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Summary. In this note, we provide a new perspective on Euler–Maclau-
rin expansions of (offset) trapezoidal rule approximations of the finite-range
integrals I [f ] = ∫ b

a
f (x) dx, where f ∈ C∞(a, b) but can have general

algebraic-logarithmic singularities at one or both endpoints. These integrals
may exist either as ordinary integrals or as Hadamard finite part integrals.
We assume that f (x) has asymptotic expansions of the general forms

f (x) ∼
∞∑

s=0
Ps

(
log(x − a)

)
(x − a)γs as x → a+,

f (x) ∼
∞∑

s=0
Qs

(
log(b − x)

)
(b − x)δs as x → b−,

where Ps(y) and Qs(y) are some polynomials in y. Here the γs and δs are
complex in general and different from −1,−2, . . . . The results we obtain
in this work generalize, and include as special cases, those pertaining to
the known special cases in which f (x) = (x − a)γ [log(x − a)]pga(x) =
(b − x)δ[log(b − x)]qgb(x), where p and q are nonnegative integers and
ga ∈ C∞[a, b) and gb ∈ C∞(a, b]. In addition, they have the pleasant fea-
ture that they are expressed in very simple terms based only on the asymptotic
expansions of f (x) as x → a+ and x → b− .With h = (b−a)/n, where n
is a positive integer, and withDω = d

dω
, one of these results reads, as h → 0,

h

n−1∑

i=1

f (a + ih) ∼ I [f ] +
∞∑

s=0

Ps(Dγs )
[
ζ(−γs) hγs+1]

+
∞∑

s=0

Qs(Dδs )
[
ζ(−δs) hδs+1],

where ζ(z) is the Riemann Zeta function.
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1 Introduction

Euler–Maclaurin expansions for trapezoidal rule approximations of finite-
range integrals

∫ b
a
f (x) dx, and their various generalizations in the pres-

ence of possible endpoint singularities, have played an important role in the
design of methods for the efficient numerical evaluation of these integrals.
The known results concern either the case (i) f ∈ C∞[a, b], or the case
(ii) f (x) = (x − a)γ [log(x − a)]pga(x) = (b − x)δ[log(b − x)]qgb(x),
where �γ > −1 and �δ > −1, p and q are nonnegative integers, and
ga ∈ C∞[a, b) and gb ∈ C∞(a, b]. The case (i) is treated in many books on
numerical analysis; see, for example, Steffensen [10] or Davis and Rabino-
witz [2]. The case (ii) was first treated in the papers by Navot [6], [7], and
later, using a different method involving generalized functions, by Lyness
and Ninham [4]. For a brief survey of the relevant results, see also Sidi [9,
Appendix D]. Subsequently, in a paper by Ninham [8], Navot’s expansions
were shown to hold also for the case in which �γ ≤ −1 or �δ ≤ −1 or both,
such that γ and δ are different from −1,−2, . . . ; in this case,

∫ b
a
f (x) dx

is defined as a Hadamard finite part integral.1 Finally, the remaining case
in which γ or δ or both are negative integers has recently been dealt with
by Lyness [3] and by Monegato and Lyness [5]. The technique used in [5]
unifies the treatments of the various expansions; it is based on an approach
introduced by Verlinden [11] that employs the Mellin transform. For a sum-
mary of properties of Hadamard finite part integrals, we refer the reader to
[2].

In this work, we present a new perspective to the subject that also allows
us to extend these known results to functions f (x) that may have a very gen-
eral behavior as x → a+ or as x → b−. Specifically, we assume that f (x)
has the following properties:

1. f ∈ C∞(a, b) and has the asymptotic expansions

f (x) ∼
∞∑

s=0

Ps
(

log(x − a)
)
(x − a)γs as x → a+,

f (x) ∼
∞∑

s=0

Qs

(
log(b − x)

)
(b − x)δs as x → b−,

(1.1)

1 The usual notation for Hadamard finite part integrals is
∫ b

a

= f (x) dx. For simplicity, in

this work, we use
∫ b

a

f (x) dx to denote both ordinary and Hadamard finite part integrals.
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where Ps(y) and Qs(y) are some polynomials in y, and γs and δs are in
general complex and satisfy

γs �= −1,−2, . . . ; �γ0 ≤ �γ1 ≤ �γ2 ≤ · · · ; lims→∞ �γs = +∞,

δs �= −1,−2, . . . ; �δ0 ≤ �δ1 ≤ �δ2 ≤ · · · ; lims→∞ �δs = +∞.

