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Abstract: - We consider the solution by Krylov subspace methods of a certain class of hermitian indefinite
linear systems, such as those that arise from discretization of the Stokes equations in incompressible fluid
mechanics. We discuss a diagonal preconditioning of these systems that amounts to multiplying some of
the equations by � � while the others are left unchanged. We show that this preconditioning puts all the
eigenvalues of the relevant matrix in the open right half plane, enhancing the performance of the Krylov
subspace methods in many cases.
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1 Introduction

In this paper, we consider the numerical solution by
Krylov subspace and semi-iterative methods of large
sparse linear systems of equations of the form��� ���� �
	 ���  	�� ���� 	�� (1)

where
� ���������

,
� ���������

, � �! ,
�

is
hermitian positive definite, and

�
is of full rank,� � �"�"��� , and

 � � �"��� . Here
���

denotes the
hermitian conjugate of

�
. Obviously, the matrix of

the system in (1) is hermitian.
Such linear systems arise in different computa-

tional problems. We mention three such problems:
1. Solution of linear least-squares problems of the
form #%$'&)(+*-, �/. ( �* �0� �)��� � �1�2 �0354 &7698:*<; �  �= (2)

Here
(+>�( �!? > � > is the standard Euclidean vec-

tor norm. The solution
,

to this problem is the
unique solution of the nonsingular  A@A system* � *<, � * � . . Defining the residual vector B byB � .-� *-, , it is easy to see that

,
and B together

satisfy the linear
8 �"CD ; @ 8 �ECF ; system��G � ** � � 	 � B, 	 � � .� 	 = (3)

Here
G5H

stands for the IJ@KI identity matrix.
2. Solution of linearly constrained quadratic pro-
gramming problems of the form#%$'&)8MLN ,7OP*-, � B OP,Q; � subject to R OS, �ATU�* �WV ���U� � R �JV ����� � �X�F �Y3Z4 &7698 R ; �  �=

(4)

Here
*

is a positive definite matrix. Introducing a
vector [ �\V � of Lagrange multipliers, it can be
shown that the optimal solution

,
and the vector [

satisfy the linear system� * RR O � 	 � , [ 	 � � BT 	 = (5)

3. Solution of linear systems that arise from suitable
finite-difference or finite-element discretizations of
the so-called Stokes equations in incompressible
fluid mechanics. The Stokes equations, after suitable
scaling of the dependent and independent variables
and body forces, can be written in the form]%^ �`_ I)C`a � � � _"b ^ � � � (6)

where
] �Ac�d+eUc , d C c�dfe�c > d C c�d+e�c�g�d is the Lapla-

cian, _ �ihjc�e�c , C�k c�e�c > Cml c9eUc9g is the gradient
operator,

^ �nh Mo Cpk Mq Crl ts is the velocity vector of
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the fluid, I is the pressure, and a �Ah � o C-k � q C�l � s is
some known body force. At least in operator form we
can see that these coupled partial differential equa-
tions can be expressed in the form of the linear sys-
tem in (1) as follows:uvvw � ] � � c�e�c ,� � ] � c�e�c >� � � ] c�e�c�gc9eUc , c�e�c > c9eUc9g � xzyy{ uvvw

MoMqMsI
xzyy{ � uvvw � o� q� s� xzyy{ =

(7)
As will be discussed in the next section, the ma-

trix of the linear system in (1) is indefinite, i.e., it
has both positive and negative eigenvalues. This fact
has been known in connection with the least-squares
problem for the matrix of the system in (3).

These linear systems can be solved by suitable
fixed-point iterative methods, semi-iterative meth-
ods, and Krylov subspace methods. For the develop-
ment of a class of fixed-point iterative methods, see
the paper by Dyn and Ferguson [2]. Three Krylov
subspace methods that are relevant for the linear sys-
tems above are MINRES, SYMMLQ, and LSQR,
due to Paige and Saunders [12], [13]. Of course, we
can also apply, e.g., the restarted GMRES of Saad
and Schultz [14] or Bi-CGSTAB of van der Vorst
[20] or QMR of Freund and Nachtigal [6]. For an
exhaustive list of references on this subject, we refer
the reader to Björck [1, Chapter 7].

