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Abstract: In this work, we consider a class of numerical quadrature formulas for the infinite-
range integrals

∫∞
0
w(x)f(x) dx, where w(x) = xαe−x and w(x) = xαEp(x), Ep(x) being

the Exponential Integral. These formulas are obtained by applying the Levin L and Sidi
S transformations, two effective convergence acceleration methods, to the asymptotic ex-
pansions of

∫∞
0
w(x)/(z − x) dx as z → ∞, and they turn out to be interpolatory. In

addition, their abscissas turn out to have some interesting properties: For example, if
xni, i = 1, . . . , n, are the abscissas of the appropriate n-point formula, then the poly-
nomial

∏n
i=1(z − xni) is orthogonal to some set of n real exponential functions, e−σnkx,

k = 1, . . . , n, where σ−1
nk are the zeros of some known polynomials. We provide some tables

and numerical examples that show the effectiveness of our numerical quadrature formulas.
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1 Introduction

In two papers [10], [13], the first author introduced an approach that enables one to derive some
new numerical quadrature formulas for integrals of the form

I[f ] =

∫ b

a

w(x)f(x) dx, (1.1)
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where (a, b) can be a finite or infinite interval and w(x) is a nonnegative weight function all of
whose moments exist. The cases that were considered in particular were those for which

(i) (a, b) = (0, 1) and w(x) = xα(1− x)β(log x−1)ν , where α > −1, β + ν > −1,

(ii) (a, b) = (0,∞) and w(x) = xαe−x and w(x) = xαEp(x), where Ep(x) =
∫∞

1
e−xtt−p dt is

the Exponential Integral, and α > −1, α + p > 0 (integrals I[f ] involving this w(x) arise in
radiation theory with p = 1, 2), and

(iii) (a, b) = (−∞,∞) and w(x) = |x|βe−x2

, β > −1.

The quadrature formulas are of the form

In[f ] =

n∑

i=1

wnif(xni) (1.2)

and they are ultimately obtained as follows: Let u(x; z) = 1/(z − x), z being a fixed parameter,
and approximate the integral

H(z) =

∫ b

a

w(x)

z − x dx = I[u(· ; z)], (1.3)

by the quadrature formula In[u(· ; z)] = Hn(z), that is,

Hn(z) =

n∑

i=1

wni
z − xni

. (1.4)

Here z is a complex variable, and we would like Hn(z) to be a good approximation to H(z) for
z 6∈ (a, b), in the sense that we want the sequence {Hn(z)} to converge to H(z) uniformly in
compact subsets of the complex plane cut along the line segment (a, b). Now, Hn(z) is a rational
function, with degree of numerator at most n− 1 and degree of denominator exactly n. Therefore,
we need to construct rational approximations (with degree of numerator at most n−1 and degree of
denominator exactly n) that approximate H(z) with high accuracy in the complex plane. Clearly,
the abscissas xni and weights wni of In[f ] are the poles and corresponding residues of the rational
function Hn(z).

Now, the function H(z) has an asymptotic expansion in negative powers of z given as in

H(z) ∼
∞∑

i=1

µi
zi

as z →∞, z 6∈ (a, b), (1.5)

where

µi =

∫ b

a

w(x)xi−1 dx, i = 1, 2, . . . . (1.6)

Note that, in case (a, b) is a finite interval, the series
∑∞
i=1 µi/z

i converges to H(z) for all complex
z such that |z| > max(|a|, |b|). That is, equality holds in (1.5) for |z| > max(|a|, |b|). When (a, b)
is an infinite interval, however, this series is strongly divergent for all z 6= 0. Thus, it represents
H(z) only asymptotically as z →∞.

Whether the series
∑∞
i=1 µi/z

i converges or diverges, one very effective way of constructing
good rational approximations to H(z) is by applying a nonlinear convergence acceleration method
to the sequence {Sm(z)} of the partial sums of

∑∞
i=1 µi/z

i, where
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Biorthogonal polynomials and numerical integration 211

S0(z) = 0 and Sm(z) =

m∑

i=1

µi
zi
, m = 1, 2, . . . . (1.7)

When the Shanks [9] transformation is used to accelerate the convergence of {Sm(z)}, the resulting
Hn(z) are Padé approximants and the resulting numerical quadrature formulas In[f ] in (1.2) are
the Gaussian formulas for the integral I[f ] in (1.1). For Padé approximants, see Baker [2] and Baker
and Graves-Morris [3], and [15, Chapter 17]. For the Shanks transformation, see [15, Chapter 16],
and for application of Padé approximants as just described, see also [15, Section 25.5].

Now, for the weight functions mentioned in the first paragraph of this section, it turns out that
the Levin [6] L transformation (in particular, the t-transformation, a special case of L transforma-
tion) can be used to accelerate the convergence of {Sm(z)}, and this results in different rational
approximations and numerical quadrature formulas of high accuracy. By applying an appropriately
modified version of the t-transformation, in [10] and [13], the first author obtained quadrature for-
mulas that use the same set of abscissas when (i) (a, b) = (0, 1) and w(x) = xα(1− x)β(log x−1)ν ,
such that ν is a small nonnegative integer and β is arbitrary, and (ii) when (a, b) = (0,∞) and
w(x) = xαe−x and w(x) = xαEp(x), p being arbitrary. See also Sidi [15, pp. 430–433]. These
formulas were observed to have accuracies comparable to those of the corresponding Gaussian
formulas. (The Gaussian formulas for the weight function w(x) = xαe−x are quite standard
and can be obtained from open literature, Abramowitz and Stegun [1], for example. Those for
w(x) = xαEp(x) are not standard; for limited tables, see Danloy [4]. They can be computed by
using Gautschi’s ORTHPOL package [5], however.)

The polynomials φn(z) =
∏n
i=1(z − xni), where xni are the abscissas of In[f ] obtained as the

poles of the rational approximations of the preceding paragraph, turn out to have some interesting
biorthogonality and asymptotic properties, which are discussed in Sidi and Lubinsky [16], Sidi [14],
and Lubinsky and Sidi [7]. For a summary of these, see [15, Chapter 19, p. 368]. For most recent
results concerning zero distributions and asymptotics of the φn(z), see Lubinsky and Sidi [8].

