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ABSTRACT

In a recent paper of the author [8], three new interpolation procedures

for vector-valued functions F (z), where F : C → C
N , were proposed,

and some of their algebraic properties were studied. In the present work,

we concentrate on one of these procedures, denoted IMMPE, and study

its convergence properties when it is applied to meromorphic functions.

We prove de Montessus and Koenig type theorems in the presence of

simple poles when the points of interpolation are chosen appropriately.

We also provide simple closed-form expressions for the error in case the

function F (z) in question is itself a vector-valued rational function whose

denominator polynomial has degree greater than that of the interpolant.

1. Introduction

In a recent work, Sidi [8], we presented three different kinds of vector-valued

rational interpolation procedures. These were modelled after some rational ap-

proximation procedures from Maclaurin series of vector-valued functions devel-

oped in Sidi [6], which in turn had their origin in vector extrapolation methods.

Vector extrapolation methods are used for accelerating the convergence of cer-

tain kinds of vector sequences, such as those produced by fixed-point iterative

methods on linear and nonlinear systems of algebraic equations.
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Some of the algebraic properties of these interpolants have already been men-

tioned in [8]. The study of algebraic properties is continued in another paper [9]

by the author. In the present work, we continue to study one of the three

interpolation procedures that was denoted IMMPE in [8]. In particular, we

concentrate on the convergence properties of IMMPE as it is being applied to

vector-valued meromorphic functions.

In the next section, we provide a brief description of the interpolants that

result from IMMPE. Following this, in Section 3, we derive a closed-form ex-

pression for the error when the function F (z) being interpolated is rational with

simple poles. The main results of this section are Theorems 3.6 and 3.8. In Sec-

tion 4, we present the assumption we make about the points of interpolation

and its consequences.

Starting with the developments of Section 3, in Sections 5 and 6, we present

a detailed convergence theory, concerning meromorphic vector-valued functions

F (z) with simple poles, for sequences of interpolants whose denominators are

of a fixed degree, while the number of interpolation conditions (i.e., the degree

of the numerators) tends to infinity. This theory provides us with de Montessus

and Koenig type theorems for Rp,k(z) as p→ ∞, while k is held fixed. Section

5 concerns vector-valued rational functions; its main results are Theorems 5.1

and 5.2, which concern the denominators of the IMMPE approximants Rp,k(z),

and Theorem 5.3, which concerns the convergence of Rp,k(z), all as p→ ∞. Sec-

tion 6 concerns general vector-valued meromorphic functions, and its results are

obtained by extending those of Section 5; Theorems 6.2, 6.3, and 6.4, the main

results of this section, are extensions of Theorems 5.1, 5.2, and 5.3, respectively.

Our theory is in the spirit of that given by Saff [4] for the scalar rational inter-

polation problem and by Graves-Morris and Saff [2] for vector-valued rational

interpolants, while the technique used here is analogous to that developed by

Sidi, Ford, and Smith [10] and used by Sidi [5] in the study of Padé approxi-

mants, hence different from that of [4] and [2] . In addition, the technique we

use here enables us to obtain optimally refined results in the form of asymptotic

equalities.

2. Definition and algebraic properties of IMMPE

To set the stage for later developments, and to fix the notation as well, we start

with a brief description of the developments in [8] and [9] that concern IMMPE.
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Let z be a complex variable and let F (z) be a vector-valued function such

that F : C → C
N . Assume that F (z) is defined on a bounded open set Ω ⊂ C

and consider the problem of interpolating F (z) at some of the points ξ1, ξ2, . . . ,

in this set. We do not assume that the ξi are necessarily distinct. The general

picture is described in the next paragraph.

Let a1, a2, . . . , be distinct complex numbers, and let

ξ1 = ξ2 = · · · = ξr1 = a1(2.1)

ξr1+1 = ξr1+2 = · · · = ξr1+r2 = a2

ξr1+r2+1 = ξr1+r2+2 = · · · = ξr1+r2+r3 = a3

and so on.

Let Gm,n(z) be the vector-valued polynomial (of degree at most n−m) that in-

terpolates F (z) at the points ξm, ξm+1, . . . , ξn in the generalized Hermite sense.

Thus, in Newtonian form, this polynomial is given as in (see, e.g., Stoer and

Bulirsch [11, Chapter 2] or Atkinson [1, Chapter 3])

Gm,n(z) =F [ξm] + F [ξm, ξm+1](z − ξm)(2.2)

+ F [ξm, ξm+1, ξm+2](z − ξm)(z − ξm+1) + · · ·

+ F [ξm, ξm+1, . . . , ξn](z − ξm)(z − ξm+1) · · · (z − ξn−1).

Here, F [ξr, ξr+1, . . . , ξr+s] is the divided difference of order s of F (z) over the

set of points {ξr, ξr+1, . . . , ξr+s}. Obviously, F [ξr, ξr+1, . . . , ξr+s] are all vectors

in C
N . Also, F [ξm] = F (ξm).

We define the scalar polynomials ψm,n(z) via

(2.3) ψm,n(z) =

n∏

r=m

(z − ξr), n ≥ m ≥ 1; ψm,m−1(z) = 1, m ≥ 1.

We also define the vectors Dm,n via

(2.4) Dm,n = F [ξm, ξm+1, . . . , ξn], n ≥ m.

With this notation, we can rewrite (2.2) in the form

(2.5) Gm,n(z) =
n∑

i=m

Dm,i ψm,i−1(z).
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The vector-valued rational interpolants to the function F (z) we developed in

[8] are all of the general form

(2.6) Rp,k(z) =
Up,k(z)

Vp,k(z)
=

∑k
j=0 cj ψ1,j(z)Gj+1,p(z)

∑k
j=0 cj ψ1,j(z)

,

where c0, c1, . . . , ck are, for the time being, arbitrary complex scalars, and p is

an arbitrary integer. Obviously, Up,k(z) is a vector-valued polynomial of degree

at most p− 1 and Vp,k(z) is a scalar polynomial of degree at most k. It is also

clear from (2.6) that k ≤ p− 1.

The following theorem says that, whether the ξi are distinct or not, Rp,k(z)

interpolates F (z). See [8, Lemmas 2.1 and 2.3].

Theorem 2.1: Let the vector-valued rational function Rp,k(z) be as in (2.6),

and assume that Vp,k(ξi) 6= 0, i = 1, . . . , p.

(i) When the ξi are distinct, Rp,k(z) interpolates F (z) at the points

ξ1, ξ2, . . . , ξp in the ordinary sense:

(2.7) Rp,k(ξi) = F (ξi), i = 1, . . . , p.

(ii) When the ξi are not necessarily distinct and are ordered as in (2.1),

Rp,k(z) interpolates F (z) in the generalized Hermite sense as follows:

Let t and ρ be the unique integers satisfying t ≥ 0 and 0 ≤ ρ < rt+1 for

which p =
∑t

i=1 ri + ρ. Then,

R
(s)
p,k(ai) = F (s)(ai), for s = 0, 1, . . . , ri − 1 when i = 1, . . . , t,(2.8)

and for s = 0, 1, . . . , ρ− 1 when i = t+ 1.

