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Abstract

Class Sm variable transformations with integer m, for accurate numerical computation of finite-range integrals via the
trapezoidal rule, were introduced and studied by the author. A representative of this class is the sinm -transformation. In a recent
work of the author, this class was extended to arbitrary noninteger values of m, and it was shown that exceptionally high accuracies
are achieved by the trapezoidal rule in different circumstances with suitable values of m. In another recent work by Monegato
and Scuderi, the sinm -transformation was generalized by introducing two integers p and q, instead of the single integer m; we
denote this generalization as the sinp,q -transformation here. When p = q = m, the sinp,q -transformation becomes the sinm -
transformation. Unlike the sinm -transformation which is symmetric, the sinp,q -transformation is not symmetric when p 6= q, and
this offers an advantage when the behavior of the integrand at one endpoint is quite different from that at the other endpoint. In
view of the developments above, in the present work, we generalize the class Sm by introducing a new class of nonsymmetric
variable transformations, which we denote as Sp,q , where p and q can assume arbitrary noninteger values, such that the sinp,q -
transformation is a representative of this class and Sm ⊂ Sm,m . We provide a detailed analysis of the trapezoidal rule approximation
following a variable transformation from the class Sp,q , and show that, with suitable and not necessarily integer p and q, it achieves
an unusually high accuracy when the integrand has algebraic endpoint singularities. We also illustrate our results with numerical
examples via the sinp,q -transformation. Finally, we discuss the computation of surface integrals inR3 containing point singularities
with the help of class Sp,q transformations.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the problem of evaluating finite-range integrals of the form

I [ f ] =

∫ 1

0
f (x)dx, (1.1)
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where f ∈ C∞(0, 1) but is not necessarily continuous or differentiable at x = 0 and x = 1. f (x) may even behave
singularly at the endpoints, with different types of singularities. One very effective way of computing I [ f ] is by
first transforming it with a suitable variable transformation and next applying the trapezoidal rule to the resulting
transformed integral. Thus, if we make the substitution x = ψ(t), where ψ(t) is an increasing differentiable function
on [0, 1], such that ψ(0) = 0 and ψ(1) = 1, then the transformed integral is

I [ f ] =

∫ 1

0
f̂ (t)dt; f̂ (t) = f (ψ(t)) ψ ′(t), (1.2)

and the trapezoidal rule approximation to I [ f ] is

Q̂n[ f ] = h

[
1
2

f̂ (0)+

n−1∑
i=1

f̂ (ih)+
1
2

f̂ (1)

]
; h =

1
n
. (1.3)

[Normally, we also demand thatψ(1−t) = 1−ψ(t), which forces onψ ′(t) the symmetry propertyψ ′(1−t) = ψ ′(t).]
If, in addition, ψ(t) is chosen such that ψ (i)(0) = ψ (i)(1) = 0, i = 1, 2, . . . , p, for some sufficiently large p,
then Q̂n[ f ], even for moderate n, approximate I [ f ] with surprisingly high accuracy. In such a case, we may have

f̂ (0) = f̂ (1) = 0, and Q̂n[ f ] becomes

Q̂n[ f ] = h
n−1∑
i=1

f̂ (ih). (1.4)

Variable transformations in numerical integration have been of considerable interest lately. In the context of one-
dimensional integration, they are used as a means to improve the performance of the trapezoidal rule. Recently,
they have also been used to improve the performance of the Gauss–Legendre quadrature. In the context of multi-
dimensional integration, they are used to “periodize” the integrand in all variables so as to improve the accuracy of
lattice rules. (Lattice rules are extensions of the trapezoidal rule to many dimensions.)

In this paper, we concentrate on class Sm transformations of the author (see Sidi [9]), which have some interesting
and useful properties when coupled with the trapezoidal rule. A trigonometric representative of these, namely, the
sinm-transformation that was proposed and studied also in [9], has been used successfully in conjunction with
lattice rules in multiple integration; see Sloan and Joe [17], Hill and Robinson [3], and Robinson and Hill [7].
The sinm-transformation has also been used in the computation of multi-dimensional integrals in conjunction with
extrapolation methods by Verlinden, Potts, and Lyness [18]. (For a short list and discussion of the better known
variable transformations, which we shall not repeat here, see [9].)

In a recent paper by the author, Sidi [14], the class Sm was extended by allowing m to take on arbitrary noninteger
values. It was also shown in [14] that, for some special values of m chosen to depend on the behavior of f (x) at x = 0
and x = 1, unusually high accuracies are attained by the trapezoidal rule in (1.4). This takes place, for example, when
f (0) = 0 and f (1) = 0, and m is chosen such that 2m is an odd integer. These extended transformations have been
used with success in the papers by Sidi [12,13,15] in the computation of integrals over smooth surfaces of bounded
domains in R3 via the product trapezoidal rule.

Now, an extended class Sm variable transformation ψ(t), with m > 0, has the property

ψ ′(1 − t) = ψ ′(t), ψ(1 − t) = 1 − ψ(t), 0 ≤ t ≤ 1. (1.5)

In words, ψ ′(t) is symmetric with respect to t = 1/2; hence ψ(1/2) = 1/2. In addition, ψ(t) has the following
asymptotic expansions as t → 0+ and t → 1−:

ψ ′(t) ∼

∞∑
i=0

εi t
m+2i as t → 0+,

ψ ′(t) ∼

∞∑
i=0

εi (1 − t)m+2i as t → 1−,

(1.6)

the εi being the same in both expansions, and ε0 > 0. Consequently,
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ψ(t) ∼

∞∑
i=0

εi
tm+2i+1

m + 2i + 1
as t → 0+,

ψ(t) ∼ 1 −

∞∑
i=0

εi
(1 − t)m+2i+1

m + 2i + 1
as t → 1 − .

(1.7)

Furthermore, for each positive integer k, ψ (k)(t) has asymptotic expansions as t → 0+ and t → 1− that are obtained
by differentiating those of ψ(t) term by term k times.

The sinm-transformation of [14], a representative of the extended class Sm , is given by

ψm(t) =

∫ t
0 (sinπu)mdu∫ 1
0 (sinπu)mdu

, m > 0. (1.8)

In the case where m is an integer, which is the case considered originally in [9], the sinm-transformation ψm(t) can
be expressed as a finite combination of powers and trigonometric functions, and can be computed using the simple
recursion relation

ψm(t) = ψm−2(t)−
Γ
(m

2

)
2
√
πΓ

(
m+1

2

) (sinπ t)m−1 cosπ t,

with the initial conditions

ψ0(t) = t and ψ1(t) =
1
2
(1 − cosπ t) = sin2

(
π t

2

)
.

However, when m is not a integer, this is not possible; ψ(t) has an infinite-series representation that converges quickly
in this case. We refer the reader to [14] for details.

Now, in [14], we introduced the concept of quality of Q̂n[ f ] as follows: If ψ(t) ∼ αtq as t → 0+ [hence
ψ(t) ∼ 1 − α(1 − t)q as t → 1−], and if Q̂n[ f ] − I [ f ] = O(hσ ) as h → 0, the quality of Q̂n[ f ] is the ratio
σ/q . Note that the effective abscissas in Q̂n[ f ] given in (1.4) are xi ≡ ψ(ih) = ψ(i/n) and these cluster near x = 0
and x = 1 in the variable x and that the clustering increases with increasing q simultaneously with the accuracy
of Q̂n[ f ]. Because too much clustering is not desirable, we would like to get as much accuracy as possible from a
given amount of clustering. In other words, we would like the quality of Q̂n[ f ] to be as high as possible. This is
achieved by the variable transformations in Sm with special (not necessarily integer) values of m. For example, when
f (0) = f (1) = 0 and f ′(0) 6= 0 or f ′(1) 6= 0, and ψ ∈ Sm , the quality of Q̂n[ f ] is at least 3 if 2m is an odd integer;
otherwise it is 2. When f (0) = f (1) = 0, f ′′(0) = f ′′(1) = 0, and f ′(0) 6= 0 or f ′(1) 6= 0, and ψ ∈ Sm , the quality
of Q̂n[ f ] is at least 4 if 2m is an odd integer; otherwise it is 2.

