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Abstract

ClassSm variable transformationswith integermfor finite-range integralswere introduced by the author (Numer-
ical Integration IV, International series of Numerical Mathematics, Basel, 1993, pp. 359–373) about a decade ago.
These transformations “periodize” the integrand functions in a way that enables the trapezoidal rule to achieve very
high accuracy, especially with evenm. In a recent work by the author (Math. Comp. (2005)), these transformations
were extended toarbitrarym, and their role in improving the convergence of the trapezoidal rule for different classes
of integrands was studied in detail. It was shown that, withmchosen appropriately, exceptionally high accuracy can
be achieved by the trapezoidal rule. In the present work, wemake use of these transformations in the computation of
integrals on surfaces of spheres in conjunction with the product trapezoidal rule.We treat integrands that have point
singularities of the single-layer and double-layer types. We propose different approaches and provide full analyses
of the errors incurred in each. We show that surprisingly high accuracies can be achieved with suitable values of
m. We also illustrate the theoretical results with numerical examples. Finally, we also recall analogous procedures
developed in another work by the author (Appl. Math. Comput. (2005)) for regular integrands.
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1. Introduction

The numerical computation of integrals, of functions with point singularities, on surfaces of bounded
domains inR3 is a task frequently encountered in applications. Such integrals arise naturally in boundary
integral formulations of continuum problems inR3, and the relevant singularities are of the single- and
double-layer types. For a review of this subject, see, for example, Atkinson[1], [2, Chapter 5].
In the present work, we consider the computation of such integrals on surfaces of spheres.Without loss

of generality, we consider integrals over the surface of the unit sphere, denotedU,

U : ={(x, y, z) : x2 + y2 + z2 = 1}. (1.1)

The integrals we wish to treat then are of the form

I [f ] =
∫ ∫

U

f (Q)dA, Q = (x, y, z) ∈ U , (1.2)

where dA is the associated area element onU. The integrandsf (Q) are either of the form

f (Q) = g(Q)

|Q − P | , P ∈ U (single-layer), (1.3)

or of the form

f (Q) = g(Q) [(Q − P)QnQ]
|Q − P |3 , P ∈ U (double-layer), (1.4)

whereg(Q) is smooth overU, |Q − P | denotes the Euclidean distance betweenP andQ, nQ is the
outward normal toU atQ, and(Q − P)QnQ is the dot product of the vectors(Q − P) andnQ. We let
P = (x0, y0, z0) in the sequel.
Here are the steps of the basic numerical approach for computingI [f ] that we propose in this work:
(i) Rotate the coordinate system onU such that either the north pole or the south pole is mapped toP,
the point of singularity off (Q) onU. (How this can be done will be described shortly.)

(ii) Express the (transformed) integral overU in terms of the standard spherical coordinates� and�,
0����and0���2�.The resulting integral canbewritten in the formI [f ]=∫ �

0 [∫ 2�0 F(�, �)d�]d�.
(iii) Transform� by an appropriate periodizing variable transformation� = �(t), 0� t �1. Here,�(t)

is derived from a standard variable transformation�(t) in the extended classSm of Sidi [10],
with m chosen suitably. (We will discuss how this is done shortly.) The result of this isI [f ] =∫ 1
0 [∫ 2�0 F(�(t), �)d�]�′(t)dt .

(iv) Approximate the final integral in the variablest and� by the product trapezoidal rule.

Note: The basicmethod above, although quite effective as is, can be improved substantially by applying
it to I [f − r] for some suitably (and simply) chosen functionr(Q), such thatI [r] is much less expensive
to compute thanI [f ]. We will discuss the details of this improved procedure later.
The essentials of the approach we have just presented can be found in the recent paper[11], which

treats integrals of nonsingular functions over smooth surfaces that are homeomorphic to the surface of
the unit sphere. This paper presents a discussion on the merits of employing variable transformations in
general. In addition, it provides the definition and a summary of the properties of transformations in the
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extended classesSm, and also the sinm-transformation inSm that we have used in our computations.
Finally, it also provides the relevant Euler–Maclaurin expansions, including an extension of them due
to Sidi [9]. All these comprise the analytical tools necessary for the study of the methods of the present
work. In the sequel, we will refer freely to[11,10] for these tools.
We now turn to the complete mathematical description of the basic approach we have sketched above;

we also explain how the coordinate system can be rotated in a simple way and how�(t) is constructed.
The transformation of the(x, y, z) coordinate system such that the pointP = (x0, y0, z0) is mapped

to the north pole or the south pole ofU can be carried out by mappingU onto itself (orthogonally) via a
fixed 3× 3 real orthogonal matrixH (that is,H−1 = HT) such that[

x

y

z

]
= H

[
x̃

ỹ

z̃

]
,

[
x0
y0
z0

]
= �He3; � = ±1, e3 =

[0
0
1

]
. (1.5)

Here� should be chosen in away that does not cause loss of accuracy numerically. For example, following
Atkinson[3], we can takeH to be a real Householder matrix, with� fixed such thatH is computed in the
most stable way possible: Whenz0 �= 0,

� = −sgn(z0); H = I − 2ppT, p = 1√
2+ 2|z0|

[
x0
y0

sign(z0)(|z0| + 1)

]
(1.6)

and whenz0 = 0, we have

� = +1 or � = −1; H = I − 2ppT, p = 1√
2

[
x0
y0
−�

]
. (1.7)

(Recall that, ifH is a real Householder matrix, then it is symmetric, and hence satisfiesH−1 = H , in
addition toH−1 = HT.)
We now propose a procedure that enables us to use only (1.6) for determiningH = I −2ppT,pTp =1.

