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Abstract

In a recent paper of the author [A. Sidi, A new approach to vector-valued rational interpolation, J. Approx.
Theory, 130 (2004) 177–187], three new interpolation procedures for vector-valued functions F(z), where
F : C → CN , were proposed, and some of their properties were studied. In this work, after modifying their
definition slightly, we continue the study of these interpolation procedures. We show that the interpolants
produced via these procedures are unique in some sense and that they are symmetric functions of the points
of interpolation. We also show that, under the conditions that guarantee uniqueness, they also reproduce
F(z) in case F(z) is a rational function.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent work, Sidi [6], we presented three different kinds of vector-valued rational inter-
polation procedures, denoted IMPE, IMMPE, and ITEA there. These were modelled after the
rational approximation procedures from Maclaurin series of vector-valued functions developed
in Sidi [3], which, in turn had their origin in the vector extrapolation methods MPE (the minimal
polynomial extrapolation), MMPE (the modified minimal polynomial extrapolation), and TEA
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(the topological epsilon algorithm). The methods MPE, RRE, and TEA are used for accelerat-
ing the convergence of certain kinds of vector sequences, such as those produced by fixed-point
iterative methods on linear and nonlinear systems of algebraic equations.

Some of the properties of IMPE, IMMPE, and ITEA interpolants have already been mentioned
in [6]. In this paper, we continue to study these interpolants by concentrating on some of their
algebraic properties. To set the stage for later developments, and to fix the notation as well, we
start with a summary of the developments in [6]. In this summary, we modify the definitions of
the interpolants slightly.

Let z be a complex variable and let F(z) be a vector-valued function such that F : C → CN .
Assume thatF(z) is defined on a bounded open set� ∈ C and consider the problem of interpolating
F(z) at some of the points �1, �2, . . . , in this set. We do not assume that the �i are necessarily
distinct. The general picture is described in the next paragraph:

Let a1, a2, . . . , be distinct complex numbers, and let

�1 = �2 = · · · = �r1 = a1,

�r1+1 = �r1+2 = · · · = �r1+r2 = a2,

�r1+r2+1 = �r1+r2+2 = · · · = �r1+r2+r3 = a3

and so on. (1.1)

Let Gm,n(z) be the vector-valued polynomial (of degree at most n − m) that interpolates F(z)

at the points �m, �m+1, . . . , �n in the generalized Hermite sense. Thus, in Newtonian form, this
polynomial is given as in (see, e.g., Stoer and Bulirsch [7, Chapter 2] or Atkinson [1, Chapter 3])

Gm,n(z) = F [�m] + F [�m, �m+1](z − �m) + F [�m, �m+1, �m+2](z − �m)(z − �m+1)

+ · · · + F [�m, �m+1, . . . , �n](z − �m)(z − �m+1) . . . (z − �n−1). (1.2)

Here, F [�r , �r+1, . . . , �r+s] is the divided difference of order s of F(z) over the set of points
{�r , �r+1, . . . , �r+s}. The F [�r , �r+1, . . . , �r+s] are defined, as in the scalar case, by the recursion
relations

F [�r , �r+1, . . . , �r+s] = F [�r , �r+1, . . . , �r+s−1] − F [�r+1, �r+2, . . . , �r+s]
�r − �r+s

,

r = 1, 2, . . . , s = 1, 2, . . . , (1.3)

with the initial conditions

F [�r ] = F(�r ), r = 1, 2, . . . . (1.4)

Note that, in case �r = �r+1 = · · · = �r+s , the right-hand side of (1.3) is defined via a limiting
process, with the result

F [�r , �r+1, . . . , �r+s] = F (s)(�r )

s! . (1.5)

Obviously, F [�r , �r+1, . . . , �r+s] are all vectors in CN .
For simplicity of notation, we define the scalar polynomials �m,n(z) via

�m,n(z) =
n∏

r=m

(z − �r ), n�m�1; �m,m−1(z) = 1, m�1. (1.6)
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We also define the vectors Dm,n via

Dm,n = F [�m, �m+1, . . . , �n], n�m. (1.7)

With this notation, we can rewrite (1.2) in the form

Gm,n(z) =
n∑

i=m

Dm,i�m,i−1(z). (1.8)

The vector-valued rational interpolants to the function F(z) we developed in [6] are all of the
general form

R(z) = U(z)

V (z)
=
∑k

j=0 cj �1,j (z) Gj+1,p(z)∑k
j=0 cj �1,j (z)

, (1.9)

where c0, c1, . . . , ck are, for the time being, arbitrary complex scalars, and p is an arbitrary
integer. Obviously, U(z) is a vector-valued polynomial of degree at most p − 1 and V (z) is a
scalar polynomial of degree at most k. It is also clear from (1.9) that k�p − 1.

The following theorem says that, whether the �i are distinct or not, R(z) interpolates F(z). See
[6, Lemmas 2.1 and 2.3].

Theorem 1.1. Let the vector-valued rational function R(z) be as in (1.9), and assume that
V (�i ) �= 0, i = 1, 2, . . . , p.

(i) When the �i are distinct, R(z) interpolates F(z) at the points �1, �2, . . . , �p in the ordinary
sense:

R(�i ) = F(�i ), i = 1, . . . , p. (1.10)

(ii) When the �i are not necessarily distinct and are ordered as in (1.1), R(z) interpolates F(z)

in the generalized Hermite sense as follows: let t and � be the unique integers satisfying t �0
and 0�� < rt+1 for which p = ∑t

i=1 ri + �. Then,

R(s)(ai) = F (s)(ai) f or s = 0, 1, . . . , ri − 1 when i = 1, . . . , t,

and f or s = 0, 1, . . . , � − 1 when i = t + 1. (1.11)

(Of course, when � = 0, there is no interpolation at at+1.)

Remark. It must be noted that the condition V (�i ) �= 0, i = 1, . . . , p, features throughout
this work. Because k < p and because p can be arbitrarily large, this condition might look too
restrictive at first. This is not the case, however. Indeed, the condition V (�i ) �= 0, i = 1, . . . , p,

is natural for the following reason: normally, we take the points of interpolation �i in a set �
on which the function F(z) is regular. If Rp,k(z) is to approximate F(z), it should also be a
regular function over � and hence free of singularities there. Since the singularities of Rp,k(z)

are the zeroes of V (z), this implies that V (z) should not vanish on �. [We expect the singularities
of Rp,k(z)—the zeroes of V (z)—to be close to the singularities of F(z), which are outside the
set �.]

