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Abstract

Regula falsi, Newton–Raphson, secant, and Steffensen methods are four very effec-
tive numerical procedures used for solving nonlinear equations of the form f(x) = 0.
They are derived via linear interpolation procedures. Their analyses can be carried
out by making use of interpolation theory through divided differences and Newton’s
interpolation formula. In this note, we unify these analyses. The analysis of the Stef-
fensen method given here seems to be new and is especially simpler than the standard
treatments. The contents of this note should also be a useful exercise/example in the
application of polynomial interpolation and divided differences in introductory courses
in numerical analysis.
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1 Introduction

Let α be the solution to the equation

f(x) = 0, (1)

and assume that f(x) is twice continuously differentiable in a closed interval I containing
α in its interior. Some iterative methods used for solving (1) and that make direct use of
f(x) are the regula falsi method (or false position method), the secant method, the Newton–
Raphson method, and the Steffensen method. These methods are discussed in many books on
numerical analysis. See, for example, Atkinson [1], Henrici [2], Ralston and Rabinowitz [3],
and Stoer and Bulirsch [4].
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Figure 1: The regula falsi method.

All four methods are derived by a linear interpolation procedure as follows: Assuming
that the approximations xk to the solution α of (1) have been determined for all k ≤ n,
and another approximation c is available, the next approximation xn+1 is determined as the
point of intersection (in the x-y plane) of the straight line through the points (xn, f(xn))
and (c, f(c)) with the x-axis. (See Figure 1 for the regula falsi method, for example.) Since
the equation of this straight line is

y = f(xn) +
f(xn)− f(c)

xn − c
(x− xn), (2)

xn+1 is given as

xn+1 = xn − f(xn)

f(xn)− f(c)

xn − c

. (3)
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Subtracting now α from both sides of (3), we obtain

xn+1 − α = −
f(xn) +

f(xn)− f(c)

xn − c
(α− xn)

f(xn)− f(c)

xn − c

. (4)

Most textbooks in numerical analysis that treat the subject, provide the convergence
analyses of the four methods mentioned above separately. They use Taylor series for the
Newton–Raphson method, while they apply linear interpolation theory to the secant method.
They use yet another approach for the Steffensen method.

By stressing the fact that all four methods are obtained via a linear interpolation proce-
dure, in this note, we unify the analyses of all these methods by using the theory of poly-
nomial interpolation via divided differences. As such, the treatment also provides a good
example/exercise in the application of the subject of polynomial interpolation via Newton’s
interpolation formula and divided differences, whether the points of interpolation are distinct
or not. Furthermore, the analysis of the Steffensen method presented here turns out to be
especially simple and does not seem to have been given in the literature before.

In the next section, we recall the important properties of divided differences and New-
ton’s interpolation formula. We refer the reader to the books mentioned above for detailed
treatments of this subject. In Section 3, we express xn+1 − α via divided differences in a
way that also reveals the order of each method. In Section 4, we complete the convergence
proofs of the methods in a unified manner.

2 Divided differences and Newton’s interpolation for-

mula

In the sequel, we will denote by f [z0, z1, . . . , zm] the divided difference of order m of f(x) on
the set of points {z0, z1, . . . , zm} and will recall the following:

1. f [zi, zi+1, . . . , zm] can be defined recursively via

f [zi] = f(zi); f [zi, zj] =
f [zi]− f [zj]

zi − zj

, zi 6= zj, (5)

and, for m > i + 1, via

f [zi, zi+1, . . . , zm] =
f [zi, zi+1, . . . , zm−1]− f [zi+1, zi+2, . . . , zm]

zi − zm

, zi 6= zm. (6)

In case the zi are not distinct, the divided differences are defined as limits of the
quotients above.

