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Summary. Recently, a variable transformation for integrals over smooth
surfaces in R

3 was introduced in a paper by Atkinson. This interesting trans-
formation, which includes a “grading” parameter that can be fixed by the user,
makes it possible to compute these integrals numerically via the product trap-
ezoidal rule in an efficient manner. Some analysis of the approximations thus
produced was provided by Atkinson, who also stated some conjectures con-
cerning the unusually fast convergence of his quadrature formulas observed
for certain values of the grading parameter. In a recent report by Atkinson
and Sommariva, this analysis is continued for the case in which the integral
is over the surface of a sphere and the integrand is smooth over this surface,
and optimal results are given for special values of the grading parameter. In
the present work, we give a complete analysis of Atkinson’s method over
arbitrary smooth surfaces that are homeomorphic to the surface of the unit
sphere. We obtain optimal results that explain the actual rates of convergence,
and we achieve this for all values of the grading parameter.

Mathematics Subject Classification (2000): 30E15, 40A25, 41A60, 65B15,
65D30, 65D32

1 Introduction

Recently, Atkinson [2] considered the problem of numerically computing the
integral

I [f ] =
∫∫

S

f (ξ, η, ζ ) dAS,(1.1)
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where S is the surface of an arbitrary bounded and simply connected body
in R

3 and dAS is the associated area element. We assume that S is infinitely
smooth and homeomorphic to the surface U of the unit sphere; namely, to
the set

U = {(x, y, z) : x2 + y2 + z2 = 1}.(1.2)

We also assume that the transformation from U to S is one-to-one and infi-
nitely differentiable and that it has a nonsingular Jacobian matrix. In [2],
Atkinson considers both smooth integrands f (ξ, η, ζ ) and ones with point
singularities of the single and double layer types. In the present work, we
restrict our attention to smooth integrands; thus, f ∈ C∞(S) throughout our
treatment.

In his method, Atkinson first makes the following change of variables
on U :

(x, y, z) = (
ψ(θ) cosφ, ψ(θ) sin φ, ν(θ)

);(1.3)

ψ(θ) = sinq θ

(cos2 θ + sin2q θ)1/2
, ν(θ) = cos θ

(cos2 θ + sin2q θ)1/2
,

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

Obviously, when q = 1, (θ, φ) are simply the standard spherical coordinates
onU . For q > 1, the variable θ is being “graded” in such a way that the north
and south poles of U remain fixed, but the areas around them are distorted.
Following this transformation of variables, Atkinson proposes to approxi-
mate the resulting (transformed) integral by the product trapezoidal rule with
the same stepsize in both θ and φ. The complete mathematical description of
this procedure is given in the next paragraph.

Denote the mapping from U to S via

ρ = [ξ, η, ζ ]T = [ξ(x, y, z), η(x, y, z), ζ(x, y, z)]T,(1.4)

so that the Jacobian matrix of this mapping is

J (x, y, z) =

∂ξ/∂x ∂ξ/∂y ∂ξ/∂z∂η/∂x ∂η/∂y ∂η/∂z

∂ζ/∂x ∂ζ/∂y ∂ζ/∂z


 .(1.5)

Thus, J (x, y, z) is known as a function of x, y, z. We also let

r = [x, y, z]T.(1.6)

Now, by expressing I [f ] as an integral over U via (1.4), and by introducing
the variables θ andφ onU as in (1.3), we are actually generating a two-param-
eter representation of S, these parameters being θ and φ. Thus, in terms of θ
and φ, the area element dAS on S becomes

dAS =
∥∥∥∥∂ρ∂θ×∂ρ

∂φ

∥∥∥∥ dθdφ,(1.7)
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where ‖p‖ =
√

pTp for p ∈ R
3. We, therefore, have

(1.8)

I [f ] =
∫ π

0

[ ∫ 2π

0
F(θ, φ) dφ

]
dθ; F(θ, φ) ≡ f (ξ, η, ζ )

∥∥∥∥∂ρ∂θ×∂ρ

∂φ

∥∥∥∥.
The vectors ∂ρ/∂θ and ∂ρ/∂φ can be computed by the chain rule, as in

∂ρ

∂θ
= J

∂r
∂θ
,

∂ρ

∂φ
= J

∂r
∂φ
.(1.9)

Here, J stands for J (x, y, z) for short, and

∂r
∂θ

=

ψ

′(θ) cosφ
ψ ′(θ) sin φ
ν ′(θ)


 , ∂r

∂φ
= ψ(θ)


− sin φ

cosφ
0


 .(1.10)

As mentioned above, Atkinson approximates the transformed integral∫ π
0 [

∫ 2π
0 F(θ, φ) dφ] dθ via the product trapezoidal rule with stepsize h =

π/n both in θ and φ, where n is some positive integer. In the present work,
we take the product trapezoidal rule with different stepsizes in θ and φ via

Tn,n′[F ] = hh′
n−1∑
j=1

n′∑
k=1

F(jh, kh′); h = π

n
, h′ = 2π

n′ ,(1.11)

where n and n′ are positive integers. In the sequel, we let n′ ∼ αnβ as n → ∞
for some fixed positive constants α and β. (Thus, in [2], n′ = 2n, in which
case h′ = h.)