Due to the fact that the matrix of (1) is indefi-
nite, Krylov subspace methods may converge slowly
when applied directly to (1). To improve their con-
vergence we may have to apply them with an effec-
tive preconditioner. However, the design of such pre-
conditioners is not trivial and their application may
entail a non-negligible computational cost. The sit-
uation is especially problematic when solving the
Stokes equations on unstructured meshes. We thus
ask whether we can improve the convergence of the
different Krylov subspace methods without having to
construct expensive preconditioners. Precisely this is
the subject of the present work.

We start by noting that, when applied to a nonsin-
gular linear system

*-, � . , Krylov subspace meth-
ods can be especially effective if the spectrum of

*
is

contained in the interior of a half plane whose bound-
ary is a straight line that passes through the origin.
Recall also that the Chebyshev acceleration method
of Manteuffel [9] (that is a semi-iterative method) is

defined for such matrices. In case
*

has both pos-
itive and negative eigenvalues, there is no such half
plane, and Krylov subspace methods may be espe-
cially slow.

In this paper, we discuss a simple way of modify-
ing the linear system in (1) that forces the spectrum
of its matrix to the open right half of the complex
plane. This modification was suggested by Nico-
laides [11] already in 1991 in connection with the
numerical solution of the Stokes equations by Krylov
subspace methods. It amounts to a diagonal precon-
ditioning of the matrix, which, as far as we know, has
not been given before. Specifically, Krylov subspace
methods are applied directly to the linear system� � �� � � �
	 � �  	|� � �� � 	)� (8)

The preconditioning matrix is nothing but} � � G � �� � G � 	 = (9)

Here
G5H

stands for the IK@~I identity matrix. Clearly,
the system in (8) has the same solution as that in (1).
We also note that, as the matrix of the new system
is not hermitian, the methods MINRES, SYMMLQ,
and LSQR that were mentioned above cannot be ap-
plied. Of course, GMRES, Bi-CGSTAB, and QMR
are still applicable. It seems that before embarking
on the construction of sophisticated preconditioners,
one can try the application of Krylov subspace meth-
ods to the system in (8) that forms a zero-cost pre-
conditioning of that in (1). This can prove to be
very convenient, for example, when solving contin-
uum problems on unstructured meshes.

In the next section, we analyze the spectrum of
the matrix of the modified system in (8) and show
that all its eigenvalues are in the right half of the com-
plex plane, i.e., they all have positive real parts. This
may help enhance the performance of Krylov sub-
space methods when these are applied to the modi-
fied system, and this is the subject of Section 3. In
Section 4, we demonstrate the use of the approach
discussed here with a numerical example.

For related work, we refer the reader to the re-
cent papers by Wathen and Silvester [21], Silvester
and Wathen [19], Golub and Wathen [8], Fischer et
al. [5], Fischer and Peherstorfer [4], Murphy, Golub,

2



and Wathen [10], and Elman, Silvester, and Wathen
[3]. In particular, [21] provides a diagonal precon-
ditioner that is different from that presented here. In
addition, our Theorem 1 and Corollary 2 are a slight
generalization of Lemmas 2.1 and 2.2 of [5]. In the
case

� ���� G � , where � is a scalar, the precondi-
tioner proposed in [5] involves the matrix

�����
, so

that the preconditioner proposed in the present work
is entirely different from that in [5].

The literature that deals with the solution of the
linear systems of this work (and their more general
forms) and, in particular, of the Stokes equations, is
quite rich. For the most recent developments and ex-
tensive bibliographies, we refer the reader to the pa-
pers above.

2 Theoretical Preliminaries

Our approach is based on the study of the eigenvalue
structure of the matrix� 8���; � � � �� ��� � 	 � � �� � a real scalar, (10)

where, as before,
���/� �����

,
���/� �����

, ���A ,�
is hermitian positive definite, and

�
is of full rank.