2. f [z0, z1, . . . , zm] is a symmetric function of its arguments, that is, it has the same value
for every ordering of the points z0, z1, . . . , zm.
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3. Provided f ∈ Cm[a, b] and zi ∈ [a, b], i = 0, 1, . . . ,m, f [z0, z1, . . . , zm] is a continu-
ous function of its arguments z0, z1, . . . , zm; thus, limy→y0 f [x, y, z] = f [x, y0, z], for
example. In addition,

f [z0, z1, . . . , zm] =
f (m)(ξ)

m!
for some ξ ∈ int(z0, z1, . . . , zm), (7)

where
int(z0, z1, . . . , zm) ≡ (min{zi}, max{zi}). (8)

(This is a very convenient notation we use throughout this note.) Consequently,

f [z, z, . . . , z︸ ︷︷ ︸
m + 1 times

] =
f (m)(z)

m!
, z ∈ [a, b]. (9)

4. Newton’s formula for the polynomial of interpolation p(z) to the function f(z) at the
points z0, z1, . . . , zm, whether these points are distinct or not, is given by

p(z) = f(z0) +
m∑

i=1

f [z0, z1, . . . , zi]
i−1∏
s=0

(z − zs), (10)

and the corresponding error formula is

f(z)− p(z) = f [z0, z1, . . . , zm, z]
m∏

s=0

(z − zs). (11)

In case z0 = z1 = · · · = zm, by (7), p(z) in (10) becomes the mth partial sum of the
Taylor series of f(z) about z0, and the expression for f(z)−p(z) given in (11) becomes
the corresponding remainder.

3 Divided difference formulas for xn+1 − α

Going back to (3) and (4), we realize that they can be rewritten in terms of divided differ-
ences, respectively, as in

xn+1 = xn − f(xn)

f [xn, c]
(12)

and

xn+1 − α = − f(xn) + f [xn, c](α− xn)

f [xn, c]
. (13)

Clearly, the numerator of the quotient on the right-hand side of (13) is related to the poly-
nomial interpolating f(x) at the points xn and c, and from (10) and (11), we have

f(x) = f(xn) + f [xn, c](x− xn) + f [xn, c, x](x− xn)(x− c). (14)

Letting x = α in (14), and recalling that f(α) = 0, we obtain

f(xn) + f [xn, c](α− xn) = −f [xn, c, α](α− xn)(α− c), (15)
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and thus

xn+1 − α =
f [xn, c, α]

f [xn, c]
(xn − α)(c− α). (16)

Finally, we also realize that the arguments c and xn above may coincide by the fact that
divided differences are defined as limits in such a case.

We now specialize the result in (16) to the different methods mentioned above. We recall
that f ∈ C2(I), where I is some closed interval containing α. No further differentiability
properties are assumed for f(x) in our treatment.

3.1 Regula falsi method

In the regula falsi method, we start with two initial points, x0 = c and x1, such that
f(c)f(x1) < 0 so that f(x) = 0 has a solution α between c and x1. We assume that α is the
unique solution to f(x) = 0 between c and x1. The point x2 is determined as in (3), that is,
x2 is the point of intersection of the straight line passing through (c, f(c)) and (x1, f(x1))
with the x-axis. If f(x2) = 0, then α = x2 and we stop. If f(c)f(x2) < 0, then we leave c
unchanged and continue to the next iteration; otherwise, we set c = x1 and continue to the
next iteration in the same way.

In case f ′(x) and f ′′(x) have fixed signs in an interval containing α, which is the situation
of interest to us here, the point c ultimately remains fixed. Therefore, in such a case, the
regula falsi method becomes a fixed-point method at some point during the iteration process.
Without loss of generality, we will assume that c = x0 remains fixed.

Provided c, xn ∈ I, by (7), the formula for xn+1 in (12) and the error formula (16) can
be expressed as in

xn+1 = xn − f(xn)

f ′(ηn)
and xn+1 − α =

f ′′(ξn)(c− α)

2f ′(ηn)
(xn − α),

ξn ∈ int(xn, c, α), ηn ∈ int(xn, c). (17)

If, in addition, limn→∞ xn = α holds, then (16) gives

lim
n→∞

xn+1 − α

xn − α
=

f [c, α, α]

f [c, α]
(c− α) =

f ′′(ξ)(c− α)

2f ′(η)
, for some ξ, η ∈ int(c, α),

and, as we show later, also

lim
n→∞

xn+1 − α

xn − α
= 1− f ′(α)

f [c, α]
,

which suggests that the convergence of {xn} may be linear. This needs to be proved rigor-
ously, however.