The sinm-transformation of [9] was generalized in a paper of Monegato and Scuderi [6]. This generalization, which
we will denote as the sinp,q -transformation, is given as in

ψp,q(t) =
Θp,q(t)

Θp,q(1)
; Θp,q(t) =

∫ t

0

(
sin

1
2
πu

)p (
cos

1
2
πu

)q

du. (1.9)

Here, p and q are nonnegative integers, and this allows ψp,q(t) to be computed via recursion relations, as has
been shown in [6] and as we will discuss later in this work. Obviously, ψp,p(t) (when q = p) is nothing but the
sinp-transformation. (Note that the sinm-transformation is only one of the symmetric transformations generalized
by Monegato and Scuderi in order to cope with integrands having integrable endpoint singularities of different
strengths.) Finally, ψp,0(t) (when q = 0) is simply 2ψp(t/2), ψp(t) being the sinp-transformation defined in (1.8).
The transformation ψp,0(t), with integer p, has been used by Johnston [4], in conjunction with the Gauss–Legendre
quadrature, for computing integrals with an integrable singularity at x = 0 only. It has also been used in [14, Theorem
4.4] in conjunction with the trapezoidal rule to treat the cases in which the integrand function f (x) is such that
f (2k+1)(1) = 0, k = 0, 1, . . . .

The purpose of the present work is to generalize the class Sm to what we will call the class Sp,q , p and q being
arbitrary numbers, not necessarily integers, and study the properties of the variable transformations in this class. In the
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next section, we introduce the class Sp,q , and also show how functions in this class can be constructed. In addition,
we show that the sinp,q -transformation in (1.9), with arbitrary p and q, belongs to Sp,q . In Section 3, we show how
the sinp,q -transformation with arbitrary p and q can be computed quickly and accurately. In Section 4, we study the
behavior of the transformed trapezoidal rule Q̂n[ f ] when the variable transformation ψ(t) is in Sp,q . As part of this
study, we also show how p and q can be chosen appropriately to “optimize” the quality of Q̂n[ f ] when f (x) has
algebraic endpoint singularities. That is, by choosing p and q appropriately, we are able to obtain high accuracy with
a small amount of clustering of abscissas at the endpoints. In Section 5, we provide numerical examples, done with
the sinp,q -transformation, that illustrate the theoretical results.

In Sections 6 and 7, we go back to numerical integration over surfaces of bounded sets in R3 in the presence of
point singularities of the single-layer and double-layer types, and propose to use the variable transformations in the
classes Sp,q with appropriate p and q .

Finally, in Section 8 we compare transformations in the class Sp,q with some new and analogous transformations
that were presented in a recent paper by the author [16], and show that, in some cases, such as those treated in
Section 6, the former have better convergence properties than the latter.

2. Generalization of the class Sm: The class S p,q

We generalize the extended class Sm , and define a new class of nonsymmetric variable transformations, which we
will denote as Sp,q , as follows:

Definition 2.1. A function ψ(t) is in the class Sp,q , with p, q > 0 but arbitrary, if it has the following properties:

1. ψ ∈ C[0, 1] and ψ ∈ C∞(0, 1); ψ(0) = 0, ψ(1) = 1, and ψ ′(t) > 0 on (0, 1).

2. ψ ′(t) has the following asymptotic expansions as t → 0+ and t → 1−:

ψ ′(t) ∼

∞∑
i=0

εi t
p+2i as t → 0+,

ψ ′(t) ∼

∞∑
i=0

δi (1 − t)q+2i as t → 1−,

(2.1)

and ε0, δ0 > 0. Consequently,

ψ(t) ∼

∞∑
i=0

εi
t p+2i+1

p + 2i + 1
as t → 0+,

ψ(t) ∼ 1 −

∞∑
i=0

δi
(1 − t)q+2i+1

q + 2i + 1
as t → 1 − .

(2.2)

3. For each positive integer k, ψ (k)(t) has asymptotic expansions as t → 0+ and t → 1− that are obtained by
differentiating those of ψ(t) term by term k times.

Remarks. 1. As in the case of the class Sm transformations, the fact that ψ(t), as well as ψ ′(t), ψ ∈ Sp,q , have the
asymptotic expansions given in (2.1) and (2.2) – with consecutive powers of t and (1 − t) there increasing by 2
instead of by 1 – is the most important aspect of class Sp,q transformations. [Of course, we can replace the powers
t p+2i and (1 − t)q+2i in (2.1) by t p+i and (1 − t)q+i and, thus, the powers t p+2i+1 and (1 − t)q+2i+1 in (2.2)
by t p+i+1 and (1 − t)q+i+1 to obtain a larger class of variable transformations, even though these do not lead to
results as good as those we obtain in this work. This is discussed in Section 8 in this work.]

2. Note that, unlike transformations in Sm , transformations in Sp,q do not possess a symmetry property when p 6= q .

3. Also, if ψ ∈ Sm,m and ψ ′
m,m(t) = ψ ′

m,m(1 − t) [which also means that εi = δi , i = 0, 1, . . ., in (2.1) and (2.2)],
then ψ ∈ Sm . In other words, Sm ⊂ Sm,m .
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4. Finally, if ψ ∈ Sp,q , and we define ψ̃(t) = 1 − ψ(1 − t), then ψ̃ ∈ Sq,p, because, by (2.2),

ψ̃(t) ∼ 1 −

∞∑
i=0

εi
(1 − t)p+2i+1

p + 2i + 1
as t → 1−,

ψ̃(t) ∼

∞∑
i=0

δi
tq+2i+1

q + 2i + 1
as t → 0 + .

(2.3)

Obviously, ψ(t)+ ψ̃(1 − t) = 1 and ψ ′(t) = ψ̃ ′(1 − t), in addition.

2.1. Construction of functions in Sp,q

We now show how functions in ψ ∈ Sp,q can be constructed. We claim that

ψ(t) =

∫ t
0 ω

′(u/2)φ′((1 − u)/2)du∫ 1
0 ω

′(u/2)φ′((1 − u)/2)du
∈ Sp,q if ω(t) ∈ Sp and φ(t) ∈ Sq .

To see this, we need to verify that this ψ(t) possesses all the properties mentioned in Definition 2.1. Of these, the first
and third are seen to hold trivially. As for the second, it is sufficient to verify that one of the asymptotic expansions in
(2.1) holds. We choose to verify the first, namely, that with t → 0+. By the definition of the class Sm , we have that

ω′(t/2) ∼

∞∑
i=0

ε′i t
p+2i as t → 0+; ε0 > 0.

Now, for any χ ∈ Sm , m being arbitrary, there holds χ (2i)(1/2) = 0, i = 1, 2, . . . , as follows from (1.5). Therefore,

φ′((1 − t)/2) ∼

∞∑
i=0

ε′′i t2i as t → 0+; ε′′0 > 0.

Multiplying these two asymptotic expansions, we see that ψ ′(t) has an asymptotic expansion as t → 0+ of the form
shown in (2.1).

Another way of generating transformations in Sp,q is as follows: Let α(t) and β(t) be in C∞
[0, 1], with α(t) > 0

and β(t) > 0 on (0, 1), and have asymptotic expansions of the form

α(t) ∼

∞∑
i=0

α′

i t
2i+1 and β(t) ∼

∞∑
i=0

β ′

i t
2i+1 as t → 0+, (2.4)

and

α(t) ∼

∞∑
i=0

α′′

i (1 − t)2i and β(t) ∼

∞∑
i=0

β ′′

i (1 − t)2i as t → 1−, (2.5)

that can be differentiated term by term. Let also

Θp,q(t) =

∫ t

0
[α(u)]p

[β(1 − u)]qdu. (2.6)

Then

ψ(t) =
Θp,q(t)

Θp,q(1)
∈ Sp,q . (2.7)

Making the substitution u = 1 − v in the integral representation of Θp,q(t) in (2.6), we obtain

Θp,q(t) =

∫ 1

1−t
[α(1 − v)]p

[β(v)]qdv. (2.8)
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Thus, letting t = 1 in (2.6) and (2.8), we first obtain

cp,q ≡ Θp,q(1) = Θq,p(1) ≡ cq,p in case α(t) = β(t). (2.9)

Rewriting (2.8) in the form

Θp,q(t) =

∫ 1

0
[α(1 − v)]p

[β(v)]qdv −

∫ 1−t

0
[α(1 − v)]p

[β(v)]qdv, (2.10)

and invoking (2.9), we next have

Θp,q(t)+ Θq,p(1 − t) = cp,q = cq,p in caseα(t) = β(t). (2.11)

Functions in the class S1 can be used to construct α(t) and β(t). If$(t) and %(t) are both in S1, then α(t) and β(t),
defined through α(t) = $ ′(t/2) and β(t) = %′(t/2), satisfy (2.4) and (2.5) because χ (2i)(1/2) = 0, i = 1, 2, . . . ,
for any χ ∈ Sm , m being arbitrary, as follows from (1.5), and as mentioned above. Thus, ψ(t) as defined
in (2.6) and (2.7) is in Sp,q . For example, choosing $(t) and %(t) to be both the sin1-transformation [that is,
$(t) = %(t) = sin2(π t/2)], we have α(t) = β(t) =

π
2 sin(π t/2); we thus obtain the sinp,q -transformation in

(1.9), whose computation we treat in the next section.