(1.2)

Here, �z stands for the real part of z.
Note that, in case f (x) = (x−a)γ [log(x−a)]pga(x) = (b−x)δ[log(b−
x)]qgb(x) as in the first paragraph of this section, and ga(x) and gb(x)
have full Taylor series about x = a and x = b, respectively, we have
γs = γ + s, δs = δ + s, s = 0, 1, . . . .

2. If we let ps = deg(Ps) and qs = deg(Qs) for each s, then the γs and δs
are ordered such that

ps ≥ ps+1 if �γs+1 = �γs; qs ≥ qs+1 if �δs+1 = �δs.(1.3)

3. By (1.1), we mean that, for each r = 1, 2, . . . ,

f (x) −
r−1∑

s=0
Ps

(
log(x − a)

)
(x − a)γs

= O
(
Pr(log(x − a)) (x − a)γr

)
as x → a+,

f (x) −
r−1∑

s=0
Qs

(
log(b − x)

)
(b − x)δs

= O
(
Qr(log(b − x)) (b − x)δr

)
as x → b − .

(1.4)

This is consistent with (1.2) and (1.3).
4. For each k = 1, 2, . . . , the kth derivative of f (x) also has asymptotic

expansions as x → a+ and x → b− that are obtained by differentiating
those in (1.1) term by term.

The following are consequences of (1.2):

(i) There are only a finite number of γs and only a finite number of δs having
the same real parts; consequently, �γs < �γs+1 and �δs′ < �δs′+1 for
infinitely many values of the indices s and s ′.

(ii) The sequences {(x − a)γs }∞s=0 and {(b − x)δs }∞s=0 are asymptotic scales
as x → a+ and x → b−, respectively, in the following sense: For each
s = 0, 1, . . . ,

lim
x→a+

∣
∣
∣
∣
(x − a)γs+1

(x − a)γs

∣
∣
∣
∣ =

{
1 if �γs = �γs+1,

0 if �γs < �γs+1,

lim
x→b−

∣
∣
∣
∣
(b − x)δs+1

(b − x)δs

∣
∣
∣
∣ =

{
1 if �δs = �δs+1,

0 if �δs < �δs+1.
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(iii) The integral
∫ b
a
f (x) dx exists in the ordinary sense provided �γ0 > −1

and �δ0 > −1. Otherwise, it exists as a Hadamard finite part integral.
The latter is defined as follows: Let the integers µ and ν be such that

�γµ−1 ≤ −1 < �γµ, �δν−1 ≤ −1 < �δν.
Define also

φµ(x) := f (x)−
µ−1∑

s=0

Ps
(

log(x − a)
)
(x − a)γs ,

ψν(x) := f (x)−
ν−1∑

s=0

Qs

(
log(b − x)

)
(b − x)δs .

Let alsoPs(y) = ∑ps
i=0 csiy

i andQs(y) = ∑qs
i=0 dsiy

i for some constants
csi and dsi . Then, for arbitrary t ∈ (a, b),

∫ b

a

f (x) dx =
µ−1∑

s=0

ps∑

i=0

csi
di

dγ is

(t − a)γs+1

γs + 1
+

∫ t

a

φµ(x) dx

+
ν−1∑

s=0

qs∑

i=0

dsi
di

dδis

(b − t)δs+1

δs + 1
+

∫ b

t

ψν(x) dx,

Here the integrals of φµ(x) and ψν(x) exist in the ordinary sense, as is
clear from the way we have chosen µ and ν.

From the assumptions we have made above, it is obvious that the functions
f (x) treated in the literature so far and mentioned in the first paragraph are
special cases of the ones we treat here. Now, the reader may be wondering as
to whether nontrivial functions f (x) that have the properties described here,
but are different from the special cases mentioned, can be constructed in a
reasonable way. At the end of this section, we give a simple procedure by
which such functions can be constructed.

In the next section, we state the main results of this work, and in Sec-
tion 3, we provide the proofs of these results. Our results have the pleasant
feature that they are expressed in extremely simple terms based only on the
asymptotic expansions in (1.1).