Of course, when ρ = 0, there is no interpolation at at+1.

Remark: It must be noted that the condition Vp,k(ξi) 6= 0, i = 1, . . . , p, features

throughout this work. Because k < p and because p can be arbitrarily large,

this condition might look too restrictive at first. This is not the case, however.

Indeed, the condition Vp,k(ξi) 6= 0, i = 1, . . . , p, is natural for the following

reason: Normally, we take the points of interpolation ξi in a set Ω on which

the function F (z) is regular. If Rp,k(z) is to approximate F (z), it should also

be a regular function over Ω and hence free of singularities there. Since the

singularities of Rp,k(z) are the zeros of Vp,k(z), this implies that Vp,k(z) should

not vanish on Ω. (We expect the singularities of Rp,k(z) —the zeros of Vp,k(z)—

to be close to the singularities of F (z), which are outside the set Ω.)
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So far, the cj in (2.6) are arbitrary. Of course, the quality of Rp,k(z) as an

approximation to F (z) depends very strongly on the choice of the cj . Naturally,

the cj must depend on F (z) and on the ξi. Fixing the integers k and p such

that p ≥ k+ 1, we define the cj for IMMPE to be the solution to the system of

equations

(2.9)

(
qi,

k∑

j=0

cjDj+1,p+1

)
= 0, i = 1, . . . , k; ck = 1,

where q1, . . . , qk are linearly independent constant vectors in C
N . Note that

these equations form the linear system

(2.10)

k∑

j=0

ui,jcj = −ui,k, i = 1, . . . , k; ck = 1; ui,j =
(
qi, Dj+1,p+1

)
.

It has been shown in [8] that, provided a unique solution to these equations

exists, Rp,k(z) has a determinantal representation given as in

(2.11)

Rp,k(z) =
P (z)

Q(z)
=

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1,0(z)G1,p(z) ψ1,1(z)G2,p(z) · · · ψ1,k(z)Gk+1,p(z)

u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k

...
...

...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

ψ1,0(z) ψ1,1(z) · · · ψ1,k(z)

u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k

...
...

...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣∣

.

Here, the numerator determinant P (z) is vector-valued and is defined by its

expansion with respect to its first row. That is, if Mj is the cofactor of the term

ψ1,j(z) in the denominator determinant Q(z), then

(2.12) Rp,k(z) =

∑k
j=0Mj ψ1,j(z)Gj+1,p(z)

∑k
j=0Mj ψ1,j(z)

.

Note that this determinantal representation has been used throughout [9] ex-

tensively. It seems to offer a very effective tool for the study of Rp,k(z), as we

will see later in this work as well.
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Here is a summary of the results of [9]:

(1) A sufficient condition for the equations in (2.9) to have a unique solution

is that (see [9, Lemma 2.1 and Theorem 2.2])

(2.13)

∣∣∣∣∣∣∣∣∣∣

u1,0 u1,1 · · · u1,k−1

u2,0 u2,1 · · · u2,k−1

...
...

...

uk,0 uk,1 · · · uk,k−1

∣∣∣∣∣∣∣∣∣∣

6= 0; ui,j =
(
qi, Dj+1,p+1

)
.

This also guarantees the uniqueness of Rp,k(z) provided Vp,k(ξi) 6= 0,

i = 1, . . . , p. For (2.13) to be true, it is necessary (but not sufficient) that

the vectors D1,p+1, D2,p+1, . . . , Dk,p+1 be linearly independent, just as

q1, q2, . . . , qk are. It is shown in [9, Sections 2 and 5] that this holds

when F (z) is a vector-valued rational function of the form

(2.14) F (z) = u(z) +

σ∑

s=1

rs∑

j=1

vsj

(z − zs)j
,

where u(z) is an arbitrary vector-valued polynomial, the vectors vsj ∈

C
N , 1 ≤ j ≤ rs, 1 ≤ s ≤ σ, are linearly independent, z1, . . . , zσ are

distinct points in C, and k ≤
∑σ

s=1 rs ≤ N .

(2) The denominator polynomial Vp,k(z) of the IMMPE interpolant Rp,k(z)

is a symmetric function of all the ξi used to construct it, namely, of

ξ1, ξ2, . . . , ξp+1, while Rp,k(z) itself is a symmetric function of the points

of interpolation, namely, of ξ1, ξ2, . . . , ξp. That is, Rp,k(z) is independent

of the order of the interpolation points ξ1, . . . , ξp. See [9, Lemma 3.4

and Theorem 3.5].

(3) Under certain conditions, IMMPE produces F (z) when the latter is a

vector-valued rational function. Specifically, when F (z) = Ũ(z)/Ṽ (z),

where Ũ(z) is a vector-valued polynomial of degree at most p − 1

and Ṽ (z) is scalar a polynomial of degree exactly k, there holds

Rp,k(z) ≡ F (z) provided (2.13) and Vp,k(ξi) 6= 0, i = 1, . . . , p, hold.

See [9, Theorem 4.1].
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3. IMMPE error formula when F (z) is a vector-valued rational func-

tion

We start our study of IMMPE for the case in which the function F (z) is a

vector-valued rational function with simple poles, namely,

(3.1) F (z) =

µ∑

s=1

vs

z − zs
+ u(z),

where u(z) is an arbitrary vector-valued polynomial, z1, . . . , zµ are distinct

points in the complex plane, and v1, . . . , vµ are linearly independent constant

vectors in C
N . Clearly, µ ≤ N .

Example: Let A be an N × N matrix and b an N -vector, and consider the

solution to the linear system of equations (I − zA)x = b. This solution is

x = F (z) ≡ (I − zA)−1b and precisely of the form described in (3.1) with

zs 6= 0, s = 1, . . . , µ, provided the nonzero eigenvalues of A are nondefective,

that is, they have only corresponding eigenvectors but no principal vectors. In

case A is also nonsingular (hence diagonalizable as well), there holds u(z) ≡ 0

and µ ≤ N in (3.1); otherwise, µ < N and deg(u) + µ ≤ N − 1. In addition,

Avs = vs/zs, s = 1, . . . , µ, in (3.1). To see this, it is sufficient to look at the

following special case.

Denote the eigenvalues of A by λ1, . . . , λN , and assume that λi 6= 0, i =

1, . . . ,M, are simple and distinct so that there is precisely one eigenvector vi

corresponding to λi and, in case M < N , λi = 0, i = M + 1, . . . , N, and that

there is only one Jordan block with zero eigenvalue. This means that there

exists an N ×N nonsingular matrix P ,

P =
[
v1 | v2 | · · · | vM |w1 |w2 | · · · |wM0

]
, M0 = N −M,

and that

Avi = λivi, i = 1, . . . ,M ; Aw1 = 0, Awi = wi−1, i = 2, . . . ,M0.