As already mentioned, the situation described here happens when f ′(x) and f ′′(x) have
fixed signs on I, for example, when f ′(x) > 0 and f ′′(x) > 0 on I and f(c) > 0, f(x1) < 0.
We come back to this in Section 4, where we show that the regula falsi method converges
strictly linearly in this case.
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3.2 Secant method

In the secant method, we start with two initial points x0 and x1, and for computing xn+1

via (3), we set c = xn−1; that is, (3) becomes

xn+1 = xn − f(xn)

f(xn)− f(xn−1)

xn − xn−1

= xn − f(xn)

f [xn, xn−1]
.

The error formula (16) now is

xn+1 − α =
f [xn, xn−1, α]

f [xn, xn−1]
(xn − α)(xn−1 − α),

and, provided xn−1, xn ∈ I, by (7), it becomes

xn+1 − α =
f ′′(ξn)

2f ′(ηn)
(xn − α)(xn−1 − α),

ξn ∈ int(xn, xn−1, α), ηn ∈ int(xn, xn−1). (18)

In case, f ′(α) 6= 0 and x0 and x1 are sufficiently close to α, by Section 4, we have
limn→∞ xn = α, and hence

lim
n→∞

xn+1 − α

(xn − α)(xn−1 − α)
=

f ′′(α)

2f ′(α)
.

From this, one derives the conclusion that the order of convergence of the secant method is
at least (1 +

√
5)/2.

3.3 Newton–Raphson method

In the Newton–Raphson method, we start with one initial point x0, and for computing xn+1

via (3), we set c = xn; that is, xn+1 is the point at which the tangent line to the function
f(x) at xn intersects the x-axis, and (3) becomes

xn+1 = xn − f(xn)

f ′(xn)
.

Hence, the error formula (16) now is

xn+1 − α =
f [xn, xn, α]

f ′(xn)
(xn − α)2,

which, provided xn ∈ I, by (7), becomes

xn+1 − α =
f ′′(ξn)

2f ′(xn)
(xn − α)2, ξn ∈ int(xn, α). (19)

In case f ′(α) 6= 0 and x0 is sufficiently close to α, we have, by Section 4, limn→∞ xn = α,
and hence

lim
n→∞

xn+1 − α

(xn − α)2
=

f ′′(α)

2f ′(α)
.

From this, one derives the conclusion that the order of convergence of the Newton–Raphson
method is at least two.
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3.4 Steffensen method

In the Steffensen method, we start with one initial point x0, and for computing xn+1 via (3),
we set c = xn + f(xn); that is, (3) becomes

xn+1 = xn − f(xn)

f(xn + f(xn))− f(xn)

f(xn)

= xn − f(xn)

f [xn, xn + f(xn)]
.

In this case, an error formula is a little more tricky to obtain. First, we note that

c− α = xn − α + f(xn)− f(α) =
(
1 + f [xn, α]

)
(xn − α).

Thus, the error formula in (16) first becomes

xn+1 − α =
f [xn, xn + f(xn), α]

f [xn, xn + f(xn)]

(
1 + f [xn, α]

)
(xn − α)2.

Next, provided xn, xn + f(xn) ∈ I, by (7), this gives

xn+1 − α =
f ′′(ξn)

2f ′(ηn)

[
1 + f ′(θn)

]
(xn − α)2,

ξn ∈ int(xn, xn + f(xn), α), ηn ∈ int(xn, xn + f(xn)), θn ∈ int(xn, α). (20)

In case, f ′(α) 6= 0 and x0 is sufficiently close to α, by Section 4, we have limn→∞ xn = α,
and hence

lim
n→∞

xn+1 − α

(xn − α)2
=

f ′′(α)

2f ′(α)

[
1 + f ′(α)

]
.