So far, the cj in (1.9) are arbitrary. Of course, the quality of R(z) as an approximation to F(z)

depends very strongly on the choice of the cj . Naturally, the cj must depend on F(z) and on
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the �i . Fixing the integers k and p such that p�k + 1, we determine the cj as follows:

1. With the normalization ck = 1, we determine c0, c1, . . . , ck−1 as the solution to the problem

min
c0,c1,...,ck−1

∥∥∥∥∥∥
k∑

j=0

cjDj+1,p+1

∥∥∥∥∥∥ subject to ck = 1, (1.12)

where ‖ · ‖ stands for an arbitrary vector norm in CN . With the l1- and l∞-norms, the opti-
mization problem can be solved by using linear programming. With the l2-norm, it becomes
a least-squares problem, which can be solved numerically via standard techniques. Of course,
the inner product (· , ·) that defines the l2-norm [that is, ‖u‖ = √

(u, u) ] is not restricted to
the standard inner product (u, v) = u∗v; it can be given by (u, v) = u∗Mv, where M is a
hermitian positive definite matrix. We let ‖ · ‖ in (1.12) be the l2-norm.
We denote the resulting rational interpolation procedure IMPE and the interpolant in (1.9)
RIMPE

p,k (z).
2. Again, with the normalization ck = 1, we determine c0, c1, . . . , ck−1 via the solution of the

linear system⎛⎝qi,

k∑
j=0

cjDj+1,p+1

⎞⎠ = 0, i = 1, . . . , k; ck = 1, (1.13)

where q1, . . . , qk are linearly independent vectors in CN . Note that we can choose the vectors
q1, . . . , qk to be independent of p or to depend on p.
We denote the resulting rational interpolation procedure IMMPE and the interpolant in (1.9)
RIMMPE

p,k (z).
3. Again, with the normalization ck = 1, we determine c0, c1, . . . , ck−1 via the solution of the

linear system⎛⎝q,

k∑
j=0

cjDj+1,p+s

⎞⎠ = 0, s = 1, 2, . . . , k; ck = 1, (1.14)

where q is a nonzero vector in CN .
We denote the resulting rational interpolation procedure ITEA and the interpolant in (1.9)
RITEA

p,k (z).

Remarks.
1. The way we determine the cj here differs from the one given in [6] in that the normalization

of V (z) in [6] is c0 = 1, whereas we have chosen ck = 1 here.
2. Under the present normalization ck = 1, the denominator polynomials V (z) for RIMMPE

p,k (z)

and for RITEA
p,k (z) turn out to be the same as those given in [6], up to a constant multiplicative

factor. The denominator polynomial V (z) for RIMPE
p,k (z) is different from the corresponding

one given in [6].
3. V (z) for RIMPE

p,k (z) in [6] is a symmetric function of the points �2, . . . , �p+1, but not of
�1, . . . , �p+1, all the points used in its construction. Under the present normalization ck = 1,
it does become symmetric in �1, . . . , �p+1, however. This was the motivation for switching to
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ck = 1. V (z) for RIMMPE
p,k (z) and for RITEA

p,k (z) are symmetric functions of all the points �i used

in their construction, namely, of �1, . . . , �p+1 for IMMPE and of �1, . . . , �p+k for ITEA. 1

4. Because Rp,k(z) in the present paper achieves interpolation at the points �1, �2, . . . , �p, and
because its denominator V (z) is symmetric in �1, �2, . . . , �p, Rp,k(z) also achieves symmetry
in �1, �2, . . . , �p.

The assertions of Remarks 1 and 2 can be verified by comparing the determinantal represen-
tations in the next theorem with those given in [6, Theorem 4.1]. The proof of this theorem is
exactly the same as that of Theorem 4.1 in [6]. The proofs of the assertions in Remarks 3 and 4
are given in Section 3.

Theorem 1.2. Let the vector-valued rational interpolant Rp,k(z) to F(z) be given by

Rp,k(z) = U(z)

V (z)
=
∑k

j=0 cj �1,j (z) Gj+1,p(z)∑k
j=0 cj �1,j (z)

, (1.15)

such that Rp,k(�i ) = F(�i ), i = 1, . . . , p, and the scalars cj are defined by (1.12) for IMPE, by
(1.13) for IMMPE, and by (1.14) for ITEA. Then Rp,k(z) has a determinant representation of the
form

Rp,k(z) = P(z)

Q(z)
=

∣∣∣∣∣∣∣∣∣∣∣

�1,0(z) G1,p(z) �1,1(z) G2,p(z) · · · �1,k(z) Gk+1,p(z)

u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k

...
...

...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�1,0(z) �1,1(z) · · · �1,k(z)

u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k

...
...

...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣

, (1.16)

where

ui,j =
⎧⎨⎩

(Di,p+1 , Dj+1,p+1) for IMPE,

(qi , Dj+1,p+1) for IMMPE,

(q , Dj+1,p+i ) for ITEA.

(1.17)

Here, the numerator determinant P(z) is vector-valued and is defined by its expansion with respect
to its first row. That is, if Mj is the cofactor of the term �1,j (z) in the denominator determinant
Q(z), then

Rp,k(z) =
∑k

j=0 Mj �1,j (z) Gj+1,p(z)∑k
j=0 Mj �1,j (z)

. (1.18)

1 A function f (x1, . . . , xm) is symmetric in x1, . . . , xm if f (xi1 , . . . , xim ) = f (x1, . . . , xm) for every permutation
(xi1 , . . . , xim ) of (x1, . . . , xm).
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Now, in order to be acceptable as interpolants, the functions Rp,k(z) must satisfy the following
criteria:

1. They must be unique in some sense.
2. They must be symmetric in the points of interpolation. In other words, Rp,k(z) must be the

same rational function whatever the ordering of �1, �2, . . . , �p.
3. If F(z), the function being interpolated, is of the form F(z) = Ũ (z)/Ṽ (z), with Ũ (z) a vector-

valued polynomial of degree at most p − 1 and Ṽ (z) a scalar polynomial of degree exactly k,
the rational interpolants Rp,k(z) must reproduce F(z) in the sense that Rp,k(z) ≡ F(z), under
appropriate conditions.