We would like to emphasize that our results do not follow from the known
results on extensions of Euler–Maclaurin expansions in the presence of end-
point singularities. Actually, they contain the known results as special cases.

Before closing this section, we note that we have assumed that f ∈
C∞(a, b) only for the sake of simplifying the presentation. We can assume
that f ∈ Ck(a, b) for some finite k just as well. The method of proof applies
to this case without any changes.
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1.1 Construction of functions satisfying (1.1)–(1.4)

We now describe a procedure by which one can construct functions f (x)with
the properties described here. Let us pick two integers τa ≶ 0 and τb ≶ 0,
and choose the γs and δs such that

s + τa ≤ �γs < s + τa + 1, s + τb ≤ �δs < s + τb + 1, s = 0, 1, . . . ,

and (1.2) is satisfied. Otherwise, the γs and δs are arbitrary. Next, let us
choose the polynomials Ps(y) and Qs(y) such that their coefficients csi and
dsi satisfy

csi = O
(
(s!)−1) and dsi = O

(
(s!)−1) as s → ∞,

and their degrees ps and qs increase at most polynomially in s. Denote

Rm(x) :=
∞∑

s=m
Ps

(
log(x − a)

)
(x − a)γs ,

Sm(x) :=
∞∑

s=m
Qs

(
log(b − x)

)
(b − x)δs ,

and

R(k)m (x) :=
∞∑

s=m

dk

dxk

[
Ps

(
log(x − a)

)
(x − a)γs

]
,

S(k)m (x) :=
∞∑

s=m

dk

dxk

[
Qs

(
log(b − x)

)
(b − x)δs

]
.

Of course, for some integers µ ≥ 0 and ν ≥ 0, we have Rγµ ≥ 0 and
Rδν ≥ 0. Then the seriesRµ(x) and Sν(x) converge uniformly on [a, b], and
thus represent functions that are continuous on [a, b]. This implies that the
function fa(x) defined as the sum of the seriesR0(x) is inC(a, b]. Similarly,
the function fb(x) defined as the sum of the series S0(x) is in C[a, b). Fur-
thermore, it can be shown from first principles that R0(x) represents fa(x)
asymptotically as x → a+, and S0(x) represents fb(x) asymptotically as
x → b−. In addition, the series R(k)µ+k(x) and S(k)ν+k(x) converge uniformly
on [a, b], and this implies that they are the kth derivatives of the functions
defined by the sums of the series Rµ+k(x) and Sν+k(x), respectively. The
conclusion from all this discussion is that, for each k = 1, 2, . . . , the deriva-
tives f (k)a (x) and f (k)b (x) exist and are given as the sums of the series R(k)0 (x)

and S(k)0 (x), respectively. See, e.g., Apostol [1, p. 403, Theorem 13-14].
Thus, fa ∈ C∞(a, b] and fb ∈ C∞[a, b), fa(x) is the sum of the series

R0(x) and is represented by the latter asymptotically as x → a+, while
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fb(x) is the sum of S0(x) and is represented by the latter asymptotically
as x → b−. Furthermore, f (k)a (x) and f (k)b (x) are the sums of R(k)0 (x) and
S
(k)
0 (x), respectively, and represented by the latter asymptotically as x → a+

and x → b−, respectively.
Next, we construct functionsUa(x) andUb(x) inC∞[a, b] with the prop-

erties

Ua(a) = 1, Ua(b) = 0, U(k)
a (a) = U(k)

a (b) = 0, k = 1, 2, . . . ,

Ub(a) = 0, Ub(b) = 1, U
(k)
b (a) = U

(k)
b (b) = 0, k = 1, 2, . . . .

For example,

Ua(x) = H(x)

H(a)
, Ub(x) = 1 − Ua(x);

H(x) =
∫ b

x

exp

[

− 1

(t − a)(b − t)

]

dt.

Finally, we set

f (x) = Ua(x)fa(x)+ Ub(x)fb(x).

It is now easy to verify that f (x) has all the properties mentioned in the
second paragraph of this section.

2 Main results

Theorem 2.1 and Corollary 2.2 below concern the special case of (1.1) in
which Ps(y) andQs(y) are constant polynomials. This case is of importance
by itself. Following these, Theorem 2.3 covers the general case.As mentioned
earlier, all these results reduce to the known results pertaining to the cases (i)
and (ii) that were mentioned in the first paragraph of the preceding section.