3. The sin p,q-transformation

3.1. Computation with integer p and q

As mentioned earlier, the sinp,q -transformation [ψp,q(t) in (1.9)] can be computed via recursion relations when p
and q are integers. As shown in [6], by integration by parts, we have

Θp,p(t) = −
2−p

πp
(sinπ t)p−1 cosπ t +

p − 1
4p

Θp−2,p−2(t), p ≥ 2,

Θp,q(t) =
2

π(p + q)

(
sin

π

2
t
)p+1 (

cos
π

2
t
)q−1

+
q − 1
p + q

Θp,q−2(t), p ≥ 0, q ≥ 2,

Θp,q(t) = −
2

π(p + q)

(
sin

π

2
t
)p−1 (

cos
π

2
t
)q+1

+
p − 1
p + q

Θp−2,q(t), p ≥ 2, q ≥ 0,

with the starting values

Θ0,0(t) = t, Θ1,0(t) =
2
π

(
1 − cos

π

2
t
)
,

Θ0,1(t) =
2
π

sin
π

2
t, Θ1,1(t) =

1
2π
(1 − cosπ t).

This completes the treatment of the case in which p and q are integers.

3.2. Computation with noninteger p or q

When p or q is not an integer, the recursion relations above cannot be used to compute ψp,q(t) because the initial
values are not known in simple terms. We proceed in a totally different way that is a generalization of that proposed
and used in [14] for computing the extended sinm-transformation.

We propose to compute Θp,q(t) and Θq,p(t) simultaneously for t ∈ [0, 1/2], and use the relation in (2.11) to
compute them for t ∈ [1/2, 1]. The reason for this will become clear soon.

Denoting ca,b = Θa,b(1), and recalling that α(t) = β(t) =
π
2 sin(π t/2), we first note that cp,q = cq,p by (2.9).

Next, letting t = 1/2 in (2.11), we compute Θp,q(1) = cp,q through

cp,q = Θp,q(1/2)+ Θq,p(1/2) = cq,p.

We then compute ψp,q(t) and ψq,p(t) via
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ψp,q(t) =
Θp,q(t)

cp,q
and ψq,p(t) =

Θq,p(t)

cq,p
for t ∈ [0, 1/2],

ψp,q(t) = 1 − ψq,p(1 − t) and ψq,p(t) = 1 − ψp,q(1 − t) for t ∈ [1/2, 1].

What remains is the computation of Θp,q(t) and Θq,p(t) for t ∈ [0, 1/2]. Of course, it is sufficient to consider one
of them; we choose to consider Θp,q(t). In what follows, we derive two representations for Θp,q(t) in terms of the
hypergeometric function F(a, b; c; z), which has the series expansion

F(a, b; c; z) =

∞∑
k=0

(a)k (b)k
(c)k

zk

k!
,

where (x)0 = 1 and (x)k = x(x + 1) · · · (x + k − 1) for k = 1, 2, . . . . As we will see, both of these representations
allow us the compute Θp,q(t) for t ∈ [0, 1/2] (but not for t ∈ [1/2, 1]) in an efficient manner. Note also that the kth
term in series representation of F(a, b; c; z) is O(ka+b−c−1zk) as k → ∞, so that the series converges fast for small
|z| < 1; its convergence slows down as |z| → 1.

(i) Making the substitution ξ = sin(πu/2) in the integral representation of Θp,q(t), we obtain

Θp,q(t) =
2
π

∫ S

0
ξ p
(√

1 − ξ2

)q−1

dξ, S = sin
π t

2
.

Expanding the integrand about ξ = 0 and integrating the resulting (absolutely and uniformly convergent) series
term by term, we obtain

Θp,q(t) =
2S p+1

π

∞∑
k=0

(
1−q

2

)
k

k!

S2k

p + 2k + 1
, S = sin

π t

2
, (3.1)

which can be expressed in terms of the hypergeometric function as in

Θp,q(t) =
2S p+1

π(p + 1)
F

(
1
2

−
1
2

q,
1
2

p +
1
2
;

1
2

p +
3
2
; S2

)
, S = sin

π t

2
. (3.2)

For k ≥ b(q + 1)/2c, the terms of this expansion are of the same sign and tend to zero as k → ∞ essentially
like k−(q+3)/2S2k , and hence, by the fact that 0 ≤ S ≤ sin(π/4) = 1/

√
2, at worst like k−(q+3)/22−k . Thus, the

expansion above converges quickly and can be used for the actual computation of Θp,q(t). For example, double-
precision accuracy (approximately 14 decimal digits) can be achieved for Θp,q(t) with p = 0.5 and q = 0.1 and
t = 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 by direct summation of the first 3, 5, 7, 11, 17, 24, 38 terms, respectively,
of the series in (3.1).

Furthermore, we can also use a nonlinear sequence transformation, such as that of Shanks [8] (or the equivalent
ε-algorithm of Wynn [19]) or of Levin [5], to accelerate the convergence of this expansion. Both transformations
are treated in detail in the recent book by Sidi [10].

(ii) Invoking in (3.2) one of the so-called linear transformation formulas, see Abramowitz and Stegun [1, p. 559,
formulas 15.3.4 and 15.3.5], and using the fact S2

S2−1
= − tan2 π t

2 , and the relations

sin x =
tan x

√
1 + tan2 x

and cos x =
1

√
1 + tan2 x

, 0 ≤ x ≤
π

2
,

we obtain

Θp,q(t) =
2T p+1

π(p + 1)(1 + T 2)(p+q)/2
F

(
1,

1
2

−
1
2

q;
1
2

p +
3
2
; −T 2

)
, T = tan

π t

2
(3.3)

which has the expansion

Θp,q(t) =
2T p+1

π(p + 1)(1 + T 2)(p+q)/2

∞∑
k=0

(
1
2 −

1
2 q
)

k(
1
2 p +

3
2

)
k

(−T 2)k; T = tan
π t

2
. (3.4)
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Since 0 < T ≤ tan(π/4) = 1 for 0 ≤ t ≤ 1/2, the terms of this series tend to zero like k−1−(p+q)/2T 2k as
k → ∞. Consequently, this expansion converges very slowly for t close to 1/2 because T 2

→ 1 as t → 1/2.
However, it is an essentially alternating series because, for k ≥ b(q + 1)/2c, its terms alternate in sign. This being
the case, the series in (3.4) turns out to be ideal for the actual computation of Θp,q(t) because we can apply to it
the Shanks or the Levin transformation and obtain its sum to machine precision using a very small number of its
terms, and in an absolutely stable fashion.

Summary of computation of ψp,q(t)
We now summarize the steps by which one can compute ψp,q(t) for t ∈ [0, 1] to machine accuracy quickly and

efficiently. Clearly, before everything else, one must have a code for computing Θa,b(t), via

Θa,b(t) =
2Sa+1

π

∞∑
k=0

(
1−b

2

)
k

k!

S2k

a + 2k + 1
, S = sin

π t

2
.

Recall that the series here converges quickly for t ∈ [0, 1/2] and its convergence can be monitored easily since
its terms are ultimately of the same sign. In addition, by letting hk = ( 1−b

2 )k S2k/k!, and observing that hk+1 =

( 1−b
2 + k)S2/(k +1), the cost of computing each term of the series is reduced to just a few arithmetic operations, once

S has been computed. Finally, the number of terms of the series required for computing its sum to machine accuracy
becomes smaller as t becomes smaller.