In the present work, we return to the development of the formulas In[f ] for the cases (a, b) =
(0,∞) and w(x) = xαe−x and w(x) = xαEp(x). As mentioned above, these cases were originally
treated in [13] by applying the Levin t-transformation directly to the asymptotic expansion of H(z)
in (1.5) when w(x) = xαe−x and by applying a modification of it to the asymptotic expansion of
H(z) when w(x) = xαEp(x). Following a summary of the previous work, in the present work, we
first extend the treatment of numerical quadrature formulas proposed in the previous papers that
employed the L transformation by allowing integrand derivative information in these formulas.
Simultaneously, we present a treatment using the Sidi [15, Chapter 19] S transformation (and a
modification of it). The S transformation has been observed to produce more accurate approxima-
tions than the L transformation when applied to strongly divergent series; see also Weniger [17].
Because the moment series in (1.5) that are relevant to us here are strongly divergent, we expect
the numerical quadrature formulas obtained by employing the S transformation to produce better
accuracy than those obtained by employing the L transformation.

In the next section, we give a brief description of the L and S transformations. Following that,
in Section 3, we consider the development of the numerical quadrature formulas for the infinite-
range integrals I[f ] mentioned in the preceding paragraph via the the L and S transformations,
and discuss some of their properties. In particular, we show that they are interpolatory in nature.
In Section 4, we study the properties of the abscissas xni of the resulting numerical quadrature
formulas and show that the polynomials φn(z) =

∏n
i=1(z−xni) enjoy an interesting biorthogonality

property. In Section 5, we provide tables of abscissas and weights for the rules obtained from
the S transformation for the weight function w(x) = e−x, and we also provide some numerical
examples with this weight function. Finally, in Section 6, we provide the treatment of the case
(a, b) = (−∞,∞), w(x) = |x|βe−x2

.
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212 A. Sidi

2 Summary of L and S Transformations

We start by summarizing the essential points concerning the L and S transformations. Let the
sequence {Am} be such that

Am−1 = A+ ωmh(m), (2.1)

such that A is either limm→∞Am when the latter exists or the antilimit of {Am} when {Am}
diverges, and h(m) is a function having an asymptotic expansion of the form

h(m) ∼
∞∑

i=0

βi
mi

as m→∞. (2.2)

[The antilimit of {Am} in this paper—with Am = Sm(z)—is the Borel sum of the series
∑∞
i=1 µi/z

i.]
Substituting (2.2) in (2.1), we have

Am−1 ∼ A+ ωm

∞∑

i=0

βi
mi

as m→∞. (2.3)

With Am and ωm available, the Levin L transformation [based on the asymptotic expansion in
(2.3)] is defined via the linear systems of equations

Am−1 = A(j)
n + ωm

n−1∑

i=0

β̄i
mi

, m = j + 1, j + 2, . . . , j + n+ 1. (2.4)

Here j = 0, 1, . . . , and n = 1, 2, . . . , and A
(j)
n is the approximation to A, while β̄i are additional

(auxiliary) unknowns of no interest to us. The solution of (2.4) for A
(j)
n can be expressed in closed

form as in

A(j)
n =

∑n
i=0(−1)n−i

(
n
i

)
(j + i+ 1)n−1Aj+i/ωj+i+1∑n

i=0(−1)n−i
(
n
i

)
(j + i+ 1)n−1/ωj+i+1

. (2.5)

Note that the linear system in (2.4) has been obtained from (2.3) by replacing A by A
(j)
n , βi by

β̄i, and the asymptotic equality sign ∼ by =, and by truncating the infinite series
∑∞
i=0 βi/m

i

at the i = n − 1 term, and finally by collocating the equality obtained at the n + 1 points m =

j+ 1, j+ 2, . . . , j+n+ 1, thus obtaining n+ 1 equations to accommodate the n+ 1 unknowns A
(j)
n

and β̄0, β̄1, . . . , β̄n−1.
In Levin’s work [6], ωm = mσ(Am−Am−1), where σ is some integer at most 1. When σ = 0, the

L transformation is called the t-transformation, and when σ = 1, it is called the u-transformation.
In developing our numerical quadrature formulas, however, we do not use Levin’s ωm; our ωm are
designed such that the asymptotic expansion in (2.3) is valid (with different βi though) and the
resulting quadrature formulas enjoy a great amount of flexibility and elegance. We will come to
this point later.

We now turn to the S transformation. We start by observing that the asymptotic expansion
of h(m) in (2.2) can also be written in the form

h(m) ∼
∞∑

i=0

β′i
(c+m)i

as m→∞. (2.6)

Here c is some constant at our disposal and (u)i is the Pochhamer symbol defined by (u)0 = 1 and

(u)i =
∏i
k=1(u+ k− 1) for i = 1, 2, . . . . [In fact, the β′i in (2.6) are determined uniquely by the βi
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of (2.2), and vice versa, via β′0 = β0, β′1 = β1, −β′1c+ β′2 = β2, β′1c
2 − β′2(2c+ 1) + β′3 = β3, etc.]

Hence

Am−1 ∼ A+ ωm

∞∑

i=0

β′i
(c+m)i

as m→∞. (2.7)

Analogously to the L transformation, the S transformation [based on the new asymptotic expansion
in (2.7)] is defined via the linear systems of equations

Am−1 = A(j)
n + ωm

n−1∑

i=0

β̃i
(c+m)i

, m = j + 1, j + 2, . . . , j + n+ 1. (2.8)

Here also j = 0, 1, . . . , and n = 1, 2, . . . , and A
(j)
n is the approximation to A, and β̃i are additional

(auxiliary) unknowns of no interest to us. The solution for A
(j)
n in this case also can be expressed

in closed form (see Sidi[11]) as in

A(j)
n =

∑n
i=0(−1)n−i

(
n
i

)
(c+ j + i+ 1)n−1Aj+i/ωj+i+1∑n

i=0(−1)n−i
(
n
i

)
(c+ j + i+ 1)n−1/ωj+i+1

. (2.9)

Numerical experience suggests that the “diagonal” sequences {A(j)
n }∞n=1 with j fixed have the

best convergence properties, and these are the ones that are of relevance to us in the present work.
For details and convergence and stability results on the L and S transformations, we refer the
reader to [15, Chapter 19]. See also Weniger [17].