Note that the product trapezoidal rule for an arbitrary integral∫ π
0 [

∫ 2π
0 F(θ, φ) dφ] dθ , where F(θ, φ) is continuous for (θ, φ) ∈ [0, π] ×

[0, 2π ], is actually hh′ ∑′′ n
j=0

∑′′ n′
k=0F(jh, kh

′), where the double prime
on a summation means that the first and the last terms in the summation are
to be multiplied by 1/2.Tn,n′[F ] in (1.11) is indeed the product trapezoidal
rule because (i)F(θ, φ) is 2π -periodic in φ, and (ii)F(0, φ) = 0 = F(π, φ),
which is the case we have here, as we will see shortly.

The variable transformation above turns out to be very effective in that the
accuracy of Tn,n′[F ] increases with increasing q. Some analysis of the error
has been carried out by Atkinson [2] for integration over U . In this paper,
Atkinson reports that very high accuracies are achieved for certain values of
q; for example, he reports that when f (ξ, η, ζ ) is smooth over S, especially
high accuracies are obtained with 2q equal to an odd integer. Actual rates of
convergence are not given in [2], however. Further analysis, again for the case
of integration of smooth f (ξ, η, ζ ) over U , the surface of the unit sphere,
is given in a recent work of Atkinson and Sommariva [3], where results are
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given for special values of q. We mention these results in the last section of
this paper.

In the present work, we tackle the general problem in which integration
is carried out on S, the surface of an arbitrary bounded and simply connected
body in R

3, precisely as explained in the first paragraph of this section, and
with different stepsizes for the variables θ and φ, and prove optimal results
concerning Tn,n′[F ] for all values of q. The proof techniques we use here are
those introduced in the paper Sidi [7] for the same integrals, but with a differ-
ent variable transformation of the author. The variable transformation of [7]
belongs to the extension of the class Sm, which was previously introduced
in the paper Sidi [6]. Surprisingly, the approximations introduced in [2] and
[7] seem to have very similar mathematical and numerical properties. The
extended class Sm transformations and their analysis appear also in a separate
paper [10] by the author. The application of the variable transformations in
the extended class Sm to the same problem is also treated in greater detail in
the paper Sidi [11].

In Section 2, we give some important theoretical preliminaries. Following
these, in Sections 3 and 4 we give the optimal convergence results concerning
the cases, respectively, (i) 2q 	= odd integer, for which the error is O(h2q),
and (ii) 2q = odd integer, for which the error is O(h4q). Theorems 3.1 and
4.2 are the main results of this work.

Note that Euler–Maclaurin expansions concerning the trapezoidal rule
approximations of finite-range integrals

∫ b
a
u(x) dx are the main analytical

tool we use in our study. For the sake of easy reference, we reproduce here
the relevant Euler–Maclaurin expansions as Theorems 1.1 and 1.2. Of these,
Theorem 1.1, concerns the integrals

∫ b
a
u(x) dx in the case the integrands

u(x) are in C2m[a, b]; this theorem can be found in most books on numerical
analysis. See, for example, Davis and Rabinowitz [4], Ralston and Rabino-
witz [5], and Atkinson [1]. See also the brief review in Sidi [8, Appendix
D]. Theorem 1.2 is a special case of a very general theorem from Sidi [9]
that concerns integrands that are smooth in the open interval (a, b) but may
have arbitrary algebraic–logarithmic singularities at x = a and x = b, and
is expressed in terms of the asymptotic expansions of u(x) as x → a+ and
x → b− and is very easy to write down and use. Below, Bk is the kth Ber-
noulli number and ζ(z) is the Riemann Zeta function. The following relations
are well known:

ζ(0) = −1

2
; ζ(−2j) = 0, ζ(1 − 2j) = −B2j

2j
, j = 1, 2, . . . .

Theorem 1.1 Let u ∈ C2m[a, b], and let h = (b − a)/n for n = 1, 2, . . . .
Then, for some ξm,n ∈ (a, b),
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h

n∑
i=0

′′
u(a + ih) =

∫ b

a

u(x) dx +
m−1∑
k=1

B2k

(2k)!

[
u(2k−1)(b)− u(2k−1)(a)

]
h2k

+(b − a)
B2m

(2m)!
u(2m)(ξm,n) h

2m.