1. Compute Θp,q(1/2) and Θq,p(1/2), and set cp,q = cq,p = Θp,q(1/2)+ Θq,p(1/2).
2. For t ∈ [0, 1/2], compute Θp,q(t) and Θq,p(t), and set ψp,q(t) = Θp,q(t)/cp,q and ψq,p(t) = Θq,p(t)/cq,p.
3. For t ∈ [1/2, 1], compute ψp,q(t) via ψp,q(t) = 1 − ψq,p(1 − t).

4. Analysis of the trapezoidal rule with class S p,q transformations

In this section, we analyze the behavior of the transformed trapezoidal rule Q̂n[ f ] given in (1.4) for when the
integrand f (x) is infinitely differentiable in (0, 1) and possibly has algebraic singularities at x = 0 and/or x = 1.

Euler–Maclaurin expansions concerning the trapezoidal rule approximations of finite-range integrals
∫ b

a u(x)dx
are the main analytical tool that we use in our study. For the sake of easy reference, we reproduce here the relevant
Euler–Maclaurin expansion due to the author (see Sidi [11, Corollary 2.2]) as Theorem 4.1. This theorem is a special
case of another very general theorem from [11], and is expressed in terms of the asymptotic expansions of u(x) as
x → a+ and x → b− and is easy to write down and use.

Theorem 4.1. Let u ∈ C∞(a, b), and assume that u(x) has the asymptotic expansions

u(x) ∼

∞∑
s=0

cs (x − a)γs as x → a+,

u(x) ∼

∞∑
s=0

ds (b − x)δs as x → b−,

where the γs and δs are distinct complex numbers that satisfy

−1 < Rγ0 ≤ Rγ1 ≤ Rγ2 ≤ · · · ; lim
s→∞

Rγs = +∞,

−1 < Rδ0 ≤ Rδ1 ≤ Rδ2 ≤ · · · ; lim
s→∞

Rδs = +∞.

Assume furthermore that, for each positive integer k, u(k)(x) has asymptotic expansions as x → a+ and x → b−

that are obtained by differentiating those of u(x) term by term k times. Let also h = (b − a)/n for n = 1, 2, . . . .
Then

h
n−1∑
i=1

u(a + ih) ∼

∫ b

a
u(x)dx +

∞∑
s=0

γs 6∈{2,4,6,...}

cs ζ(−γs) hγs+1
+

∞∑
s=0

δs 6∈{2,4,6,...}

ds ζ(−δs) hδs+1 as h → 0,

where ζ(z) is the Riemann zeta function.
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It is clear from Theorem 4.1 that positive even powers of (x −a) and (b−x), if present in the asymptotic expansions
of u(x) as x → a+ and x → b−, do not contribute to the asymptotic expansion of h

∑n−1
i=1 u(a + ih) as h → 0.

In addition, if γp is the first of the γs that is different from 2, 4, 6, . . ., and if δq is the first of the δs that is different
from 2, 4, 6, . . . , then

h
n−1∑
i=1

u(a + ih)−

∫ b

a
u(x)dx = O(hσ+1) as h → 0; σ = min{Rγp,Rδq}.

Here is our main result:

Theorem 4.2. Let f ∈ C∞(0, 1), and assume that f (x) has the asymptotic expansions

f (x) ∼

∞∑
s=0

cs xγs as x → 0+; f (x) ∼

∞∑
s=0

ds(1 − x)δs as x → 1 − .

Here γs and δs are distinct complex numbers that satisfy

−1 < Rγ0 ≤ Rγ1 ≤ Rγ2 ≤ · · · ; lim
s→∞

Rγs = +∞,

−1 < Rδ0 ≤ Rδ1 ≤ Rδ2 ≤ · · · ; lim
s→∞

Rδs = +∞.

Assume furthermore that, for each positive integer k, f (k)(x) has asymptotic expansions as x → 0+ and x → 1− that
are obtained by differentiating those of f (x) term by term k times. Let I [ f ] =

∫ 1
0 f (x)dx, and let us now make the

transformation of variable x = ψ(t), where ψ ∈ Sp,q , in I [ f ]. Finally, let us approximate I [ f ] via the trapezoidal
rule Q̂n[ f ] =

∑n−1
i=1 f (ψ(ih)) ψ ′(ih), where h = 1/n, n = 1, 2, . . . . Then the following hold:

(i) In the worst case,

Q̂n[ f ] − I [ f ] = O
(
hω
)

as h → 0; ω = min{(Rγ0 + 1)(p + 1), (Rδ0 + 1)(q + 1)}.

(ii) If γ0 and δ0 are real, and if p = (2k − γ0)/(γ0 + 1) and q = (2l − δ0)/(δ0 + 1), where k and l are positive
integers, then

Q̂n[ f ] − I [ f ] = O
(
hω
)

as h → 0; ω = min{(Rγ1 + 1)(p + 1), (Rδ1 + 1)(q + 1)},

at worst.

Remark. If f (x) = xµ(1 − x)νg(x), g(x) being infinitely differentiable on [0, 1], then f (x) satisfies the conditions
of the theorem. In such a case, if f (x) has full Taylor series at x = 0 and x = 1, we have γs = µ+ s and δs = ν + s,
s = 0, 1, . . . . Note that this f (x) has an algebraic branch singularity at x = 0 if µ is not a positive integer. Similarly,
it has an algebraic branch singularity at x = 1 if ν is not a positive integer.

Proof. It is clear from Theorem 4.1 that we need to analyze the asymptotic expansions of the transformed integrand
f̂ (t) = f (ψ(t)) ψ ′(t) as t → 0 and t → 1. To proceed with this analysis, we need the following: Let w(ξ) denote
generically any function that has an asymptotic expansion of the form

∑
∞

i=0wiξ
2i as ξ → 0+. Then

gi (ξ) = ξ riw(ξ), i = 1, . . . , k, ⇒

k∏
i=1

gi (ξ) = ξ rw(ξ), r =

k∑
i=1

ri .

Because ψ(t) → 0 as t → 0 and ψ(t) → 1 as t → 1, we first have

f̂ (t) ∼

∞∑
s=0

cs[ψ(t)]
γsψ ′(t) as t → 0; f̂ (t) ∼

∞∑
s=0

ds[1 − ψ(t)]δsψ ′(t) as t → 1.

Invoking (2.1) and (2.2), and re-expanding these asymptotic series, we have that the sth term in the first of these series
contributes the sum

K (0)
s (t) :=

∞∑
i=0

e(0)si tγs (p+1)+p+2i as t → 0; e(0)s0 = csε
γs+1
0 /(p + 1)γs 6= 0, (4.1)
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whereas the sth term in the second series contributes the sum

K (1)
s (t) :=

∞∑
i=0

e(1)si (1 − t)δs (q+1)+q+2i as t → 1; e(1)s0 = dsε
δs+1
0 /(q + 1)δs 6= 0. (4.2)

Thus, by Theorem 4.1, the most dominant terms in the expansion of Q̂n[ f ] − I [ f ] as h → 0 are e(0)00 h(γ0+1)(p+1)

coming from the endpoint x = 0, and e(1)00 h(δ0+1)(q+1) coming from the endpoint x = 1. This proves part (i) of the
theorem.

To prove part (ii), we note from Theorem 4.1 that if we choose p such that γs(p + 1)+ p is a positive even integer,
then all the powers of t in the asymptotic expansion K (0)

s (t) of (4.1) are also even, and hence do not contribute to
the asymptotic expansion of Q̂n[ f ] − I [ f ]. Similarly, if we choose q such that δs(q + 1) + q is a positive even
integer, then all the powers of (1 − t) in the asymptotic expansion K (1)

s (t) of (4.2) are also even, and hence do not
contribute to the asymptotic expansion of Q̂n[ f ]− I [ f ]. Thus, when γ0 and δ0 are real, if we choose p and q such that
γ0(p+1)+ p = 2k and δ0(q+1)+q = 2l, where k and l are positive integers, then neither K (0)

0 (t) in (4.1) nor K (1)
0 (t)

in (4.2) contributes to the asymptotic expansion of Q̂n[ f ] − I [ f ]. The largest terms that possibly contribute are (i)
e(0)10 tγ1(p+1)+p, the first term of K (0)

1 (t), provided γ1(p + 1)+ p is not an even integer, and (ii) e(1)10 (1 − t)δ1(q+1)+q ,

the first term of K (1)
1 (t), provided δ1(q + 1) + q is not an even integer. Under these conditions, the contributions of

these terms to Q̂n[ f ]− I [ f ] are E (0)h(γ1+1)(p+1) and E (1)h(δ1+1)(q+1), respectively, E (0), E (1) being some constants.
This proves the result in part (ii). �

Remark. Note that the result in part (ii) of Theorem 4.2 is made possible by our definition of the class Sp,q
transformations, where we have excluded the powers t p+1, t p+3, . . . , and (1 − t)q+1, (1 − t)q+3, . . . , from the
asymptotic expansions of ψ ′(t) as t → 0+ and t → 1−.

