(3.27)

which is the desired result for θ(j)
2n+3. This completes the proof of part (ii) of the

theorem.

As the representation of θ(j)
2n+2 given in (3.2) looks simpler than that in (3.1),

one may wonder whether it is not easier to use (3.2) in the proof of Theorem 3.2.
It turns out that the convergence result produced by (3.2) is inferior to that stated
in Theorem 3.2. The representation in (3.2) turns out to be useful in the stability
analysis that we present in the next section, however.
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4. Stability

An issue of major importance in convergence acceleration is that of stability.
By studying this issue carefully, we may understand why convergence acceleration
methods behave the way they do, and we can also design ways of improving the con-
vergence of these methods, at least in some cases. This has been done successfully
in the papers [12] and [13] by the author in connection with the d-transformation
of Levin and Sidi [6].

Our purpose now is to study the stability of the iterated W -transformation
and the θ-algorithm as these are applied to the sequences {Ak} that have been
treated in the previous sections. It turns out that both methods can be analyzed
simultaneously with respect to stability.

From (1.15) and (1.14) we have

B
(j)
n+1 = λ(j)

n B(j+1)
n + µ(j)

n B(j+2)
n ,(4.1)

λ(j)
n = − ∆(1/∆B(j)

n )

∆2(1/∆B(j)
n )

and µ(j)
n =

∆(1/∆B(j+1)
n )

∆2(1/∆B(j)
n )

.

Similarly, from (3.2) we have

θ
(j)
2n+2 = λ(j)

n θ
(j+1)
2n + µ(j)

n θ
(j+2)
2n ,(4.2)

λ(j)
n = −

∆θ(j)
2n+1

∆2θ
(j)
2n+1

and µ(j)
n =

∆θ(j+1)
2n+1

∆2θ
(j)
2n+1

.

If we denote both B
(j)
n and θ

(j)
2n by Q

(j)
n , we realize that (4.1) and (4.2) can be

expressed as in

Q
(j)
n+1 = λ(j)

n Q(j+1)
n + µ(j)

n Q(j+2)
n ; λ(j)

n + µ(j)
n = 1,(4.3)

with the appropriate λ(j)
n and µ(j)

n .
Starting with the fact thatQ(j)

0 = Aj , j = 0, 1, . . . ,we can easily see by induction
that

Q(j)
n =

n∑
i=0

γ
(j)
ni Aj+n+i ;

n∑
i=0

γ
(j)
ni = 1,(4.4)

for some γ(j)
ni that depend nonlinearly on Ak, j ≤ k ≤ j+3n. As has been observed

in the context of other extrapolation methods, the way Q(j)
n has been expressed in

(4.4) is very suitable for the analysis of stability. The quantities of relevance to
stability of the Q(j)

n are

Γ(j)
n =

n∑
i=0

|γ(j)
ni |,(4.5)

in the following sense. If Āk = Ak+ εk are the computed values of the Ak, then the
application of the iterated W -transformation and the θ-algorithm to {Āk} produces
the approximations Q̄(j)

n that are given by

Q̄(j)
n ≈

n∑
i=0

γ
(j)
ni Āj+n+i = Q(j)

n +
n∑
i=0

γ
(j)
ni εj+n+i(4.6)



430 AVRAM SIDI

for all practical purposes. (This is so since the γ(j)
ni , even though they depend on

the Ak, do not vary appreciably with small errors in the Ak.) Thus

|Q̄(j)
n −Q(j)

n | / Γ(j)
n ε, ε = max{|εk| : j + n ≤ k ≤ j + 2n}.(4.7)

That is, Γ(j)
n determines how close Q̄(j)

n is to Q
(j)
n . For additional information on

the meaning of Γ(j)
n we refer the reader to Section 4 of Sidi [14].

Obviously, when supj Γ(j)
n = ∞, the sequence {Q(j)

n }
∞
j=0 is unstable, and when

supj Γ(j)
n <∞, it is stable. Similarly, when supn Γ(j)

n =∞, the sequence {Q(j)
n }
∞
n=0

is unstable, and when supn Γ(j)
n <∞, it is stable.