Theorem 1.2 Let u ∈ C∞(a, b), and assume that u(x) has the following
asymptotic expansions as x → a+ and x → b−:

u(x) ∼
∞∑
s=0

cs (x − a)γs as x → a+,

u(x) ∼
∞∑
s=0

ds (b − x)δs as x → b−,

where the γs and δs are complex in general, and satisfy

γs 	= −1,−2, . . . ; 
γ0 ≤ 
γ1 ≤ 
γ2 ≤ · · · ; lims→∞ 
γs = +∞,

δs 	= −1,−2, . . . ; 
δ0 ≤ 
δ1 ≤ 
δ2 ≤ · · · ; lims→∞ 
δs = +∞.

Assume also that, for each k, the derivativeu(k)(x) also has asymptotic expan-
sions as x → a+ and x → b− that are obtained by differentiating those of
u(x) term by term k times. Let h = (b − a)/n for n = 1, 2, . . . . Then

h

n−1∑
i=1

u(a + ih) ∼
∫ b

a

u(x) dx +
∞∑
s=0

γs 	∈{2,4,... }

cs ζ(−γs) hγs+1(1.12)

+
∞∑
s=0

γs 	∈{2,4,... }

ds ζ(−δs) hδs+1 as h → 0,

where ζ(z) is the Riemann Zeta function. [Note that in case 
γ0 ≤ −1 and

δ0 ≤ −1,

∫ b
a
u(x) dx does not exist in the ordinary sense, but is defined in

the sense of Hadamard finite part.]

It is clear from (1.12) that the powers (x − a)2s and (b − x)2s , if present
in the asymptotic expansions of u(x) as x → a+ and x → b−, do not
contribute to the asymptotic expansion of h

∑n−1
i=1 u(a + ih) as h → 0.

In addition, if γp is the first of the γs that is different from 2, 4, 6, . . . , and
if δq is the first of the δs that is different from 2, 4, 6, . . . , then h

∑n−1
i=1 u(a+

ih) = O(hσ ) as h → 0, where σ = min{
γp,
δq}. This is a useful obser-
vation we make use of later.

Before we end this section, we sketch the ideas that yield the proofs of
the main results of Sections 3 and 4. Because these proofs involve many



524 A. Sidi

technical details, we believe such a sketch may help the reader not to get
lost in the details. We first observe that the asymptotic expansion of the error
Tn,n′[F ] − I [f ] as h → 0 is the same as that of T n[F ] − I [f ], where
T n[F ] is the trapezoidal rule approximation to the one-dimensional integral
I [f ] = ∫ π

0 v(θ) dθ with v(θ) = ∫ 2π
0 F(θ, φ) dφ. As a result, it is enough to

study T n[F ] − I [f ] only. In view of Theorem 1.2, this study can be carried
out by a careful analysis of v(θ) as θ → 0 and θ → π , which, in turn, is done
by studying the expansions of F(θ, φ) as θ → 0 and θ → π and integrating
them carefully with respect to φ. [As a result of this integration, many of the
terms in the expansions of F(θ, φ) disappear; this is a crucial fact that we
use in the treatment of the cases in which 2q is an odd integer.] Now, for all
values of the grading parameter q, the function v(θ) is infinitely smooth for
0 < θ < π ; it is not regular at θ = 0 and θ = π for all values of q, however.
Nevertheless, in all cases, v(θ) has asymptotic expansions as θ → 0 and
θ → π in (not necessarily integral) powers of θ and (π − θ), respectively.
At this point, Theorem 1.2 is invoked to obtain the main results.

2 Preliminaries

Let us assume that f (ξ, η, ζ ) is infinitely differentiable over S. This and the
fact that the transformation in (1.4) is infinitely differentiable over U imply
that f (ξ, η, ζ ) is an infinitely differentiable function of x, y, z over U . Let
us observe that x, y, z, as functions of φ, are analytic and 2π -periodic as
well. Therefore, as a function of φ, f (ξ, η, ζ ) is infinitely differentiable on
(−∞,∞) and also 2π -periodic. There is an analogous statement that can be
made concerning ‖∂ρ/∂θ × ∂ρ/∂φ‖, and we turn to it next.

In the sequel, we use the notation

(ξ1, ξ2, ξ3) = (ξ, η, ζ ) and (x1, x2, x3) = (x, y, z)

whenever convenient.

2.1 Analysis of ‖∂ρ/∂θ × ∂ρ/∂φ‖

Theorem 2.1 With S as in the first paragraph of Section 1, there holds
∥∥∥∥∂ρ∂θ × ∂ρ

∂φ

∥∥∥∥ = L(θ)R(x, y, z),(2.1)

where

L(θ) = |ν ′(θ)| = sin2q−1 θ (q cos2 θ + sin2 θ)

(cos2 θ + sin2q θ)3/2
,(2.2)
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and

R(x, y, z) =
√
β2

12 + β2
23 + β2

31; βij = (∇ξi × ∇ξj
) · r,(2.3)

∇u being the gradient of the function u(x, y, z), that is, ∇u = (∂u/∂x,

∂u/∂y, ∂u/∂z). R(x, y, z) is strictly positive on U and is in C∞(U). Conse-
quently,R(x, y, z), as a function of φ, is infinitely differentiable on (−∞,∞)

and 2π -periodic as well.