Throughout the remainder of the paper, we use the notation

I [f ] :=
∫ b

a

f (x) dx,(2.1)

whether
∫ b
a
f (x) dx exists as an ordinary integral or as a Hadamard finite

part integral, and

T̃n[f ; θ ] := h

n−1∑

i=0

f (a + ih+ θh); h = b − a

n
, n = 1, 2, . . . .(2.2)

Here T̃n[f ; θ ] is the offset trapezoidal rule approximation to I [f ], and θ ∈
(0, 1). Because f ∈ C∞(a, b), T̃n[f ; θ ] with θ ∈ (0, 1) is well-defined. Note
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that T̃n[f ; 1
2 ] is simply the midpoint rule approximation to I [f ]. For θ = 1,

and provided that f (a) and/or f (b) exist, we also use the notation

Ťn[f ] := h

n−1∑

i=1

f (a + ih), Tn[f ] := Ťn[f ] + h

2

[
f (a)+ f (b)

]
,(2.3)

T ′
n[f ] := Ťn[f ] + h

2
f (b), T ∗

n [f ] := Ťn[f ] + h

2
f (a).

By the fact that f ∈ C∞(a, b), Ťn[f ] is always well-defined just as T̃n[f ; θ ]
with 0 < θ < 1. Note that Ťn[f ] is analogous to (but not the same as)
T̃n[f ; 1]. In addition, provided f (a) and f (b) exist, which is the case, for
example, when f ∈ C[a, b], Tn[f ] is the ordinary trapezoidal rule approxi-
mation to I [f ].

In our results below, ζ(z, θ) denotes the generalized Zeta function, which
is defined by the convergent Dirichlet series

∑∞
k=0 1/(k+θ)z for �z > 1 and

continued analytically to the whole complex z-plane, with the exception of
z = 1, where it has a simple pole with residue 1. For θ = 1, ζ(z, 1) is simply
ζ(z), the Riemann Zeta function. At this point, we only note the following
relations among the two Zeta functions and the Bernoulli polynomials Bj(θ)
and the Bernoulli numbers Bj :

ζ(−j, θ) = −Bj+1(θ)

j + 1
, j = 0, 1, . . . ,(2.4)

Bj(0) = Bj , j ≥ 0; B1(1) = −B1; Bj(1) = Bj , j ≥ 0, j �= 1,

B1 = −1

2
; B2j+1 = 0, B2j �= 0, j = 1, 2, . . . ,

ζ(0) = −1

2
; ζ(−2j) = 0, ζ(1 − 2j) = −B2j

2j
�= 0, j = 1, 2, . . . ,

B2j+1(
1
2 ) = 0, ζ(−2j, 1

2 ) = 0, j = 0, 1, . . . .

Theorem 2.1 Let f (x) be as in (1.1)–(1.4), withPs(y) = cs andQs(y) = ds
constants in (1.1). Then,

(a) for 0 < θ < 1,

T̃n[f ; θ ] ∼ I [f ] +
∞∑

s=0

cs ζ(−γs, θ) hγs+1(2.5)

+
∞∑

s=0

ds ζ(−δs, 1 − θ) hδs+1 as h → 0,

(b) for θ = 1,

Ťn[f ] ∼ I [f ] +
∞∑

s=0

cs ζ(−γs) hγs+1 +
∞∑

s=0

ds ζ(−δs) hδs+1 as h → 0.

(2.6)
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From (1.2), it is obvious that the expansions in (2.5) and (2.6) are genuine
asymptotic expansions.

The following corollary is obtained by invoking in Theorem 2.1 the rela-
tions given in (2.4).

Corollary 2.2 The result in (2.5) when θ = 1/2 can be re-expressed as in

T̃n[f ; 1
2 ] ∼ I [f ] +

∞∑

s=0
γs �∈{0,2,4,... }

cs ζ(−γs, 1
2 ) h

γs+1(2.7)

+
∞∑

s=0
δs �∈{0,2,4,... }

ds ζ(−δs, 1
2 ) h

δs+1 as h → 0,

while that in (2.6) can be re-expressed also as in

Ťn[f ] ∼ I [f ] +
∞∑

s=0
γs �∈{2,4,... }

cs ζ(−γs) hγs+1(2.8)

+
∞∑

s=0
δs �∈{2,4,... }

ds ζ(−δs) hδs+1 as h → 0.