Now, b =
∑M

i=1 αivi +
∑M0

i=1 βiwi, for some scalars αi and βi. Next, let us

expand x in terms of the vi and wi in the form x =
∑M

i=1 γivi +
∑M0

i=1 δiwi.

Substituting these expansions in (I − zA)x = b, and equating the coefficients of

the vi and wi on both sides, we obtain

(1−zλi)γi = αi, 1 ≤ i ≤M ; δM0 = βM0 , δi = βi+zδi+1, 1 ≤ i ≤M0−1.
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Solving these equations, we see that γi = αi/(1 − zλi), 1 ≤ i ≤ M , and that

δi is a polynomial in z of degree at most M0 − i. We also see that zs = 1/λs

in (3.1), and that deg(u) ≤ M0 − 1. When M = N , hence all eigenvalues are

nonzero, we have u(z) ≡ 0.

The truth of the assertion that F (z) = (I − zA)−1b is as in (3.1) also in the

general case can now be shown in exactly the same way.

We now develop some technical tools that we will use throughout this work.

The next lemma was stated and proved as Lemma A.1 in [10].

Lemma 3.1: Let i0, i1, . . . , ik be positive integers, and assume that the scalars

vi0,i1,...,ik
are odd under an interchange of any two of the indices i0, i1, . . . , ik.

Let ti,j , i, j ≥ 1, be scalars and let σi, i ≥ 1 be all scalars or vectors. Define

Ik,N =
N∑

i0=1

N∑

i1=1

· · ·
N∑

ik=1

σi0

( k∏

p=1

tip,p

)
vi0,i1,...,ik

and

Jk,N =
∑

1≤i0<i1<···<ik≤N

∣∣∣∣∣∣∣∣∣∣∣∣

σi0 σi1 · · · σik

ti1,1 ti2,1 · · · tik,1

ti1,2 ti2,2 · · · tik,2

...
...

...

ti1,k ti2,k · · · tik,k

∣∣∣∣∣∣∣∣∣∣∣∣

vi0i1,...,ik
.

Then

Ik,N = Jk,N .

The next lemma is Lemma 1.2 in [7].

Lemma 3.2: Let Qi(x) =
∑i

j=0 aijx
j , with aii 6= 0, i = 0, 1, . . . , n, and let

xi, i = 0, 1, . . . , n, be arbitrary complex numbers. Then

(3.2)

∣∣∣∣∣∣∣∣∣∣

Q0(x0) Q0(x1) · · · Q0(xn)

Q1(x0) Q1(x1) · · · Q1(xn)
...

...
...

Qn(x0) Qn(x1) · · · Qn(xn)

∣∣∣∣∣∣∣∣∣∣

=

( n∏

i=0

aii

)
V (x0, x1, . . . , xn),

where V (x0, x1, . . . , xn) =
∏

0≤i<j≤n(xj − xi) is a Vandermonde determinant.
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Lemma 3.3: Let ωa(z) = (z−a)−1. Then, ωa[ξm, . . . , ξn], the divided difference

of ωa(z) over the set of points {ξm, . . . , ξn}, is given by

(3.3) ωa[ξm, . . . , ξn] = −
1

ψm,n(a)
= −

ψ1,m−1(a)

ψ1,n(a)
.

This is true whether the ξi are distinct or not.

Proof. When the ξi are distinct, the truth of the assertion in (3.3) can be shown

by induction using the recursion relation satisfied by divided differences, namely,

(3.4)

H [ξr, ξr+1, . . . , ξr+s] =
H [ξr, ξr+1, . . . , ξr+s−1] −H [ξr+1, ξr+2, . . . , ξr+s]

ξr − ξr+s
,

r = 1, 2, . . . , s = 1, 2, . . . ,

with the initial conditions

(3.5) H [ξr] = H(ξr), r = 1, 2, . . . .

In case the ξi are not distinct, we invoke the fact that, if H(z) is continuously

differentiable n−m+1 times in a domain containing the set {ξm, . . . , ξn}, then

H [ξm, . . . , ξn] is a continuous function of these ξi.

Lemma 3.4: Let F (z) be given as in (3.1). Let n − m > deg(u). Then, the

following are true:

(i) Dm,n = F [ξm, . . . , ξn] is given as in

(3.6) Dm,n = −

µ∑

s=1

vs

ψm,n(zs)
= −

µ∑

s=1

vs
ψ1,m−1(zs)

ψ1,n(zs)
.

Therefore, we also have

(3.7)
(
qi, Dm,n

)
= −

µ∑

s=1

αi,s

ψm,n(zs)
= −

µ∑

s=1

αi,s
ψ1,m−1(zs)

ψ1,n(zs)
, αi,s =

(
qi, vs

)
.

(ii) F (z) −Gm,n(z) = ψm,n(z)F [z, ξm, . . . , ξn] is given as in

(3.8) F (z) −Gm,n(z) = ψm,n(z)

µ∑

s=1

es(z)
ψ1,m−1(zs)

ψ1,n(zs)
; es(z) =

vs

z − zs
.

This is true whether the ξi are distinct or not.

Proof. The result follows from Lemma 3.3 and from the fact that u[ξm, . . . , ξn] =

0 and u[z, ξm, . . . , ξn] = 0 because u(z) is a polynomial and n−m > deg(u).
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The next lemma, whose proof we leave to the reader, gives the determinant

representation of F (z) −Rp,k(z), and we will be analyzing it in the sequel.

Lemma 3.5: Let

(3.9) ∆j(z) = ψ1,j(z)
[
F (z) −Gj+1,p(z)

]
, j = 0, 1, . . . .

Then the error in Rp,k(z) has the determinantal representation

(3.10) F (z) −Rp,k(z) = ∆(z)/Q(z),

where Q(z) is the denominator determinant in (2.11) and

(3.11) ∆(z) =

∣∣∣∣∣∣∣∣∣∣∣∣

∆0(z) ∆1(z) · · · ∆k(z)

u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k

...
...

...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣∣

.

3.1. Algebraic structure of Q(z). We start with the analysis of Q(z), the

denominator determinant of Rp,k(z) in (2.11). The following theorem gives a

closed form expression for Q(z) in simple terms.

Theorem 3.6: Let F (z) be the vector-valued rational function in (3.1), and

precisely as described in the first paragraph of this section, with the notation

therein. With αi,s as in (3.7), define

(3.12) Ts1,...,sk
=

∣∣∣∣∣∣∣∣∣∣

α1,s1 α1,s2 · · · α1,sk

α2,s1 α2,s2 · · · α2,sk

...
...

...

αk,s1 αk,s2 · · · αk,sk

∣∣∣∣∣∣∣∣∣∣

.

Let also

(3.13) Ψp(z) = ψ1,p+1(z).

Then, with p > k + deg(u),

(3.14)

Q(z) = (−1)k
∑

1≤s1<s2<···<sk≤µ

Ts1,...,sk
V (z, zs1 , zs2 , . . . , zsk

)

[ k∏

i=1

Ψp(zsi
)

]−1

.
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Proof. Taking p > k + deg(u), and invoking Lemma 3.4 in the determinant

Q(z), we first have

(3.15) ui,j =
(
qi, Dj+1,p+1

)
= −

µ∑

s=1

αi,s
ψ1,j(zs)

Ψp(zs)
.