Proof Denoting 
ψ

′(θ) cosφ
ψ ′(θ) sin φ
ν ′(θ)


 = κ,


− sin φ

cosφ
0


 = λ

in (1.10), letting also

K = Jκ, L = Jλ,

and using the fact that for any two vectors a,b in R
3, there holds

‖a × b‖2 = ‖a‖2‖b‖2 − (a · b)2,

we have ∥∥∥∥∂ρ∂θ × ∂ρ

∂φ

∥∥∥∥
2

= [ψ(θ)]2[‖K‖2 ‖L‖2 − (KTL)2
]
.(2.4)

Next, by Lemmas 7.1 and 7.2 in Sidi [7], letting κ = [κ1, κ2, κ3]T and λ =
[λ1, λ2, λ3]T, it follows that

‖K‖2 ‖L‖2 − (KTL)2 = σ 2
12 + σ 2

23 + σ 2
31,(2.5)

where

σij =
3∑
r=1

3∑
s=1

JirJjsτrs; τrs = κrλs − κsλr .(2.6)

Here, Jij is the (i, j) element of the matrix J . Now, τji = −τij ; this implies
that τii = 0 and hence the only relevant τij are τ12, τ23, τ31. From the defini-
tions of κ and λ, it follows that

τ12 = ψ ′(θ), τ23 = −ν ′(θ) cosφ, τ31 = −ν ′(θ) sin φ.

By (1.3), we have that [ψ(θ)]2 + [ν(θ)]2 = 1 for all θ , and by differen-
tiation it follows that ψ(θ)ψ ′(θ) + ν(θ)ν ′(θ) = 0, from which we have
ν ′(θ) = −ψ(θ)ψ ′(θ)/ν(θ). Using this, and invoking (1.3), we obtain

τ12 = ψ ′(θ)
ν(θ)

z, τ23 = ψ ′(θ)
ν(θ)

x, τ31 = ψ ′(θ)
ν(θ)

y.
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With x, y, z replaced by x1, x2, x3, these can be rewritten in the form

τij = ψ ′(θ)
ν(θ)

3∑
k=1

εijkxk,

where ε123 = 1, and εijk, 1 ≤ i, j, k ≤ 3, is odd under an interchange of any
two of the indices i, j, k, which means that εijk = 0 when any two of these
indices have the same value. Substituting these in (2.6), and observing that
Jij = ∂ξi/∂xj , we obtain

σij = ψ ′(θ)
ν(θ)

3∑
r=1

3∑
s=1

3∑
k=1

εrsk
∂ξi

∂xr

∂ξj

∂xs
xk = ψ ′(θ)

ν(θ)
βij ,

with βij as defined in (2.3). Combining all the above in (2.5) and (2.4), and
invoking again ν ′(θ) = −ψ(θ)ψ ′(θ)/ν(θ), the results in (2.1)–(2.3) follow.

Since all elements of J (x, y, z) are in C∞(U), so are βij ; consequently,
M(x, y, z) ≡ β2

12 + β2
23 + β2

31 is in C∞(U) as well. We now show that
M(x, y, z) is strictly positive on U , which will guarantee that R(x, y, z) =√
M(x, y, z) is in C∞(U). [Note that if M(x, y, z) vanishes at some point

on U , then
√
M(x, y, z) is not necessarily in C∞(U).] Assume, to the con-

trary, that M(a, b, c) = 0 at some point (a, b, c) ∈ U . This means that
β12 = β23 = β31 = 0 at this point, which, in turn, means that all three vec-
tors ∇ξi(a, b, c), i = 1, 2, 3, lie in a plane orthogonal to the vector [a, b, c]T,
hence lie in the same plane, thus becoming linearly dependent. This is equiv-
alent to det J (a, b, c) = 0, which contradicts our assumption that the matrix
J (x, y, z) is nonsingular on U . This completes the proof of the theorem. �

Note that the result of Theorem 2.1 is true whether S has symmetry prop-
erties or not.

As an example, let us consider the case in which S is the surface of an
ellipsoid, which we take to be

S = {
(ξ, η, ζ ) : (ξ/a)2 + (η/b)2 + (ζ/c)2 = 1

}
.