Corollary 4.3. In the case of f (x) = xµ(1−x)νg(x), g(x) being infinitely differentiable on [0, 1], then the following
hold:

(i) In the worst case,

Q̂n[ f ] − I [ f ] = O
(
hω
)

as h → 0; ω ≥ min{(Rµ+ 1)(p + 1), (Rν + 1)(q + 1)}.

(ii) If µ and ν are real, and if p = (2k −µ)/(µ+ 1) and q = (2l − ν)/(ν + 1), where k and l are positive integers,
then

Q̂n[ f ] − I [ f ] = O
(
hω
)

as h → 0; ω ≥ min{(µ+ 2)(p + 1), (ν + 2)(q + 1)}.

When µ = ν = c in part (ii) of Corollary 4.3, we can use a class Sm variable transformation with m =

(2k − c)/(c + 1) to obtain the optimal result Q̂n[ f ] − I [ f ] = O(hω) as h → 0, where ω ≥ (c + 2)(m + 1).
When µ 6= ν in part (ii) of Corollary 4.3, we choose the integers k and l such that (µ+2)(p +1) ≈ (ν+2)(q +1),

that is,

2k + 1
2l + 1

≈
ν + 2
ν + 1

·
µ+ 1
µ+ 2

.

(Thus, by choosing k first, we can determine l, and vice versa.) This guarantees that the singularities of the transformed
integrand f̂ (t) = f (ψ(t))ψ ′(t) at the endpoints are of approximately the same strength.

5. Numerical examples

In this section, we provide two examples to illustrate the validity of the results of the preceding section. The
computations for these examples were done in quadruple-precision arithmetic (approximately 35 decimal digits).

Example 5.1. Consider the integral∫ 1

0
xµdx =

1
1 + µ

, µ > −1.



142 A. Sidi / Journal of Computational and Applied Mathematics 221 (2008) 132–149

Table 1

Errors in the rules Q̂n [ f ] for the integral of Example 5.1 obtained with n = 2k , k = 1(1)10, and with the sinp,q -transformation

n j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

2 1.81D−02 1.50D−03 3.22D−01 3.36D−01 5.91D−01 6.03D−01 8.21D−01 8.31D−01 1.02D+00 1.03D+00
4 2.17D−03 1.46D−05 5.66D−04 4.72D−07 1.77D−04 5.28D−04 2.74D−02 2.94D−02 7.70D−02 7.99D−02
8 2.83D−04 1.82D−07 1.51D−05 1.23D−08 2.28D−06 3.00D−08 5.46D−07 2.31D−07 7.49D−07 1.95D−07

16 3.76D−05 2.68D−09 4.79D−07 7.85D−12 1.63D−08 1.47D−13 1.06D−09 4.06D−15 1.13D−10 3.57D−13
32 5.03D−06 4.12D−11 1.58D−08 7.03D−15 1.32D−10 6.87D−18 2.03D−12 2.32D−20 5.03D−14 2.09D−22
64 6.73D−07 6.42D−13 5.28D−10 6.72D−18 1.09D−12 3.93D−22 4.17D−15 7.67D−26 2.53D−17 3.79D−29

128 9.01D−08 1.00D−14 1.77D−11 6.53D−21 9.12D−15 2.36D−26 8.68D−18 2.83D−31 1.31D−20 9.53D−34
256 1.21D−08 1.57D−16 5.92D−13 6.37D−24 7.63D−17 1.44D−30 1.81D−20 4.24D−34 6.84D−24 9.53D−34
512 1.62D−09 2.45D−18 1.98D−14 6.22D−27 6.39D−19 1.06D−34 3.80D−23 5.30D−34 3.58D−27 1.91D−33

1024 2.17D−10 3.82D−20 6.64D−16 6.07D−30 5.35D−21 4.24D−34 7.94D−26 1.06D−33 1.87D−30 4.24D−34

In column j , we have chosen p = ( j + 0.9 − µ)/(1 + µ) and q = j + 0.9 when j is odd, while p = ( j − µ)/(1 + µ) and q = j when j is even.

In this case, we have

f (x) = xµ and f (x) =

∞∑
s=0

(−1)s
(µ

s

)
(1 − x)s .

Of these, the first is a single-term series representing f (x) asymptotically as x → 0+ with γ0 = µ, while the second
is a (convergent) series representing f (x) asymptotically as x → 1− with δs = s, s = 0, 1, . . . . (Note that, in the
notation of Corollary 4.3, ν = 0 now.) Thus, if we choose p and q arbitrarily, we will obtain, by part (i) of Theorem 4.2
and Corollary 4.3,

Q̂n[ f ] − I [ f ] = O
(
hω
)

as h → 0; ω = min{(µ+ 1)(p + 1), (q + 1)}.

In the case of p = (2k −µ)/(1+µ) and q = 2l, with k, l positive integers, we will obtain, by part (ii) of Theorem 4.2,

Q̂n[ f ] − I [ f ] = O
(
hω
)

as h → 0; ω = 2(q + 1).

This is so because the asymptotic expansion of f (x) as x → 0+ consists of only the term xµ.
In our computations, we have taken µ = 0.1.
In Table 1, we give the relative errors in the Q̂n[ f ] for n = 2k , k = 1, . . . , 10, obtained with the sinp,q -

transformation. In column j of this table, we have chosen p = ( j + 0.9 −µ)/(1 +µ) and q = ( j + 0.9 − ν)/(1 + ν)

when j is odd, while p = ( j −µ)/(1 +µ) and q = ( j − ν)/(1 + ν) when j is even. The superior convergence of the
columns with j an even integer is clearly demonstrated. [Note that the p (the q), hence the clusterings of the effective
abscissas xi = ψ(i/n) near x = 0 (near x = 1) with j = 2k − 1 and j = 2k are approximately the same for each k.]

In Table 2, we give the numbers

ρp,q,k =
1

log 2
· log

(
|Q̂2k [ f ] − I [ f ]|

|Q̂2k+1 [ f ] − I [ f ]|

)
,

for the same values of p and q and for k = 1, 2, . . . , 9. It is seen that, with increasing k, the ρp,q,k are tending to
min{(µ + 1)(p + 1), (q + 1)} when j an odd integer, and to 2(q + 1) when j is an even integer, completely in
accordance with Theorem 4.2 and Corollary 4.3. (With the floating-point arithmetic we are using, this convergence
seems to be less visible for relatively large p and q in the columns with even j .)

Example 5.2. Consider the integral∫ 1

0
f (x) = 0, f (x) =

d
dx

[
xµ+1(1 − x)ν+1w(x)

]
, µ, ν > 0, w ∈ C∞

[0, 1].