We begin with the following result, which gener-
alizes those of Lemmas 2.1 and 2.2 in [5]:

Theorem 1 Let
* �m�������

such that ���� , and3Z4 &76�8�*-; �  , and denote� 8���; � � G � *�P* � � 	)� � �� � a real scalar, (11)

where
G5H

stands for the I�@�I identity matrix. Then
the eigenvalues [ � � [ d � =t=M= � [ �p��� of

� 8���;
are given

by [ dZ� �9� � ���� � CA� � C`� �P� d�+� �0�~� � � =t=M= �  �[ dZ� � �� � � � � � C`� �P� d� � �0�%� � � =t=t= �  �[ d ��� � � [ d ��� d � bMbtb � [ ���Q� � � � (12)

where
� � � =M=t= � � � are the singular values of

*
, which

are all positive by the assumption that
*

has full rank . Let us denote by � � the eigenvector of
* � *

cor-
responding to its eigenvalue

� d� , �~� � � =M=t= �  . When

� �� � � e 8 � � d� ; , we have [ dZ� ��� �� [ dZ� , and the
eigenvectors

, d5� ��� and
, dZ� corresponding to [ dZ� ���

and [ dZ� , respectively, are given by,�� � � 8:�P� d� ; ��� [ � * � �� � 	 �~ %� � � � � � � � = (13)

When
� � � � e 8 � � d� ; , hence [ d5� ��� � [ dZ� � � e � ,

there is one eigenvector
, dZ� ��� and one principal vec-

tor
, dZ� corresponding to [ dZ� ��� � [ dZ� that are given

by , dZ� ��� � � � � * � �� � 	 � , dZ� � � �� � � � 	 = (14)

The eigenvectors corresponding to the eigenvalue
unity are given by, d ��� � � �'¡ �� 	 �¢�~� � � =t=t= � � �  � (15)

where
¡ � are the eigenvectors of

*<* �
correspond-

ing to its zero eigenvalue that has multiplicity � �  
necessarily.

Proof. To prove (12) we start with the fact that8 � � G ; � � � � *-* � �� * � * 	�� �A£A� 8���; �
from which it follows that

�
has

�  eigenvalues [
that satisfy8 [ � � ; [ � ��� d� �0�|� � � =M=t= �  �
and � �  eigenvalues that satisfy8 [ � � ; [ � � =
The rest of the proof can be carried out by verifying
the equalities� , � � [ � , � �| r� � � � � � � ���
when

� �� � � e 8 � � d� ; � �)¤ � ¤  , and� , dZ� ��� � LN , dZ� ��� � � , d5� � LN , dZ� C , dZ� ��� �
when

� � � � e 8 � � d� ; � �)¤ � ¤  , and� , d ��� � � , d ��� � �0�~� � � =M=t= � � �  �=
We leave the details to the reader. ¥
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What Theorem 1 implies is that the Jordan
canonical form of

� 8���;
is diagonal when

� ��� � e 8 � � d� ; , �¦� � � =t=t= �  , and that it has
� @ �

blocks with eigenvalue
� e � when

� � � � e 8 � � d� ; for
some � �¨§ � � =t=t= �  S© , the number of these blocks
being the same as the number of the

� � for which� � � � e 8 � � d� ; . Note also that none of the [ � van-
ishes, so that

� 8:�P;
is nonsingular.

We also observe that the complex eigenvalues of� 8���;
appear in conjugate pairs whether

�
[hence� 8���;

] is real or complex.

Corollary 2 Another implication of Theorem 1 is
that, with the exception of the eigenvalue unity, the
rest of the spectrum of

� 8���;
, namely,

§ [ � � =t=M= � [ d � © ,
is distributed symmetrically both with respect to the
vertical line ª-[ � � e � and with respect to the real
axis in the [ -plane. In particular, the following can
be deduced from (12):

(i) When
�`« �

, all the eigenvalues [ � � =M=t= � [ d � are
real, half of them positive and the other half
negative, such that[ dZ��¬ � � [ dZ� ��� « � �J�~� � � =M=t= �  P=

(ii) When � � e 8 � � dmax

; ¬ � ¬ � , all of [ � � =M=t= � [ d �
are real and positive, such that� ¬ [ dZ��¬ � e � ¬ [ dZ� �9� ¬ � �0�%� � � =M=t= �  �=

(iii) When
� ¤ � � e 8 � � dmax

;
, some or all of[ � � =M=t= � [ d � may be complex with real part

� e �
and appearing in conjugate pairs, the rest be-
ing real positive and in

8 � � � ; .
Here

�
max � # 4� § � � � =M=t= � � � © .