Remark In words, when Ps(y) = cs andQs(y) = ds are constants, the pow-
ers (x − a)2s and (b− x)2s , if present in the asymptotic expansions of (1.1),
do not contribute to the Euler–Maclaurin expansion of T̃n[f ; 1

2 ] in (2.5) when
s ∈ {0, 1, . . . }, and they do not contribute to the Euler–Maclaurin expansion
of Ťn[f ] in (2.6) when s ∈ {1, 2, . . . }.
Theorem 2.3 Let f (x) be as in (1.1)–(1.4), with Ps(y) = ∑ps

i=0 csiy
i and

Qs(y) = ∑qs
i=0 dsiy

i in (1.1), where ps and qs are some nonnegative integers
and csi and dsi are constants. Denote Dω = d

dω
. For an arbitrary polyno-

mial W(y) = ∑k
i=0 eiy

i and an arbitrary function u that depends on the
parameter ω, define also

W(Dω)u :=
k∑

i=0

ei [Di
ωu] =

k∑

i=0

ei
diu

dωi
.

Then,

(a) for 0 < θ < 1,

T̃n[f ; θ ] ∼ I [f ] +
∞∑

s=0

Ps(Dγs )
[
ζ(−γs, θ) hγs+1](2.9)

+
∞∑

s=0

Qs(Dδs )
[
ζ(−δs, 1 − θ) hδs+1] as h → 0,
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(b) for θ = 1,

Ťn[f ] ∼ I [f ] +
∞∑

s=0

Ps(Dγs )
[
ζ(−γs) hγs+1](2.10)

+
∞∑

s=0

Qs(Dδs )
[
ζ(−δs) hδs+1] as h → 0.

To see the explicit form of the expansions in Theorem 2.3, we also need

Di
ω

[
ζ(−ω, θ) hω+1] = hω+1

i∑

j=0

(−1)i−j
(
i

j

)

ζ (i−j)(−ω, θ)(logh)j ,

where ζ (k)(z, θ) is the kth derivative of ζ(z, θ) with respect to z. Using this,
it can be seen that, for example,

Ps(Dγs )
[
ζ(−γs, θ) hγs+1] = hγs+1

ps∑

j=0

wsj (logh)j ,

where

wsj =
ps∑

i=j
(−1)i−j

(
i

j

)

csi ζ
(i−j)(−γs, θ), i = 0, 1, . . . , ps.

From this and from (1.2), we see that the expansions in (2.9) and (2.10)
too are genuine asymptotic expansions.

3 Proofs

3.1 Proof of Theorem 2.1

We begin by stating the classical result on the Euler–Maclaurin expansion for
the trapezoidal rule. For a proof of this result, we refer the reader to Steffensen
[10].

Theorem 3.1 Let g ∈ Cm[a, b]. Then, for all θ ∈ [0, 1],

T̃n[g; θ ] = I [g] +
m∑

k=1

Bk(θ)

k!

[
g(k−1)(b)− g(k−1)(a)

]
hk + Um(h; θ),

where the remainder term Um(h; θ) is given by

Um(h; θ) = −hm
∫ b

a

g(m)(x)
B̄m(θ − nx−a

b−a )
m!

dx = O(hm) as h → 0.
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Here B̄k(x) is the periodic Bernoullian function that is the 1-periodic exten-
sion of the Bernoulli polynomial Bk(x). For the case θ = 1, this result can
be rewritten as

Tn[f ] = I [g] +
m∑

k=2
k even

Bk

k!

[
g(k−1)(b)− g(k−1)(a)

]
hk + Um(h; 1).

We next state two results on the Euler–Maclaurin expansions for the inte-
grals of the functions

uω(x) = (x − a)ω and vω(x) = (b − x)ω.(3.1)

Note that
∫ b
a
uω(x) dx and

∫ b
a
vω(x) dx exist as ordinary integrals when�ω >

−1. In case �ω ≤ −1 but ω �= −1,−2, . . . , they exist as Hadamard finite
part integrals. In any case,

I [uω] = (b − a)ω+1

(ω + 1)
= I [vω].

These results follow from that of Navot [6].