Letting� =max{|x0|, |y0|, |z0|}, so that��1/
√
3>0, we consider three separate cases:

(i) If |x0| = �, then[
y

z

x

]
= H

[
x̃

ỹ

z̃

]
,

[
y0
z0
x0

]
= −sign(x0)He3; p = 1√

2+2|x0|

[
y0
z0

sign(x0)(|x0|+1)

]
. (1.8)

(ii) If |y0| = �, then[
z

x

y

]
= H

[
x̃

ỹ

z̃

]
,

[
z0
x0
y0

]
= −sign(y0)He3; p = 1√

2+2|y0|

[
z0
x0

sign(y0)(|y0|+1)

]
. (1.9)

(iii) If |z0| = �, then[
x

y

z

]
= H

[
x̃

ỹ

z̃

]
,

[
x0
y0
z0

]
= −sign(z0)He3; p = 1√

2+2|z0|

[
x0
y0

sign(z0)(|z0|+1)

]
. (1.10)
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Note that, in these transformations,x, y, z are permuted cyclically to preserve the orientation of the
coordinate system.
Following this mapping ofU onto itself, introduce the standard spherical coordinates� and�, via

(x̃, ỹ, z̃) = (sin � cos�, sin � sin �, cos�); 0����, 0���2�. (1.11)

Then,

I [f ] =
∫ �

0

[∫ 2�

0
F(�, �)d�

]
d�, F (�, �) = f (x, y, z) sin �, (1.12)

(x, y, z) being related to(�, �) through (1.5) and (1.11). As is known, and as we will see shortly,F(�, �)

is infinitely differentiable for all� ∈ [0, �] and� ∈ [0,2�].
As for the variable transformation�(t), we wish to propose two essentially different ways for doing

this. Of these, the first is the standard way of using variable transformations. The second, introduced first
in [7,10], and used in[11], is quite unusual; however, it turns out to be more effective numerically than
the first, in addition to being interesting theoretically.

1. Choose�(t) = �1(t) = ��(t), where�(t) is a transformation in the classSm.
2. WhenP is mapped to the south pole, that is,� = −1 in (1.5), choose�(t) = �2(t) = 2��(t/2). When
P is mapped to the north pole, that is,� = +1, in (1.5), choose�(t) = �2(t) = �[2�((1+ t)/2) − 1].
Again,�(t) is a transformation in the classSm.

Then, the transformed integral becomes

I [f ] =
∫ 1

0

[∫ 2�

0
F̂ (t, �)d�

]
dt; F̂ (t, �) = F(�(t), �)�′(t). (1.13)

Finally, this integral is approximated via the product trapezoidal rule

T̂n,n′ [f ] = hh′
n∑′′

j=0

n′∑
k=1

F̂ (jh, kh′); h = 1

n
, h′ = 2�

n′ , (1.14)

wherenandn′ are positive integers, and the double prime on a summation means that the first and the last
terms in the summation are to be multiplied by 1/2.We letn′ ∼ �n	 asn → ∞ for some fixed positive
� and	 in the sequel.
Note that the product trapezoidal rule for an arbitrary integral

∫ 1
0 [∫ 2�0 F̂ (t, �)d�]dt , whereF̂ is con-

tinuous for(t, �) ∈ [0,1] × [0,2�], is actuallyhh′∑′′n
j=0

∑′′n′
k=0F̂ (jh, kh′). T̂n,n′ [f ] in (1.14) becomes

the product trapezoidal rule in our case becauseF(�, �), and hence alsôF(t, �), are 2�-periodic in�.
The variable transformations�=�(t) above turn out to be very effective in that the accuracy ofT̂n,n′ [f ]

increases with increasingm, and in a subtle way. For some special values ofm, unusually high accuracies
are achieved, as we will see later. Also, as mentioned already, the transformation�2(t) produces more
accuracy than�1(t) for the same value ofm. In addition, its performance can be improved further by
subtracting fromf (Q) a simple known function.
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The plan of this paper is as follows:
At the end of this section, we reproduce the definition of the extended classSm, and describe briefly the

sinm-transformation that is in this class and that we have used in our computations. In the next section,
we present some preliminary results concerning the structure off (Q) and of the rulêTn,n′ [f ] in the
presence of the point singularities in (1.3) and (1.4). In Section 3, we analyze the asymptotic behavior of
F(�, �) and of the integralv(�) = ∫ 2�

0 F(�, �) d� as� → 0 and� → �. The main results of this section
are Theorems 3.1 and 3.2, and they concernv(�).
In Section 4, we give the analysis of the basic rules described in the present section and provide

numerical examples in which these rules are used. Theorems 4.1 and 4.2 are the main results of this
section. Theorem 4.1 shows that, with the variable transformation� = �1(t), the error in the basic rule
is at worst O(h2m+2) providedm is an even integer, while Theorem 4.2 shows that, with� = �2(t), the
error is at worst O(h4m+4) provided 2m is an odd integer.
In Section 5, we give an improvement of the basic rule that uses the variable transformation�=�2(t);

we apply the rulêTn,n′ after preprocessingf (Q). We approximateI [f ] by T̂n,n′ [f − r] + I [r], where
f (Q)−r(Q) is determined by subtracting fromg(Q) the constantg(−P), andI [r] is known analytically.
Theerror in this case turns out to beatworstO(h6m+6)provided4m is an odd integer, as shown inTheorem
5.1. We provide a numerical example in this case too.
For the sake of completeness, in Section 6, we recall the numerical integration methods of[11] for

regular integrands over the surface of the unit sphere and summarize their relevant theory.
For the high-accuracy cases in Theorems 4.1, 4.2, and 5.1, and for the high-accuracy case in Section

6, we also provide the complete asymptotic expansions of the errors.
Wewould like tomention that the results of Theorems 3.1 and 3.2 form the basis for the lines of thought

leading to the design of the numerical integration rules described in Theorems 4.2 and 5.1.
At this point, we would like to note that, in case the integration is defined over an arbitrary smooth

surfaceSin R3 that is homeomorphic toU, we first mapStoU, and continue as above. The details of the
method and its rigorous analysis are much more complicated in this case, however.
Before closing, we mention that our basic method that uses the transformation� = �1(t) and that is

treated in Theorem 4.1 is analogous to a recent method of Atkinson[3], and its numerical performance is
very similar to that of[3] aswell. There are noanalogues of our improvedmethods and their corresponding
theory, namely, of our Theorems 4.2 and 5.1, in[3], however. One of the major differences between the
methods of the present paper and that of[3] is that in the present paper, the variable� on the unit sphere
is transformed (by a variable transformation related to one in the extended classSm), whereas in[3], �
is “graded” in a special and interesting way by the introduction of a grading parameter, instead of being
transformed.
Finally, this paper is partly based on the report[7] by the author.