3 Development of Numerical Quadrature Formulas Via the L and S
Transformations

Let H(z), µi, and Sm(z) be as in Section 1.
When w(x) = xαe−x, we have

µi =

∫ ∞

0

e−xxα+i−1 dx = Γ(α+ i), i = 1, 2, . . . , (3.1)

where Γ(z) is the Gamma function. Thus, the asymptotic expansion of H(z) as z → ∞ diverges
factorially. It has been shown in Sidi [12] that Am = Sm(z) satisfies (2.1)–(2.3) for all z 6∈ [0,∞)
with

ωm =
Γ(α+m)

mzm
, βi = ze−z

∂i

∂ξi
[e(1−α)ξ exp(zeξ)]

∣∣
ξ=0

. (3.2)

When w(x) = xαEp(x), where we recall that Ep(x) =
∫∞

1
e−xtt−p dt, we have

µi =

∫ ∞

0

Ep(x)xα+i−1 dx =
Γ(α+ i)

p+ α+ i− 1
, i = 1, 2, . . . . (3.3)

The asymptotic expansion of H(z) as z → ∞ diverges factorially in this case too. It has been
shown in [12] that Am = Sm(z), in this case too, satisfies (2.1)–(2.3) for all z 6∈ [0,∞) with

ωm =
Γ(α+m)

mzm
, βi = z

∂i

∂ξi

[
e(1−α)ξ exp(zeξ)

∫ ξ

0

e(1−p)σ exp(−zeσ) dσ

]∣∣∣∣
ξ=0

. (3.4)

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



214 A. Sidi

Since the partial sums Sm(z) of the moment series of H(z), for both weight functions w(x) =
xαe−x and w(x) = xαEp(x), satisfy (2.1)–(2.3) for all z 6∈ [0,∞), the functions H(z) can be ap-
proximated with high accuracy by applying to the sequences {Sm(z)} the L and S transformations.
Because ωm in (3.2) and (3.4) are the same for both of these weight functions, the asymptotic ex-
pansions of the corresponding H(z) have the same form shown in (2.1)–(2.3). This enables us to
treat these two weight functions simultaneously with the L and S transformations. This is what
we do next.

3.1 Application of the L Transformation

Let us apply the (modified) L transformation to the sequence {Sm(z)}. Letting Am = Sm(z) and

ωm = Γ(α+m)
mzm [as in (3.2) and (3.4)] in (2.5), and writing A

(j)
n (z) instead of A

(j)
n (because A

(j)
n is

a function of z now), we obtain

A(j)
n (z) =

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)n

zj+iSj+i(z)

Γ(α+ j + i+ 1)

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)n

zj+i

Γ(α+ j + i+ 1)

. (3.5)

Clearly, A
(j)
n (z) is a rational function, and since

zmSm(z) = µm + µm−1z + · · ·+ µ1z
m−1, (3.6)

the numerator N
(j)
n (z) of A

(j)
n (z) has degree j + n − 1, while its denominator D

(j)
n (z) has degree

j + n and has a zero of order j at z = 0 and is of the form

D(j)
n (z) =

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)n

Γ(α+ j + i+ 1)
zj+i

=

n∑

i=0

(−1)n−i
(
n

i

)
1

Γ(α+ j + i+ 1)

1

z

(
z
d

dz

)n
zj+i+1

= (−1)n
n!

Γ(α+ j + n+ 1)

1

z

(
z
d

dz

)n[
zj+1L(α+j)

n (z)
]
, (3.7)

where L
(γ)
n (z) is the Laguerre polynomial of degree n given by

L(γ)
n (z) =

1

n!

n∑

i=0

(−1)i
(
n

i

)
Γ(γ + n+ 1)

Γ(γ + i+ 1)
zi. (3.8)

Using Rolle’s theorem and the fact that L
(γ)
n (z) has n simple zeros in (0,∞), it was shown in

[13] that D
(j)
n (z) has n simple zeros in (0,∞), in addition to the zero of order j at z = 0. If the

numerical quadrature formulas are to employ only function values but no derivative values, then
we should take either (i) j = 0, giving us an n-point rule, or (ii) j = 1, giving us an (n + 1)-point
rule, x = 0 being an abscissa of this rule. For j ≥ 2, we need to supply the first j − 1 derivatives
of f(x) at x = 0.

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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3.2 Application of the S Transformation

Let us now apply the S transformation to the sequence {Sm(z)}. Letting Am = Sm(z) and

ωm = Γ(α+m)
mzm [as in (3.2) and (3.4)] in (2.9), and writing A

(j)
n (z) instead of A

(j)
n (because A

(j)
n is

a function of z now), we obtain

A(j)
n (z) =

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)(c+ j + i+ 1)n−1

zj+iSj+i(z)

Γ(α+ j + i+ 1)

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)(c+ j + i+ 1)n−1

zj+i

Γ(α+ j + i+ 1)

. (3.9)

Let us now choose c = 1. Then, A
(j)
n (z) assumes the elegant form [cf. (3.5)]

A(j)
n (z) =

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)n

zj+iSj+i(z)

Γ(α+ j + i+ 1)

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)n

zj+i

Γ(α+ j + i+ 1)

. (3.10)

Clearly, this A
(j)
n (z) is also a rational function, and its numerator N

(j)
n (z) has degree j + n − 1,

while its denominator D
(j)
n (z) has degree j + n and has a zero of order j at z = 0, and

D(j)
n (z) =

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)n

Γ(α+ j + i+ 1)
zj+i

=
n∑

i=0

(−1)n−i
(
n

i

)
1

Γ(α+ j + i+ 1)

dn

dzn
zj+i+n

= (−1)n
n!

Γ(α+ j + n+ 1)

dn

dzn
[
zj+nL(α+j)

n (z)
]
, (3.11)

L
(γ)
n (z) being the Laguerre polynomial given in (3.8). Again, using Rolle’s theorem and the fact

that L
(γ)
n (z) has n simple zeros in (0,∞), it can be shown in this case as well that D

(j)
n (z) has

n simple zeros in (0,∞), in addition to the zero of order j at z = 0. Again, if the numerical
quadrature formulas are to employ only function values but no derivative values, then we should
take either (i) j = 0, giving us an n-point rule, or (ii) j = 1, giving us an (n+ 1)-point rule, x = 0
being an abscissa of this rule. For j ≥ 2, we need to supply the first j − 1 derivatives of f(x) at
x = 0.