We now turn to the matrix
� 8���;

in (10). Be-
low, ® 8 � ; and [ min

8 � ;
stand, respectively, for the

spectral radius and the smallest eigenvalue of
�

, and�
max

8 � ;
stands for the largest singular value of

�
,

as usual. Also,
( b ( stands both for the vector ¯ d -

norm and the matrix norm induced by it. Thus,( � ( � ® 8 � ; and
( � ( � � max

8 � ;
.

Theorem 3 The matrix
� 8:�P;

is nonsingular for all� �� � . In addition, the following hold:

(i) For every
� �� � , � 8:�P; has at most � �  eigen-

values [ � that are also in the spectrum of
�

(hence are positive) with corresponding eigen-
vectors

, � �±° ¡�²� ��²Q³j² ,
¡ � �´� � such that��¡ � � [ � ¡ � and

� � ¡ � � �
. As for the re-

maining eigenvalues (at least
�  in number),

we have the following: (1) When
�n« �

, they
all are real; some of them are positive and the
rest are negative. (2) When

� ¬ � , they all are
in the open right half of the complex plane;
the real ones satisfy

� ¬ [ ��¬ ® 8 � ; , while for
the complex ones, we have

� ¬ �d [ min

8 � ; ¬ª-[ � ¬ �d ® 8 � ; . [These results are valid in
parts (ii) and (iii) that follow.]

(ii) The matrix
� 8 � ;

is hermitian indefinite and
has � positive and  negative eigenvalues.
With µ £ # 4� § ® 8 � ; � � max

8 � ; © , the positive
eigenvalues satisfy� ¬ [ � ¤ � C ? ¶� µ � (16)

while the negative ones satisfy���· [ min

8 � ; � ? ¶ µ-¸ ¤ [ �)¬ � = (17)

(iii) The matrix
� 8 � � ; has all its eigenvalues in the

open right half plane. When
�

and
�

are real,
the spectrum of

� 8 � � ; is distributed symmet-
rically with respect to the real axis. Further-
more, each eigenvalue [ � of

� 8 � � ; satisfies� ¬ ª-[ � ¤ ® 8 � ; �/¹»º [ � ¹ ¤ � max

8 � ; = (18)

Proof. Letting
* £ � �9�½¼ d � , we start by observing

that � 8:�P; �A¾ � 8���; ¾�� (19)

where¾�� � �~�¿¼ d �� G � 	 � � 8��P; � �PG � *�P* � � 	 = (20)

Obviously, ¾ is a hermitian positive definite matrix,
and hence (19) is a congruence, namely,

� 8:�P; �¾ � 8���; ¾ � = Furthermore,
*

has full rank, so that
Theorem 1 applies to the matrix

� 8���;
with

� �� � .
Thus, since

� 8���;
is nonsingular, so is

� 8��P;
.

To prove part (i), we proceed as follows: Let8 [ � ,Q; be an eigenpair of
� 8���;

, i.e.,
� 8���;Z, � [ , .
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Writing
, �i° ¡ O � O ³ O , where

¡J�À���
, � �À��� , this

gives ��¡ C � � � [ ¡ � � � � ¡ � [���= (21)

Now
¡´�� �

must hold; otherwise, we would have
from (21) that

� � � �
, hence � � �

since
�

has
full rank, which would imply that

, � � .
Similarly, from (21), there may be eigenvectors

with � � �
, provided

��¡ � [ ¡ and
¡m�2Á 8 � � ;

,
where

Á 8:Â);
denotes the null space of

Â
. Actu-

ally, by the fact that [ �� �
, and from the sec-

ond of the equations in (21), � � �
if and only if� � ¡ � �

. Also, because
� � �2� �����

and has full
rank, the dimension of

Á 8 ��� ;
is exactly � �  .