Since
∑n

i=0 γ
(j)
ni = 1 for both methods, as also follows immediately from Lemma

4.1 below, we have Γ(j)
n ≥ 1, and for good numerical stability we want Γ(j)

n to be as
close to 1 as possible. In case of instability, we want Γ(j)

n to increase slowly as j or
n→∞.

Below we analyze Γ(j)
n for j → ∞ just as we have analyzed the convergence of

{Q(j)
n }
∞
j=0. The results of Sections 2 and 3 will be of use in this analysis.

We start with the following simple lemma.

Lemma 4.1. Let P (j)
n (z) =

∑n
i=0 γ

(j)
ni z

i. Then

P
(j)
n+1(z) = λ(j)

n P (j+1)
n (z) + µ(j)

n zP (j+2)
n (z).(4.8)

Proof. By (4.3) and (4.4) we have
n+1∑
i=0

γ
(j)
n+1,iAj+n+i+1 = λ(j)

n

n∑
i=0

γ
(j+1)
ni Aj+n+i+1 + µ(j)

n

n∑
i=0

γ
(j+2)
ni Aj+n+i+2,(4.9)

from which

γ
(j)
n+1,i = λ(j)

n γ
(j+1)
ni + µ(j)

n γ
(j+2)
n,i−1, i = 0, 1, . . . , n+ 1,(4.10)

where we have defined γ
(j)
n,−1 = γ

(j)
n,n+1 = 0. The result in (4.8) now follows from

(4.10).

We next state a result on the behavior of λ(j)
n and µ(j)

n as j →∞.

Lemma 4.2. (i) If {Ak} is as in (1.1), then

λ(j)
n ∼

j

γn
and µ(j)

n ∼ −
j

γn
as j →∞, n ≥ 0,(4.11)

with γk as in part (i) of Theorem 2.2 or Theorem 3.2.

(ii) If {Ak} is as in (1.2), then

λ(j)
n ∼

ζ

ζ − 1
and µ(j)

n ∼ −
1

ζ − 1
as j →∞, n ≥ 0.(4.12)

(iii) If {Ak} is as in (1.3), then

λ(j)
n = o(1) and µ(j)

n ∼ 1 as j →∞, n ≥ 0.(4.13)

The proof of this lemma can be achieved by employing the results of Theorems
2.2 and 3.2. We leave its details to the reader.

The main stability results are given in the next theorem.
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Theorem 4.3. (i) If {Ak} is as in (1.1), then

P (j)
n (z) ∼

(
n−1∏
k=0

γk

)−1

(1 − z)njn and Γ(j)
n ∼

∣∣∣∣∣
n−1∏
k=0

γk

∣∣∣∣∣
−1

(2j)n as j →∞.(4.14)

(ii) If {Ak} is as in (1.2), then

P (j)
n (z) ∼

(
ζ − z
ζ − 1

)n
and Γ(j)

n ∼
(
|ζ|+ 1
|ζ − 1|

)n
as j →∞.(4.15)

(Of course, when ζ = −1, Γ(j)
n ∼ 1 as j →∞.)

(iii) If {Ak} is as in (1.3), then

P (j)
n (z) ∼ zn and Γ(j)

n ∼ 1 as j →∞.(4.16)

Proof. The proofs of all three parts can be carried out by combining Lemma 4.1
and Lemma 4.2 and by using induction on n. We leave the details to the reader.

We can conclude from part (i) of Theorem 4.3 that neither the iterated W -
transformation nor the θ-algorithm is stable when applied to the logarithmic se-
quences in (1.1). They may achieve quite high numerical accuracy when |=γ| is

large, as in this case the factor
∣∣∣∏n−1

k=0 γk

∣∣∣−1

becomes small causing Γ(j)
n to be

small, even though supj Γ(j)
n = ∞. This conclusion is the same as that reached in

Sidi [14] for the Richardson extrapolation process.
From part (ii) of Theorem 4.3 we conclude that both methods are stable when

applied to the linear sequences in (1.2). When ζ is close to 1, however, Γ(j)
n may be

very large even though supj Γ(j)
n <∞. In order to stabilize the approximations Q(j)

n

we propose to apply the methods to the subsequences {Ask}∞k=0 for some positive
integer s ≥ 2 such that ζs 6= 1 and is farther from 1 than ζ is. For {Ask}∞k=0 we
will have in this case

Asn ∼ A+ (ζs)n
∞∑
i=0

α′in
γ−i as n→∞, α′0 = α0s

γ 6= 0.(4.17)

An analogous strategy was already proposed in Sidi [12] in the application of the
Levin-Sidi [6] d-transformation to power series and Fourier series and their gener-
alizations.