3.3 Derivation of Numerical Quadrature Formulas

Let us write A
(j)
n (z) in (3.5) and (3.10) in the unified form

A(j)
n (z) =

N
(j)
n (z)

D
(j)
n (z)

=

∑n
i=0 λiz

j+iSj+i(z)∑n
i=0 λiz

j+i
, (3.12)

where

λi =





(−1)n−i
(
n

i

)
(j + i+ 1)n

Γ(α+ j + i+ 1)
for L transformation

(−1)n−i
(
n

i

)
(j + i+ 1)n

Γ(α+ j + i+ 1)
for S transformation

. (3.13)

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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(i) When j = 0, A
(0)
n (z) produces an n-point quadrature formula

In[f ] =

n∑

i=1

wnif(xni), (3.14)

where xni are the zeros of the polynomial
∑n
i=0 λiz

i and

wni = ResA(0)
n (z)

∣∣
z=xni

=

∑n
i=0 λiz

iSi(z)∑n
i=0 iλiz

i−1

∣∣∣∣
z=xni

. (3.15)

(ii) When j = 1, A
(1)
n (z) produces a Radau-like (n+ 1)-point quadrature formula

În[f ] =

n∑

i=0

wnif(xni), (3.16)

where xni are the zeros of the polynomial
∑n
i=0 λiz

i+1 (we set xn0 = 0) and

wni = ResA(1)
n (z)

∣∣
z=xni

=

∑n
i=0 λiz

i+1Si+1(z)∑n
i=0(i+ 1)λizi

∣∣∣∣
z=xni

. (3.17)

(iii) When j ≥ 2, A
(j)
n (z) produces an (n+ j)-point quadrature formula

I(j)
n [f ] =

j−1∑

i=0

ŵni
f (i)(0)

i!
+

n∑

i=1

wnif(xni), (3.18)

where xni are the positive zeros of the polynomial
∑n
i=0 λiz

j+i and ŵni and wni are defined
via the partial fraction expansion

A(j)
n (z) =

j−1∑

i=0

ŵni
zi+1

+
n∑

i=1

wni
z − xni

. (3.19)

Of course, In[f ] (with j = 0) and În[f ] (with j = 1) are special cases of I
(j)
n [f ].

Remarks.

1. If we order the positive zeros of D
(j)
n (z), namely, xn1, . . . , xnn, and the zeros yn1, . . . , ynn of

L
(α+j)
n (x) in increasing order, we have by Rolle’s theorem that xni < yni, i = 1, . . . , n.

2. Since the abscissas of the quadrature rules are the zeros of D
(j)
n (z), and D

(j)
n (z) is independent

of p, the sets of abscissas {xni} are independent of p. Thus, one set of abscissas can be
used for computing the integrals I[f ] =

∫∞
0
xαEp(x)f(x) dx with every p, as well as I[f ] =∫∞

0
xαe−xf(x) dx. This fact makes the quadrature formulas of this work, as well as of [10]

and [13], flexible.

We end this section with two results concerning I
(j)
n [f ].

Theorem 3.1 With I
(j)
n [f ] as in (3.18), there holds

I(j)
n [f ] = I[f ] for every f ∈ πn+j−1.

That is, the rule I
(j)
n [f ] is interpolatory.
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Proof. By (2.4), (1.5), and the fact that λn 6= 0, it follows that

H(z)−A(j)
n (z) =

∑n
i=0 λiz

j+i[H(z)− Sj+i(z)]∑n
i=0 λiz

j+i
,

=

∑n
i=0 λiz

j+iO(z−j−i−1)∑n
i=0 λiz

j+i
as z →∞,

= O
(
z−j−n−1

)
as z →∞. (3.20)

This also implies that

A(j)
n (z) = Sj+n(z) +O

(
z−j−n−1

)
as z →∞. (3.21)

Expanding the partial fraction expansion of A
(j)
n (z) given in (3.19) in negative powers of z, we

obtain

A(j)
n (z) ∼

j∑

k=1

ŵn,k−1

zk
+

∞∑

k=1

1

zk

( n∑

i=0

wnix
k−1
ni

)
as z →∞. (3.22)

By (3.22) and (3.21), we therefore have

ŵn,k−1 +

n∑

i=0

wnix
k−1
ni = µk, k = 1, . . . , j,

n∑

i=0

wnix
k−1
ni = µk, k = j + 1, . . . , j + n.

By (3.18), these equalities are nothing but

I(j)
n [xk−1] = I[xk−1], k = 1, . . . , j + n,

which is what we had to prove. �

Theorem 3.2 Let f(x) = 1/(z − x), where z is an arbitrary (complex) scalar not in the real
interval [0,∞). Then

I(j)
n [f ] = A(j)

n (z). (3.23)

Proof. We have f(xni) = 1/(z − xni) and f (i)(x) = i!/(z − x)i+1 so that f (i)(0) = i!/zi+1.

Substituting these in the expression given for I
(j)
n [f ] in (3.18), and comparing with the partial

fraction expansion of A
(j)
n (z) given in (3.19), the result follows. �

Remark. As the computation of A
(j)
n (z) via (3.12) is straightforward and can be achieved with

high accuracy, the result of Theorem 3.2 can serve as a tool for checking the accuracy of the tables

of the abscissas and weights for I
(j)
n [f ].

Finally, from the way the numerical quadrature formulas above have been obtained, it is clear
that, by applying the L and S transformations with any weight function w(x), we end up with

approximations A
(j)
n (z) that are precisely of the form given in (3.12) (with appropriate λi, of

course). This implies that everything mentioned in this subsection, namely, (3.14)–(3.19) and
Theorems 3.1 and 3.2, applies to arbitrary weight functions w(x).
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4 Biorthogonality Properties of D
(j)
n (z)

The polynomials D
(j)
n (z) constructed in the preceding section enjoy some interesting biorthogonal-

ity properties as the next theorems show. The first theorem was already mentioned without proof
in [14]. The second is new. We provide the proof of the second theorem, that of the first being
similar.

Theorem 4.1 The polynomial D
(j)
n (x) in (3.7) is orthogonal to all functions of the form∑n

k=1 dke
−σnkx, in the sense that

∫ ∞

0

xαD(j)
n (x)e−σnkx dx = 0, k = 1, . . . , n, (4.1)

where σnk are distinct and positive and σ−1
nk are the n positive roots of the polynomial

ψn(z) =

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)nzi = (−1)nz−j−1

(
z
d

dz

)n
[zj+1(1− z)n]. (4.2)

The polynomials ψn(z) of (4.2) were introduced in [10] and analyzed in [16] and [7].

Theorem 4.2 The polynomial D
(j)
n (x) in (3.11) is orthogonal to all functions of the form∑n

k=1 dke
−σnkx, in the sense that

∫ ∞

0

xαD(j)
n (x)e−σnkx dx = 0, k = 1, . . . , n, (4.3)

where σnk are distinct and positive and σ−1
nk are the n positive roots of the polynomial

ψn(z) =

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)nz

i = (−1)nz−j
dn

dzn
[zj+n(1− z)n]. (4.4)

Proof. By the fact that
∫ ∞

0

e−σxxβ dx =
Γ(β + 1)

σβ+1
, <σ > 0, <β > −1,

we have
∫ ∞

0

xαD(j)
n (x)e−σx dx =

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)n

Γ(α+ j + i+ 1)

∫ ∞

0

e−σxxα+j+i dx

=

n∑

i=0

(−1)n−i
(
n

i

)
(j + i+ 1)n
σα+j+i+1

= zα+j+1ψn(z)
∣∣
z=σ−1 ,

from which the result follows. �

Remarks.