Thus,
� 8:�P;

has at most � �  eigenvectors of the
form

, �1° ¡ O � O ³ O with corresponding eigenvalues[ such that
��¡ � [ ¡ , for which

� � ¡ � � necessar-
ily. For the remaining eigenvectors

, �"° ¡ O � O ³ O (at
least

�  in number), we have that � �� �
and hence� � ¡0�� � . We turn to these eigenvectors next.

Solving the second of the equations in (21) for � ,
and substituting in the first equation there, we obtain��¡ C � [ ��� � ¡ � [ ¡ � (22)

where we have used the fact that [ �� � always. Mul-
tiplying both sides of this equality by

¡��
, and normal-

izing
¡

such that
¡ � ¡ � ( ¡ ( d � � (which is possible

by the fact that
¡0�� � ), we obtain the quadratic equa-

tion [ dÃ� I�[ � �PÄ � � �I � ¡ � ��¡ « � � Ä � ¡ � �À� � ¡ � ( � � ¡ ( d « � =
(23)

The solutions of this equation for [ are given by[�Å � �� � I)ÆEÇ I d C`� �PÄ � = (24)

There are two cases to consider:

1.
� « �

: In this case, [QÅ are all real and[ � �ÈI « � , while [ � ¬ � . In short, when�\« �
,
� 8���;

has only real positive and real
negative eigenvalues.

2.
� ¬ � : In this case, there are two different sit-
uations to consider: (a) When

� ¤ I d CK� �PÄ ¬I d , we have that [QÅ are both real and posi-
tive with

� ¬ [ � ¬ [ � ¬ I . Thus, all

such eigenvalues are real positive and satisfy� ¬ [ � ¬ ® 8 � ; . (b) When I d CÉ� ��Ä ¬ � , both
of the eigenvalues [ Å are complex, [ � � [ � ,
and ª-[�Å � �d I « � . Thus, for all such eigen-
values

�d [ min

8 � ; ¬ ª-[�Å ¬ �d ® 8 � ; .
For the proof of part (ii), we proceed as follows:

By the fact that
� 8 � ;

and
� 8 � ;

are both hermitian
and by

� 8 � ; �´¾ � 8 � ; ¾ � , the Sylvester law of in-
ertia (see, e.g., Golub and Van Loan [7]) applies, and� 8 � ;

and
� 8 � ;

have the same number of positive
and negative eigenvalues. Invoking now part (i) of
Corollary 2, we conclude that

� 8 � ;
has � positive

and  negative eigenvalues. To prove (16), we bound
the expression for [ � given in (24) from above, and
to prove (17), we bound the expression for [ � there
from below.

To prove part (iii), we consider
, � � 8 � � ;Z, �[ , � , , where

8 [ � ,Q; is an eigenpair of
� 8 � � ; as be-

fore, which gives¡ � ��¡ C ¡ � � � � � � � � ¡ � [ 8 ¡ � ¡ C2� � � ; � (25)

from whichª-[ � ¡ � ��¡¡ � ¡ CD� � � �¢º [ � � º 8 ¡ � � � ;¡ � ¡ CF� � � = (26)

By the fact that
¡A�� �

, the first of the equalities in
(26) implies ª�[ « � . Again, by the fact that

¡Ê�� � ,
it also follows from (26) thatª-[ ¤ ¡Ë�Z��¡¡ � ¡ ¤ ( � (

(27)

and¹»º [ ¹ ¤ � ¹ ¡Ë�f� � ¹( ¡ ( d C ( � ( d ¤ � ( � (Ì( ¡ (Ã( � (( ¡ ( d C ( � ( d ¤ ( � ( =
(28)

Here we have made use of the fact that
� ( ¡ (�( � ( ¤( ¡ ( d C ( � ( d . The results in (18) now follow. ¥

3 General Use of the Preconditioner

As the matrix of the system in (1), namely,
� 8 � ;