Thus,

Q(z) =

(−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1,0(z) ψ1,1(z) · · · ψ1,k(z)
∑

s1

α1,s1

ψ1,0(zs1)

Ψp(zs1)

∑

s1

α1,s1

ψ1,1(zs1)

Ψp(zs1)
· · ·

∑

s1

α1,s1

ψ1,k(zs1)

Ψp(zs1)
∑

s2

α2,s2

ψ1,0(zs2)

Ψp(zs2)

∑

s2

α2,s2

ψ1,1(zs2)

Ψp(zs2)
· · ·

∑

s2

α2,s2

ψ1,k(zs2)

Ψp(zs2)

...
...

...
∑

sk

αk,sk

ψ1,0(zsk
)

Ψp(zsk
)

∑

sk

αk,sk

ψ1,1(zsk
)

Ψp(zsk
)

· · ·
∑

sk

αk,sk

ψ1,k(zsk
)

Ψp(zsk
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Because determinants are multilinear in their rows (and columns), we can take

the summations outside. Following that, we take out the common factors from

each row of the remaining determinant. We obtain

Q(z) = (−1)k
∑

s1

∑

s2

· · ·
∑

sk

( k∏

i=1

αi,si

)[ k∏

i=1

Ψp(zsi
)

]−1

X(z, zs1, zs2 , . . . , zsk
),

where

(3.16) X(y0, y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣

ψ1,0(y0) ψ1,1(y0) · · · ψ1,k(y0)

ψ1,0(y1) ψ1,1(y1) · · · ψ1,k(y1)
...

...
...

ψ1,0(yk) ψ1,1(yk) · · · ψ1,k(yk)

∣∣∣∣∣∣∣∣∣∣

.

Now, since ψ1,r(z) is a monic polynomial in z of degree r, Lemma 3.2 applies,

and we also have

(3.17) X(y0, y1, . . . , yn) = V (y0, y1, . . . , yn) =

n∏

0≤i<j≤n

(yj − yi),

is the Vandermonde determinant. Since the product
[ k∏

i=1

Ψp(zsi
)

]−1

X(z, zs1 , zs2 , . . . , zsk
)
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is odd under an interchange of any two of the indices s1, . . . , sk, Lemma 3.1

applies, and we obtain the result in (3.14).

3.2. Algebraic structure of ∆(z). We now turn to ∆(z), the numerator

determinant of F (z) −Rp,k(z) in Lemma 3.5.

Theorem 3.7: Let F (z) be the vector-valued rational function in (3.1), and

precisely as described in the first paragraph of this section, with the notation

therein. With αi,s and es(z) as in (3.7) and (3.8), respectively, define

(3.18) ê(p)
s (z) = es(z)(zs − ξp+1)

and

(3.19) T̂ (p)
s0,s1,...,sk

(z) =

∣∣∣∣∣∣∣∣∣∣∣∣

ê
(p)
s0 (z) ê

(p)
s1 (z) · · · ê

(p)
sk

(z)

α1,s0 α1,s1 · · · α1,sk

α2,s0 α2,s1 · · · α2,sk

...
...

...

αk,s0 αk,s1 · · · αk,sk

∣∣∣∣∣∣∣∣∣∣∣∣

.

Then, with Ψp(z) as in (3.13), and with p > k + deg(u), we have

∆(z) =(−1)kψ1,p(z)

(3.20)

×
∑

1≤s0<s1<···<sk≤µ

T̂ (p)
s0,s1,...,sk

(z)V (zs0 , zs1 , . . . , zsk
)×

[ k∏

i=0

Ψp(zsi
)

]−1

.

Proof. Taking p > k+deg(u), and invoking Lemma 3.4 in the determinant ∆(z)

of Lemma 3.5, we first have

∆j(z) = ψ1,p(z)F [z, ξj+1, . . . , ξp] = ψ1,p(z)

µ∑

s=1

es(z)
ψ1,j(zs)

ψ1,p(zs)
(3.21)

= ψ1,p(z)

µ∑

s=1

ê(p)
s (z)

ψ1,j(zs)

Ψp(zs)
,

in addition to (3.15). Substituting (3.21) and (3.15) in (3.11), and factoring out

ψ1,p(z) from the first row, we thus have

(3.22) ∆(z) = (−1)kψ1,p(z)W (z),

where
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(3.23) W (z) =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

s0

ê(p)
s0

(z)
ψ1,0(zs0)

Ψp(zs0)

∑

s0

ê(p)
s0

(z)
ψ1,1(zs0)

Ψp(zs0)
· · ·

∑

s0

ê(p)
s0

(z)
ψ1,k(zs0)

Ψp(zs0)
∑

s1

α1,s1

ψ1,0(zs1)

Ψp(zs1)

∑

s1

α1,s1

ψ1,1(zs1)

Ψp(zs1)
· · ·

∑

s1

α1,s1

ψ1,k(zs1)

Ψp(zs1)
∑

s2

α2,s2

ψ1,0(zs2)

Ψp(zs2)

∑

s2

α2,s2

ψ1,1(zs2)

Ψp(zs2)
· · ·

∑

s2

α2,s2

ψ1,k(zs2)

Ψp(zs2)

...
...

...
∑

sk

αk,sk

ψ1,0(zsk
)

Ψp(zsk
)

∑

sk

αk,sk

ψ1,1(zsk
)

Ψp(zsk
)

· · ·
∑

sk

αk,sk

ψ1,k(zsk
)

Ψp(zsk
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proceeding as in the proof of Theorem 3.6, we first take the summations outside.

Following that, we take out the common factors from each row of the remaining

determinant. We obtain

W (z) =
∑

s0

∑

s1

· · ·
∑

sk

ê(p)
s0

(z)

( k∏

i=1

αi,si

)[ k∏

i=0

Ψp(zsi
)

]−1

X(zs0 , zs1 , . . . , zsk
),

with X(y0, y1, y2, . . . , yn) as given in (3.16). Since the product

[ k∏

i=0

Ψp(zsi
)

]−1

X(zs0 , zs1 , . . . , zsk
)

is odd under an interchange of any two of the indices s0, s1, . . . , sk, Lemma 3.1

applies. Finally, invoking also (3.17), we obtain the result in (3.20).

3.3. Algebraic structure of Rp,k(z). Finally, combining (3.14) and (3.20)

in (3.10), we obtain a simple and elegant expression for F (z)−Rp,k(z). This is

the subject of the following theorem.