From this, one derives the conclusion that the order of convergence of the Steffensen method
is at least two.

4 Completion of proofs of convergence

In this section, we show how the convergence proofs of the four methods above can be
completed. The regula falsi method, with fixed c, has a special proof of its own. The
remaining three methods can be shown to converge, in a unified manner, via the following
simple and well-known result:

Lemma 4.1 Let the sequence {xn}∞n=0 be such that

xn+1 − α = Cn(xn − α), |Cn| ≤ C < 1 ∀n.

Then, (i) |xn+1 − α| < |xn − α|, (ii) xn ∈ [α − δ, α + δ], where δ = |x0 − α|, (iii) |xn − α| ≤
C

n|x0 − α|, and (iv) limn→∞ xn = α.
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In relation to this lemma, we recall that if 0 < limn→∞ |Cn| < 1, the sequence {xn}
converges linearly, whereas if limn→∞ Cn = 0, it is said to converge superlinearly.

Let us recall our assumption that f ∈ C2(I), where I is a closed interval containing α in
its interior. In the treatment of the secant, Newton–Raphson, and Steffensen methods, we
assume further that f ′(α) 6= 0, and choose the interval I as I = [α− ρ, α + ρ] for some ρ > 0
such that f ′(x) 6= 0 on I. Therefore, for all x ∈ I, 0 < K ≤ |f ′(x)| ≤ L and |f ′′(x)| ≤ M for
some positive constants K, L, and M .

By (18), (19), and (20), the Cn = (xn+1 − α)/(xn − α) in the lemma relevant to the
secant, Newton–Raphson, and Steffensen methods are then

Cn =
f ′′(ξn)

2f ′(ηn)
(xn−1 − α), ξn, ηn ∈ I, if xn−1, xn ∈ I. (secant)

Cn =
f ′′(ξn)

2f ′(xn)
(xn − α), ξn ∈ I, if xn ∈ I. (Newton–Raphson)

Cn =
f ′′(ξn)

2f ′(ηn)
[1 + f ′(θn)] (xn − α), ξn, ηn, θn ∈ I, if xn, xn + f(xn) ∈ I. (Steffensen)

Thus, by the fact that |f ′′(x)/f ′(y)| ≤ M/K when x, y ∈ I, and letting Q = M/(2K), there
holds

|Cn| ≤ Q |xn−1 − α|, if xn−1, xn ∈ I. (secant)

|Cn| ≤ Q |xn − α|, if xn ∈ I. (Newton–Raphson)

|Cn| ≤ Q (1 + L) |xn − α|, if xn, xn + f(xn) ∈ I. (Steffensen)

We make use of these in the sequel. It is important to realize that, in order to be able to
make use of these bounds on the |Cn|, we must show that xn−1, xn, xn + f(xn) ∈ I for the
relevant methods.

1. Regula falsi method. Let us assume that c, x1 ∈ I, f(c) > 0, f(x1) < 0, f ′(x) > 0
and f ′′(x) > 0 on I. From these and from (17), it follows that c remains fixed and
x1 < x2 < · · · < α < c. That is, {xn} is an increasing sequence bounded above by
α, thus has a limit ≤ α. By the continuity of f(x) and f ′(x) and by the assumption
that f ′(x) > 0 on I, it follows from (12) that limn→∞ xn = α. Now, by the fact that
xn < xn+1 < α, we already have 0 < Cn = (xn+1 − α)/(xn − α) < 1 for every n. To
show that the convergence is linear, we must show that 0 < limn→∞ Cn < 1. Let us
recall that

Cn =
xn+1 − α

xn − α
=

f [xn, c, α]

f [xn, c]
(c− α).

First, because xn ∈ I for all n and limn→∞ xn = α ∈ I and because of our assumptions
on f(x), we have that

lim
n→∞

Cn =
f [α, α, c]

f [α, c]
(c− α) =

f ′′(ξ)(c− α)

2f ′(η)
> 0, for some ξ, η ∈ int(c, α).