1.1. The extended classSm and thesinm-transformation

Definition 1.1. A function�(t) is in theextended classSm,marbitrary, if it has the following properties:

1. � ∈ C[0,1] and� ∈ C∞(0,1); �(0) = 0,�(1) = 1, and�′(t) >0 on(0,1).
2. �′(t) is symmetric with respect tot =1/2; that is,�′(1− t)=�′(t). Consequently,�(1− t)=1−�(t).
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3. �′(t) has the following asymptotic expansions ast → 0+ andt → 1−:

�′(t) ∼
∞∑

i=0

i t

m+2i as t → 0+; �′(t) ∼
∞∑

i=0

i(1− t)m+2i as t → 1−, (1.15)

the
i being the same in both expansions, and
0>0. Consequently,

�(t) ∼
∞∑

i=0

i

tm+2i+1

m + 2i + 1
as t → 0+ ,

�(t) ∼ 1−
∞∑

i=0

i

(1− t)m+2i+1

m + 2i + 1
as t → 1− . (1.16)

4. Furthermore, for each positive integerk, �(k)(t) has asymptotic expansions ast → 0+ andt → 1−
that are obtained by differentiating those of�(t) term by termk times.

Themost important property of transformations in the extended classSm is that the consecutive powers
of t and(1− t) in their asymptotic expansions increase by 2 instead of by 1.
A representative of this class, which we use in our computations too, is the sinm-transformation that

was first introduced in[6] for integerm. This transformation, just as the original sinm-transformation, is
defined via

�m(t) = �m(t)

�m(1)
; �m(t) =

∫ t

0
(sin�u)m du. (1.17)

From the equality

�m(t) = m − 1

m
�m−2(t) − 1

�m
(sin�t)m−1 cos�t ,

which can be obtained by integration by parts, we have the recursion relation

�m(t) = �m−2(t) − �(m/2)

2
√

��((m + 1)/2)
(sin�t)m−1 cos�t . (1.18)

Here�(z) is the Gamma function. Note that�m(t) is related to�m−2(t) but not to�m−1(t).
Whenm is a positive integer,�m(t) can be expressed in terms of elementary functions. In this case,

�m(t) can be computed via (1.18), with the initial conditions

�0(t) = t and �1(t) = 1
2(1− cos�t). (1.19)

Whenm is not an integer,�m(t) cannot be expressed in terms of elementary functions. It can be
expressed conveniently in terms of hypergeometric functions, however. By the fact that�′

m(t)=(sin�t)m

is symmetric with respect tot = 1/2, we have that�m(t) = �m(1) − �m(1− t) for t ∈ [1/2,1] and thus
�m(1) = 2�m(1/2) as well. Thus, it is enough to know�m(t) for t ∈ [0,1/2]. Consequently,

�m(t) = �m(t)

2�m(1/2)
for t ∈ [0,1/2]; �m(t) = 1− �m(1− t) for t ∈ [1/2,1]. (1.20)
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Therefore, it is enough to consider the computation of�m(t) only for t ∈ [0,1/2]. One of the represen-
tations in terms of hypergeometric functions now reads

�m(t) = (2S)m+1

�(m + 1)
F

(
1

2
− 1

2
m,
1

2
m + 1

2
; 1
2
m + 3

2
; S2

)
; S = sin

�t

2
, (1.21)

which has the convergent expansion

�m(t) = (2S)m+1

�

∞∑
k=0

((1− m)/2)k

k!
S2k

m + 2k + 1
; S = sin

�t

2
. (1.22)

Now, the terms in this expansion are all of the same sign fork��(m + 1)/2�. In addition, thekth term
is O(k−(m+3)/2S2k) ask → ∞ and, by the fact that 0�S� sin(�/4) = 1/

√
2 whent ∈ [0,1/2], it is

O(k−(m+3)/22−k) at worst. This gives us a quickly converging expansion for�m(t) that can be used
conveniently for the actual computation of�m(t). Furthermore, the convergence of this series can be
accelerated by applying to it a suitable nonlinear sequence transformation such as that of Shanks[5] (or
the equivalent
-algorithm of Wynn[12]) or that of Levin[4]. Both transformations are treated in detail
in the recent book by Sidi[8].

2. Preliminary results

In this section, we give some preliminary results concerning the structure ofF(�, �) andT̂n,n′ [f ].
We begin withF(�, �).We consider the case�=+1 in (1.5) in detail, the treatment of the case�=−1

being identical. When� = +1 in (1.5), we have

Q − P = H

[
x̃

ỹ

z̃ − 1

]
.

Consequently, by the fact thatH is orthogonal, bỹx2 + ỹ2 + z̃2 = 1, and by (1.11),

|Q − P | =
√

x̃2 + ỹ2 + (z̃ − 1)2 =
√
2− 2z̃ = 2 sin

�

2
.

We also have, with� = +1 in (1.5),

nQ = Q =
[

x

y

z

]
= H

[
x̃

ỹ

z̃

]
.

Consequently, again by the fact thatH is orthogonal, bỹx2 + ỹ2 + z̃2 = 1, and by (1.11),

(Q − P)QnQ = x̃2 + ỹ2 + (z̃ − 1)z̃ = 1− z̃ = 2

(
sin

�

2

)2
.