Theorem 3.8: For the error in Rp,k(z), with p > k + deg(u), we have the

closed-form expression

(3.24) F (z) −Rp,k(z) = ψ1,p(z)

×

∑

1≤s0<s1<···<sk≤µ

T̂ (p)
s0,s1,...,sk

(z)V (zs0 , zs1 , . . . , zsk
)

[ k∏

i=0

Ψp(zsi
)

]−1

∑

1≤s1<s2<···<sk≤µ

Ts1,s2,...,sk
V (z, zs1 , zs2 , . . . , zsk

)

[ k∏

i=1

Ψp(zsi
)

]−1
.
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Remark: When k = µ in Theorem 3.8, the summation in the numerator on the

right-hand side of (3.24) is empty. Thus, this theorem provides an independent

proof of the reproducing property of IMMPE.

4. Preliminaries for convergence theory

Let E be a closed and bounded set in the z-plane, whose complement K, in-

cluding the point at infinity, has a classical Green’s function g(z) with a pole at

infinity, which is continuous on ∂E, the boundary of E, and is zero on ∂E. For

each σ, let Γσ be the locus g(z) = log σ, and let Eσ denote the interior of Γσ.

Then, E1 is the interior of E and, for 1 < σ < σ′, there holds E ⊂ Eσ ⊂ Eσ′ .

For each p ∈ {1, 2, . . .}, let

(4.1) Ξp =
{
ξ
(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
p+1

}

be the set of interpolation points used in constructing the IMMPE interpolant

Rp,k(z). Assume that the sets Ξp are such that ξ
(p)
i have no limits points in K

and

(4.2) lim
p→∞

∣∣∣∣
p+1∏

i=1

(
z − ξ

(p)
i

)∣∣∣∣
1/p

= κΦ(z); κ = cap (E), Φ(z) = exp[g(z)],

uniformly in z on every compact subset of K, where cap(E) is the logarithmic

capacity of E defined by

cap (E) = lim
n→∞

(
min
r∈Pn

max
z∈E

|r(z)|
)1/n

; Pn =
{
r(z) : r ∈ Πn and monic

}
.

Such sequences
{
ξ
(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
p+1

}
, p = 1, 2, . . . , exist, see Walsh [12, p. 74].

Note that, in terms of Φ(z), the locus Γσ is defined by Φ(z) = σ for σ > 1,

while ∂E = Γ1 is simply the locus Φ(z) = 1.

Recalling that
∏p+1

i=1

(
z − ξ

(p)
i

)
= Ψp(z) (see (3.13)), we can write (4.2) also

as

(4.3) lim
p→∞

∣∣Ψp(z)
∣∣1/p

= κΦ(z),

uniformly in z on every compact subset of K.

It is clear that if z′ ∈ Γσ′ and z′′ ∈ Γσ′′ and 1 < σ′ < σ′′, then Φ(z′) < Φ(z′′).

Lemma 4.1: Let K ′ be a compact subset of K. Then, for every ǫ > 0, there

exists an integer p0 depending only on ǫ, such that
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(4.4)
[
(1 − ǫ)κΦ(z)

]p
<

∣∣Ψp(z)
∣∣ <

[
(1 + ǫ)κΦ(z)

]p
,

for all z ∈ K ′ and for all p > p0.

Proof. Since (4.3) holds uniformly in K ′, for every ǫ > 0, there is an integer p0

independent of z ∈ K ′, such that
∣∣∣∣

∣∣Ψp(z)
∣∣1/p

κΦ(z)
− 1

∣∣∣∣ < ǫ, for every p > p0.

From this, the result in (4.4) follows.

Lemma 4.2: For every ǫ > 0, there is an integer p0 depending only on ǫ, such

that

(4.5)
∣∣Ψp(z)

∣∣ <
[
(1 + ǫ)κ

]p
, for all z ∈ E and for all p > p0.

As a result, we also have that

(4.6) lim sup
p→∞

∣∣Ψp(z)
∣∣1/p

≤ κ for all z ∈ E.

Proof. For all z ∈ E and every σ > 1, by the maximum modulus theorem, there

exists z∗ ∈ Γσ, such that ∣∣Ψp(z)
∣∣ ≤

∣∣Ψp(z
∗)

∣∣.
Next, by the preceding lemma, given ǫ > 0, there exists an integer p0 depending

only on ǫ, such that
∣∣Ψp(z

∗)
∣∣1/p

<
[
1 + ǫ/(2 + ǫ)

]
κΦ(z∗) =

[
1 + ǫ/(2 + ǫ)

]
κσ.

Now, choose σ = 1 + ǫ/2, and note that, as ǫ → 0, the curve Γσ belongs to a

fixed compact subset K ′ of K. This results in (4.5), from which (4.6) follows

immediately.

Lemma 4.3: Let (i) z′, z′′ ∈ K and Φ(z′) < Φ(z′′), or (ii) z′ ∈ E and z′′ ∈ K.

Then

lim
p→∞

∣∣∣∣
Ψp(z

′)

Ψp(z′′)

∣∣∣∣
1/p

=
Φp(z

′)

Φp(z′′)
< 1, case (i).(4.7)

lim sup
p→∞

∣∣∣∣
Ψp(z

′)

Ψp(z′′)

∣∣∣∣
1/p

≤
1

Φp(z′′)
< 1, case (ii).(4.8)

In both cases,

(4.9) lim
p→∞

Ψp(z
′)

Ψp(z′′)
= 0.
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Proof. For ǫ > 0 arbitrary, it follows from Lemma 4.1 that, when z′, z′′ ∈ K,

there exists an integer p0, such that
∣∣Ψp(z

′)
∣∣

∣∣Ψp(z′′)
∣∣ <

[
(1 + ǫ)Φ(z′)

(1 − ǫ)Φ(z′′)

]p

, for all p > p0.

Now, by the assumption that Φ(z′) < Φ(z′′), it is clear that we can choose ǫ

small enough to ensure
(1 + ǫ)Φ(z′)

(1 − ǫ)Φ(z′′)
< 1.

The result of case (i) now follows. The result of case (ii) follows by invoking

Lemma 4.2 and proceeding similarly.

5. Convergence theory for vector-valued rational F (z) with simple

poles

In this section, we provide a convergence theory, in case F (z) is a vector-valued

rational function with simple poles as in (3.1), for the sequences {Rp,k(z)}∞p=1

with k < µ and fixed. (Note that by the reproducing property mentioned in

Section 1, for k = µ, Rp,k(z) = F (z) for all p ≥ p0, where p0 − 1 is the degree

of the numerator of F (z).) Also, as we will let p → ∞ in our analysis, the

condition that p > k + deg(u) is satisfied for all large p.

We continue to use the notation of the preceding sections. We now turn to

F (z) in (3.1). We assume that F (z) is analytic in E. This implies that its poles

z1, . . . , zµ are all in K. Now we order the poles of F (z) such that

(5.1) Φ(z1) ≤ Φ(z2) ≤ · · · ≤ Φ(zµ).

By Lemma 4.3, if z′ and z′′ are two different poles of F (z), and Φ(z′) < Φ(z′′),

then z′ and z′′ lie on two different loci Γσ′ and Γσ′′ . In addition, σ′ < σ′′, that

is, the set Eσ′ is in the interior of Eσ′′ .