We treat the question of uniqueness in the next section. Even though the denominators V (z)

are defined in different ways, this treatment can be unified.
In Section 3, we discuss the symmetry of Rp,k(z) in the interpolation points. This discussion

is not straightforward because these interpolants are defined with the points of interpolation
ordered as �1, �2, . . . . We are nevertheless able to show that Rp,k(z) are symmetric functions
of the underlying points of interpolation. In this study, the determinantal representations given in
Theorem 1.2 prove to be very useful.

In Section 4, we turn to the reproducing property of the Rp,k(z).
In Section 5, we provide an example function F(z) for which the main condition for uniqueness

and the reproducing property is satisfied.
Finally, as already mentioned in [6], the methods we have proposed for determining the cj can

be extended to the case in which F(z) is such that F : C → B, where B is a general linear space,
exactly as is shown in [3, Section 6]. This amounts to the introduction of the norm defined in B

when the latter is a normed space (for IMPE), and to the introduction of some bounded linear
functionals (for IMMPE and ITEA). With these, the determinant representations of Theorem 1.2
remain unchanged as well. We refer the reader to [3] for the details.

2. Uniqueness of Rp,k(z)

As emphasized in [6], what differentiates between the various interpolants Rp,k(z) is how their
corresponding cj are determined. With this in mind, the following lemma is the first step towards
the answer to the question of uniqueness in some sense.

Lemma 2.1. Let V (z) be a fixed scalar polynomial of degree k, such that V (�i ) �= 0, i =
1, . . . , p. Define R(z) to be a vector-valued rational function of the form R(z) = U(z)/V (z),
where U(z) is a vector-valued polynomial of degree at most p − 1, and R(�i ) = F(�i ),
i = 1, 2, . . . , p. Then, R(z) is unique. In particular, if we express V (z) in the form V (z) =∑k

j=0 cj �1,j (z), which is possible, then R(z) is as given in (1.9).

Proof. Let R̃(z) = Ũ (z)/V (z) be another vector-valued rational function, where Ũ (z) is a vector-
valued polynomial of degree at most p−1, such that R̃(�i ) = F(�i ), i = 1, . . . , p. Then R̃(�i ) =
R(�i ), i = 1, . . . , p. Because V (�i ) �= 0, i = 1, . . . , p, this implies that Ũ (�i ) − U(�i ) = 0,

i = 1, . . . , p. Since Ũ (z) − U(z) is a (vector-valued) polynomial of degree at most p − 1, this
is possible only if Ũ (z) ≡ U(z). Thus, R(z) is unique. The rest of the proof is immediate. �

From Lemma 2.1, it is clear that the uniqueness of Rp,k(z) = U(z)/V (z) for IMPE, IMMPE,
and ITEA depends on the uniqueness of the denominator polynomial V (z). The uniqueness of
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V (z), in turn, hinges on the uniqueness of the coefficients cj . When the cj are determined as in
(1.12) or (1.13) or (1.14), we have the following result:

Theorem 2.2. Let

Rp,k(z) = U(z)

V (z)
=
∑k

j=0 cj �1,j (z) Gj+1,p(z)∑k
j=0 cj �1,j (z)

,

with the cj defined via (1.12) or (1.13) or (1.14). Then Rp,k(z) is unique provided∣∣∣∣∣∣∣∣∣
u1,0 u1,1 · · · u1,k−1
u2,0 u2,1 · · · u2,k−1

...
...

...

uk,0 uk,1 · · · uk,k−1

∣∣∣∣∣∣∣∣∣ �= 0, (2.1)

where ui,j are as defined in (1.17), and V (�i ) �= 0, i = 1, . . . , p.

Proof. We first note that the equations in (1.12) or (1.13) or (1.14) that define the cj can be
rewritten as in

k−1∑
j=0

ui,j cj = −ui,k, i = 1, . . . , k. (2.2)

Thus, the condition in (2.1) guarantees the existence and uniqueness of the cj . The proof now
follows by invoking Lemma 2.1. �

Note that the condition in (2.1) is equivalent to the conditions we state next:

1. The vectors Di,p+1, i = 1, . . . , k, are linearly independent in case of RIMPE
p,k (z). This also

means that k�N.

2. The vectors Di,p+1, i = 1, . . . , k, are linearly independent, and the k × k matrix Q∗D, where

Q = [q1 |q2 | . . . |qk] ∈ CN×k and D = [D1,p+1 |D2,p+1 | . . . |Dk,p+1] ∈ CN×k

has full rank in case of RIMMPE
p,k (z). This also means that k�N .

3.

∣∣∣∣∣∣∣∣∣
(q, D1,p+1) (q, D2,p+1) · · · (q, Dk,p+1)

(q, D1,p+2) (q, D2,p+2) · · · (q, Dk,p+2)
...

...
...

(q, D1,p+k) (q, D2,p+k) · · · (q, Dk,p+k)

∣∣∣∣∣∣∣∣∣ �= 0 in case of RITEA
p,k (z).

As we have seen, in order for the conditions stated in (2.1) that pertain to the uniqueness of
Rp,k(z) for IMPE and IMMPE to be satisfied, the vectors Di,p+1, i = 1, . . . , k, must be linearly
independent. In Section 5, we will see that this is the case when the function F(z) is of the form
F(z) = Ũ (z)/Ṽ (z), where Ũ (z) is a vector-valued polynomial and Ṽ (z) is a scalar polynomial,
subject to certain conditions on the Laurent expansion of F(z): (i) when the poles of F(z) are all
simple, that is, when

F(z) =
�∑

i=0

uiz
i +

�∑
s=1

vs

z − zs

,
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where ui are arbitrary vectors, ��N , and z1, . . . , z� are distinct points in C, the vectors v1, . . . , v�
must be linearly independent. (ii) When some or all of the poles of F(z) are multiple, that is, when

F(z) =
�∑

i=0

uiz
i +

�∑
s=1

rs∑
j=1

vsj

(z − zs)j
,

where ui are arbitrary vectors, � = ∑�
s=1 rs �N , and z1, . . . , z� are distinct points in C, the

vectors vsj , 1�j �rs , 1�s��, must be linearly independent.