Here, a, b, c are the lengths of the semi-axes of this ellipsoid. The map-
ping from U to S can be taken to be (ξ, η, ζ ) = (ax, by, cz). In this case,
J = diag (a, b, c) hence is nonsingular on U . This example was treated in
[2], where the result

R(x, y, z) = [
(bcx)2 + (cay)2 + (abz)2

]1/2
,

is also given. This result can also be obtained from Theorem 2.1. It is easy to
see that R(x, y, z) in this case is in C∞(U), and this is in accordance with
Theorem 2.1.
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2.2 Preliminary analysis of Tn,n′[F ]

Substituting (2.1) in the function F(θ, φ) defined in (1.8), we have that

F(θ, φ) = L(θ)w(x, y, z); w(x, y, z) = f (ξ, η, ζ )R(x, y, z),(2.7)

with L(θ) and R(x, y, z) as in (2.2) and (2.3), respectively. By our discus-
sion in the first paragraph of this section and by Theorem 2.1, it is clear that
w(x, y, z) is in C∞(U). Therefore, as a function of φ, it is also infinitely
differentiable on (−∞,∞) and 2π -periodic as well. As a result, F(θ, φ),
as a function of φ, is also infinitely differentiable on (−∞,∞) and is also
2π -periodic. Furthermore, since w(x, y, z) is continuous on U , and L(0) =
L(π) = 0 because q ≥ 1, it follows that F(0, φ) = F(π, φ) = 0.

With this information on the function F(θ, φ) available, we next give a
preliminary analysis of Tn,n′[F ] that is defined in (1.11).

Now, h′ ∑n′
k=1 F(θ, kh

′) is the trapezoidal rule approximation to the inte-
gral

∫ 2π
0 F(θ, φ) dφ. Therefore, by the Euler–Maclaurin summation formula

in Theorem 1.1, we have

h′
n′∑
k=1

F(θ, kh′) =
∫ 2π

0
F(θ, φ) dφ + rm(θ;h′),(2.8)

where

∣∣rm(θ;h′)
∣∣ ≤ 2π

B2m

(2m)!

(
max

0≤θ≤π
0≤φ≤2π

∣∣∣∣ ∂
2m

∂φ2m
F(θ, φ)

∣∣∣∣
)
h′2m(2.9)

≡ Cmh
′2m for every m,

Cm being constants independent of h′ and θ . Consequently, we easily have
the following important intermediate result:

Theorem 2.2 With f ∈ C∞(S), and for n fixed, there holds

Tn,n′[F ] = T n[F ] +O(h′µ) as h′ → 0, for every µ > 0,(2.10)

uniformly in n, hence in h, where

T n[F ] = h

n−1∑
j=1

∫ 2π

0
F(jh, φ) dφ.(2.11)

Thus, when n′ is chosen such that n′ ∼ αnβ as n → ∞ for some fixed positive
constants α and β, there holds

Tn,n′[F ] = T n[F ] +O(hµ) as h → 0, for every µ > 0,(2.12)
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and, therefore,

Tn,n′[F ] − I [f ] = (
T n[F ] − I [f ]

)
(2.13)

+O(hµ) as h → 0, for every µ > 0.

Thus, we need to concern ourselves only with the asymptotic expansion as
h → 0 ofT n[F ]−I [f ]. Note thatT n[F ] is nothing but the (one-dimensional)
trapezoidal rule approximation to the integral

I [f ] =
∫ π

0
v(θ) dθ; v(θ) =

∫ 2π

0
F(θ, φ) dφ.(2.14)

This means that, by Theorem 1.2, we need to study v(θ) as θ → 0 and
θ → π .

2.3 Asymptotic analysis of
∫ 2π

0 w(x, y, z) dφ

By (2.7),

(2.15)

v(θ) =
∫ 2π

0
F(θ, φ) dφ =

∫ 2π

0
L(θ)w(x, y, z) dφ = L(θ)G(θ),

where

G(θ) =
∫ 2π

0
w(x, y, z) dφ.(2.16)

Therefore, we need to study the asymptotic behavior of the functions L(θ)
and G(θ) as θ → 0 and θ → π . Here, we give some preliminary analysis
of G(θ), which we make use of in the next sections. The analysis of L(θ) is
left to the next sections.

Now, when θ = 0, there holds (x, y, z) = (0, 0, 1), while when θ = π ,
there holds (x, y, z) = (0, 0,−1). Let also

ξ(0, 0,±1) = ξ±, η(0, 0,±1) = η±, ζ(0, 0,±1) = ζ±.

Becausew(x, y, z) = f (ξ, η, ζ )R(x, y, z) is inC∞(U), it has the asymp-
totic expansions

w(x, y, z) ∼
∞∑
i=0

∞∑
j=0

∞∑
k=0

w(i,j,k)(0, 0, 1)

i! j ! k!
xiyj (z− 1)k as θ → 0,

w(x, y, z) ∼
∞∑
i=0

∞∑
j=0

∞∑
k=0

w(i,j,k)(0, 0,−1)

i! j ! k!
xiyj (z+ 1)k as θ → π,
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where

w(i,j,k)(x0, y0, z0) = ∂i+j+kw
∂xi∂yj∂zk

∣∣∣∣
(x,y,z)=(x0,y0,z0)

.