5.1. Convergence analysis for Vp,k(z). We now state a Koenig-type con-

vergence theorem for Vp,k(z)(z) and another theorem concerning its zeros.

These results are analogous to, and in the spirit of, the ones given in Sidi

[5] for denominators of Padé approximants. We remind the reader that the qi

are as in (2.9), and the vj are as in (3.1).

Theorem 5.1: Assume

(5.2) Φ(zk) < Φ(zk+1) = · · · = Φ(zk+r) < Φ(zk+r+1),
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in addition to (5.1). In case k+ r = µ, we define Φ(zk+r+1) = ∞. Assume also

that

(5.3) T1,...,k =

∣∣∣∣∣∣∣∣

(q1, v1) · · · (q1, vk)
...

...

(qk, v1) · · · (qk, vk)

∣∣∣∣∣∣∣∣
6= 0.

Then, there holds

(5.4) Q(z) = (−1)kT1,...,kV (z, z1, . . . , zk)

[ k∏

i=1

Ψp(zi)

]−1[
1 +O

(
Ψp(zk)

Ψ̃p,k

)]

as p→ ∞,

uniformly in every compact subset of C \ {z1, z2, . . . , zk}, where

(5.5)
∣∣Ψ̃p,k

∣∣ = min
1≤j≤r

∣∣Ψp(zk+j)
∣∣.

Thus, with the normalization that ck = 1, and letting

(5.6) S(z) =

k∏

i=1

(z − zi),

there holds

(5.7) Vp,k(z) − S(z) = O

(
Ψp(zk)

Ψ̃p,k

)
as p→ ∞,

from which we also have

(5.8) lim sup
p→∞

∣∣Vp,k(z) − S(z)
∣∣1/p

≤
Φ(zk)

Φ(zk+1)
.

Proof. By (5.1) and (5.2) and Lemma 4.3, the largest term in (3.14) as p→ ∞

is that with the indices (s1, . . . , sk) = (1, . . . , k). The next largest terms are

those with (s1, . . . , sk) = (1, . . . , k − 1, k + j), 1 ≤ j ≤ r. Obviously, we have

limp→∞

[
Ψp(zk)/Ψ̃p,k

]
= 0. This completes the proof of (5.4). The proof of

(5.7) can be achieved by noting that

(5.9) V (z, z1, . . . , zk) = (−1)kV (z1, . . . , zk)

k∏

i=1

(z − zi).

The proof of (5.8) follows from (5.7) and (4.3).
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Theorem 5.1 implies that Vp,k(z) has precisely k zeros that tend to those

of S(z). Let us denote the zeros of Vp,k(z) by z
(p)
m , m = 1, . . . , k. Then

limp→∞ z
(p)
m = zm, m = 1, . . . , k. In the next theorem, we provide the rate

of convergence of each of these zeros.

Theorem 5.2: Under the conditions of Theorem 5.1, there holds

(5.10) z(p)
m − zm = O

(
Ψp(zm)

Ψ̃p,k

)
as p→ ∞,

with Ψ̃p,k as in (5.5). From this, it follows that

(5.11) lim sup
p→∞

∣∣z(p)
m − zm

∣∣1/p
≤

Φ(zm)

Φ(zk+1)
, m = 1, . . . , k.

In case r = 1 in (5.2), that is,

(5.12) Φ(zk) < Φ(zk+1) < Φ(zk+2),

and assuming that T1,...,m−1,m+1,...,k+1 6= 0, we have the more refined result

z(p)
m − zm ∼ Cm

Ψp(zm)

Ψp(zk+1)
as p→ ∞,(5.13)

Cm = (−1)k−m T1,...,m−1,m+1,...,k+1

T1,...,k
(zk+1 − zm)

k∏

i=1
i6=m

zk+1 − zi

zm − zi
.

Proof. First, we have

0 = Vp,k(z(p)
m ) = Vp,k(zm) +

∫ z(p)
m

zm

V ′
p,k(t) dt,

where the integral is over the directed line segment from zm to z
(p)
m . Hence,

0 = Vp,k(zm)+V ′
p,k(zm)(z(p)

m − zm)+ e(p)
m ; e(p)

m =

∫ z(p)
m

zm

[
V ′

p,k(t)−V ′
p,k(zm)

]
dt.

Because limp→∞ z
(p)
m = zm, and {Vp,k(z)}∞p=0 is a uniformly convergent sequence

of polynomials of degree k, we have that e
(p)
m = O

(
|z

(p)
m −zm|2

)
as p→ ∞. Next,

z(p)
m − zm = −

Vp,k(zm)

V ′
p,k(zm) + e

(p)
m /(z

(p)
m − zm)

.

Finally, because

lim
p→∞

z(p)
m = zm, lim

p→∞
V ′

p,k(zm) 6= 0, and lim
p→∞

e(p)
m /(z(p)

m − zm) = 0,
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we also have the asymptotic equality

(5.14) z(p)
m − zm ∼ −

Vp,k(zm)

V ′
p,k(zm)

as p→ ∞.

Since Q(z) in (2.11) is a constant multiple of Vp,k(z), this asymptotic equality

can be rewritten as in

(5.15) z(p)
m − zm ∼ −

Q(zm)

Q′(zm)
as p→ ∞.

By (3.14),

Q′(zm) = (−1)k
∑

1≤s1<s2<···<sk≤µ

Ts1,...,sk
a(m)

s1,...,sk

[ k∏

i=1

Ψp(zsi
)

]−1

,(5.16)

a(m)
s1,s2,...,sk

=
d

dz
V (z, zs1 , zs2 , . . . , zsk

)
∣∣
z=zm

.

Proceeding as in the proof of Theorem 5.1, we see that, because

a
(m)
1,...,k = (−1)kV (z1, . . . , zk)

k∏

i=1
i6=m

(zm − zi) 6= 0,

the dominant term as p → ∞ in the summation of (5.16) is that with

(s1, . . . , sk) = (1, . . . , k), the rest of the terms being negligible. Therefore,

Q′(zm) satisfies the asymptotic equality

(5.17) Q′(zm) ∼ (−1)kT1,...,ka
(m)
1,...,k

[ k∏

i=1

Ψp(zi)

]−1

as p→ ∞.

Setting z = zm in (3.14), and recalling that V (y0, y1, . . . , yk) vanishes when any

two of the yj are equal, we have

(5.18)

Q(zm) = (−1)k
∑

1≤s1<···<sk≤µ
s1,...,sk 6=m

Ts1,...,sk
V (zm, zs1 , zs2 , . . . , zsk

)

[ k∏

i=1

Ψp(zsi
)

]−1

.

The dominant terms in this summation are those with

(s1, . . . , sk) = (1, . . . ,m− 1,m+ 1, . . . , k, k + j), 1 ≤ j ≤ r,

the rest of the terms being negligible. Thus,

(5.19) Q(zm) = O

([ k∏

i=1

Ψp(zi)

]−1
Ψp(zm)

Ψ̃p,k

)
as p→ ∞.
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Combining (5.17) and (5.19) in (5.15), we obtain (5.10). The result in (5.11)

follows from (5.10) and (4.3).