Theorem 3.2 Let ω �= −1,−2, . . . , and let m be a nonnegative integer
such that m > �ω + 1. Then, for all θ ∈ (0, 1],

T̃n[uω; θ ] = I [uω] +
m∑

k=1

Bk(θ)

k!
u(k−1)
ω (b) hk + ζ(−ω, θ) hω+1 + Rm(h; θ),

where

Rm(h; θ) = hm
∫ ∞

b

u(m)ω (x)
B̄m(θ − nx−a

b−a )
m!

dx = O(hm) as h → 0.

For the special case θ = 1, this result can be rewritten as

T ′
n[uω] = I [uω] +

m∑

k=2
k even

Bk

k!
u(k−1)
ω (b) hk + ζ(−ω) hω+1 + Rm(h; 1).

Theorem 3.3 Let ω �= −1,−2, . . . , and let m be a nonnegative integer
such that m > �ω + 1. Then, for all θ ∈ [0, 1),

T̃n[vω; θ ] = I [vω]−
m∑

k=1

Bk(θ)

k!
v(k−1)
ω (a) hk+ζ(−ω, 1−θ) hω+1 +Sm(h; θ),
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where

Sm(h; θ) = hm
∫ ∞

b

u(m)ω (x)
B̄m(1 − θ − nx−a

b−a )
m!

dx = O(hm) as h → 0.

For the special case θ = 1, this result can be rewritten as

T ∗
n [vω] = I [vω] −

m∑

k=2
k even

Bk

k!
v(k−1)
ω (a) hk + ζ(−ω) hω+1 + Sm(h; 1).

Note that Theorem 3.3 follows from Theorem 3.2 once we realize that

T̃n[uω; θ ] = h

n−1∑

i=0

(ih+ θh)ω and T̃n[vω; θ ] = h

n−1∑

i=0

(ih+ (1 − θ)h)ω,

so that

T̃n[vω; θ ] = T̃n[uω; 1 − θ ],

and I [vω] = I [uω], u(p)ω (b) = (−1)pv(p)ω (a), and recall that Bk(1 − θ) =
(−1)kBk(θ) for all k.

We now turn to the proof of Theorem 2.1. We carry out the proof of the
case 0 < θ < 1 only. That of the case θ = 1 is almost identical. The proof
of Corollary 2.2 can be carried out by using the relations given in (2.4), as
mentioned already.

For µ ≥ 0 and ν ≥ 0 arbitrary integers, we can write, with φµ(x) and
ψν(x) defined as in Section 1,

f (x) =
µ−1∑

s=0

csuγs (x)+ φµ(x), f (x) =
ν−1∑

s=0

dsvδs (x)+ ψν(x),(3.2)

where

φµ ∈ C∞(a, b) and φµ(x) = O
(
(x − a)γµ

)
as x → a+,

ψν ∈ C∞(a, b) and ψν(x) = O
(
(b − x)δν

)
as x → b − .

(3.3)

Let m be an arbitrary large positive integer, and let µ and ν be the smallest
integers for which γµ−1 < m − 1 ≤ γµ and δν−1 < m − 1 ≤ δν . Because
lims→∞ �γs = +∞ and lims→∞ �δs = +∞, such µ and ν exist and are
unique. Then, there hold

�γµ−1 < �γµ, �γµ−1 + 1 < m < �γµ + 2,

�δν−1 < �δν, �δν−1 + 1 < m < �δν + 2.
(3.4)
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Thus, by our assumption on the asymptotic expansions of f (k)(x) for each
k = 0, 1, . . . , there hold

φ(k)µ (x) = O
(
(x − a)γµ−k) as x → a+,

ψ(k)ν (x) = O
(
(b − x)δν−k

)
as x → b−,(3.5)

from which we conclude that, for every t ∈ (a, b),
φµ ∈ Cm−2[a, t], φ(k)µ (a) = 0, k = 0, 1, . . . , m− 2,

ψν ∈ Cm−2[t, b], ψ(k)ν (b) = 0, k = 0, 1, . . . , m− 2.
(3.6)

Finally, we split the integral I [f ] = ∫ b
a
f (x) dx as in

I [f ] = I ta[f ] + I bt [f ],(3.7)

where

I ta[f ] :=
∫ t

a

f (x) dx, I bt [f ] :=
∫ b

t

f (x) dx; t = rh, r =
⌊
n+ 1

2

⌋

.