,
has both positive and negative eigenvalues by Theo-
rem 3, the solution of (1) by Krylov subspace meth-
ods without preconditioning may not always be ef-
fective. The solution by Krylov subspace methods of
the equivalent system� � �� ��� � 	 � �  	 � � �� � 	 (29)
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instead may be more effective as the matrix
� 8 � � ;

of this system has all its eigenvalues in the open right
half plane. Recall that

� 8 � � ; is obtained from
� 8 � ;

by a simple zero-cost diagonal preconditioning:� 8 � � ; � � G � �� � G � 	 � 8 � ; = (30)

Because the matrix
� 8 � � ; , unlike

� 8 � ;
, is not her-

mitian, there is no possibility of applying the meth-
ods MINRES or SYMMLQ or LSQR. Methods such
as the restarted GMRES or Bi-CGSTAB or QMR
may be used freely.

In case the matrices
�

and
�

have different mag-
nitudes, we can “balance”

� 8 � � ; by “precondition-
ing”

�
with a suitable nonsingular matrix such that

the “preconditioned”
�

will be comparable to
�

in
size. This can be achieved by replacing (29) by� � Í�� Í��� � 	 � � Í 	 � � �� Í� 	 � (31)

where Í� � ��Î � Í � Î ���  � Í� � Î � � = (32)

In particular, we can choose
Î

to be a diagonal scal-
ing matrix. It is obvious that the spectrum of the
“balanced”

� 8 � � ; will also lie in the open right
half plane. Then the application of Krylov subspace
methods to the system in (32) can be more appropri-
ate.

If GMRES
8 � ; , the restarted GMRES for some

fixed integer � , is the Krylov subspace method be-
ing used, then its performance can be further en-
hanced as we discuss next. As

� 8 � � ; has all its
eigenvalues [ � in the open right half plane, hence¹Z4U3½Ï [ � ¹ ¬ÑÐ e � for all � , for every real scalar Ò that
satisfies� ¬ Ò ¬ �
Ó+Ô�Õ7Ö® 8 � 8 � � ;Z; � Ö � # 4�� ¹Z4U3½Ï [ � ¹×� (33)

the Richardson iterative method defined by� �QØ � � Ø � � 	 � � �QØ Ø 	 CÙÒ � � �� � 	 � � � �� � � � 	 � ��Ø Ø 	 � �
(34)

converges. (For a proof of this fact, see Sidi [16].)
With Ò chosen in this way, we now apply GMRES in
the following manner: We choose a positive integer

  in addition to � . Starting with some arbitrary ini-
tial vector

,ÛÚ ��° � OÚ  OÚ ³ O , we generate the vectors, � � , d � =M=t= � ,�� by the Richardson iterative method as
in (34). We next apply � steps of GMRES to the
linear system in (29) with

, �
serving as the initial

vector for this purpose. Setting
, Ú

equal to the out-
come of this application of GMRES, we repeat the
same steps as many times as is necessary. Thus,
each such cycle uses   C � matrix-vector products
with the matrix

� 8 � � ; . When applied in this form,
GMRES has been denoted GMRES

8  ��f� ; . [Note that
GMRES

8 � �Ü� ; is simply GMRES
8 � ; .]

This approach was originally incorporated into
the computer program that implements vector ex-
trapolation methods in the paper Sidi [17]. The anal-
ysis of GMRES

8  ��f� ; that is provided in Sidi and
Shapira [18] shows, at least in some cases of inter-
est, that the   Richardson iterations that precede the
application of GMRES have a very beneficial effect.
Specifically, if one cycle of GMRES

8 � ; , for some� , reduces the initial error by a given factor, then
one cycle of GMRES

8  Ë�Ü� ; , with   « � , can reduce
the initial error by a larger factor. It has been ob-
served numerically that, starting with the same ini-
tial vector, GMRES

8  ��f� ; , with some   « �
, re-

quires a smaller number of matrix-vector products
than GMRES

8 � ; to reduce the initial error by a given
factor, at least in some problems of interest. In ad-
dition, GMRES

8  Ë�Ü� ; has been observed to converge
even in situations where GMRES

8 � ; stagnates. Note
that the storage requirements of both GMRES

8 � ;
and GMRES

8  ��f� ; are the same. In both cases, we
need to store about � vectors in

�����Q�
(or in

VÉ���Q�
)

in the present case.