In case r = 1, taking only the term with

(s1, . . . , sk) = (1, . . . ,m− 1,m+ 1, . . . , k, k + 1),

in (5.18), we have the asymptotic equality

(5.20) Q(zm) ∼ (−1)kT1,...,m−1,m+1,...,k+1V (zm, z1, . . . , zm−1, zm+1, . . . , zk+1)

×

[ k∏

i=1

Ψp(zi)

]−1
Ψp(zm)

Ψp(zk+1)
as p→ ∞.

The result in (5.13) is now obtained by combining (5.17) and (5.20) in (5.15),

and by invoking

V (zm, z1, . . . , zm−1, zm+1, . . . , zk+1)

= (−1)m−1V (z1, . . . , zk+1).

= (−1)m−1V (z1, . . . , zk)
k∏

i=1

(zk+1 − zi).

5.2. Convergence analysis for Rp,k(z). We now continue to the analysis

of F (z) − Rp,k(z), as p → ∞. Throughout the rest of this work, ‖Y ‖ denotes

the vector norm of Y ∈ C
N .

Theorem 5.3: Under the conditions of Theorem 5.1, Rp,k(z) exists and is

unique and satisfies

(5.21) F (z) −Rp,k(z) = O

(
Ψp(z)

Ψ̃p,k

)
as p→ ∞,

uniformly on every compact subset of C \ {z1, . . . , zµ}, with Ψ̃p,k as defined in

(5.5). From this, it also follows that

(5.22) lim sup
p→∞

∥∥F (z) −Rp,k(z)
∥∥1/p

≤
Φ(z)

Φ(zk+1)
, z ∈ K̃ = K \ {z1, . . . , zµ},

uniformly on each compact subset of K̃, and

(5.23) lim sup
p→∞

∥∥F (z) −Rp,k(z)
∥∥1/p

≤
1

Φ(zk+1)
, z ∈ E,
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uniformly on E. Thus, uniform convergence takes place for z in any compact

subset of the set K̃k, where

K̃k = int Γσk
\ {z1, . . . , zk}; σk = Φ(zk+1).

When r = 1 in (5.2), that is, when

(5.24) Φ(zk) < Φ(zk+1) < Φ(zk+2),

and T̂
(p)
1,...,k+1(z) 6= 0 in addition to (5.3), we have the more refined result

F (z) −Rp,k(z) ∼ Bp(z)
ψ1,p(z)

Ψp(zk+1)
as p→ ∞,(5.25)

Bp(z) = (−1)k
T̂

(p)
1,...,k+1(z)

T1,...,k

k∏

i=1

zk+1 − zi

z − zi
,

and Bp(z) is bounded for all large p.

Proof. We have already analyzed Q(z) in Theorem 5.1 and obtained the result

in (5.4), from which we also have the asymptotic equality

(5.26) Q(z) ∼ (−1)kT1,...,kV (z, z1, . . . , zk)

[ k∏

i=1

Ψp(zi)

]−1

as p→ ∞

that holds uniformly in every compact subset of C \ {z1, . . . , zµ}. This shows

that, for all large p, Vp,k(z) is such that Vp,k(ξi) 6= 0, for i = 1, . . . , p, and that

the condition in (2.13) is satisfied because

∣∣∣∣∣∣∣∣∣∣

u1,0 u1,1 · · · u1,k−1

u2,0 u2,1 · · · u2,k−1

...
...

...

uk,0 uk,1 · · · uk,k−1

∣∣∣∣∣∣∣∣∣∣

= (−1)kQ(k)(z)/k!,

and that, by (5.26),

Q(k)(z) ∼ k!T1,...,kV (z1, . . . , zk)

[ k∏

i=1

Ψp(zi)

]−1

6= 0 as p→ ∞.

Under these, Rp,k(z) exists and is unique, as mentioned in Section 2.

To complete the proof, we need to analyze the asymptotic behavior of ∆(z).

From (3.20) in Theorem 3.7, arguing as before, we have that the dominant terms
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in the summation in (3.20) are those having indices

(s0, s1, . . . , sk) = (1, . . . , k, k + j), 1 ≤ j ≤ r.

The rest of the terms are negligible by Lemma 4.3. Thus,

(5.27) ∆(z) = O

([ k∏

i=1

Ψp(zi)

]−1
ψ1,p(z)

Ψ̃p,k

)
as p→ ∞.

This also holds uniformly in every compact subset of K \ {z1, . . . , zµ} because,

on account of the fact that

ê(p)
s (z) = vs(zs − ξ

(p)
p+1)/(z − zs),

T̂
(p)
s0,s1,...,sk(z) are analytic in these subsets and are also bounded for all large p

since the ξ
(p)
i are bounded for all large p. Combining (5.26) and (5.27) in (3.10),

we obtain (5.21). The result in (5.22) follows from (5.21).

In case r = 1, there is only one dominant term in the summation of (3.20),

namely, the one with (s0, s1, . . . , sk) = (1, . . . , k + 1). Thus, ∆(z) satisfies the

asymptotic equality

(5.28) ∆(z) ∼ (−1)kψ1,p(z)T̂
(p)
1,...,k+1(z)V (z1, . . . , zk+1)

[ k+1∏

i=1

Ψp(zi)

]−1

as p→ ∞.

Combining (5.26) and (5.28) in (3.10), we obtain (5.25).

6. Convergence theory for meromorphic F (z) with simple poles

Let the sets of interpolation points {ξ
(p)
1 , . . . , ξ

(p)
p+1} be as in the preceding sec-

tion. We now turn to the convergence analysis of Rp,k(z) as p → ∞, when the

function F (z) is analytic in E and meromorphic in Eρ = int Γρ, where Γρ, as

before, is the locus Φ(z) = ρ for some ρ > 1. Assume that F (z) has µ simple

poles z1, . . . , zµ in Eρ. Thus, F (z) has the following form:

(6.1) F (z) =

µ∑

s=1

vs

z − zs
+ Θ(z),

Θ(z) being analytic in Eρ.

The treatment of this case is based entirely on that of the preceding section,

the differences being minor. Note that the polynomial u(z) of (3.1) is now
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replaced by Θ(z) in (6.1). Previously, we had u[ξm, . . . , ξn] = 0 for all large

n−m, as a consequence of which, we had (3.15) for ui,j and (3.21) for ∆j(z).

Instead of these, we now have

(6.2) ui,j = −

µ∑

s=1

αi,s
ψ1,j(zs)

Ψp(zs)
+

(
qi,Θ[ξj+1, . . . , ξp+1]

)
,

with αi,s as in (3.8), and

(6.3) ∆j(z) = ψ1,p(z)

( µ∑

s=1

ê(p)
s (z)

ψ1,j(zs)

Ψp(zs)
+ Θ[z, ξj+1, . . . , ξp]

)
,

with ê
(p)
s (z) as in (3.18).