3. Symmetry of Rp,k(z)

3.1. Preliminaries

In this section, we show that, in case the points of interpolation �i are distinct, Rp,k(z) (either
for IMPE or for IMMPE or for ITEA) does not depend on the order in which the �i are introduced
into the interpolation process, that is, Rp,k(z) is a symmetric function of the points �1, . . . , �p.
We start with the following lemma:

Lemma 3.1. Define R(z) to be a vector-valued rational function of the form R(z) = U(z)/V (z),
where U(z) is a vector-valued polynomial of degree at most p−1 and V (z) is a scalar polynomial
of degree k. Assume that V (�i ) �= 0, i = 1, . . . , p, and that R(�i ) = F(�i ), i = 1, 2, . . . , p.

Then, R(z) is a symmetric function of �1, . . . , �p provided V (z) is too.

Proof. Because V (z) is a symmetric function of �1, . . . , �p, R(z) will also be a symmetric
function of �1, . . . , �p provided U(z) is too. Now, U(z) = V (z)R(z). Therefore,

U(�i ) = V (�i )R(�i ) = V (�i )F (�i ), i = 1, . . . , p, (3.1)

that is, U(z) interpolates V (z)F (z) at the p points �1, . . . , �p. Being a (vector-valued) polynomial
of degree at most p−1, U(z) is the unique polynomial of interpolation to V (z)F (z) at �1, . . . , �p.
Hence U(z) is a symmetric function of �1, . . . , �p. Consequently, so is R(z) = U(z)/V (z). �

In view of Lemma 3.1, in order to establish that Rp,k(z) = U(z)/V (z), for the interpolation
procedures considered in this work, is a symmetric function of �1, . . . , �p, it is sufficient to show
that V (z) is a symmetric function of �1, . . . , �p. We do this separately for RIMPE

p,k (z), RIMMPE
p,k (z),

and RITEA
p,k (z). We actually show that the polynomials V (z) are symmetric functions of all the �i

used in their construction.
The next lemma (see, e.g. Bourbaki [2, Chapter 1, 5.7, p. 63, Proposition 9]) too will be of use

in the sequel.

Lemma 3.2. Let (i1, i2, . . . , is) denote the permutation

(
1 2 ··· s

i1 i2 ··· is

)
. Then (i1, i2, . . . , is) is a

product of transpositions of the form (j, j + 1), j ∈ {1, 2, . . . , s − 1}.

We illustrate this lemma via an example that indicates the way to the general proof. Let s = 5,
and consider the permutation (3, 5, 2, 1, 4). This permutation can be obtained from (1, 2, 3, 4, 5)
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via the following sequence of transpositions:

(12345) 
→ (13245) 
→ (31245) 
→ (31254) 
→ (31524) 
→ (35124) 
→ (35214).

Thus, as a product of transpositions of the form (j, j + 1), we have

(35214) = (34)(23)(34)(45)(12)(23),

the transpositions being performed from right to left.
The following lemma helps to unify the treatments of the different rational interpolation

procedures.

Lemma 3.3. Define

g(�) = 1

z − �
(� : variable, z : fixed parameter), (3.2)

and denote g[�m, �m+1, . . . , �m+q ], the divided difference of order q of g(�) on the set of points
{�m, �m+1, . . . , �m+q}, by gm,m+1,...,m+q . Then, the denominator determinant Q(z) of Rp,k(z) in
(1.16), namely,

Q(z) =

∣∣∣∣∣∣∣∣∣∣∣

�1,0(z) �1,1(z) · · · �1,k(z)

u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k

...
...

...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣
, (3.3)

can be rewritten in the form

Q(z) = �1,n(z) W(�1, �2, . . . , �n; z), (3.4)

where n is an integer greater than k and

W(�1, �2, . . . , �n; z) =

∣∣∣∣∣∣∣∣∣∣∣

g1,...,n g2,...,n · · · gk+1,...,n

u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k

...
...

...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣
. (3.5)

Remark. In the sequel, we take n to be the number of the �i used to construct V (z). Thus,
n = p + 1 for RIMPE

p,k (z) and RIMMPE
p,k (z), while n = p + k for RITEA

p,k (z).

Proof. By (1.6),

�1,r (z) =
r∏

i=1

(z − �i ) = �1,n(z)

�r+1,n(z)
, 0�r �n − 1. (3.6)

Furthermore, with the function g(�) as defined in (3.2), using the recursion relation in (1.3), it
can be shown by induction that g[�m, �m+1, . . . , �s], is given by

g[�m, �m+1, . . . , �s] = 1

�m,s(z)
. (3.7)
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Consequently,

�1,r (z) = �1,n(z) g[�r+1, �r+2, . . . , �n] = �1,n(z) gr+1,r+2,...,n, 0�r �n − 1. (3.8)

Substituting (3.8) in (3.3), and factoring out �1,n(z) from the first row, the result follows. �

Now, the factor �1,n(z) in (3.4) is a symmetric function of �1, �2, . . . , �n. We therefore need
to analyze only the determinant W(�1, �2, . . . , �n; z).

What we want to show now is that, for any permutation (�i1 , �i2 , . . . , �in ) of (�1, �2, . . . , �n),
where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n), there holds

W(�i1 , �i2 , . . . , �in; z) ≡ W(�1, �2, . . . , �n; z).

By Lemma 3.2, it is enough to show that this holds when, for any i ∈ {1, 2, . . . , n − 1}, �i and
�i+1 are interchanged in W(�1, �2, . . . , �n; z). That is, it is enough to show that

Ŵi(z) ≡ W(z), (3.9)

where we have denoted

W(z) = W(�1, �2, . . . , �n; z) (3.10)

and

Ŵi(z) = W(�1, �2, . . . , �i−1, �i+1, �i , �i+2, . . . , �n; z), (3.11)

for short. We now turn to this subject. In the remainder of this section, we use the notation
introduced above freely.

Note that, in the analysis below, we also make use of the facts(
a,

s∑
r=1

�rbr

)
=

s∑
r=1

�r

(
a, br

)
,

(
s∑

r=1

	rar , b

)
=

s∑
r=1

	r

(
ar , b

)
.

Here a, b, ar , br are vectors and 	r , �r are scalars, and 	r stands for the complex conjugate of 	r .