It is interesting that, even when Ò is such that
the Richardson iterative method of (34) diverges
(but slowly), GMRES

8  Ë�Ü� ; with moderate   «�
(to prevent fast growth of the iteration vectors, � � , d � =M=t= � , � ), can still produce very good conver-

gence.

For details on these matters and for examples in-
volving the numerical solution of partial differential
equations, we refer the reader to [18]. Further ap-
plications (to indefinite systems) have been given in
Shapira et al [15].
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4 A Numerical Example

In this section, we demonstrate the validity of the ar-
guments we presented in the previous section on a
simple but instructive example. We choose in (10)� �ÑÝ $ 4�Ï 8ßÞ � � Þ d � =M=t= � Þ � ; �0� ���U� �� �àÝ $ 4áÏ 8:� � � � d � =M=t= � � � ; �¢� �)�U� � (35)

where
Þ � and

� � are all positive. Thus,
Þ � are the

eigenvalues of
�

and
� � are the singular values of�

. With the technique of the proof of Theorem 1,
it can be shown that the eigenvalues [ � of

� 8:�P;
are

given as in[ d5� ��� � �� � Þ � C � Þ d� C`� ��� d� � �0�|� � � =M=t= �  �[ d5� � �� � Þ � � � Þ d� C`� ��� d� � �0�%� � � =t=M= �  �[ d ��� � � Þ ��� � �¢�~� � � =t=t= � � �  P= (36)

Let us denote by
, �

the eigenvector corresponding
to the the eigenvalue [ � ,  /� � � =t=M= � �iCA . Then,, � � , d � =M=t= � , d � are given as in, � �ãâ äáå �pæ���� � [ �9�� äáå ��æ�Èç �~ %� � � � � � � ��� (37)

if
� �� � Þ d� e 8 � � d� ; , hence [ dZ� ��� �� [ dZ� . In case� � � Þ d� e 8 � � d� ; , hence [ dZ� �9� � [ dZ� � Þ � e � , there

is one eigenvector
, dZ� ��� and one principal vector, d5� corresponding to [ dZ� �9� � [ dZ� that are given by, d5� ��� � â äáå �pæ�� Þ � e 8 � � � ; ä å ��æ� ç � , dZ� � â �� �9�� ä å ��æ� ç =

(38)
The eigenvectors

, d ��� � corresponding to the eigen-
values [ d ��� � are given by, d ��� � � â äáå �pæ��� �� ç �0�%� � � =M=t= � � �  �= (39)

Here ä�å Ø æ� is the   th standard basis vector in
� Ø

.
The numerical results we present here have been

obtained by choosingÞ � � � e�� d ���~� � � =t=M= � � �� � � � H � � �Y�~� � � =t=M= �  �è~I a positive integer.
(40)

In Tables 1–3, we present the results obtained for
the case � �né ¶ and  � � ¶ , with I � � , I � � , andI �"ê , respectively. In each case, the exact solution
to the linear system in (1) has been chosen as