1. Using the Rodrigues formula for Jacobi polynomials P
(α,β)
n (z) (see [1, p. 785]), we conclude

that ψn(z) in Theorem 4.2 is a constant multiple of P
(0,j)
n (2z − 1), that is, of P

(0,j)
n shifted

to the interval [0, 1] (from [−1, 1]). Thus, when j = 0, ψn(z) is a constant multiple of the

Legendre polynomial Pn = P
(0,0)
n shifted to the interval [0, 1].
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2. Note that each of the polynomials D
(j)
n (x), n = 1, 2, . . . , we have considered is orthogonal to

a different set of exponential functions.

3. The results of Theorems 4.1 and 4.2 have been used in [8] in the study of zero distributions

and asymptotics of the polynomials D
(j)
n (z) in the z-plane.

Finally, the next result follows from Theorems 3.1 and 4.1 and 4.2.

Theorem 4.3 With w(x) = xαe−x or w(x) = xαEp(x) in (1.1), and for every j = 0, 1, . . . , the

rules I
(j)
n [f ] in (3.18) are exact for functions f(x) of the form

f(x) =

j+n−1∑

i=0

cix
i +D(j)

n (x)

n∑

k=1

dkv(x)e−σnkx; v(x) = xα/w(x), (4.5)

and where D
(j)
n (x) and σnk are as in Theorem 4.1 or as in Theorem 4.2. That is, for such f(x),

there holds
I(j)
n [f ] = I[f ], j = 0, 1, . . . . (4.6)

Proof. Let us write f(x) in the form

f(x) = p(x) + u(x); p(x) =

j+n−1∑

i=0

cix
i, u(x) = D(j)

n (x)
n∑

k=1

dkv(x)e−σnkx.

From Theorem 3.1, we already know that I
(j)
n [p] = I[p]. Now, by Theorem 4.1 or Theorem 4.2,

we have that I[u] = 0. Since D
(j)
n (x) has a zero of multiplicity j at x = 0, so does u(x), hence

u(i)(0) = 0, i = 0, 1, . . . , j − 1. (This is immediate for w(x) = xαe−x. It can be verified for
w(x) = xαEp(x) by using the appropriate expansions of Ep(x) for x → 0+ in [1, p. 229].) In

addition, u(xni) = 0, i = 1, . . . , n. Therefore, I
(j)
n [u] = 0 as well. This completes the proof. �

Remark. As mentioned already in Section 1, if we apply the Shanks transformation to the series
in (1.5), the resulting rational appoximations turn out to be Padé approximants to H(z). The

[n − 1/n] Padé approximant is the analogue of our A
(0)
n (z), and its denominator φn(z) is the nth

orthogonal polynomial in the sense
∫ b
a
w(x)φn(x)

(∑n−1
i=0 dix

i
)
dx = 0, and its zeroes x′n1, . . . , x

′
nn

[all real, simple, and in (a, b)] are the abscissas of the n-point Gaussian quadrature formula Gn[f ] =∑n
i=1 w

′
nif(x′ni) for I[f ] =

∫ b
a
w(x)f(x) dx. In addition, Gn[f ] is exact for polynomials of degree

2n− 1, that is, Gn[f ] = I[f ] for all f ∈ π2n−1. This last fact can also be expressed in the form

Gn[f ] = I[f ] for all f(x) =

n−1∑

i=0

cix
i + φn(x)

n∑

k=1

dkx
k−1. (4.7)

Thus, the result (4.6) of Theorem 4.3 (with biorthogonal polynomials) is the analogue of (4.7) for
Gaussian quadrature (with orthogonal polynomials).

5 Tables for the New Quadrature Formulas with w(x) = e−x and
Numerical Examples

In Table 1, we give a comparison of the approximations A
(0)
n (z) obtained by applying the S and

L transformations to the asymptotic expansion
∑∞
i=1 µi/z

i of the function H(z) =
∫∞

0
e−x/(z −

x) dx = −e−zE1(−z). Thus, A
(0)
n (z) were computed via (3.9) and (3.5), respectively. Recalling
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from Theorem 3.2 that A
(0)
n (z) = In[u(· ; z)], where u(x; z) = 1/(z−x), this is also a comparison of

the quadrature formulas In[f ] obtained via the two transformations. The results in Table 1 show
clearly that the formulas from the S transformation have better accuracy than those from the L
transformation, especially for large z. The computations for this table were done in quadruple-
precision arithmetic.

We now consider the computation of the abscissas and the weights of our numerical quadrature

formulas. Since the polynomials D
(j)
n (z) are known explicitly, we can use any polynomial solver to

determine their zeros. However, for large n, the computation of these zeros to machine accuracy

becomes difficult, the apparent reason being that the coefficients λi of the polynomial D
(j)
n (z) have

widely differing orders of magnitude. This suggests that, for large n, the zeros of D
(j)
n (z) can be

determined with a desired level of accuracy by using variable-precision arithmetic. We have done
our computations in quadruple-precision arithmetic.

In Table 2, we give the abscissas xni and weights wni for the n-point rules In[f ], with the
weight function w(x) = e−x, from the S transformation [see (3.14) and (3.15)], for 2 ≤ n ≤ 12,
with 25-digit accuracy. Note that, once the abscissas xni have been computed, the corresponding
weights wni can be computed with no problem via (3.15). (Tables of abscissas and weights for the
n-point rules In[f ], with the same weight function, from the L transformation are already in [13].)
In view of Table 2 and the tables in [13], it seems reasonable to conjecture that the weights wni
are positive for every n.

In Table 3, we provide the numerical results obtained by applying the quadrature rules In[f ] in
(3.14) from the S and L transformations to the integrals

∫∞
0
e−xfi(x) dx, i = 1, 2, 3, with f1(x) =

e−x, I[f1] = 1/2; f2(x) = 1/(ex + a), I[f2] = [a− log(a+ 1)]/a2; and f3(x) = (x+ a+ 1)/(x+ a)2,
I[f3] = 1/a. From this table, we realize that the results obtained with the quadrature rules from
the S transformation seem to be better. Note that the computations for these examples were done
in quadruple-precision arithmetic as well.

6 Treatment of the Integrals
∫∞
−∞ |t|βe−t

2
f(t) dt

The treatment of the preceding sections can easily be extended to the integrals

J [f ] =

∫ ∞

−∞
|t|βe−t2f(t) dt. (6.1)

Making use of the fact that the weight function is an even function of t, we can express this integral
in the form

J [f ] =
1

2

∫ ∞

0

tβe−t
2

[f(t) + f(−t)] dt.