Part (iii) of Theorem 4.3 implies that, when applied to the factorial sequences
in (1.3), the methods are stable.

5. Comparison with the Levin u-transformation

The results we have obtained for the iterated W -transformation and the θ-
algorithm are similar to those pertaining to the Levin u-transformation that is
defined in (1.18). We provide the latter here for comparison and completeness.
Before we do that we also note that

u(j)
n =

n∑
i=0

γ
(j)
ni Aj+i; γ

(j)
ni =

(−1)n−i
(
n
i

)
(j + i)n−2

/∆Aj+i
∆n(jn−2/∆Aj)

, i = 0, 1, . . . , n.(5.1)
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Theorem 5.1. (i) Let {Ak} be as in (1.1), and let βn+µ (µ ≥ 0) be the first
nonzero βi with i ≥ n in (1.11). Then

u(j)
n −A ∼

∞∑
i=0

wij
γ−n−µ−i as j →∞; w0 = (−1)nα0βn+µγ

(µ+ 1)n
(−γ)n

6= 0,

(5.2)

P (j)
n (z) ∼ jn

(−γ)n
(z − 1)n and Γ(j)

n ∼
(2j)n

|(−γ)n|
as j →∞.

(ii) Let {Ak} be as in (1.2), and let βn−1+µ (µ ≥ 0) be the first nonzero βi with
i ≥ n− 1 in (1.12). Then

u(j)
n −A ∼ ζj

∞∑
i=0

wij
γ−2n+1−µ−i as j →∞; w0 = α0βn−1+µ

ζn

(ζ − 1)n−1
6= 0,

(5.3)

P (j)
n (z) ∼

(
ζ − z
ζ − 1

)n
and Γ(j)

n ∼
(
|ζ|+ 1
|ζ − 1|

)n
as j →∞.

(iii) Let {Ak} be as in (1.3), and let βn−1+µ (µ ≥ 0) be the first nonzero βi with
i ≥ n− 1 in (1.13). Then

u(j)
n −A ∼ (∆Aj+n)

∞∑
i=0

δij
−n−r−i as j →∞;(5.4)

δ0 = −ζ · (−r − 1)n 6= 0, n ≤ r + 1,

u(j)
n −A ∼ (∆Aj+n)

∞∑
i=0

δij
−2n+1−µ−i as j →∞;

δ0 = (−1)nβn−1+µ(µ+ 1)n 6= 0, n > r + 1,

P (j)
n (z) ∼zn and Γ(j)

n ∼ 1 as j →∞.

As can be seen from this theorem, the u-transformation accelerates the conver-
gence of {Ak} in all cases.

Since the approximation u
(j)
n is determined from Ak, j ≤ k ≤ j + n + 1, and

the approximation Q
(j)
n (B(j)

n or θ(j)
2n ) is determined from Ak, j ≤ k ≤ j + 3n, we

should compare the sequences {u(j)
3n−1}

∞
j=0

and {Q(j)
n }
∞
j=0. From previous results

we have, for j →∞,

Q(j)
n −A = O(jγ−2n) and u

(j)
3n−1 −A= O(jγ−3n+1) (for (1.1)),

Q(j)
n −A = O(ζjjγ−3n) and u

(j)
3n−1 −A= O(jγ−6n+3) (for (1.2)),

Q(j)
n −A = O

(
ζj

(j!)r
jγ−(3r+2)n

)
and

u
(j)
3n−1 −A = O

(
ζj

(j!)r
jγ−(3r+2)n−(4n−r−3)

)
, n > r + 1 (for (1.3)).
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