3.2. Treatment of RIMMPE
p,k (z)

Lemma 3.4. The denominator polynomial V (z) of RIMMPE
p,k (z) is a symmetric function of �1,

�2, . . . , �p+1 used to construct V (z).

Proof. With the notation

n = p + 1 and w(i)
m,...,n = (

qi, Dm,n

)
, ⇒ ui,j = w

(i)
j+1,...,n, (3.12)

(3.5) becomes

W(�1, �2, . . . , �n; z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

g1,...,n g2,...,n · · · gk+1,...,n

w
(1)
1,...,n w

(1)
2,...,n · · · w

(1)
k+1,...,n

w
(2)
1,...,n w

(2)
2,...,n · · · w

(2)
k+1,...,n

...
...

...

w
(k)
1,...,n w

(k)
2,...,n · · · w

(k)
k+1,...,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.13)
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From (3.12) and (3.13), it is clear that the elements in each column of the determinant expression
for W(�1, �2, . . . , �n; z) are divided differences of the same order and over the same set of points,
hence satisfy the same recursion relations. Specifically, the elements in the rth column are divided
differences of order n − r = p − r + 1 over the set of points {�r , �r+1, . . . , �n}. This allows us
to perform on the determinant elementary column transformations easily.

What we want to show now is that, for any i ∈ {1, 2, . . . , n−1}, (3.9) holds. There are two cases
to consider: (i) i�k + 1, and (ii) 1� i�k. In the sequel, we make use of the fact that a divided
difference on the set of points {�m, �m+1, . . . , �n} is a symmetric function of �m, �m+1, . . . , �n.

By (3.13), by the fact that k�p, and by the symmetry property of divided differences, it follows
that Ŵi(z) has exactly the same columns as W(z) when i�k + 1, hence (3.9) holds trivially.

When 1� i�k, Ŵi(z) differs from W(z) columnwise. However, due to the symmetry property
of divided differences, Ŵi(z) differs from W(z) only in its (i + 1)st column, this column being

[gi,i+2,...,n, w
(1)
i,i+2,...,n, w

(2)
i,i+2,...,n, . . . , w

(k)
i,i+2,...,n]T.

Now, by (1.3), there holds

gi,...,n = gi,i+2,...,n − gi+1,i+2,...,n

�i − �i+1
, (3.14)

from which

gi+1,i+2,...,n = gi,i+2,...,n + (�i+1 − �i )gi,...,n. (3.15)

The same holds with gm,...,n replaced by w
(s)
m,...,n, that is,

w
(s)
i+1,i+2,...,n = w

(s)
i,i+2,...,n + (�i+1 − �i )w

(s)
i,...,n.

Thus, if we multiply the ith column in Ŵi(z) by (�i+1 − �i ) and add to the (i + 1)st column, the
(i+1)st column becomes the same as that in W(z), without changing the value of the determinant
Ŵi(z), of course. This proves the validity of (3.9). �

Combining Lemmas 3.1 and 3.4, we have the following main result:

Theorem 3.5. Let V (z) in RIMMPE
p,k (z) be such that V (�i ) �= 0, i = 1, 2, . . . , p. Then RIMMPE

p,k (z)

is a symmetric function of �1, �2, . . . , �p.

3.3. Treatment of RIMPE
p,k (z)

Due to the complicated nature of the matrix elements ui,j of RIMPE
p,k (z) in Theorem 1.2, the

treatment of this interpolant is more involved than that of RIMMPE
p,k (z).

Lemma 3.6. The denominator polynomial V (z) of RIMPE
p,k (z) is a symmetric function of �1, �2,. . .,

�p+1 used to construct V (z).

Proof. With the notation

n = p + 1 and w(i)
m,...,n = (

Di,n, Dm,n

) ⇒ ui,j = w
(i)
j+1,...,n, (3.16)
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(3.5) becomes

W(�1, �2, . . . , �n; z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

g1,...,n g2,...,n · · · gk+1,...,n

w
(1)
1,...,n w

(1)
2,...,n · · · w

(1)
k+1,...,n

w
(2)
1,...,n w

(2)
2,...,n · · · w

(2)
k+1,...,n

...
...

...

w
(k)
1,...,n w

(k)
2,...,n · · · w

(k)
k+1,...,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.17)

What we want to show now is that, for any i ∈ {1, 2, . . . , n − 1}, (3.9) holds. There are two
cases to consider: (i) i�k + 1 and (ii) 1� i�k.

By (3.16) and (3.17), by the fact that k�p, and by the symmetry property of divided differences,
it follows that Ŵi(z) has exactly the same rows and columns as W(z) when i�k + 1, hence (3.9)
holds trivially.

When 1� i�k, however, Ŵi(z) differs from W(z) in a way that is more complicated than what
we had in Lemma 3.4 for IMMPE. In this case, it is best to do the proof for a special case that
can be generalized easily.

Let us consider the case k = 3 and p = 5, hence n = 6. Then

W(z)=

∣∣∣∣∣∣∣∣
g123456 g23456 g3456 g456

(D123456, D123456) (D123456, D23456) (D123456, D3456) (D123456, D456)

(D23456, D123456) (D23456, D23456) (D23456, D3456) (D23456, D456)

(D3456, D123456) (D3456, D23456) (D3456, D3456) (D3456, D456)

∣∣∣∣∣∣∣∣ .
We now employ Lemma 3.2 and show that this determinant remains the same under an interchange
of �i and �i+1 in {�1, . . . , �6}. Let us take i = 1. Then

Ŵ1(z)=

∣∣∣∣∣∣∣∣
g213456 g13456 g3456 g456

(D213456, D213456) (D213456, D13456) (D213456, D3456) (D213456, D456)

(D13456, D213456) (D13456, D13456) (D13456, D3456) (D13456, D456)

(D3456, D213456) (D3456, D13456) (D3456, D3456) (D3456, D456)

∣∣∣∣∣∣∣∣ .
By the symmetry property of divided differences, we have

Ŵ1(z)=

∣∣∣∣∣∣∣∣
g123456 g13456 g3456 g456

(D123456, D123456) (D123456, D13456) (D123456, D3456) (D123456, D456)

(D13456, D123456) (D13456, D13456) (D13456, D3456) (D13456, D456)

(D3456, D123456) (D3456, D13456) (D3456, D3456) (D3456, D456)