Making the change of variables x = t2, this integral can be expressed as in

J [f ] =
1

4

∫ ∞

0

x(β−1)/2e−x[f(
√
x) + f(−√x)] dx. (6.2)

Clearly,

J [f ] = I[g] =

∫ ∞

0

xαe−xg(x) dx;

α =
β − 1

2
, g(x) =

f(
√
x) + f(−√x)

4
. (6.3)
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Thus, we can apply the numerical quadrature formulas of the preceding sections with α = (β−1)/2.
In the notation of Section 3, we then have

In[g] =
1

4

n∑

i=1

wni [f(
√
xni) + f(−√xni)], (6.4)

În[g] =
1

4

{
2wn0f(0) +

n∑

i=1

wni [f(
√
xni) + f(−√xni)]

}
, (6.5)

I(2)
n [g] =

1

4

{
2ŵn0f(0) + ŵn1f

′′(0) +

n∑

i=1

wni [f(
√
xni) + f(−√xni)]

}
, (6.6)

and, in general,

I(j)
n [g] =

1

4

{
2

j−1∑

i=0

ŵni
f (2i)(0)

(2i)!
+

n∑

i=1

wni [f(
√
xni) + f(−√xni)]

}
. (6.7)

We leave the details to the reader.
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Ta ble 1 : ∆n(S; z) a n d ∆n(L; z) sta n d fo r th e rela tiv e erro rs |A
(0)
n (z) − H(z)|/|H(z)|, w h ere A

(0)
n (z) a re o bta in ed by a p p lyin g th e S a n d

L tra n sfo rm a tio n s to th e a sym p to tic ex p a n sio n
∑

∞

i= 1 µi/z
i o f H(z) =

∫
∞

0
e−x/(z − x) d x = −e−zE1(−z).

n ∆n(S;−1) ∆n(L;−1) ∆n(S;−2) ∆n(L;−2) ∆n(S;−3) ∆n(L;−3) ∆n(S;−4) ∆n(L;−4) ∆n(S;−5) ∆n(L;−5)

1 1.179D − 0 1 1.179D − 0 1 1.0 70 D − 0 1 1.0 70 D − 0 1 9.0 16D − 0 2 9.0 16D − 0 2 7.694D − 0 2 7.694D − 0 2 6.687D − 0 2 6.687D − 0 2
2 6.125D − 0 3 6.296D − 0 3 3.677D − 0 3 1.158D − 0 2 4.633D − 0 3 9.698D − 0 3 4.198D − 0 3 7.675D − 0 3 3.584D − 0 3 6.10 9D − 0 3
3 1.0 11D − 0 3 1.947D − 0 3 3.725D − 0 4 8.681D − 0 4 1.0 58D − 0 5 1.0 0 8D − 0 3 1.193D − 0 4 8.165D − 0 4 1.378D − 0 4 6.269D − 0 4
4 2.371D − 0 4 6.153D − 0 4 1.847D − 0 5 3.80 1D − 0 5 1.60 5D − 0 5 8.0 0 0 D − 0 5 4.588D − 0 6 8.216D − 0 5 1.0 11D − 0 6 6.557D − 0 5
5 1.373D − 0 5 2.815D − 0 5 4.733D − 0 6 2.866D − 0 5 5.845D − 10 5.741D − 0 7 4.80 5D − 0 7 6.60 2D − 0 6 2.687D − 0 7 6.429D − 0 6
6 4.857D − 0 6 2.810 D − 0 5 1.189D − 0 7 4.895D − 0 6 1.20 7D − 0 7 1.399D − 0 6 1.978D − 0 8 1.780 D − 0 7 8.536D − 0 9 5.156D − 0 7
7 1.730 D − 0 6 6.732D − 0 6 6.90 1D − 0 8 5.0 23D − 0 8 5.376D − 0 9 3.0 55D − 0 7 2.759D − 0 9 7.20 1D − 0 8 1.0 82D − 0 9 1.891D − 0 8
8 2.599D − 0 7 7.625D − 0 7 1.146D − 0 8 1.785D − 0 7 1.110 D − 0 9 2.816D − 0 8 2.292D − 10 1.825D − 0 8 4.211D − 11 3.846D − 0 9
9 9.385D − 0 9 6.198D − 0 7 8.180 D − 11 3.881D − 0 8 1.688D − 10 3.0 0 2D − 0 9 1.664D − 11 2.254D − 0 9 7.967D − 12 1.10 2D − 0 9