�
for

each of the unknowns.ë ( B �ì ( ( ä �ì ( ( B �ì ( ( ä �ì (¶ ��= ê ��í � � ¶ � =»� ¶ í C ��� é = é � í � � ê ê =»� � í � � �� � ¶ = ��î�í � � ê î = � îUí � � � ê = ��îUí � ��ï � = ï ê í � � �� ¶ � = � ¶ í � � ê � =»� îUí � � � � = � ¶ í � ��ð � = ê � í � � �� � � = ����í � ��î � = ê �Uí � � é ¶ = ê � í � � � � = ¶ î�í � ��î� ¶ � = � ð�í � ��ð ê = � � í � � � ¶ = � é í � � î � = î ê í � � ¶
Table 1: Numerical results from GMRES(25) on the example of Section 4 with ñ~òÑó in (40). Here ôáõö and ÷Üõö are
respectively the residual vector and the error vector at the end of the ø th cycle of GMRES(25) and ùÃútù stands for the
vector û N -norm. ô+üö and ÷Üüö are related to the system (1), and ô�ýö and ÷+ýö are related to the system (8). The initial vector
is zero.
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ë ( B �ì ( ( ä �ì ( ( B �ì ( ( ä �ì (� � = ê � í � � é � =»� �Uí C ��� � = é�ê í � � é � = ����í C ���� ï = î ¶ í � � � � = ï�ïUí C ��� � = ï � í � � � � = � ��í C ���é ¶ = � � í � � � � = é � í C ��� � = � é í � � � ð = � � í � � �� é =»� ð�í � � � � = é�ê í C ��� ê = �t� í � � ¶ ï = ��ï�í � � �¶ � = ð é í � � � � = � ¶ í C ��� � =»� � í � � ¶ ��= � � í � � �ê � = ¶ � í � � � � = � ê í C ��� î = ð � í � � ê � = � ê í � � �ï � = � ï�í � � � � = � ðUí C ��� é = � ¶ í � � ê ¶ = ¶ î�í � � �î � = � ¶ í � � � � = � �Uí C ��� ê = ���Uí � ��ï ��= ï � í � � éð � = î�ï�í � � � � = � � í C ��� î = ð�ïUí � ��î � = � ð�í � � é� � � = ï é í � � � � = � ¶ í C ��� � = ð�ðUí � ��ð � = î � í � � ê��� � = ê � í � � � � = ��ðUí C ��� ��= � �Uí � ��� ê = î é í � ��ï�t� � = ����í � � � ð = � ¶ í � � � � = � ïUí � � é � = ��î�í � � �� é ï = �t� í � � ¶ ï = ï�ïUí � � � � = � ¶ í � � ï � = ¶ � í � � ¶� � é = ê ¶ í � � ¶ ¶ = é � í � � � î = ï ¶ í � � î � = � ê í � � ¶� ¶ � = ê ¶ í � � ¶ ��= ¶ îUí � � � ï = é �Uí � � î ð = ��ð�í � � ê
Table 2: Numerical results from GMRES(25) on the example of Section 4 with ñ~òFþ in (40). Here ô õö and ÷ õö are
respectively the residual vector and the error vector at the end of the ø th cycle of GMRES(25) and ùÃútù stands for the
vector û N -norm. ô+üö and ÷Üüö are related to the system (1), and ô�ýö and ÷+ýö are related to the system (8). The initial vector
is zero.

ë ( B �ì ( ( ä �ì ( ( B �ì ( ( ä �ì (� î = � ��í � � é é = ï � í C ��� � = � é í � � � ��= � ¶ í C ���� ��= ï � í � � é � = ê îUí C ��� ��= ¶ � í � � é � = ï ê í C ���é é =»� ê í � � é � = é � í C ��� � = ð�ðUí � � é � =»� é í C ���� � = î � í � � é � = � é í C ��� ¶ = ê�ê í � � ¶ ¶ = � ��í � � �¶ � =»� ¶ í � � é � = î�îUí C ��� � = ¶ ê í � � ê � = ��ï�í � � éê � = � ¶ í � � é � = î � í C ��� ê = ð�îUí � ��ð ¶ = ¶ � í � � êï � = ����í � � é � = � ê í C ��� é =»� é í � ��� � = ¶ ê í � ��îî ê = ê î�í � � � ï = � �Uí � � � é = ¶ � í � � ¶ ð = ��ð�í � � éð é = ��ï�í � � � � = ï�ðUí � � � ð = ð é í � � ê � = ��ð�í � � ¶� � é = é � í � � ¶ � = ��îUí � � � ��= � �Uí � � î ï = ð é í � � ê
Table 3: Numerical results from GMRES(25) on the example of Section 4 with ñ~òÑÿ in (40). Here ô õö and ÷ õö are
respectively the residual vector and the error vector at the end of the ø th cycle of GMRES(25) and ùÃútù stands for the
vector û N -norm. ô+üö and ÷Üüö are related to the system (1), and ô�ýö and ÷+ýö are related to the system (8). The initial vector
is zero.
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