Therefore,

1

|Q − P | = 1

2 sin(�/2)
and

(Q − P)QnQ

|Q − P |3 = 1

4 sin(�/2)
.
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As a result, withg(x, y, z) = g(Q) as in (1.3) and (1.4), and with� = +1 in (1.5), we have, respectively,

F(�, �) = g(x, y, z) cos
�

2
(single-layer),

F(�, �) = 1

2
g(x, y, z) cos

�

2
(double-layer). (2.1)

With � = −1 in (1.5), we have, similarly,

F(�, �) = g(x, y, z) sin
�

2
(single-layer),

F(�, �) = 1

2
g(x, y, z) sin

�

2
(double-layer). (2.2)

From this, we see that it is enough to treat the single-layer case when integrating over the surface of the
unit sphereU ; the double-layer integral is simply 1/2 times the single-layer integral.
We now turn tôTn,n′ [f ]. Let us define

v(�) =
∫ 2�

0
F(�, �)d�, v̂(t) =

∫ 2�

0
F̂ (t, �)d�. (2.3)

Thus,

v̂(t) = v(�(t))�′(t), I [f ] =
∫ �

0
v(�)d� =

∫ 1

0
v̂(t)dt . (2.4)

By our assumption thatg(x, y, z) is infinitely differentiable overU, we have that it is infinitely differen-
tiable also as a function of̃x, ỹ, z̃. Thus,F(�, �) is infinitely differentiable as a function of both� and
�, and also 2�-periodic as a function of� for � ∈ (−∞, ∞). Thus, the developments of[11, Section 3]
apply, and we have that

T̂n,n′ [f ] = T̃n[f ] +O(h′) ash′ → 0 for every >0. (2.5)

where

T̃n[f ] = h

n∑′′

j=0

∫ 2�

0
F̂ (jh, �)d� = h

n∑′′

j=0
v̂(jh). (2.6)

(Recall that the double prime on the summation means that the first and the last terms are being halved.)
Thus, if we letn′ ∼ �n	 asn → ∞ for some fixed positive� and	, then (2.5) becomes

T̂n,n′ [f ] = T̃n[f ] +O(h) as h → 0 for every  >0. (2.7)

In the sequel, we letn′ ∼ �n	 asn → ∞.
As is clear from (2.7), the error in̂Tn,n′ [f ], ash → 0, has the same asymptotic expansion as that of

T̃n[f ]. Thus, we need to concern ourselves only with the asymptotic expansion ash → 0 of T̃n[f ], the
trapezoidal rule approximation to the integral

∫ 1
0 v̂(t)dt . For this, we need to studŷv(t) ast → 0+ and

t → 1−, in [11, TheoremA.2](or, equivalently,[10, Theorem 4.1]). This we do by expandingv(�) about
� = 0 and�, for which we need to expandF(�, �) about� = 0 and�. Following that, we employ the
results of[10].
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Throughout, we make use of the fact that the sequence{(sin�)i}∞i=1 is a bona fide asymptotic scale
both as� → 0 and as� → �.

3. Asymptotic expansions ofF(�, �) and v(�)

We now turn to the asymptotic expansion ofF(�, �) andv(�) as� → 0 and� → �. For � = +1,
� = 0 and� correspond to(x̃, ỹ, z̃) = (0,0,1) and (x̃, ỹ, z̃) = (0,0, −1), respectively. Let us define
u(x̃, ỹ, z̃) ≡ g(x, y, z). At the points(0,0, ±1), u(x̃, ỹ, z̃) has the asymptotic expansions

u(x̃, ỹ, z̃) ∼
∞∑

i=0

∞∑
j=0

∞∑
k=0

u(i,j,k)(0,0,1)

i! j ! k! x̃i ỹj (z̃ − 1)k as� → 0,

u(x̃, ỹ, z̃) ∼
∞∑

i=0

∞∑
j=0

∞∑
k=0

u(i,j,k)(0,0, −1)
i! j ! k! x̃i ỹj (z̃ + 1)k as� → �,

where

u(i,j,k)(x̃0, ỹ0, z̃0) = �i+j+ku

�x̃i�x̃j�z̃k

∣∣∣∣
(x̃,ỹ,z̃)=(x̃0,ỹ0,z̃0)

.

Theseare simply theTaylor series expansions ofu(x̃, ỹ, z̃)about(0,0, ±1). Using the short-handnotation∑
i,j,k �0 =∑∞

i=0
∑∞

j=0
∑∞

k=0, and invoking (1.11), these expansions can be rewritten in the form

u(x̃, ỹ, z̃) ∼
∑

i,j,k �0
e
(+)
i,j,k(cos�)i(sin�)j (sin�)i+j (cos� − 1)k as� → 0,

u(x̃, ỹ, z̃) ∼
∑

i,j,k �0
e
(−)
i,j,k(cos�)i(sin�)j (sin�)i+j (cos� + 1)k as� → �, (3.1)

where

e
(±)
i,j,k = u(i,j,k)(0,0, ±1)

i! j ! k! . (3.2)

As for the asymptotic expansions ofv(�), we can obtain these by substituting those ofF(�, �) in the
integral

∫ 2�
0 F(�, �)d�, and interchanging the order of integration and summation (which is allowed

because the integration is over the finite interval[0, �]). By [11, Lemma 3.1], which, in our case, simply
says that∫ 2�

0
(cos�)i(sin�)j d� = 0 wheni or j or both odd integers,

we obtain the next two results, the first of which is for� = +1, while the second is for� = −1:
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Theorem 3.1.Wheng(x, y, z) is infinitely smooth over U and� = +1 in (1.5), for the single-layer
integral, v(�) = ∫ 2�

0 F(�, �) d� has the asymptotic expansions

v(�) ∼
∑

i,j,k �0
A

(+)
i,j,k cos(�/2)(sin�)2i+2j (cos� − 1)k as � → 0,

v(�) ∼
∑

i,j,k �0
A

(−)
i,j,k cos(�/2)(sin�)2i+2j (cos� + 1)k as � → �, (3.3)

whereA(±)
i,j,k are constants given by

A
(±)
i,j,k = e

(±)
2i,2j,k

∫ 2�

0
(cos�)2i(sin�)2j d�, i, j, k = 0,1, . . . .