It is clear that the treatment of the general meromorphic F (z) will be the

same as that of the rational F (z) provided the contributions from Θ(z) to ui,j

and ∆j(z), as p→ ∞, are negligible compared to the rest of the terms in (6.2)

and (6.3). We explore this point next.

Lemma 6.1: With F (z) as in the first paragraph, there holds

(6.4) lim sup
p→∞

∥∥Θ[ξ
(p)
j+1, . . . , ξ

(p)
p+1]

∥∥1/p
≤ 1/(κρ).

There also holds

(6.5) lim sup
p→∞

∥∥Θ[z, ξ
(p)
j+1, . . . , ξ

(p)
p ]

∥∥1/p
≤ 1/(κρ),

uniformly in every compact subset of Eρ.

Proof. Let ρ1, ρ2 be arbitrary numbers satisfying 1 < ρ2 < ρ1 < ρ. For i = 1, 2,

denote by Ci the locus Γρi
(i.e., Φ(z) = ρi), and let Si be the closure of the

interior of Ci. Thus, the closed curves C1, C2,Γρ have no common points, and

S2 ⊂ S1 ⊂ S. Clearly, Θ(z) is analytic in S1 and S2. Since the ξ
(p)
i do not have

a limit point in K, from Hermite’s formula, we have that

Θ[ξ
(p)
j+1, . . . , ξ

(p)
p+1] =

1

2πi

∮

C1

Θ(ζ)
∏p+1

i=j+1(ζ − ξ
(p)
i )

dζ =
1

2πi

∮

C1

ψ1,j(ζ)Θ(ζ)

Ψp(ζ)
dζ

for all large p. Therefore,

∥∥Θ[ξ
(p)
j+1, . . . , ξ

(p)
p+1]

∥∥ ≤
1

2π

∮

C1

‖ψ1,j(ζ)Θ(ζ)‖

|Ψp(ζ)|
|dζ|.
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Here, we have used the fact that (see, for example, Ortega [3, pp. 142–143])
∥∥∥∥

∫

C1

H(ζ) dζ

∥∥∥∥ ≤

∫

C1

‖H(ζ)‖ |dζ|

when H(ζ) is a vector-valued function continuous on C1. Now, from Lemma

4.1, we know that given ǫ > 0, there exists an integer p0 independent of ζ

such that, for all p > p0, there holds
∣∣Ψp(ζ)

∣∣ > [(1 − ǫ)κΦ(ζ)]p. In addition,

Φ(ζ) = ρ1 on C1. Therefore,

∥∥Θ[ξ
(p)
j+1, . . . , ξ

(p)
p+1]

∥∥ ≤
L1

2π

A
(p)
j

[(1 − ǫ)κρ1]p
, A

(p)
j ≡ max

ζ∈C1

‖ψ1,j(ζ)Θ(ζ)‖,

where L1 is the length of C1. Now, because j ≤ k and k is fixed, A
(p)
j are

bounded in p. As a result,

lim sup
p→∞

∥∥Θ[ξ
(p)
j+1, . . . , ξ

(p)
p+1]

∥∥1/p
≤

1

κρ1(1 − ǫ)
.

Since ǫ > 0 and ρ1 < ρ are arbitrary, the result in (6.4) now follows.

To prove (6.5), we proceed similarly. Taking z ∈ S2, Hermite’s formula now

reads

Θ[z, ξ
(p)
j+1, . . . , ξ

(p)
p ] =

1

2πi

∮

C1

Θ(ζ)
∏p

i=j+1(ζ − ξ
(p)
i )

dζ

ζ − z

=
1

2πi

∮

C1

(ζ − ξ
(p)
p+1)ψ1,j(ζ)Θ(ζ)

(ζ − z)Ψp(ζ)
dζ

for all large p. Proceeding exactly as before, and using the fact that

d = min
z∈S2, ζ∈C1

|ζ − z| > 0,

we obtain

∥∥Θ[z, ξ
(p)
j+1, . . . , ξ

(p)
p ]

∥∥ ≤
L1

2πd

B
(p)
j

[(1 − ǫ)κρ1]p
,

B
(p)
j ≡ max

ζ∈C1

∥∥(ζ − ξ
(p)
p+1)ψ1,j(ζ)Θ(ζ)

∥∥.

The rest is as before.

What we have shown in Lemma 6.1 is that the term
(
qi,Θ[ξ

(p)
j+1, . . . , ξ

(p)
p+1]

)
in

(6.2) and the term ψ1,p(z)Θ[z, ξ
(p)
j+1, . . . , ξ

(p)
p ] in (6.3) are indeed asymptotically

smaller than the rest of the terms. With this information, we can now prove
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the following theorems for general meromorphic F (z). We recall that the poles

z1, . . . , zµ of F (z) are ordered such that

(6.6) Φ(z1) ≤ Φ(z2) ≤ · · · ≤ Φ(zµ) ≤ ρ.

We also adopt the notation of Theorems 5.1, 5.2, and 5.3.

Theorem 6.2: (i) When k < µ, assume that

(6.7) Φ(zk) < Φ(zk+1) = · · · = Φ(zk+r) <





Φ(zk+r+1) if k + r < µ,

ρ if k + r = µ,

in addition to (6.6). Assume also that

(6.8) T1,...,k =

∣∣∣∣∣∣∣∣

(q1, v1) · · · (q1, vk)
...

...

(qk, v1) · · · (qk, vk)

∣∣∣∣∣∣∣∣
6= 0.

Then, all the results of Theorem 5.1 hold.

(ii) When k = µ,

(6.9) lim sup
p→∞

∣∣Vp,k(z) − S(z)
∣∣1/p

≤ Φ(zk)/ρ.

uniformly on every compact subset of C \ {z1, . . . , zµ}.

Theorem 6.2 implies that Vp,k(z) has precisely k zeros that tend to those

of S(z). Let us denote the zeros of Vp,k(z) by z
(p)
m , m = 1, . . . , k. Then

limp→∞ z
(p)
m = zm, m = 1, . . . , k. In the next theorem, we provide the rate

of convergence of each of these zeros.

Theorem 6.3: Assume the conditions of Theorem 5.2.

(i) When k < µ, all the results of Theorem 5.2 hold.

(ii) When k = µ,

(6.10) lim sup
p→∞

∣∣z(p)
m − zm

∣∣1/p
≤ Φ(zm)/ρ, m = 1, . . . , k.

Theorem 6.4: Assume the conditions of Theorem 5.3. Then Rp,k(z) exists

and is unique.

(i) When k < µ, all the results of Theorem 5.3 hold with

K̃ = Eρ \ {z1, . . . , zµ}.
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(ii) When k = µ, there holds

(6.11) lim sup
p→∞

∥∥F (z) −Rp,k(z)
∥∥1/p

≤ Φ(z)/ρ, z ∈ K̃ = Eρ \ {z1, . . . , zµ},

uniformly on each compact subset of K̃, and

(6.12) lim sup
p→∞

∥∥F (z) −Rp,k(z)
∥∥1/p

≤ 1/ρ, z ∈ E,

uniformly on E.
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