(3.8)

We also split the trapezoidal rule T̃n[f ; θ ] as in

T̃n[f ; θ ] = T̃ (a)n [f ; θ ] + T̃ (b)n [f ; θ ],(3.9)

where

T̃ (a)n [f ; θ ] := h

r−1∑

i=0

f (a + ih+ θh),

T̃ (b)n [f ; θ ] := h

n−1∑

i=r
f (a + ih+ θh).

(3.10)

Thus, T̃ (a)n [f ; θ ] and T̃ (b)n [f ; θ ] are, respectively, the offset trapezoidal rule
approximations for the integrals I ta[f ] and I bt [f ], with stepsize h. Note also
that t ∼ (a + b)/2 as h → 0, so that the intervals [a, t] and [t, b] are both
asymptotically of length (b − a)/2 as h → 0.

In view of the above, for T̃ (a)n [f ; θ ], we have

T̃ (a)n [f ; θ ] =
µ−1∑

s=0

csT̃
(a)
n [uγs ; θ ] + T̃ (a)n [φµ; θ ](3.11)

=
µ−1∑

s=0

cs

{

I ta[uγs ] + ζ(−γs, θ) hγs+1
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+
m∑

k=1

Bk(θ)

k!
u(k−1)
γs

(t) hk +O(hm)

}

+
{

I ta[φµ] +
m−2∑

k=1

Bk(θ)

k!

[
φ(k−1)
µ (t)− φ(k−1)

µ (a)
]
hk

+O(hm−2)

}

as h → 0

= I ta

[ µ−1∑

s=0

csuγs + φµ

]

+
µ−1∑

s=0

cs ζ(−γs, θ) hγs+1

+
m−2∑

k=1

Bk(θ)

k!

[ µ−1∑

s=0

csu
(k−1)
γs

(t)+ φ(k−1)
µ (t)

]

hk

+O(hm−2) as h → 0.

The first equality is an immediate consequence of (3.2); the second follows
by invoking (3.6) and applying Theorem 3.1 to φµ(x) and by applying The-
orem 3.2 to the uγs (x); the third is obtained by employing (3.6). Invoking
(3.2) again, we finally obtain

T̃ (a)n [f ; θ ] = I ta[f ] +
µ−1∑

s=0

cs ζ(−γs, θ) hγs+1(3.12)

+
m−2∑

k=1

Bk(θ)

k!
f (k−1)(t) hk +O(hm−2) as h → 0.

Similarly, for T̃ (b)n [f ; θ ], we have

T̃ (b)n [f ; θ ] =
ν−1∑

s=0

dsT̃
(b)
n [vδs ; θ ] + T̃ (b)n [ψν; θ ](3.13)

=
ν−1∑

s=0

ds

{

I bt [vδs ] + ζ(−δs, 1 − θ) hδs+1

−
m∑

k=1

Bk(θ)

k!
v
(k−1)
δs

(t) hk +O(hm)

}

+
{

I bt [ψν] +
m−2∑

k=1

Bk(θ)

k!

[
ψ(k−1)
ν (b)− ψ(k−1)

ν (t)
]
hk

+O(hm−2)

}

as h → 0
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= I bt

[ ν−1∑

s=0

dsvδs + ψν

]

+
ν−1∑

s=0

ds ζ(−δs, 1 − θ) hδs+1

−
m−2∑

k=1

Bk(θ)

k!

[ ν−1∑

s=0

dsv
(k−1)
δs

(t)+ ψ(k−1)
ν (t)

]

hk

+O(hm−2) as h → 0.

The first equality is an immediate consequence of (3.2); the second follows
by invoking (3.6) and applying Theorem 3.1 to ψν(x) and by applying Theo-
rem 3.3 to the vδs (x); the third is obtained by employing (3.6). Invoking (3.2)
again, we finally obtain

T̃ (b)n [f ; θ ] = I bt [f ] +
ν−1∑

s=0

ds ζ(−δs, 1 − θ) hδs+1(3.14)

−
m−2∑

k=1

Bk(θ)

k!
f (k−1)(t) hk +O(hm−2) as h → 0.

Adding (3.12) to (3.14), and invoking (3.7) and (3.9), we get

T̃n[f ; θ ] = I [f ] +
µ−1∑

s=0

cs ζ(−γs, θ) hγs+1(3.15)

+
ν−1∑

s=0

ds ζ(−δs, 1 − θ) hδs+1 +O(hm−2) as h → 0.