In this case, we have

f (x) = xµ(1 − x)νg(x),

where

g(x) = [(µ+ 1)(1 − x)− (ν + 1)x]w(x)+ x(1 − x)w′(x).
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Table 2

The numbers ρp,q,k =
1

log 2 · log
(

|Q̂2k [ f ]−I [ f ]|

|Q̂2k+1 [ f ]−I [ f ]|

)
, with p, q, f (x), and Q̂n [ f ] as in Table 1, for k = 1(1)9

n j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

1 3.058 6.682 9.152 19.444 11.709 10.157 4.906 4.821 3.732 3.692
2 2.943 6.330 5.227 5.262 6.274 14.106 15.613 16.956 16.651 18.646
3 2.912 6.086 4.979 10.614 7.124 17.640 9.009 25.763 12.693 19.060
4 2.903 6.021 4.919 10.125 6.957 14.382 9.026 17.417 11.134 30.666
5 2.901 6.005 4.905 10.031 6.914 14.092 8.931 18.207 10.958 22.395
6 2.900 6.001 4.901 10.008 6.903 14.023 8.908 18.049 10.914 15.281
7 2.900 6.000 4.900 10.002 6.901 14.005 8.902 9.382 10.904 0.000
8 2.900 6.000 4.900 10.000 6.900 13.729 8.900 −0.322 10.901 −1.000
9 2.900 6.000 4.900 10.000 6.900 −2.000 8.900 −1.000 10.900 2.170

∞ 2.9 6 4.9 10 6.9 14 8.9 18 10.9 22

Table 3

Errors in the rules Q̂n [ f ] for the integral of Example 5.2, obtained with n = 2k , k = 1(1)10, and with the sinp,q -transformation

n j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

2 4.59D−02 4.58D−02 3.55D−02 3.46D−02 1.44D−02 1.32D−02 1.27D−02 1.42D−02 4.38D−02 4.54D−02
4 3.92D−04 6.34D−04 5.13D−03 5.55D−03 8.66D−03 8.53D−03 1.05D−03 4.44D−04 1.38D−02 1.47D−02
8 2.02D−05 5.11D−06 8.31D−07 7.95D−07 6.78D−06 5.76D−06 1.11D−04 1.24D−04 4.73D−04 4.95D−04

16 3.43D−06 8.24D−08 9.68D−09 5.79D−10 9.89D−10 2.01D−11 4.24D−10 3.01D−10 3.53D−09 4.24D−09
32 4.75D−07 1.31D−09 3.13D−10 1.16D−12 7.40D−12 3.19D−15 2.69D−13 1.21D−17 1.06D−14 4.36D−19
64 6.39D−08 1.83D−11 1.05D−11 2.63D−15 6.05D−14 7.16D−19 5.45D−16 2.42D−22 5.24D−18 1.06D−25

128 8.57D−09 1.65D−13 3.53D−13 6.41D−18 5.04D−16 1.70D−22 1.13D−18 5.31D−27 2.70D−21 2.12D−31
256 1.15D−09 1.96D−15 1.18D−14 1.62D−20 4.21D−18 4.12D−26 2.36D−21 1.19D−31 1.41D−24 9.91D−36
512 1.54D−10 1.81D−16 3.96D−16 4.17D−23 3.53D−20 1.00D−29 4.95D−24 3.74D−35 7.37D−28 4.26D−35

1024 2.06D−11 7.47D−18 1.33D−17 1.08D−25 2.95D−22 2.42D−33 1.04D−26 1.11D−34 3.86D−31 2.53D−35

In column j , we have chosen p = ( j + 0.9 − µ)/(1 + µ) and q = ( j + 0.9 − ν)/(1 + ν) when j is odd, while p = ( j − µ)/(1 + µ) and
q = ( j − ν)/(1 + ν) when j is even.

If w(0) and w(1) are both nonzero, we have that g(0) and g(1) are both nonzero as well, and this implies that γ0 = µ

and δ0 = ν. Thus, if we choose p and q arbitrarily, we will obtain, by part (i) of Theorem 4.2 and Corollary 4.3,

Q̂n[ f ] − I [ f ] = O
(
hω
)

as h → 0; ω = min{(µ+ 1)(p + 1), (ν + 1)(q + 1)}.

In the case of p = (2k −µ)/(1 +µ) and q = (2l − ν)/(1 + ν), with k, l positive integers, we will obtain, by part (ii)
of Theorem 4.2 and Corollary 4.3,

Q̂n[ f ] − I [ f ] = O
(
hω
)

as h → 0, ω = min{(µ+ 2)(p + 1), (ν + 2)(q + 1)}.

In our computations, we have taken µ = 0.1 and ν = 0.4 and w(x) = 1/(1 + x).
In Table 3, we give the absolute errors (recall that I [ f ] = 0) in the Q̂n[ f ] for n = 2k , k = 1, . . . , 10,

obtained with the sinp,q -transformation. In column j of this table, we have chosen p = ( j + 0.9 − µ)/(1 + µ)

and q = ( j + 0.9 − ν)/(1 + ν) when j is odd, while p = ( j −µ)/(1 +µ) and q = ( j − ν)/(1 + ν) when j is even.
The superior convergence of the columns with j an even integer is again clearly demonstrated. [Note that the p (the
q), and hence the clusterings of the effective abscissas xi = ψ(i/n) near x = 0 (near x = 1) with j = 2k − 1 and
j = 2k, are approximately the same for each k.]

In Table 4, we give the numbers ρp,q,k defined in the preceding example for the same values of p and q and for
k = 1, 2, . . . , 9. It is seen that, with increasing k, the ρp,q,k are tending to min{(µ+ 1)(p + 1), (ν + 1)(q + 1)} when
j an odd integer, and to min{(µ + 2)(p + 1), (ν + 2)(q + 1)} when j is an even integer, completely in accordance
with Theorem 4.2 and Corollary 4.3. (As in the preceding example, with the floating-point arithmetic we are using,
this convergence seems to be less visible for relatively large p and q in the columns with even j .)
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Table 4

The numbers ρp,q,k =
1

log 2 · log
(

|Q̂2k [ f ]−I [ f ]|

|Q̂2k+1 [ f ]−I [ f ]|

)
, with p, q, f (x), and Q̂n [ f ] as in Table 3, for k = 1(1)9

k j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

1 6.871 6.175 2.788 2.640 0.733 0.626 3.593 4.998 1.662 1.628
2 4.279 6.955 12.593 12.771 10.319 10.531 3.250 1.846 4.869 4.892
3 2.557 5.954 6.424 10.422 12.743 18.132 17.997 18.647 17.031 16.833
4 2.854 5.977 4.952 8.970 7.062 12.618 10.620 24.568 18.352 33.178
5 2.893 6.162 4.894 8.778 6.933 12.121 8.948 15.611 10.978 21.974
6 2.899 6.789 4.897 8.681 6.908 12.038 8.912 15.475 10.919 18.932
7 2.900 6.398 4.899 8.629 6.902 12.012 8.903 15.440 10.905 14.382
8 2.900 3.439 4.900 8.601 6.901 12.004 8.901 11.640 10.901 −2.104
9 2.900 4.595 4.900 8.587 6.900 12.017 8.900 −1.565 10.900 0.751

∞ 2.9 4.971· · · 4.9 8.4 6.9 12 8.9 15.257· · · 10.9 18.857· · ·

6. S p,q transformations and numerical integration of singular functions over smooth surfaces in R3

In [12,15], we considered the numerical evaluation of integrals with point singularities of the single-layer and
double-layer types over surfaces of bounded sets in R3 with the help of class Sm variable transformations. We consider
this problem here again in view of the new transformations that we have developed.

Let the integral in question be

I [ f ] =

∫∫
S

f (Q)dAS, Q ∈ S, (6.1)

where S is the surface of a closed and bounded set in R3 and dAS is the corresponding surface area element. We
assume that the surface S is infinitely smooth and homeomorphic to U , the surface of the unit sphere, and that the
Jacobian matrix of the corresponding mapping from U to S is nonsingular. The integrand f (Q) is assumed to be
smooth over S, except for a point singularity of the single-layer or double-layer type, say, at the point P ∈ S.