Next, by the recursion relations among the divided differences, there holds
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f [α, α, c] =
f [α, c]− f [α, α]

c− α
.

Therefore,

lim
n→∞

Cn =
f [α, c]− f [α, α]

f [α, c]
= 1− f [α, α]

f [α, c]
= 1− f ′(α)

f [α, c]
.

It is now easy to see that the slope f [α, c] of the straight line through (α, f(α)) and
(c, f(c)) and the slope f [α, α] = f ′(α) of the tangent to f(x) at (α, f(α)) satisfy
f [α, α] < f [α, c]. From this, we conclude that limn→∞ Cn < 1. This completes the
proof.

We have assumed in the treatment above that f ′(x) > 0 and f ′′(x) > 0 on I. It is easy
to see that the same technique applies to all cases in which f ′(x) and f ′′(x) have fixed
signs on I.

2. Secant method. We choose x0 and x1 in I sufficiently close to α to ensure that the
inequality

C ≡ Q max{|x0 − α|, |x1 − α|} < 1

holds. Consequently, |C1| ≤ C. By |x2 − α| = |C1| |x1 − α|, this implies that x2 ∈ I
and |x2 − α| < |x1 − α|. In addition,

|C2| ≤ Q |x2 − α| < Q |x1 − α| ≤ C,

that is, |C2| ≤ C as well. We can now continue by induction and show that

xn ∈ I, |xn − α| < |xn−1 − α|, and |Cn| ≤ C ∀n.

Lemma 4.1 now applies. This completes the proof of convergence for the secant method.

3. Newton–Raphson method. We choose x0 sufficiently close to α to ensure that the
inequality

C ≡ Q |x0 − α| < 1

holds. Consequently, |C0| ≤ C. By |x1 − α| = |C0| |x0 − α|, this implies that x1 ∈ I
and |x1 − α| < |x0 − α|. In addition,

|C1| ≤ Q |x1 − α| < Q |x0 − α| = C,

that is, |C1| ≤ C too. We can now continue by induction and show that

xn ∈ I, |xn − α| < |xn−1 − α|, and |Cn| ≤ C ∀n.

Lemma 4.1 now applies. This completes the proof of convergence for the the Newton–
Raphson method.

4. Steffensen method. First, let us observe that

x + f(x)− α = x− α + f(x)− f(α) = [1 + f ′(θ(x))] (x− α)

for some θ(x) ∈ int(x, α), provided x ∈ I.
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From this, it is clear that

|x + f(x)− α| ≤ (1 + L) |x− α| provided x ∈ I.

Now choose x0 ∈ I such that |x0−α| ≤ ρ/(1+L), which guarantees that x0+f(x0) ∈ I
because |x0 + f(x0) − α| ≤ (1 + L) |x0 − α| ≤ ρ. Next, let us restrict x0 further and
choose it sufficiently close to α to ensure that the inequality

Q (1 + L)2 |x0 − α| < 1

holds. From this, we also have that the inequalities

C ≡ Q (1 + L) |x0 − α| < 1 and C (1 + L) < 1

hold as well. Now, |C0| ≤ C, which, by |x1−α| = |C0| |x0−α|, implies that |x1−α| ≤
C |x0 − α|, hence x1 ∈ I and |x1 − α| < |x0 − α|. Therefore,

|x1 + f(x1)− α| ≤ (1 + L) |x1 − α| ≤ C (1 + L)|x0 − α| < ρ,

that is, x1 + f(x1) ∈ I too. In addition,

|C1| ≤ Q (1 + L) |x1 − α| < Q (1 + L) |x0 − α| = C,

that is, |C1| ≤ C too. Continuing by induction, we can now show that

xn, xn + f(xn) ∈ I, |xn − α| < |xn−1 − α|, and |Cn| ≤ C ∀n.

Lemma 4.1 now applies. This completes the proof of convergence for the Steffensen
method.
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