∣∣∣∣∣∣∣∣ .
Now, in the first row of Ŵ1(z),

g123456 = g13456 − g23456

�1 − �2
,

from which

g23456 = g13456 + (�2 − �1)g123456.
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We have analogous relations for the remaining rows of Ŵ1(z). Thus, if we multiply the first (i = 1)

column in Ŵ1(z) by (�2 − �1) and add to the second (i + 1 = 2) column, we obtain

Ŵ ′
1(z) =

∣∣∣∣∣∣∣∣
g123456 g23456 g3456 g456

(D123456, D123456) (D123456, D23456) (D123456, D3456) (D123456, D456)

(D13456, D123456) (D13456, D23456) (D13456, D3456) (D13456, D456)

(D3456, D123456) (D3456, D23456) (D3456, D3456) (D3456, D456)

∣∣∣∣∣∣∣∣ .
If we now multiply the second (i + 1 = 2) row in Ŵ ′

1(z) by (�2 − �1) and add to the second
(i + 2 = 3) row, the resulting determinant Ŵ ′′

1 (z) is precisely W(z), and this is what we needed
to prove. �

Note. As can be seen from the proof of Lemma 3.6, if we would stick with the normalization
c0 = 1 in the definition of V (z), this polynomial would be a symmetric function of �2, . . . , �n,
but not of �1, �2, . . . , �n. Precisely this was the reason for the normalization ck = 1.

Combining Lemmas 3.1 and 3.6, we have the following main result:

Theorem 3.7. Let V (z) in RIMPE
p,k (z) be such that V (�i ) �= 0, i = 1, 2, . . . , p. Then RIMPE

p,k (z) is
a symmetric function of �1, �2, . . . , �p.

3.4. Treatment of RITEA
p,k (z)

Lemma 3.8. The denominator polynomialV (z)ofRITEA
p,k (z) is a symmetric function of�1, �2, . . . ,

�p+k used to construct V (z).

Proof. With the notation

n = p + k and wr,...,s = (
q, Dr,s

) ⇒ ui,j = wj+1,...,p+i , (3.18)

(3.5) becomes

W(�1, �2, . . . , �n; z) =

∣∣∣∣∣∣∣∣∣∣∣

g1,...,n g2,...,n · · · gk+1,...,n

w1,...,p+1 w2,...,p+1 · · · wk+1,...,p+1
w1,...,p+2 w2,...,p+2 · · · wk+1,...,p+2

...
...

...

w1,...,p+k w2,...,p+k · · · wk+1,...,p+k

∣∣∣∣∣∣∣∣∣∣∣
. (3.19)

Obviously, being a divided difference, wr,...,s is symmetric in the points �r , �r+1, . . . , �s , hence,
equivalently, in its indices r, r + 1, . . . , s.

What we want to show now is that, for any i ∈ {1, 2, . . . , n − 1}, (3.9) holds. There are two
cases to consider: (i) i�k + 1 and (ii) 1� i�k.

By (3.18) and (3.19), by the fact that k�p, and by the symmetry property of divided differences,
it follows that Ŵi(z) has exactly the same columns as W(z) when i�k + 1, hence (3.9) holds
trivially.

When 1� i�k, Ŵi(z) differs from W(z) columnwise. However, due to the symmetry property
of divided differences, Ŵi(z) differs from W(z) only in its (i + 1)st column, this column being

[gi,i+2,...,n, wi,i+2,...,p+1, wi,i+2,...,p+2, . . . , wi,i+2,...,p+k]T.
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Again, gm,...,n satisfy (3.14) and (3.15). The same holds with gm,...,n replaced by wm,...,p+s ,
s = 1, . . . , k, even though these divided differences are not of the same order. That is,

wi+1,i+2,...,p+s = wi,i+2,...,p+s + (�i+1 − �i )wi,...,p+s .

Thus, if we multiply the ith column in Ŵi(z) by (�i+1 − �i ) and add to the (i + 1)st column, the
(i+1)st column becomes the same as that in W(z), without changing the value of the determinant
Ŵi(z). This proves the validity of (3.9). �

Combining Lemmas 3.1 and 3.8, we have the following main result:

Theorem 3.9. Let V (z) in RITEA
p,k (z) be such that V (�i ) �= 0, i = 1, 2, . . . , p. Then RITEA

p,k (z) is
a symmetric function of �1, �2, . . . , �p.

4. Reproducing property of Rp,k(z)

In the next theorem, we show that, provided the conditions pertaining to the uniqueness of the
denominator polynomial V (z) are satisfied, the interpolant Rp,k(z) reproduces F(z) when the
latter is itself a vector-valued rational function.

Theorem 4.1. Let F(z) be of the form F(z) = Ũ (z)/Ṽ (z), with Ũ (z) a vector-valued polynomial
of degree at most p − 1 and Ṽ (z) a scalar polynomial of degree exactly k. Then, all three rational
interpolants Rp,k(z) reproduce F(z) in the sense that Rp,k(z) ≡ F(z), provided the condition in
(2.1) of Theorem 2.2 holds.

Proof. By the fact that Ũ (z) is a polynomial of degree at most p−1, we first have that all divided
differences of Ũ (z) of order p or more vanish, that is,

Ũ [�1, . . . , �p, �p+1, . . . , �p+s] = 0, s = 1, 2, . . . . (4.1)

Now, since Ũ (z) = Ṽ (z)F (z), by the Leibnitz rule for divided differences, we have

Ũ [�1, . . . , �m] =
m∑

i=1

Ṽ [�1, . . . , �i] F [�i , . . . , �m]. (4.2)

But, because Ṽ (z) is a polynomial of degree k, there holds

Ṽ [�1, . . . , �i] = 0, i�k + 2.

Furthermore, writing Ṽ (z) in the form

Ṽ (z) =
k∑

j=0

c̃j �1,j (z),

which is legitimate, and comparing with the Newtonian form

Ṽ (z) =
k+1∑
i=1

Ṽ [�1, . . . , �i] �1,i−1(z),
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we realize that

c̃j = Ṽ [�1, . . . , �j+1], j = 0, 1, . . . , k.