Consequently,

v(�) ∼
∞∑

i=0
c
(+)
i �2i as � → 0; v(�) ∼

∞∑
i=0

c
(−)
i (� − �)2i+1 as � → � (3.4)

for some constantsc(±)
i .

Theorem 3.2.Wheng(x, y, z) is infinitely smooth over U and� = −1 in (1.5), for the single-layer
integral, v(�) = ∫ 2�

0 F(�, �)d� has the asymptotic expansions

v(�) ∼
∑

i,j,k �0
A

(+)
i,j,k sin(�/2)(sin�)2i+2j (cos� − 1)k as � → 0,

v(�) ∼
∑

i,j,k �0
A

(−)
i,j,k sin(�/2)(sin�)2i+2j (cos� + 1)k as � → �, (3.5)

whereA(±)
i,j,k are constants given by

A
(±)
i,j,k = e

(±)
2i,2j,k

∫ 2�

0
(cos�)2i(sin�)2j d�, i, j, k = 0,1, . . . .

Consequently,

v(�) ∼
∞∑

i=0
c
(+)
i �2i+1 as � → 0; v(�) ∼

∞∑
i=0

c
(−)
i (� − �)2i as � → � (3.6)

for some constantsc(±)
i .

Remark. Note thatc(±)
0 in both theorems are proportional toe(±)

0,0,0. Therefore, if any one of thee
(±)
0,0,0=

u(0,0, ±1) = g(±�P) vanishes, then the correspondingc
(±)
0 vanishes as well. We make use of this

observation in Section 5 to design numerical integration rules with very high accuracy.
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4. Asymptotic expansion of̂Tn,n′ [f ]

We now analyze the asymptotic behavior ofT̂n,n′ [f ] for the two choices of�(t) described in Section
1. Below,�(t) is a function in the extended classSm.
We would like to emphasize that the better of the results given in Theorems 4.1 and 4.2 and also in

Theorem 5.1 are made possible by the fact that the powers oft and(1− t) in the asymptotic expansions
of �′(t) given in (1.15) increase by 2 instead of by 1.

Theorem 4.1. Let�(t) be inSm.With�(t) = �1(t) = ��(t) and withn′ ∼ �n	 asn → ∞ for some
fixed positive� and	, there holds

T̂n,n′ [f ] − I [f ] =
{
O(h2m+2) ash → 0 if m even integer,
O(hm+1) as h → 0 otherwise.

For m an even integer, we also have the complete Euler–Maclaurin expansion

T̂n,n′ [f ] ∼ I [f ] +
∞∑

i=0
�i h2m+2+2i as h → 0.

The proof of this theorem can be achieved by invoking[10, Theorem 4.1 and part (i) of Corollary 4.2]
in conjunction with the asymptotic expansions ofv(�) as� → 0 and� → �. We leave the details of the
proof to the reader. Note the better accuracy thatT̂n,n′ [f ] can achieve whenm is an even integer.
Note that, withF(�, �) as in (2.1) and (2.2), and witĥF(t, �) as in (1.13), in Theorem 4.1,̂F(0, �) =

F̂ (1, �) = 0 whenm >0; in such a case,̂Tn,n′ [f ] becomes

T̂n,n′ [f ] = hh′
n−1∑
j=1

n′∑
k=1

F̂ (jh, kh′).

The next theorem shows that better convergence rates can be obtained fromT̂n,n′ [f ] if we use the
transformation�2(t) as described in Section 1.

Theorem 4.2. Let�(t) be inSm.With�(t)=�2(t)=2��(t/2)when�=−1 in (1.5),or�(t)=�2(t)=
�[2�((1+ t)/2) − 1] when� = +1 in (1.5),and withn′ ∼ �n	 asn → ∞ for some fixed positive� and
	, there holds

T̂n,n′ [f ] − I [f ] =
{
O(h4m+4) ash → 0 if 2m odd integer,
O(h2m+2) ash → 0 otherwise.

For 2m an odd integer, we also have the complete Euler–Maclaurin expansion

T̂n,n′ [f ] ∼ I [f ] +
∞∑

i=0
�i h4m+4+2i ash → 0.

The proof of this theorem can be achieved by invoking[10, Theorem 4.4]in conjunction with the
asymptotic expansions ofv(�) as� → 0 and� → �. We leave the details of the proof to the reader. The
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Table 1
Relative errors in the ruleŝTn[f ] = T̂n,n[f ] for the integral of Section 4.1, obtained withn = 2k , k = 1(1)9, and with the
transformation�(t) = �1(t), usingm = 1(1)8

n m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

2 2.40D + 01 1.94D + 01 1.55D + 01 1.22D + 01 9.19D + 00 6.44D + 00 3.90D + 00 1.52D + 00
4 2.74D + 00 8.34D + 00 1.14D + 01 1.21D + 01 1.15D + 01 1.02D + 01 8.50D + 00 6.73D + 00
8 1.47D − 02 6.96D − 03 2.66D − 01 9.56D − 01 1.97D + 00 3.17D + 00 4.43D + 00 5.66D + 00
16 6.11D − 04 2.05D − 05 6.19D − 05 7.64D − 04 3.28D − 03 7.56D − 03 1.11D − 02 9.34D − 03
32 3.34D − 04 3.01D − 07 5.75D − 07 6.00D − 11 3.80D − 09 9.02D − 09 5.91D − 08 1.85D − 07
64 9.49D − 05 4.68D − 09 3.57D − 08 5.56D − 14 5.13D − 11 3.71D − 18 1.52D − 13 5.95D − 20
128 2.44D − 05 7.30D − 11 2.23D − 09 5.40D − 17 8.00D − 13 2.23D − 22 5.91D − 16 3.03D − 27
256 6.15D − 06 1.14D − 12 1.39D − 10 5.27D − 20 1.25D − 14 1.35D − 26 2.30D − 18 1.85D − 32
512 1.54D − 06 1.78D − 14 8.71D − 12 5.14D − 23 1.95D − 16 8.50D − 31 9.00D − 21 0.00D + 00