10 1.813D − 0 8 3.385D − 0 8 3.0 44D − 10 5.483D − 10 1.717D − 12 1.556D − 0 9 3.512D − 12 3.10 9D − 11 1.118D − 13 1.541D − 10
11 5.948D − 0 9 4.757D − 0 8 6.226D − 11 2.0 84D − 0 9 3.431D − 12 2.222D − 10 3.158D − 14 5.417D − 11 7.916D − 14 8.794D − 12
12 1.0 37D − 0 9 9.451D − 0 9 2.859D − 12 3.748D − 10 4.20 3D − 13 1.345D − 11 4.914D − 14 1.248D − 11 2.90 6D − 15 1.749D − 12
13 1.960 D − 11 3.280 D − 0 9 1.699D − 12 5.0 0 1D − 11 1.942D − 14 1.20 4D − 11 5.311D − 15 9.394D − 13 7.771D − 16 5.960 D − 13
14 9.0 47D − 11 1.319D − 0 9 5.452D − 13 3.233D − 11 1.421D − 14 1.891D − 12 3.148D − 16 2.265D − 13 9.719D − 17 7.921D − 14
15 3.865D − 11 1.911D − 10 7.0 41D − 14 2.60 7D − 12 1.975D − 15 1.80 1D − 13 1.455D − 16 8.235D − 14 3.348D − 18 6.0 14D − 16
16 9.874D − 12 1.60 2D − 10 6.0 25D − 15 1.737D − 12 6.0 23D − 17 1.30 1D − 13 1.270 D − 17 8.644D − 15 1.915D − 18 2.614D − 15
17 1.134D − 12 5.873D − 12 5.376D − 15 4.829D − 13 7.789D − 17 1.651D − 14 1.585D − 18 1.547D − 15 1.436D − 19 5.388D − 16
18 4.0 30 D − 13 1.876D − 11 1.359D − 15 4.769D − 14 1.483D − 17 3.865D − 15 5.733D − 19 6.939D − 16 2.0 21D − 20 2.325D − 17
19 3.220 D − 13 8.194D − 13 1.392D − 16 4.475D − 14 4.760 D − 19 1.687D − 15 5.357D − 20 7.395D − 17 5.521D − 21 1.494D − 17
20 1.266D − 13 2.20 5D − 12 3.380 D − 17 3.267D − 15 4.763D − 19 9.192D − 17 7.0 0 5D − 21 1.744D − 17 3.0 15D − 22 4.0 63D − 18
21 3.288D − 14 2.485D − 13 2.0 64D − 17 3.169D − 15 1.40 7D − 19 8.652D − 17 2.973D − 21 7.163D − 18 8.638D − 23 2.532D − 19
22 3.725D − 15 2.651D − 13 5.326D − 18 7.467D − 16 1.615D − 20 2.178D − 17 3.665D − 22 5.545D − 19 2.0 84D − 23 1.179D − 19
23 1.773D − 15 4.651D − 14 6.0 20 D − 19 1.682D − 16 2.0 78D − 21 1.751D − 18 2.478D − 23 2.672D − 19 1.115D − 24 3.564D − 20
24 1.479D − 15 3.30 0 D − 14 1.433D − 19 9.0 23D − 17 1.375D − 21 1.789D − 18 1.856D − 23 8.287D − 20 3.881D − 25 2.0 31D − 21
25 6.50 0 D − 16 7.668D − 15 1.0 14D − 19 3.234D − 18 3.0 17D − 22 1.90 3D − 19 3.30 3D − 24 1.0 94D − 21 1.0 25D − 25 1.256D − 21
26 2.0 0 1D − 16 4.292D − 15 3.0 66D − 20 8.90 4D − 18 1.986D − 23 9.593D − 20 5.622D − 26 4.60 1D − 21 7.415D − 27 3.549D − 22
27 3.640 D − 17 1.20 7D − 15 4.911D − 21 8.159D − 19 1.0 20 D − 23 3.0 19D − 20 1.210 D − 25 9.40 8D − 22 1.824D − 27 8.972D − 24
28 4.499D − 18 5.867D − 16 3.743D − 22 7.759D − 19 4.429D − 24 2.268D − 21 3.318D − 26 1.0 59D − 22 6.237D − 28 1.650 D − 23
29 7.90 3D − 18 1.868D − 16 5.748D − 22 1.737D − 19 8.784D − 25 2.70 7D − 21 3.381D − 27 7.90 0 D − 23 7.256D − 29 3.762D − 24
30 4.435D − 18 8.454D − 17 2.258D − 22 5.970 D − 20 3.262D − 26 2.50 7D − 22 5.994D − 28 7.633D − 24 2.932D − 30 1.565D − 25
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Table 2: Abscissas and weights for In[f ] =
∑n
i=1 wnif(xni), where In[f ] ≈ I[f ] =

∫∞
0
e−xf(x) dx,

obtained via the S transformation.

xni wni
n = 2

1.8350341907227396726757198D − 01 5.0000000000000000000000000D − 01
1.8164965809277260327324280D + 00 5.0000000000000000000000000D − 01

n = 3
9.4191177351680296714186810D − 02 2.8040021754072038433402563D − 01
9.1148032698040374006292268D − 01 5.9660078769816078336082110D − 01
3.4943284956679159632228905D + 00 1.2299899476111883230515327D − 01

n = 4
5.7126879444660799375696716D − 02 1.7645274642180916180789151D − 01
5.5026196027966293323734226D − 01 5.1299198767813303877168495D − 01
2.0362670935275125160193790D + 00 2.8788520119581543319937348D − 01
5.3563440667481637513675820D + 00 2.2670064704242366221050070D − 02

n = 5
3.8292671586058462010938341D − 02 1.2051987060391953766536531D − 01
3.6831924053856395330429156D − 01 4.1095017863205761543289030D − 01
1.3500170633932348068160516D + 00 3.7264547865882151487019212D − 01
3.4106361549875533502157389D + 00 9.2335527153536866649008881D − 02
7.3327348694945894276529797D + 00 3.5489449516644653825433866D − 03

n = 6
2.7437723754335136570195180D − 02 8.7296254217049012075812229D − 02
2.6376361480525478306983055D − 01 3.2644006677358918953371504D − 01
9.6336216895989732861858230D − 01 3.8901138728667188540531637D − 01
2.4028614712996414677461825D + 00 1.7351943661753155782135053D − 01
4.9545689511624046595059850D + 00 2.3233538705656205078802684D − 02
9.3880060700184666244892245D + 00 4.9931639950215008500313817D − 04

n = 7
2.0618766644254971410918424D − 02 6.6049145102599011419326353D − 02
1.9816159090056622437238365D − 01 2.6177297530199177648371998D − 01
7.2262166104600731786704096D − 01 3.7021117296004616489204481D − 01
1.7928062106396152036528331D + 00 2.3571399491831841942975758D − 01
3.6429788403144468592028569D + 00 6.1223913264396982078957880D − 02
6.6213676835280060936209550D + 00 4.9636912952029681557025333D − 03
1.1501445246927103329873012D + 01 6.5107157444677540490877404D − 05

n = 8
1.6057887981595806549164095D − 02 5.1673923520858834996817631D − 02
1.5430834486230574305475310D − 01 2.1293744491022377338685829D − 01
5.6226264838669220478300495D − 01 3.3770034967751118532221927D − 01
1.3913580590813650734823757D + 00 2.7188400838585537117337577D − 01
2.8086342714297156074731496D + 00 1.0705145047995642821395843D − 01
5.0259570112180856690808551D + 00 1.7803279386034314487324993D − 02
8.3816036639732480023825224D + 00 9.4152688650446623442223767D − 04
1.3659818113066991893194175D + 01 8.0167530556261850233766215D − 06
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xni wni
n = 9