Substituting this in (4.2) and letting m = p + s there, switching to the notation Di,m = F [�i ,

�i+1, . . . , �m] [recall (1.7)], and invoking (4.1), we see that c̃j satisfy the equations

k∑
j=0

c̃j Dj+1,p+s = 0, s = 1, 2, . . . . (4.3)

Therefore, they also satisfy (1.12)–(1.14). It is now easy to see that, when (2.1) holds, we have
cj = c̃j , j = 0, 1, . . . , k. This completes the proof. �

Note that Theorem 4.1 and its proof can also serve to define the rational interpolation procedures.
That is, these interpolation procedures can be obtained by demanding that Rp,k(z) ≡ F(z) when
F(z) is a vector-valued rational function, as described in Theorem 4.1.

Finally, the vector-valued rational functions F(z) described in the next section (also described
in the last paragraph of Section 2) satisfy the conditions of Theorem 4.1 in case of IMPE and
IMMPE.

5. Rational F(z) and the conditions (2.1)

As we have seen, in order for the conditions stated in (2.1) that pertain to the uniqueness
of Rp,k(z) for IMPE and IMMPE to be satisfied, the vectors Di,p+1, i = 1, . . . , k, must be
linearly independent. We will now see that this is the case when the function F(z) is of the form
F(z) = Ũ (z)/Ṽ (z), where Ũ (z) is a vector-valued polynomial of degree � + � and Ṽ (z) is a
scalar polynomial of degree exactly �, ��k, provided certain conditions are satisfied by F(z).
The poles of F(z) may be simple or multiple. Below, we first treat the case in which all the poles
of F(z) are simple. Following that, we allow some or all of the poles of F(z) to be multiple.

5.1. F(z) has simple poles

Let us assume that the poles of F(z) are all simple and its corresponding residues are linearly
independent vectors in CN . In this case, F(z) is of the form

F(z) =
�∑

i=0

uiz
i +

�∑
s=1

vs

z − zs

,

where ui are arbitrary vectors in CN , ��N , z1, . . . , z� are distinct points in C, and v1, . . . , v�

are linearly independent constant vectors in CN . For example, with A ∈ CN×N a diagonalizable
matrix and b ∈ CN a nonzero constant vector, F(z) = (zI −A)−1b is such a function; in this case,
u0 = · · · = u� = 0, z1, . . . , z� are some or all of the distinct eigenvalues of A, and v1, . . . , v�
are corresponding eigenvectors (i.e., Avi = zivi, i = 1, . . . , �), and ��N necessarily. See Sidi
[4, Section 2].
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Now, with m − i�� + 1, the divided difference of the vector-valued polynomial
∑�

i=0 uiz
i

over the set of points {�i , �i+1, . . . , �m} vanishes; consequently, the vector Di,m is given by

Di,m = F [�i , �i+1, . . . , �m] = −
�∑

s=1

vs

�i,m(zs)
, m�� + i + 1,

where we have used the fact that


(z) = 1

z − zs

⇒ 
[�i , �i+1, . . . , �m] = − 1

�i,m(zs)
.

[This can be proved via (1.3) and by induction on m.]
Let

D = [D1,m|D2,m| . . . |Dk,m] ∈ CN×k; m�� + k + 2.

Then, D can be factorized as in

D = −XM,

where

X = [v1|v2| . . . |v�] ∈ CN×�

and

M =

⎡⎢⎢⎢⎣
1/�1,m(z1) 1/�2,m(z1) · · · 1/�k,m(z1)

1/�1,m(z2) 1/�2,m(z2) · · · 1/�k,m(z2)
...

...
...

1/�1,m(z�) 1/�2,m(z�) · · · 1/�k,m(z�)

⎤⎥⎥⎥⎦ ∈ C�×k.

We wish to show that rank(D) = k.
Obviously, rank(X) = � because the vectors v1, . . . , v� are linearly independent and ��N .

We now want to establish that rank(M) = k. We start by observing that

M = EM ′,

where

E = diag
(
1/�1,m(z1), 1/�1,m(z2), . . . , 1/�1,m(z�)

) ∈ C�×�

and

M ′ =

⎡⎢⎢⎢⎣
1 �1,1(z1) �1,2(z1) · · · �1,k−1(z1)

1 �1,1(z2) �1,2(z2) · · · �1,k−1(z2)
...

...
...

...

1 �1,1(z�) �1,2(z�) · · · �1,k−1(z�)

⎤⎥⎥⎥⎦ ∈ C�×k.

Next, we have (see Sidi [5, Chapter 6, Lemma 6.8.1])∣∣∣∣∣∣∣∣∣
1 �1,1(z1) �1,2(z1) · · · �1,k−1(z1)

1 �1,1(z2) �1,2(z2) · · · �1,k−1(z2)
...

...
...

...

1 �1,1(zk) �1,2(zk) · · · �1,k−1(zk)

∣∣∣∣∣∣∣∣∣ = V (z1, z2, . . . , zk),
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where V (z1, z2, . . . , zk) is the Vandermonde determinant defined by

V (z1, z2, . . . , zk) =

∣∣∣∣∣∣∣∣∣∣∣

1 z1 z2
1 · · · zk−1

1

1 z2 z2
2 · · · zk−1

2
...

...
...

...

1 zk z2
k · · · zk−1

k

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1� i<j �k

(zj − zi).

Since the zi are distinct, it is clear that V (z1, z2, . . . , zk) �= 0, and this implies that rank(M ′) = k.
This and the fact that E is a nonsingular square matrix imply that rank(M) = k.

As a result, the matrix D has rank k, that is, its columns D1,m, D2,m, . . . , Dk,m are linearly
independent. This holds, in particular, for m = p + 1.

5.2. F(z) has multiple poles

Let us assume that the poles of F(z) may be simple or multiple, that is, F(z) is of the form

F(z) =
�∑

i=0

uiz
i +

�∑
s=1

rs∑
j=1

vsj

(z − zs)j
,

where ui are arbitrary vectors in CN, � = ∑�
s=1 rs �N , and that vsj , 1�j �rs , 1�s��, are

linearly independent vectors in CN . For example, with A ∈ CN×N a nondiagonalizable matrix
and b ∈ CN a nonzero constant vector, F(z) = (zI − A)−1b is such a function; in this case,
u0 = · · · = u� = 0, z1, . . . , z� are some or all of the distinct eigenvalues of A, and, for each s, vsrs

is an eigenvalue of A corresponding to the eigenvalue zs , while vsj , j < rs are linear combinations
of eigenvectors and principal vectors corresponding to the eigenvalue zs . All these vectors, � in
number, are linearly independent. For details, see Sidi [4, Section 2].