Table 2
The numbers�m,k = 1/ log 2· log(|T̂2k [f ] − I [f ]|/|T̂2k+1[f ] − I [f ]|) for k = 1(1)8 andm = 1(1)8, for the integral of Section
4.1, wherêTn[f ] are those ofTable 1
k m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

1 3.129 1.216 0.444 0.005 −0.324 −0.656 −1.124 −2.148
2 7.547 10.226 5.422 3.666 2.543 1.678 0.939 0.251
3 4.584 8.407 12.070 10.289 9.234 8.714 8.639 9.242
4 0.870 6.092 6.751 23.604 19.716 19.677 17.522 15.624
5 1.817 6.006 4.010 10.074 6.214 31.178 18.570 41.498
6 1.958 6.001 4.001 10.008 6.002 14.025 8.006 24.228
7 1.990 6.000 4.000 10.002 6.001 14.006 8.001 17.322
8 1.997 6.000 4.000 10.001 6.000 13.958 8.000 *

asymptotic expansion ofv(�) at � = 0 when� = +1 or at� = � when� = −1, that is, at the pole of
the rotatedU that is mapped to the point of singularityP, do not contribute anything to the asymptotic
expansions of̂Tn,n′ [f ].
Note the remarkable accuracy thatT̂n,n′ [f ] can achieve when 2m is an odd integer. Obviously, the

variable transformation in Theorem 4.2 is more effective than that of Theorem 4.1 for integration overU.
In the next section, we show how to improve on theT̂n,n′ [f ] of Theorem 4.2.

4.1. A numerical example

Wehave applied themethods of this section to the integral in (1.2),f (Q) having a single-layer singular-
ity as in (1.3), andg(x, y, z) = ex+2y+3z andP = (0,0, −1). We haveI [f ] = 40.90220018862976· · · .

Also, we takeH = I in (1.5), so that� = −1 there. Of course, Theorems 4.1 and 4.2 apply to this
case.
The numerical results inTables 1–4, which were computed in quadruple-precision arithmetic, illustrate

the result of both theorems very clearly.Tables 1and3 give the relative errors in thêTn[f ] ≡ T̂n,n[f ],
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Table 3
Relative errors in the ruleŝTn[f ] = T̂n,n[f ] for the integral of Section 4.1, obtained withn = 2k , k = 1(1)9, and with the
transformation�(t) = �2(t), usingm = 1(0.5)4.5.

n m = 1 m = 1.5 m = 2 m = 2.5 m = 3 m = 3.5 m = 4 m = 4.5

2 1.39D − 02 7.23D − 02 1.31D − 02 1.74D − 01 3.46D − 01 4.99D − 01 6.22D − 01 7.18D − 01
4 4.94D − 03 2.16D − 02 5.85D − 02 7.09D − 02 4.91D − 02 6.12D − 04 6.63D − 02 1.36D − 01
8 7.90D − 05 1.40D − 06 4.03D − 06 2.32D − 04 4.35D − 04 2.33D − 05 1.25D − 03 3.01D − 03
16 5.90D − 06 3.00D − 12 2.94D − 08 8.27D − 11 5.33D − 11 5.38D − 09 1.28D − 08 3.99D − 08
32 3.68D − 07 2.97D − 15 4.57D − 10 1.53D − 19 1.21D − 12 4.04D − 22 5.44D − 15 7.20D − 19
64 2.30D − 08 2.89D − 18 7.14D − 12 9.22D − 24 4.70D − 15 1.02D − 28 5.28D − 18 3.27D − 33
128 1.44D − 09 2.82D − 21 1.12D − 13 5.61D − 28 1.84D − 17 5.78D − 34 5.15D − 21 3.85D − 34
256 8.99D − 11 2.76D − 24 1.74D − 15 3.39D − 32 7.17D − 20 9.63D − 35 5.03D − 24 0.00D + 00
512 5.62D − 12 2.69D − 27 2.72D − 17 5.78D − 34 2.80D − 22 0.00D + 00 4.91D − 27 0.00D + 00

Table 4
The numbers�m,k = 1

log 2 · log(|T̂2k [f ]− I [f ]|/|T̂2k+1[f ]− I [f ]|) for k =1(1)9 andm=1(0.5)4.5, for the integral of Section
4.1, wherêTn[f ] are those ofTable 3
k m = 1 m = 1.5 m = 2 m = 2.5 m = 3 m = 3.5 m = 4 m = 4.5

1 1.492 1.744 −2.160 1.296 2.818 9.671 3.231 2.397
2 5.968 13.912 13.826 8.254 6.818 4.715 5.734 5.500
3 3.742 18.832 7.099 21.421 22.960 12.080 16.571 16.206
4 4.001 9.980 6.006 29.012 5.465 43.599 21.165 35.689
5 4.000 10.005 6.001 14.017 8.004 21.917 10.008 47.644
6 4.000 10.001 6.000 14.004 8.001 17.429 10.002 3.087
7 4.000 10.000 6.000 14.014 8.000 2.585 10.001 3.087
8 4.000 10.000 6.000 5.874 8.000 2.585 10.000 3.087

n = 2k, k = 1,2, . . . ,9, for various values ofm. Tables 2and4 present the numbers