The result now follows by recalling that m is an arbitrary integer and that
µ, ν → ∞ as m → ∞.

Before closing, we would like to note that the O(hm) terms in the first
curly brackets of (3.12) and (3.14) appear as a result of the intervals [a, t] and
[t, b] being of nonzero length as h → 0, as can be verified by analyzing the
term Rm(h; θ) in Theorem 3.2 and the term Sm(h; θ) in Theorem 3.3. This
explains our choice of t .

3.2 Proof of Theorem 2.3

To prove Theorem 2.3, we need the Euler–Maclaurin expansions of the func-
tions uω,i(x) = uω(x)[log(x − a)]i and vω,i(x) = vω(x)[log(b − x)]i . Fol-
lowing Navot [7], we first observe that

uω,i(x) = di

dωi
uω(x) and vω,i(x) = di

dωi
vω(x).
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Consequently,

I [uω,i] = di

dωi
I [uω], T̃n[uω,i; θ ] = di

dωi
T̃n[uω; θ ],

Ťn[uω,i] = di

dωi
Ťn[uω],

I [vω,i] = di

dωi
I [vω], T̃n[vω,i; θ ] = di

dωi
T̃n[vω; θ ],

Ťn[vω,i] = di

dωi
Ťn[vω].

Here, as can easily be shown, I [uω,i] and I [vω,i] are indeed Hadamard finite
part integrals when, respectively, I [uω] and I [vω] are. In any case, they are
given by

I [uω,i] = di

dωi

(b − a)ω+1

ω + 1
= I [vω,i].

It is now easy to verify that the Euler–Maclaurin expansions we are interested
in can be obtained by differentiating the ones given in Theorems 3.2 and 3.3
i times with respect to ω.

Applying the operator Di
ω = di

dωi
to the result in Theorem 3.2, we then

have

T̃n[uω,i; θ ] = I [uω,i] +
m∑

k=1

Bk(θ)

k!
u
(k−1)
ω,i (b) hk

+Di
ω

[
ζ(−ω, θ) hω+1] +Di

ωRm(h; θ),
where

Di
ωRm(h; θ) = hm

∫ ∞

b

u
(m)
ω,i (x)

B̄m(θ − nx−a
b−a )

m!
dx = O(hm) as h → 0.

Applying Di
ω = di

dωi
to the result in Theorem 3.3, we similarly have

T̃n[vω,i; θ ] = I [vω,i] −
m∑

k=1

Bk(θ)

k!
v
(k−1)
ω,i (b) hk

+Di
ω

[
ζ(−ω, 1 − θ) hω+1] +Di

ωSm(h; θ),
where

Di
ωSm(h; θ) = hm

∫ ∞

b

u
(m)
ω,i (x)

B̄m(1 − θ − nx−a
b−a )

m!
dx = O(hm) ash → 0.
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Again, with µ ≥ 0 and ν ≥ 0 arbitrary integers, we can split the function
f (x) as in

f (x) =
µ−1∑

s=0

ps∑

i=0

csi uγs,i(x)+ φ̂µ(x), f (x) =
ν−1∑

s=0

qs∑

i=0

dsi vδs ,i(x)+ ψ̂ν(x),

where

φ̂µ ∈ C∞(a, b) and φ̂µ(x) = O
(
(x − a)γµ[log(x − a)]pµ

)
as x → a+,

ψ̂ν ∈ C∞(a, b) and ψ̂ν(x) = O
(
(b − x)δν [log(b − x)]qν

)
as x → b − .

Again, for m an arbitrary large positive integer, we can choose µ and ν
such that (3.4) is satisfied.

From these, we have

φ̂(k)µ (x) = O
(
(x − a)γµ−k[log(x − a)]pµ

)
as x → a+,

ψ̂(k)ν (x) = O
(
(b − x)δν−k[log(b − x)]qν

)
as x → b−,

hence, for every t ∈ (a, b),
φ̂µ ∈ Cm−2[a, t], φ̂(k)µ (a) = 0, k = 0, 1, . . . , m− 2,

ψ̂ν ∈ Cm−2[t, b], ψ̂(k)ν (b) = 0, k = 0, 1, . . . , m− 2.

We now proceed precisely as in the proof of Theorem 2.1. We leave the
details to the reader.
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