To compute I [ f ] numerically, we first map U to S. Next, we rotate the coordinate system on U such that either the
north pole or the south pole of U is mapped to P on S; this we do through an orthogonal transformation such as the
Householder transformation. Following that, we express the transformed integral in terms of the standard spherical
coordinates θ and φ, 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π . Let us denote the resulting integral in the form

I [ f ] =

∫ π

0

[∫ 2π

0
F(θ, φ)dφ

]
dθ. (6.2)

We next transform the variable θ via θ = Ψ(t). In [12,15], Ψ(t) was chosen to be related to a transformation in the
class Sm for some m. We now take it to be a constant multiple of a transformation in Sp,q for some suitable p > 0
and q > 0. Specifically, we choose

Ψ(t) =

{
πψm,2l(t) if singularity at south pole
πψ2l,m(t) if singularity at north pole;

m > 0, l = 1, 2, . . . . (6.3)

The transformed integral is

I [ f ] =

∫ 1

0

[∫ 2π

0
F̂(t, φ)dφ

]
dt; F̂(t, φ) = F (Ψ(t), φ)Ψ ′(t). (6.4)

Finally, we approximate I [ f ] by the product trapezoidal rule defined as follows:

T̂n,n′ [ f ] = hh′

n−1∑
j=1

n′∑
i=1

F̂( jh, ih′); h =
1
n
, h′

=
2π
n′
. (6.5)
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Note that, with Ψ(t) as in (6.3), there holds Ψ ′(0) = Ψ ′(1) = 0. As a result, we have F̂(0, φ) = F̂(1, φ) = 0, and
this explains why the summation over j in T̂n,n′ [ f ] does not contain the terms with j = 0 and j = n. Now, one of
these terms comes from the mapping of the point of singularity and is not immediately available if it is nonzero, in
which case it is defined as a limit; hence its computation is not simple. It is our choice of Ψ(t) that makes this term
zero, and hence makes it possible to avoid this computation.

We now turn to the analysis of T̂n,n′ [ f ].
Let us define

v(θ) =

∫ 2π

0
F(θ, φ)dφ, v̂(t) =

∫ 1

0
F̂(t, φ)dφ.

Thus,

v̂(t) = v(Ψ(t), φ)Ψ ′(t), I [ f ] =

∫ π

0
v(θ)dθ =

∫ 1

0
v̂(t)dt.

Note that the integral
∫ 1

0 v̂(t)dt is obtained from
∫ π

0 v(θ)dθ by transforming the variable θ via θ = Ψ(t). Let

us denote by T̃n[ f ] the trapezoidal rule approximation to the one-dimensional integral
∫ 1

0 v̂(t)dt . Thus, because
F̂(0, φ) = F̂(1, φ) = 0,

T̃n[ f ] = h
n−1∑
j=1

v̂( jh). (6.6)

In [13, Section 3] (see also [15, Section 2]), we proved that, provided n′
∼ αnβ as n → ∞ for some fixed positive

α and β, there holds

T̂n,n′ [ f ] − I [ f ] =
(
T̃n[ f ] − I [ f ]

)
+ O(hν) as n → ∞, for every ν > 0. (6.7)

It is clear from this that, despite being different from each other, T̂n,n′ [ f ] − I [ f ] and T̃n[ f ] − I [ f ] have the same
asymptotic expansions as h → 0. Thus, it is enough to analyze T̃n[ f ] − I [ f ]. For this, it is sufficient to know the
asymptotic expansions of v(θ) as θ → 0 and θ → π , as we have seen in the preceding sections. These asymptotic
expansions of v(θ) have already been obtained in [15, Sections 3 and 4] and are summarized in [15, Theorem 4.2],
which we reproduce next.

Theorem 6.1. (i) When the singularity of f (Q) is mapped to the north pole of the unit sphere,

v(θ) ∼

∞∑
i=0

µ
(+,0)
i θ2i as θ → 0, v(θ) ∼

∞∑
i=0

µ
(+,π)
i (π − θ)2i+1 as θ → π. (6.8)

(ii) When the singularity of f (Q) is mapped to the south pole of the unit sphere,

v(θ) ∼

∞∑
i=0

µ
(−,0)
i θ2i+1 as θ → 0, v(θ) ∼

∞∑
i=0

µ
(−,π)
i (π − θ)2i as θ → π. (6.9)

The following theorem, whose proof is precisely as those of Theorem 4.2 in [12] and Theorem 6.2 in [15], presents
the optimal result that can be obtained from T̂n,n′ [ f ]. It can be proved by first applying part (ii) of Theorem 4.2 to the
integral

∫ π
0 v(θ)dθ =

∫ 1
0 v̂(t)dt in view of Theorem 6.1, and by invoking (6.7) next.

Theorem 6.2. Let Ψ(t) be as in (6.3), and let n′
∼ αnβ as n → ∞ for some fixed positive α and β (for example,

n′
= n). Then

T̂n,n′ [ f ] − I [ f ] =

{
O(h4m+4) as h → 0, if 2m is an odd integer,
O(h2m+2) as h → 0, otherwise.
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In the case where 2m is an odd integer, the complete asymptotic expansion of T̂n,n′ [ f ] is of the form

T̂n,n′ [ f ] ∼ I [ f ] +

∞∑
i=0

ρi h
4m+4+2i as h → 0.

Note that there is no contribution to the asymptotic expansion of the error T̂n,n′ [ f ] − I [ f ] from the pole to which
the point singularity is mapped.

7. Example: Numerical integration over surfaces of ellipsoids

Let S be the surface of the ellipsoid whose equation is (ξ/a)2+(η/b)2+(ζ/c)2 = 1, and let f (Q) = g(Q)/|Q−P|,
with g(Q) = g(ξ, η, ζ ) = exp[0.1(ξ + 2η + 3ζ )]. We take (a, b, c) = (1, 2, 3) and P = (ξ0, η0, ζ0) =

(1/2, 1, 3/
√

2) ∈ S, and consider the computation of the integral

I [ f ] =

∫∫
S

f (Q)dAS = 38.2549189698039 · · · .

This is one of the numerical examples treated in Atkinson [2] and in Sidi [15].
Letting

U =

{
(x, y, z) : x2

+ y2
+ z2

= 1
}
,

we take the mapping of U to S to be

(ξ, η, ζ ) = (ax, by, cz),

by which P is the mapping of

(x0, y0, z0) = (ξ0/a, η0/b, ζ0/c) = (1/2, 1/2, 1/
√

2) ∈ U.

This point is mapped to the south pole via the (orthogonal) Householder matrix H ,

H = I − 2ppT, p =
1√

2 +
√

2

 1/2
1/2

1/
√

2 + 1

 ;

that is,x0
y0
z0

 = H

 0
0

−1

 and

x
y
z

 = H

sin θ cosφ
sin θ sinφ

cos θ

 .
The function F(θ, φ) is given as in

F(θ, φ) = f (ξ, η, ζ )R(x, y, z) sin θ,

where

R(x, y, z) =

[
(bcx)2 + (cay)2 + (abz)2

]1/2
.

The numerical results in Tables 5 and 6, which were computed with Ψ(t) = πψm,2(t), in quadruple-precision
arithmetic, illustrate the conclusions of Theorem 6.2 very clearly. Table 5 gives the relative errors in the T̂n[ f ] ≡

T̂n,n[ f ], n = 2k , k = 1, 2, . . . , 9, for various values of m. Table 6 presents the numbers

ρm,k =
1

log 2
· log

(
|T̂2k [ f ] − I [ f ]|

|T̂2k+1 [ f ] − I [ f ]|

)
for the same values of m and for k = 1, 2, . . . , 8. It is seen that, with increasing k, the ρm,k in Table 6 are tending to
4m + 4 when 2m is an odd integer, while they are tending to 2m + 2 for other values of m, completely in accordance
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Table 5

Relative errors in the rules T̂n [ f ] = T̂n,n [ f ] for the integral of Section 7, obtained with n = 2k , k = 1(1)9, and with the sinm,2-transformation

n m = 0.5 m = 1 m = 1.5 m = 2 m = 2.5 m = 3 m = 3.5 m = 4 m = 4.5 m = 5

2 2.06D+01 3.28D+01 3.09D+01 1.84D+01 3.72D+00 8.63D+00 1.78D+01 2.41D+01 2.85D+01 3.14D+01
4 2.42D−01 2.65D+00 3.13D+00 1.62D+00 1.32D−01 1.23D+00 1.57D+00 1.29D+00 5.83D−01 4.16D−01
8 2.83D−02 4.66D−03 2.27D−02 8.98D−02 3.72D−02 1.01D−01 1.79D−01 1.14D−01 6.88D−02 2.91D−01

16 5.78D−04 4.97D−04 5.99D−04 5.01D−04 6.57D−04 7.08D−04 2.82D−04 2.17D−04 7.36D−04 1.24D−03
32 2.19D−08 4.26D−06 3.12D−08 2.09D−08 2.69D−08 4.61D−08 2.84D−09 7.33D−08 8.08D−08 2.47D−07
64 8.24D−10 2.64D−07 1.77D−15 1.46D−10 1.42D−16 1.50D−13 2.02D−15 5.73D−15 2.50D−14 2.01D−14