�m,k = 1

log 2
· log

(
|T̂2k [f ] − I [f ]|

|T̂2k+1[f ] − I [f ]|

)
for the same values ofmand fork = 1,2, . . . ,8. It is seen that fromTable 2that, when the basic method
with �(t) = �1(t) is used, then the�m,k are tending to 2m + 2 whenm is an even integer and tom + 1
otherwise, completely in accordance with Theorem 4.1. Similarly, we see fromTable 4that, when the
basic method with�(t) = �2(t) is used, then the�m,k are tending to 4m + 4 when 2m is an odd integer
and to 2m + 2 otherwise, completely in accordance with Theorem 4.2.
In connection with the computation of�1(t) = ��(t) and�2(t) = 2��(t/2) or �2(t) = �[2�((1+

t)/2) − 1], with 0� t �1, we would like to note the following: For�1(t), we need to do the actual
computation of�(t) for 0� t �1/2 andmake use of (1.20) for 1/2� t �1. Similarly, for�2(t), we need to
compute�(t) only for 0� t �1/2. Consequently, there is no extra complication or cost in the computation
of �2(t) relative to that of�1(t).
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5. Further improvement for T̂n,n′ [f ]

In Theorem 4.2 of the preceding section, we showed that, with�(t) = �2(t), T̂n,n′ [f ] produces very
accurate approximations toI [f ] when 2m is an odd integer. In this section, we continue our treatment of
this case by improving further the performance of the ruleT̂n,n′ . As mentioned following[10, Definition
1.1; 11, Appendix C], it is desirable to get as much accuracy out ofT̂n,n′ [f ] for a given value ofmhence
for a given amount of clustering of the transformed abscissas onU. As in the preceding section, this can
be achieved for special values ofm, provided the integrand is preprocessed suitably. This preprocessing
is performed by recalling the remark at the end of Section 3.
Let us subtractu(0,0, −�) from the functionu(x̃, ỹ, z̃); by (1.5), this amounts to subtractingg(−P)

from g(Q). Then,

I [f ] = I1 + I2; I1 =
∫ ∫

U

[g(Q) − g(−P)]V (Q)dA, I2 = g(−P)

∫ ∫
U

V (Q)dA,

whereV (Q) stands for the singular factor off (Q), that is,V (Q) = f (Q)/g(Q),

V (Q) = 1

|Q − P | (single-layer), V (Q) = (Q − P) · nQ

|Q − P |3 (double-layer).

Also, by the developments of Section 2,

E =
∫ ∫

U

V (Q)dA = 4� (single-layer), E =
∫ ∫

U

V (Q)dA = 2� (double-layer).

We next apply the rulêTn,n′ to the functionf imp(Q) = [g(Q) − g(−P)]V (Q) with �(t) = �2(t). The
resulting approximatioňTn,n′ [f ] for I [f ] then is

Ťn,n′ [f ] = T̂n,n′ [f imp] + Eg(−P). (5.1)

If we letF imp(�, �) = f imp(Q) sin�, andvimp(�) = ∫ �
0 F imp(�, �)d�, thenvimp(�), by Theorems 3.1

and 3.2, and by the remark at the end of Section 3, has the asymptotic expansions

vimp(�) ∼
∞∑

i=0
c
(+)
i �2i as� → 0

vimp(�) ∼
∞∑

i=1
c
(−)
i (� − �)2i+1 as� → �

(� = +1)

and

vimp(�) ∼
∞∑

i=1
c
(+)
i �2i+1 as� → 0

vimp(�) ∼
∞∑

i=0
c
(−)
i (� − �)2i as� → �

(� = −1).

Of course, thec(±)
i here are not necessarily those in (3.3) and (3.4). The important point to note is that the

expansions ofvimp(�) containing the odd powers of� and� − � begin with the powers�3 and(� − �)3,
followed by the powers�5 and(� − �)5, respectively. The ones containing the even powers remain of
the same form as those ofv(�) in (3.3) and (3.4). Using these facts, we can obtain better approximations
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Table 5
Relative errors in the rulešTn[f ] = Ťn,n[f ] for the integral of Section 4.1, obtained withn = 2k , k = 1(1)9, and with the
transformation�(t) = �2(t), usingm = 0.25(0.25)2.25

n m = 0.25 m = 0.5 m = 0.75 m = 1 m = 1.25 m = 1.5 m = 1.75 m = 2 m = 2.25

2 4.42D − 01 3.28D − 01 1.73D − 01 3.98D − 02 4.04D − 02 6.06D − 02 2.59D − 02 5.33D − 02 1.66D − 01
4 1.08D − 02 9.05D − 03 8.80D − 05 3.41D − 03 4.71D − 03 2.16D − 02 4.13D − 02 5.84D − 02 6.89D − 02
8 1.46D − 05 1.26D − 05 1.35D − 05 1.58D − 05 1.45D − 05 1.40D − 06 1.84D − 05 2.12D − 06 8.95D − 05
16 4.03D − 09 1.92D − 08 6.15D − 12 1.71D − 10 5.45D − 14 2.56D − 12 7.65D − 14 5.80D − 12 7.22D − 12
32 2.16D − 11 3.00D − 10 4.24D − 15 6.61D − 13 2.21D − 18 2.55D − 15 2.42D − 21 1.52D − 17 4.87D − 24
64 1.19D − 13 4.69D − 12 2.92D − 18 2.58D − 15 1.89D − 22 2.48D − 18 2.57D − 26 3.69D − 21 6.38D − 30
128 6.56D − 16 7.32D − 14 2.02D − 21 1.01D − 17 1.63D − 26 2.42D − 21 2.83D − 31 9.00D − 25 2.89D − 33
256 3.62D − 18 1.14D − 15 1.39D − 24 3.93D − 20 1.40D − 30 2.36D − 24 6.84D − 33 2.20D − 28 1.73D − 33
512 2.00D − 20 1.79D − 17 9.62D − 28 1.54D − 22 1.04D − 32 2.31D − 27 6.16D − 33 6.11D − 32 2.89D − 33

than those discussed in Theorem 4.2 by employing the transformation�2(t). This is the subject of the
next theorem.