Obviously, these are the Taylor series expansions ofw(x, y, z) about (0, 0, 1)
and (0, 0,−1), respectively.

Invoking (1.3), these expansions can be rewritten in the form

w(x, y, z) ∼
∑
i,j,k≥0

e
(+)
i,j,k cosi φ sinj φ [ψ(θ)]i+j [ν(θ)− 1]k as θ → 0,

w(x, y, z) ∼
∑
i,j,k≥0

e
(−)
i,j,k cosi φ sinj φ [ψ(θ)]i+j [ν(θ)+ 1]k as θ → π,

where

e
(±)
i,j,k = w(i,j,k)(0, 0,±1)

i! j ! k!
.

Substituting these in the integral
∫ 2π

0 w(x, y, z) dφ, and interchanging the
order of integration and summation (which is legitimate, as can be verified
easily), we obtain

G(θ) ∼
∑
i,j,k≥0

e
(+)
i,j,k µi,j [ψ(θ)]i+j [ν(θ)− 1]k as θ → 0,(2.17)

G(θ) ∼
∑
i,j,k≥0

e
(−)
i,j,k µi,j [ψ(θ)]i+j [ν(θ)+ 1]k as θ → π,

where µi,j is defined by

µi,j =
∫ 2π

0
cosi φ sinj φ dφ.(2.18)

By Lemma 3.1 in [11] (originally, Lemma 4.1 in [7]), we have

µi,j = 0 when i or j or both odd.(2.19)

Consequently,

G(θ) ∼
∑
i,j,k≥0

A
(+)
i,j,k [ψ(θ)]2i+2j [ν(θ)− 1]k as θ → 0,(2.20)

G(θ) ∼
∑
i,j,k≥0

A
(−)
i,j,k [ψ(θ)]2i+2j [ν(θ)+ 1]k as θ → π,

where

A
(±)
i,j,k = e

(±)
2i,2j,k µ2i,2j .(2.21)
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Note that, by the fact that w(x, y, z) = f (ξ, η, ζ )R(x, y, z) and µ0,0 = 2π ,
we have

A
(±)
0,0,0 = 2π w(0, 0,±1) = 2π f (ξ±, η±, ζ±) R(0, 0,±1).(2.22)

The result in (2.19) and its consequences in (2.20) and (2.21) are of impor-
tance in that they lead to the optimal result for the case in which 2q is an odd
integer, as we will see in Section 4.

3 Convergence analysis for Tn,n′[F ] when 2q �= odd integer

Theorem 3.1 Let f ∈ C∞(S) and let q ≥ 1 such that 2q 	= an odd integer.
Then, with n′ ∼ αnβ as n → ∞ for some fixed positive constants α and β,
there holds

Tn,n′[F ] − I [f ] = O(h2q) as h → 0.(3.1)

In case w(0, 0, 1)+ w(0, 0,−1) 	= 0, there holds

Tn,n′[F ] − I [f ] ∼ 2πq ζ(−2q + 1) [w(0, 0, 1)(3.2)

+w(0, 0,−1)]h2q as h → 0.

Proof Sinceψ(θ) and ν(θ) in (1.3) are both inC∞(0, π)with possible (end-
point) singularities at θ = 0 and θ = π , the functions L(θ) and G(θ) are
also in C∞(0, π) with possible singularities at θ = 0 and θ = π , and so is
their product.

In the sequel, we analyze their behavior only as θ → 0, the analysis as
θ → π being identical.

Analysis of L(θ): We start by analyzing the behavior of L(θ) as θ → 0.
First,

sin2q−1 θ ∼
∞∑
i=0

aiθ
2q+2i−1 as θ → 0, a0 = 1.

Next,

q cos2 θ + sin2 θ ∼
∞∑
i=0

biθ
2i as θ → 0, b0 = q.

Next,

cos2 θ + sin2q θ ∼ 1 +
∞∑
i=1

ciθ
δi as θ → 0; 2 = δ1 < δ2 < · · · ,
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so that

(cos2 θ + sin2q θ)−3/2 ∼ 1 +
∞∑
i=1

diθ
σi as θ → 0; 2 = σ1 < σ2 < · · · .

Combining all these in (2.2), we obtain

L(θ) ∼
∞∑
i=0

eiθ
τi as θ → 0; 2q − 1 = τ0 < τ1 < τ2 < · · · , e0 = q.

This completes the analysis of L(θ) for θ → 0. As for θ → π , we have

L(θ) ∼
∞∑
i=0

ei(π − θ)τi as θ → π,

which follows immediately from the fact that L(π − θ) = L(θ).
Analysis of G(θ): We again start with the analysis of the case θ → 0.