Let us define


j (z; 	) = 1

(z − 	)j
.

Then, again, for m − i�� + 1, we have

Di,m = F [�i , �i+1, . . . , �m] =
�∑

s=1

rs∑
j=1

vsj 
j [�i , �i+1, . . . , �m; zs].

Here, 
j [�i , �i+1, . . . , �m; 	] is the divided difference of 
j (z; 	) over the set of points {�i , �i+1,

. . . , �m}, as a function of z (	 being viewed as a fixed parameter).
Because


j (z; 	) = 1

(j − 1)!
�j−1

�	j−1

1(z; 	), j = 1, 2, . . . ,

and because z and 	 vary independently, we have


j [�i , �i+1, . . . , �m; 	] = 1

(j − 1)!
�j−1

�	j−1

1[�i , �i+1, . . . , �m; 	], j = 1, 2, . . . .
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Noting again that


1[�i , �i+1, . . . , �m; 	] = − 1

�i,m(	)
,

and denoting

ṽsj = vsj

(j − 1)! , �i (z) = 1

�i,m(z)
,

we can rewrite Di,m in the form

Di,m = −
�∑

s=1

rs∑
j=1

ṽsj�
(j−1)
s (zs).

We now turn to the matrix

D = [D1,m|D2,m| . . . |Dk,m] ∈ CN×k; m�� + k + 2.

This matrix can be factorized as in

D = −XM,

where

X = [ṽ11| ṽ12| . . . | ṽ1r1

∣∣ . . . . . . ∣∣ ṽ�1| ṽ�2| . . . | ṽ�r� ] ∈ CN×�

and

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1(z1) �2(z1) · · · · · · �k(z1)

�′
1(z1) �′

2(z1) · · · · · · �′
k(z1)

...
...

...

�(�1)
1 (z1) �(�1)

2 (z1) · · · · · · �(�1)
k (z1)

...
...

...
...

...
...

...
...

...

�1(z�) �2(z�) · · · · · · �k(z�)

�′
1(z�) �′

2(z�) · · · · · · �′
k(z�)

...
...

...

�(��)
1 (z�) �(��)

2 (z�) · · · · · · �(��)
k (z�)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C�×k,

with �s = rs − 1, s = 1, . . . , �.

We wish to show that rank(D) = k. Obviously, rank(X) = � since the vectors vsj are linearly
independent. If we show that rank(M) = k, we will be done. The analysis of the matrix M,
however, turns out to be more involved than before. As before, we look at the determinant of
the k × k matrix M1 formed by the first k rows of M. It is easy to see that we can consider
k = � = ∑�

s=1 rs without loss of generality. This way we also avoid the need for introducing
additional notation. In addition, M1 = M now.
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We start by noting that

det M =
⎡⎣⎛⎝ �∏

s=1

�s∏
j=0

�j

�z
j
sj

⎞⎠ det M̃(z10, z11, . . . , z1�1; . . . . . . ; z�0, z�1, . . . , z���)

⎤⎦∣∣∣∣∣∣
zsj =zs

,

where, suppressing the arguments zsj in M̃(· · ·),

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1(z10) �2(z10) · · · · · · �k(z10)

�1(z11) �2(z11) · · · · · · �k(z11)
...

...
...

�1(z1�1) �2(z1�1) · · · · · · �k(z1�1)

...
...

...
...

...
...

...
...

...

�1(z�0) �2(z�0) · · · · · · �k(z�0)

�1(z�1) �2(z�1) · · · · · · �k(z�1)
...

...
...

�1(z���) �2(z���) · · · · · · �k(z���)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Letting (z10, z11, . . . , z1�1; . . . . . . ; z�0, z�1, . . . , z��s ) = (�1, �2, . . . , �k) for short, by the pre-
ceding subsection, we have

M̃ = ẼM̃ ′,

where

Ẽ = diag
(
1/�1,m(�1), 1/�1,m(�2), . . . , 1/�1,m(�k)

)
,

and

M̃ ′ =

⎡⎢⎢⎢⎣
1 �1,1(�1) �1,2(�1) · · · �1,k−1(�1)

1 �1,1(�2) �1,2(�2) · · · �1,k−1(�2)
...

...
...

...

1 �1,1(�k) �1,2(�k) · · · �1,k−1(�k)

⎤⎥⎥⎥⎦ .

But, by the preceding subsection, there holds

det M̃ = det Ẽ · det M̃ ′ = V (�1, �2, . . . , �k)∏k
i=1 �1,m(�i )

.

Consequently,

det M =
⎡⎣⎛⎝ �∏

s=1

�s∏
j=0

�j

�z
j
sj

⎞⎠ V (�1, �2, . . . , �k)∏k
i=1 �1,m(�i )

⎤⎦∣∣∣∣∣∣
zsj =zs

.
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Since V (�1, �2, . . . , �k) = ∏
1� i<j �k(�j − �i ), all of the terms obtained upon differentiating

the quotient V (�1, �2, . . . , �k)/
∏k

i=1 �1,m(�i ) vanish except one, and we obtain

det M =
⎡⎣ 1∏k

i=1 �1,m(�i )

⎛⎝ �∏
s=1

�s∏
j=0

�j

�z
j
sj

⎞⎠V (�1, �2, . . . , �k)

⎤⎦∣∣∣∣∣∣
zsj =zs

.

But ⎡⎣⎛⎝ �∏
s=1

�s∏
j=0

1

j !
�j

�z
j
sj

⎞⎠V (�1, �2, . . . , �k)

⎤⎦∣∣∣∣∣∣
zsj =zs

= V (z1, r1; z2, r2; . . . ; z�, r�)

=
∏

1� i<j ��

(zj − zi)
ri rj

is the confluent Vandermonde determinant. Since the zi are distinct, this determinant is nonzero.
Combining everything, we have

det M =
⎛⎝ �∏

s=1

�s∏
j=0

j !
⎞⎠ ∏

1� i<j ��(zj − zi)
ri rj∏�

s=1

[
�1,m(zs)

]rs �= 0.

This completes the proof of the assertion rank(M) = k.
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