128 1.29D−11 1.65D−08 1.63D−18 2.27D−12 8.88D−25 5.85D−16 1.56D−30 2.37D−19 2.44D−27 1.37D−22
256 2.01D−13 1.03D−09 1.59D−21 3.55D−14 5.40D−29 2.28D−18 6.78D−32 2.31D−22 6.16D−32 3.35D−26
512 3.14D−15 6.44D−11 1.56D−24 5.55D−16 2.47D−32 8.92D−21 4.31D−32 2.25D−25 7.40D−32 8.21D−30

Table 6

The numbers ρm,k =
1

log 2 · log

(
|T̂2k [ f ]−I [ f ]|

|T̂2k+1 [ f ]−I [ f ]|

)
, with m, f (x), and T̂n [ f ] as in Table 5, for k = 1(1)8

k m = 0.5 m = 1 m = 1.5 m = 2 m = 2.5 m = 3 m = 3.5 m = 4 m = 4.5 m = 5

1 6.410 3.626 3.302 3.500 4.817 2.807 3.502 4.224 5.609 6.238
2 3.095 9.153 7.109 4.176 1.826 3.608 3.132 3.497 3.084 0.513
3 5.613 3.230 5.242 7.487 5.824 7.157 9.307 9.043 6.546 7.872
4 14.689 6.864 14.229 14.550 14.577 13.907 16.600 11.531 13.153 12.301
5 4.732 4.013 24.075 7.162 27.500 18.233 20.423 23.607 21.622 23.549
6 6.002 4.001 10.078 6.001 27.247 7.999 50.202 14.565 43.225 27.125
7 6.000 4.000 10.002 6.000 14.005 8.001 4.524 10.001 15.271 12.002
8 6.000 4.000 10.000 6.000 11.098 8.000 0.652 10.000 −0.263 11.994

∞ 6 4 10 6 14 8 18 10 22 12

with Theorem 6.2. Note that the results with 2m an odd integer in Tables 5 and 6 are very similar to the corresponding
results in [15, Tables 3 and 4] that were obtained with a transformation different from the sinm,2-transformation.

From the analysis given in [15, Section 6, Lemma 6.1], it becomes clear that the variable transformation used there,
namely, Ψ(t) = Ψ2,S(t) = 2πψ( 1

2$(t)), with ψ ∈ Sm and $ ∈ Sq , q being an even integer, is in the class SM,q ,
where M = (q + 1)(m + 1)− 1.

8. Comparison with some recent transformations

In a recent paper by the author [16], a new class of symmetric and nonsymmetric variable transformations denoted
as Tr,s was designed, and it was shown there how some members of this class can be constructed easily. Now, φ ∈ Tr,s ,
r, s > 0, if

1. φ ∈ C[0, 1] and φ ∈ C∞(0, 1); φ(0) = 0, φ(1) = 1, and φ′(t) > 0 on (0, 1).
2. φ(t) has the following asymptotic expansions as t → 0+ and t → 1−:

φ(t) ∼

br/2c∑
i=0

αi t
r+2i

+

∞∑
i=0

α̃i t
σi as t → 0 + ; α0 > 0,

φ(t) ∼ 1 −

bs/2c∑
i=0

βi (1 − t)s+2i
−

∞∑
i=0

β̃i (1 − t)ρi as t → 1 − ; β0 > 0,

(8.1)

where

2r = σ0 < σ1 < · · · ; lim
i→∞

σi = ∞,

2s = ρ0 < ρ1 < · · · ; lim
i→∞

ρi = ∞.
(8.2)
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3. For each positive integer k, φ(k)(t) has asymptotic expansions as t → 0+ and t → 1− that are obtained by
differentiating those of φ(t) term by term k times.

Possibly the simplest member of Tr,s is φ(t) = (sin π
2 t)r/[(sin π

2 t)r + (cos π2 t)s], and this was given in [16].
Comparing (8.1) with (2.2), we notice that the class Tp+1,q+1 is analogous to Sp,q , but the two are different. When

p and q are chosen optimally, transformations in Tp+1,q+1 are in some cases as good as those in Sp,q . There are
some important cases for which transformations in Sp,q are superior. This is borne out by a comparison of parts (ii)
(concerning optimal choices of p, q and r, s) in Theorem 4.2 of the present work and Theorem 3.2 in [16]. We have
the following:

Theorem 8.1. Assume all the conditions of Theorem 4.2, with the notation therein. Given that γ0 and δ0 are both
real, choose p = (2k − γ0)/(γ0 + 1) and q = (2l − δ0)/(δ0 + 1), where k and l are positive integers. Let
Q̂n[ f ] be the trapezoidal rule applied to the integrand f1(t) ≡ f (ψ(t))ψ ′(t) with ψ ∈ Sp,q , or to the integrand
f2(t) ≡ f (φ(t))φ′(t) with φ ∈ Tp+1,q+1. Then

Q̂n[ f ] − I [ f ] = O
(
hωi
)

as h → 0,

where

ω1 = min{(Rγ1 + 1)(p + 1), (Rδ1 + 1)(q + 1)} for f1(t),

and

ω2 = min{(γ0 + 2)(p + 1), (Rγ1 + 1)(p + 1), (δ0 + 2)(q + 1), (Rδ1 + 1)(q + 1)} for f2(t).

Clearly, ω1 ≥ ω2 always, which means that class Sp,q transformations perform always at least as well as class
Tp+1,q+1 transformations. Their performances are the same, that is, ω1 = ω2, only when γ0 + 2 = Rγ1 + 1 and
δ0 + 2 = Rδ1 + 1; otherwise, ω1 > ω2.

Let us consider the case f ∈ C∞
[0, 1]. (i) If f (0) 6= 0, f (1) 6= 0 and f ′(0) 6= 0, f ′(1) 6= 0, we have γ0 = δ0 = 0

and γ1 = δ1 = 1. Then, with (optimal) p = q = 2k, k = 1, 2, . . . , we have ω1 = ω2 = 2(p + 1). (ii) If
f (0) 6= 0, f (1) 6= 0 but f ′(0) = f ′(1) = 0, then we have γ0 = δ0 = 0, γ1 = δ1 = 2, and γ2 and δ2 are at least 3.
Then with (optimal) p = q = 2k, k = 1, 2, . . . , we have ω2 = 2(p + 1). Because 2(p + 1) + p is an even integer,
there is no contribution to the error involving γ1 = δ1, and now ω1 ≥ c(p + 1), where c = min{(γ2 + 1), (δ2 + 1)},
so that ω1 ≥ 4(p + 1). Hence ω1 ≥ 2ω2 in this case.

As another example, let us look at the product trapezoidal rule for the two-dimensional integrals that we
discussed in Section 6. If we replace the class Sm,2 (class S2,m) transformations in (6.3) by class Tm+1,q+1 (class
Tq+1,m+1) transformations with (optimal) m = (2k − 1)/2 and q = 2l, where k and l are positive integers, then
ω2 = min{3(m + 1), 2(q + 1)} ≤ 3(m + 1), as opposed to ω1 = 4(m + 1) that we obtained in Theorem 6.2. Thus,
ω1 ≥

4
3ω2 for the integrals being discussed.

A further class of nonsymmetric variable transformations based on [6, Section 2] was considered in [16, Section
5] and denoted as T̃r,s . Functions in this class differ from those in Tr,s in that their asymptotic expansions as t → 0+

and t → 1− are of the form

φ(t) ∼

2br/2c∑
i=0

αi t
r+i

+ O
(

t2r
)

as t → 0+; α0 > 0,

φ(t) ∼ 1 −

2bs/2c∑
i=0

βi (1 − t)s+i
+ O

(
(1 − t)2s

)
as t → 1−; β0 > 0.

(8.3)

Transformations in T̃r,s are compared with those in Tr,s in Theorem 5.1 of [16]. It follows from this theorem that, when
used with optimal r and s, the latter perform better on regular integrands and on integrands with algebraic endpoint
singularities.

Thus, we conclude that, when applied with optimal p and q, transformations in Sp,q perform better than those in
Tp+1,q+1, which perform better than those in T̃p+1,q+1.
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