We begin with the results in (2.20)–(2.22). From (1.3) and the preceding
developments used in the analysis of L(θ),

[ψ(θ)]m ∼
∞∑
i=0

c′miθ
δ′i as θ → 0; mq = δ′

0 < δ′
1 < · · · ,

[ν(θ)− 1]k ∼
∞∑
i=0

d ′
kiθ

σ ′
i as θ → 0; 2k = σ ′

0 < σ ′
1 < · · · .

As a result,

G(θ) ∼ 2π w(0, 0, 1)+
∞∑
i=1

e′iθ
τ ′
i as θ → 0; 0 < τ ′

1 < τ ′
2 < · · · .

This completes the analysis of the case θ → 0. As for the case θ → π , we
have similarly

G(θ) ∼ 2π w(0, 0,−1)+
∞∑
i=1

e′i (π − θ)τ
′
i as θ → π.

This follows immediately from the fact that

ψ(π − θ) = ψ(θ) and ν(θ)+ 1 = −[ν(π − θ)− 1].

Combining the results we have obtained for L(θ) andG(θ), we conclude
[recall (2.15)] that v(θ) = L(θ)G(θ) has the asymptotic expansions

v(θ) ∼
∞∑
i=0

E
(+)
i θαi as θ → 0; E

(+)
0 = 2πq w(0, 0, 1),

v(θ) ∼
∞∑
i=0

E
(−)
i (π − θ)αi as θ → π; E

(−)
0 = 2πq w(0, 0,−1),
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with

2q − 1 = α0 < α1 < α2 < · · · .

Applying now Theorem 1.2, we obtain

T n[F ] −
∫ π

0
v(θ) dθ ∼

∞∑
i=0

(
E
(+)
i + E

(−)
i

)
ζ(−αi) hαi+1 as h → 0,

from which the results in (3.1) and (3.2) follow. �

4 Convergence analysis for Tn,n′[F ] when 2q = odd integer

When 2q is an odd integer, the approximation Tn,n′[F ] turns out to have very
high accuracy. The optimal theoretical result for this case can be obtained
by a more refined study of the asymptotic expansions of v(θ) as θ → 0 and
θ → π . To achieve this goal, we start with the following definition:

Definition 4.1 Rµ(θ) stands generically for any function of θ that has an
asymptotic expansion of the form

Rµ(θ) ∼
∞∑
i=0

riθ
µ+2i as θ → 0.

Remark Note that, in Definition 4.1, we do not require r0 	= 0, because such
a requirement is not needed in the sequel.

By Definition 4.1, we have

Rµ(θ)+ Rµ+2k(θ) = Rµ(θ), k = 1, 2, . . . ,(4.1)

hence
∞∑
k=0

Rµ+2k(θ) = Rµ(θ).

We also have

Rµ(θ)Rν(θ) = Rµ+ν(θ),
[
Rµ(θ)

]α = Rαµ(θ).(4.2)

Theorem 4.2 Let f ∈ C∞(S) and let 2q be an odd integer greater than 2;
that is, q = 3/2, 5/2, . . . . Then, with n′ ∼ αnβ as n → ∞ for some fixed
positive constants α and β, there holds

Tn,n′[F ] − I [f ] = O(h4q) as h → 0.(4.3)
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Proof We give a detailed analysis for θ → 0; that for θ → π is analogous.
First, as we have also seen in the preceding section,

cosα θ = 1 + R2(θ) = R0(θ), sinα θ = Rα(θ),(4.4)

cos2 θ + q sin2 θ = R0(θ),

and, because 2q is an odd integer,

cos2 θ + sin2q θ = 1 − sin2 θ + sin2q θ(4.5)

= 1 + R2(θ)+ R2q(θ) = R0(θ)+ R2q(θ).

[It is important to realize that, by the fact that 2q is not an even integer, (4.1)
does not apply to R0(θ)+ R2q(θ); that is, R0(θ)+ R2q(θ) 	= R0(θ).]

Note that, for k = 0, 1, 2, . . . , R2k(θ) has only even powers in its expan-
sion, while R2qk(θ) has only even (odd) powers in its expansion when k is
an even (odd) integer. Consequently, by (4.1) and (4.2), and by the fact that
2q > 2,

(4.6)

(R2 + R2q)
k =

k∑
i=0

(R2)
k−i (R2q)

i =
k∑
i=0

R2k−2iR2qi = R2k + R2q+2k−2.

Therefore, by (4.5) and (4.6), by the fact that

R2(θ)+ R2q(θ) = O(θ2) = o(1) as θ → 0,

and by the binomial theorem, there holds for every α 	= 0

(4.7)

(cos2 θ + sin2q θ)α = [
1 + (R2 + R2q)

]α

= 1 +
∞∑
k=1

(R2 + R2q)
k = 1 + R2 + R2q = R0 + R2q .