Theorem 5.1. Let�(t) be inSm.With�(t)=�2(t)=2��(t/2)when�=−1 in (1.5),or�(t)=�2(t)=
�[2�((1+ t)/2) − 1] when� = +1 in (1.5),and withn′ ∼ �n	 asn → ∞ for some fixed positive� and
	, there holds

Ťn,n′ [f ] − I [f ] =
{
O(h6m+6) ash → 0 if 4m odd integer,
O(h4m+4) ash → 0 otherwise.

For 4m an odd integer, we also have the complete Euler–Maclaurin expansion

Ťn,n′ [f ] ∼ I [f ] +
∞∑

i=0
�ih

6m+6+2i +
∞∑

i=0
�′

i h8m+8+2i +
∞∑

i=0
�′′

i h10m+10+2i ash → 0.

For example, in casem=0.25, the expansion in this theorem contains the powersh7.5, h9.5, h10, h11.5,

h12, h12.5, . . . .
Finally, one ofF imp(0, �) andF imp(�, �) is zero and the other one is independent of�. [Actually,

F imp(�, �) ≡ 0 when� = +1, andF imp(0, �) ≡ 0 when� = −1.] This observation can be used to
conclude that the number of integrand evaluations inŤn,n′ [f ] as given by (5.1) [and by (1.14)] can be
reduced by 2n′.

5.1. A numerical example

We have applied the improved method above to the example of Section 4.1. Of course, Theorem 5.1
applies to this case.
The numerical results inTables 5and6, which were computed in quadruple-precision arithmetic,

illustrate the result of this theorem very clearly.Table 5gives the relative errors in thěTn[f ] ≡ Ťn,n[f ],
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Table 6
The numbers�m,k = 1/ log 2 · log(|Ť2k [f ] − I [f ]|/|Ť2k+1[f ] − I [f ]|) for k = 1(1)9 andm = 0.25(0.25)2.25, for the integral

of Section 4.1, wherěTn[f ] are those ofTable 5
k m = 0.25 m = 0.5 m = 0.75 m = 1 m = 1.25 m = 1.5 m = 1.75 m = 2 m = 2.25

1 5.361 5.179 10.937 3.544 3.101 1.488 −0.674 −0.131 1.270
2 9.522 9.494 2.701 7.756 8.341 13.913 11.130 14.751 9.588
3 11.827 9.351 21.070 16.496 27.989 19.061 27.844 18.477 23.563
4 7.541 6.002 10.503 8.012 14.591 9.974 24.914 18.539 40.432
5 7.507 6.001 10.502 8.002 13.509 10.005 16.522 12.010 19.542
6 7.501 6.000 10.501 8.001 13.502 10.001 16.470 12.002 11.108
7 7.500 6.000 10.500 8.000 13.511 10.000 5.373 12.001 0.737
8 7.500 6.000 10.500 8.000 7.069 10.000 0.150 11.813−0.737

n = 2k, k = 1,2, . . . ,9, for various values ofm. Table 6presents the numbers

�m,k = 1

log 2
· log

(
|Ť2k [f ] − I [f ]|

|Ť2k+1[f ] − I [f ]|

)

for the same values ofm and fork = 1,2, . . . ,8. It is seen that, with increasingk, the�m,k are tending to
6m + 6 when 4m an odd integer, that is, whenm = j/2− 3/4, j = 1,2, . . . , and to 4m + 4 otherwise,
completely in accordance with Theorem 5.1.

6. Numerical integration of regular integrands overU

In the paper[11], we treated the numerical integration of regular functions over smooth surfaces that are
homeomorphic to the surface of the unit sphere. Of course, this treatment includes numerical integration
overU as a special case. For the sake of completeness, in this section, we summarize the developments
of [11] for this special case.
We would like to compute numericallyI [f ] = ∫ ∫

U
f (Q)dA, whenf (Q) = f (x, y, z) is a regular

integrand. Switching to the spherical coordinates� and�,

(x, y, z) = (sin� cos�, sin� sin�, cos�),

we write this integral in the form

I [f ] =
∫ �

0

[∫ 2�

0
F(�, �)d�

]
d�; F(�, �) = f (x, y, z) sin�.

Using the variable transformation� = �(t) = �1(t) = ��(t), where� ∈ Sm, we re-expressI [f ] as in

I [f ] =
∫ 1

0

[∫ 2�

0
F̂ (t, �)d�

]
dt; F̂ (t, �) = F(�(t), �)�′(t).
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We then approximateI [f ] via the rule

T̂n,n′ [f ] = hh′
n−1∑
j=1

n′∑
k=1

F̂ (jh, kh′); h = 1

n
, h′ = 2�

n′ .

The error in this approximation satisfies

T̂n,n′ [f ] − I [f ] =
{
O(h4m+4) ash → 0 if 2m odd integer,
O(h2m+2) ash → 0 otherwise.

This rule can be improved as follows: LetB=[f (0,0,1)+f (0,0, −1)]/2.The improved rulěTn,n′ [f ]
is given as in

Ťn,n′ [f ] = T̂n,n′ [f ] + 4�B − 2�B

h

n−1∑
j=1

sin(�(j/n))�′(j/n)

 .
The error in this approximation satisfies

Ťn,n′ [f ] − I [f ] =
{
O(h6m+6) ash → 0 if 4m odd integer,
O(h4m+4) ash → 0 otherwise.

For 4m an odd integer, we also have the complete Euler–Maclaurin expansion

Ťn,n′ [f ] ∼ I [f ] +
∞∑

i=0
�i h6m+6+2i +

∞∑
i=0

�′
ih
8m+8+2i +

∞∑
i=0

�′′
i h10m+10+2i ash → 0.
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