1.2858141090541126016942482D − 02 4.1509698626335622904786533D − 02
1.2355161763290833595829754D − 01 1.7580053959074465813625752D − 01
4.4999921251964414995519046D − 01 3.0216152723507489674727595D − 01
1.1120127858244298990863809D + 00 2.8653253172327544978570934D − 01
2.2371000900708226359110782D + 00 1.4982046658590328757905407D − 01
3.9735419902720843625758251D + 00 3.9528470845865785459181816D − 02
6.5212944423061143462966124D + 00 4.4827618245140329916882832D − 03
1.0215534746614497378046362D + 01 1.6305983346267691436126078D − 04
1.5854106973668957766153311D + 01 9.4373482358948168523152187D − 07

n = 10
1.0527350521001250063597765D − 02 3.4064497636886100828224905D − 02
1.0115125516083048507086064D − 01 1.4717805068332423461168624D − 01
3.6832035040497974532586604D − 01 2.6824980335883854567763375D − 01
9.0944537610600356414862872D − 01 2.8650126299591818766895300D − 01
1.8260659320474794160430286D + 00 1.8365089583322467823823875D − 01
3.2304197664554339435517087D + 00 6.6852766969592079372708566D − 02
5.2596039433138381480405436D + 00 1.2467268895511358166682917D − 02
8.1073493186694312391452287D + 00 1.0090732690684859556394458D − 03
1.2109251786600370653165987D + 01 2.6273224776469946688254427D − 05
1.8077864920720631555444551D + 01 1.0713285985953354417391605D − 07

n = 11
8.7772066283589749586457203D − 03 2.8451085986469357437336293D − 02
8.4332960561633210555549853D − 02 1.2478307734627654933813946D − 01
3.0703277315250711249819021D − 01 2.3768444051021843239590554D − 01
7.5774587995002976540708723D − 01 2.7754719804220903012372265D − 01
1.5197073822521857629028412D + 00 2.0707914842392199634940932D − 01
2.6820955491946508978381755D + 00 9.5451366787107123638446105D − 02
4.3473419240011058600460983D + 00 2.5321425795284570793053869D − 02
6.6458247818266615806040303D + 00 3.4706786603506863411311313D − 03
9.7682664881815595872642955D + 00 2.0757536762555770961437043D − 04
1.4052567196843263068044925D + 01 3.9912790481137645247583362D − 06
2.0326307857408044179880161D + 01 1.1801488582108716503871778D − 08

n = 12
7.4297435924029256529648498D − 03 2.4115776612618605813014418D − 02
7.1385111658405118868727049D − 02 1.0699854483925163552287846D − 01
2.5986745967585343476467054D − 01 2.1085213234780900034459360D − 01
6.4114332646178703341982909D − 01 2.6371874468429376582141324D − 01
1.2849097444352827893916832D + 00 2.2105203512056177663637987D − 01
2.2643627056903895776294943D + 00 1.2190077287971340277472858D − 01
3.6602954723670298677498132D + 00 4.2043581225155077758339713D − 02
5.5687758007772380719608233D + 00 8.4054751293468075361056366D − 03
8.1161745895066048699408481D + 00 8.7271358194703334442743790D − 04
1.1492096094674710643202306D + 01 3.9645014364439177086902283D − 05
1.6037781713477291846204535D + 01 5.7729746652434071266964803D − 07
2.2595778237683003821214305D + 01 1.2674719309303194709186953D − 09
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Table 3: ∆n[fi] stands for the absolute error |In[fi]−I[fi]| in the quadrature formula In[f ] in (3.14)
obtained from the S and L transformations. Also, f1(x) = e−x, I[f1] = 1/2; f2(x) = 1/(ex + a),
I[f2] = [a− log(a+ 1)]/a2, and f3(x) = (x+ a+ 1)/(x+ a)2, I[f3] = 1/a. For each n, the first and
second numbers in each column are those obtained from the S and L transformations, respectively.

n method ∆n[f1] ∆n[f2; a = 1] ∆n[f2; a = 0.1] ∆n[f3; a = 1] ∆n[f3; a = 10]

1 S 1.065D − 01 7.069D − 02 1.029D − 01 1.111D − 01 4.308D − 03
1 L 1.065D − 01 7.069D − 02 1.029D − 01 1.111D − 01 4.308D − 03
2 S 2.528D − 03 9.799D − 03 4.790D − 03 2.000D − 02 1.849D − 04
2 L 1.665D − 02 1.509D − 02 1.765D − 02 5.487D − 03 2.805D − 04
3 S 1.279D − 03 1.418D − 03 8.258D − 04 6.790D − 04 7.954D − 06
3 L 2.053D − 03 3.500D − 03 2.758D − 03 6.033D − 03 2.250D − 05
4 S 2.285D − 04 1.494D − 04 2.442D − 04 6.561D − 04 3.097D − 07
4 L 1.466D − 04 9.156D − 04 3.924D − 04 1.060D − 03 2.036D − 06
5 S 1.870D − 05 2.015D − 05 3.507D − 05 1.027D − 04 9.213D − 09
5 L 1.728D − 05 2.676D − 04 4.489D − 05 1.397D − 04 1.980D − 07
6 S 1.596D − 07 1.884D − 05 1.868D − 06 3.304D − 06 9.741D − 11
6 L 1.066D − 05 8.529D − 05 7.672D − 07 1.003D − 04 1.996D − 08
7 S 1.778D − 07 5.920D − 06 4.818D − 07 5.842D − 06 8.885D − 12
7 L 3.084D − 06 2.861D − 05 2.107D − 06 8.840D − 06 2.029D − 09
8 S 2.666D − 08 6.159D − 07 1.270D − 07 1.589D − 06 5.053D − 13
8 L 7.119D − 07 9.689D − 06 1.053D − 06 6.464D − 06 2.020D − 10
9 S 1.893D − 09 3.151D − 07 3.925D − 09 1.738D − 07 4.248D − 15
9 L 1.449D − 07 3.144D − 06 3.736D − 07 1.859D − 06 1.898D − 11

10 S 7.400D − 12 1.522D − 07 3.646D − 09 4.306D − 08 1.527D − 15
10 L 2.694D − 08 9.021D − 07 1.103D − 07 2.914D − 07 1.579D − 12
11 S 1.994D − 11 9.125D − 09 5.060D − 10 2.902D − 08 1.808D − 17
11 L 4.632D − 09 1.843D − 07 2.716D − 08 2.217D − 07 9.823D − 14
12 S 2.662D − 12 1.418D − 08 1.072D − 10 8.459D − 09 5.662D − 18
12 L 7.368D − 10 8.714D − 09 5.054D − 09 1.814D − 09 6.301D − 16
13 S 1.680D − 13 4.069D − 09 3.047D − 11 1.223D − 09 1.345D − 19
13 L 1.071D − 10 3.760D − 08 3.651D − 10 2.295D − 08 1.119D − 15
14 S 3.088D − 15 9.393D − 10 3.373D − 12 1.923D − 10 2.828D − 20
14 L 1.374D − 11 2.652D − 08 2.254D − 10 2.991D − 09 2.311D − 16
15 S 2.050D − 15 6.634D − 10 1.682D − 12 2.023D − 10 6.942D − 22
15 L 1.400D − 12 1.296D − 08 1.377D − 10 2.244D − 09 2.999D − 17
16 S 2.482D − 16 3.261D − 11 1.411D − 13 7.913D − 11 1.853D − 22
16 L 6.102D − 14 4.691D − 09 4.619D − 11 5.826D − 10 2.430D − 18
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