[Note that here we have suppressed θ in Rµ(θ). We shall continue to do so
in the sequel for convenience.] In view of the above, we now analyze the
behavior of L(θ) and G(θ) as θ → 0. In this analysis, we make free use of
(4.1) and (4.2).

We start with L(θ). From (2.2), (4.4), and (4.7),

L(θ) = R2q−1R0(R0 + R2q) = R2q−1 + R4q−1.(4.8)

The analysis ofG(θ) as θ → 0 is done by studying the first of the asymp-
totic expansions in (2.20). First, by (1.3), (4.4), and (4.7),

[ψ(θ)]2r = sin2qr θ

(cos2 θ + sin2q θ)r
= R2qr(R0 + R2q)(4.9)

= R2qr + R2q(r+1), r = 1, 2, . . . .
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Next, again by (1.3), (4.4), and (4.7), there holds

ν(θ) = (1 + R2)(1 + R2 + R2q) = 1 + R2 + R2q,

so that

ν(θ)− 1 = R2 + R2q,

hence, by (4.6),

[ν(θ)− 1]k = R2k + R2q+2k−2, k = 1, 2, . . . .(4.10)

Combining (4.9) and (4.10), we have

(4.11)

[ψ(θ)]2r [ν(θ)− 1]k = R2qr+2k + R2q(r+1)+2k−2, r, k = 1, 2, . . . .

Substituting (4.11) in the asymptotic expansion of G(θ) as θ → 0 that is
given in (2.20), after analyzing the first few terms, we observe that

G(θ) ∼ A
(+)
0,0,0 +

(
A
(+)
1,0,0 + A

(+)
0,1,0

)
(R2q + R4q)+ A

(+)
0,0,1(R2 + R2q)

+
(
A
(+)
2,0,0 + A

(+)
1,1,0 + A

(+)
0,2,0

)
(R4q + R6q)

+
(
A
(+)
1,0,1 + A

(+)
0,1,1

)
(R2q+2 + R4q)

+A(+)0,0,2(R4 + R2q+2)+ · · · , as θ → 0,

from which we conclude that

G(θ) = R0 + R2q .(4.12)

Combining (4.8) and (4.12) in [recall (2.15)] v(θ) = L(θ)G(θ), we obtain

v(θ) = (R2q−1 + R4q−1)(R0 + R2q) = R2q−1 + R4q−1,

which can be written in the form

v(θ) ∼
∞∑
i=0

D
(+)
i θ2q−1+2i +

∞∑
i=0

C
(+)
i θ4q−1+2i as θ → 0.(4.13)

In an analogous manner,

(4.14)

v(θ) ∼
∞∑
i=0

D
(−)
i (π − θ)2q−1+2i +

∞∑
i=0

C
(−)
i (π − θ)4q−1+2i as θ → π.

Now, the series
∑∞

i=0D
(+)
i θ2q−1+2i and

∑∞
i=0D

(−)
i (π−θ)2q−1+2i contain

only even powers; therefore, they do not contribute to the Euler–Maclaurin
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expansion of
∫ π

0 v(θ) dθ . By (4.13) and (4.14), by Theorem 1.2, and by the
fact that ζ(1 − 4q − 2i) = −B4q+2i/(4q + 2i) 	= 0, there holds

T n[F ] −
∫ π

0
v(θ) dθ ∼ −

∞∑
i=0

B4q+2i

4q + 2i

(
C
(+)
i + C

(−)
i

)
h4q+2i as h → 0,

from which the result in (4.3) follows. �

5 Concluding Remarks

In this paper, we have given a complete analysis of the quadrature method
introduced by Atkinson [2] for smooth integrands over an arbitrary smooth
surface S in R

3. Our main results, namely, Theorems 3.1 and 4.2, cover all
values of the grading parameter q. These results are valid when the relevant
surface S is homeomorphic to U , the surface of the unit sphere, and when
the mapping from U to S is one-to-one, infinitely differentiable, and has a
nonsingular Jacobian matrix.

After this work was completed, the author was provided by Professor
Kendall Atkinson with a copy of the recent paper Atkinson and Sommariva
[3], which deals with the same problem and uses techniques similar to those
developed in [7]. The paper [3] differs from the present work in the following
ways: The results of [3] concern integration of smooth functions over the
surface of the unit sphere. Theorem 2.2 of [3] (analogue of our Theorem 3.1)
is about the case in which 2q is not an odd integer with 1 < q < 2. Similarly,
Theorem 2.3 of [3] (analogue of our Theorem 4.2), which is about the case
in which 2q is an odd integer, treats the cases q = 1.5, 2.5, 3.5 only.
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