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VARIABLE TRANSFORMATIONS AND GAUSS–LEGENDRE
QUADRATURE FOR INTEGRALS

WITH ENDPOINT SINGULARITIES

AVRAM SIDI

Abstract. Gauss–Legendre quadrature formulas have excellent convergence

properties when applied to integrals
∫ 1
0 f(x) dx with f ∈ C∞[0, 1]. However,

their performance deteriorates when the integrands f(x) are in C∞(0, 1) but
are singular at x = 0 and/or x = 1. One way of improving the performance
of Gauss–Legendre quadrature in such cases is by combining it with a suitable
variable transformation such that the transformed integrand has weaker sin-
gularities than those of f(x). Thus, if x = ψ(t) is a variable transformation
that maps [0, 1] onto itself, we apply Gauss–Legendre quadrature to the trans-

formed integral
∫ 1
0 f(ψ(t))ψ′(t) dt, whose singularities at t = 0 and/or t = 1

are weaker than those of f(x) at x = 0 and/or x = 1. In this work, we first de-

fine a new class of variable transformations we denote S̃p,q , where p and q are
two positive parameters that characterize it. We also give a simple and easily
computable representative of this class. Next, by invoking some recent results
by the author concerning asymptotic expansions of Gauss–Legendre quadra-
ture approximations as the number of abscissas tends to infinity, we present
a thorough study of convergence of the combined approximation procedure,

with variable transformations from S̃p,q . We show how optimal results can be
obtained by adjusting the parameters p and q of the variable transformation
in an appropriate fashion. We also give numerical examples that confirm the
theoretical results.

1. Introduction

Consider the problem of evaluating finite-range integrals of the form

(1.1) I[f ] =
∫ 1

0

f(x) dx

by the n-point Gauss–Legendre quadrature rule

(1.2) Gn[f ] =
n∑

i=1

wnif(xni),

where xni are the abscissas [the zeros of Pn(2x−1), where Pn(x) is the nth Legendre
polynomial] and wni are the corresponding weights. Also, let
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(1.3) En[f ] = I[f ] − Gn[f ]

denote the error in this approximation.
When f ∈ C∞[0, 1], the error En[f ] tends to zero faster than any negative power

of n, that is, En[f ] = o(n−µ) as n → ∞ for every µ > 0. In particular, when f(z)
is analytic in an open set that contains the interval [0, 1] in its interior, there holds
En[f ] = O(e−σn) as n → ∞ for some σ > 0. See Davis and Rabinowitz [2, p. 312].

When f(x) has integrable singularities at the endpoints x = 0 and/or x = 1,
Gauss–Legendre quadrature rules Gn[f ] can be used to approximate I[f ] since these
rules are of the open type, that is, their abscissas xni are all in (0, 1), hence different
from x = 0 and x = 1. This is known as “avoiding the singularity” in numerical
quadrature; see [2, p. 93]. In the presence of endpoint singularities, however, the
error En[f ] tends to zero slowly, its rate of decay depending on the strength of the
singularities; the stronger the singularities, the slower the rate of convergence of
En[f ] to zero. For example, when f(x) = xαg(x), with �α > −1 but α �= 0, 1, . . . ,
and g ∈ C∞[0, 1] and g(0) �= 0, it is known that En[f ] = O(n−2α−2) as n → ∞.
See [2, p. 313]. Clearly, if �α > 0, f(x) is differentiable ��α� times at x = 0
and hence on [0, 1]. Consequently, if �α is sufficiently large, f(x) is differentiable
a sufficient number of times on [0, 1], and the Gauss–Legendre quadrature provides
highly accurate approximations Gn[f ] to I[f ] even with small n. In case �α is small,
we can approximate I[f ] with high accuracy by first weakening the singularity at
x = 0 via a suitable variable transformation and next applying Gauss–Legendre
quadrature to the resulting transformed integral.

For future reference and to set some of the notation to be used later, we give
the technical description of this approach at this point. Let x = ψ(t) be a variable
transformation that maps [0, 1] unto itself, that is,

(1.4) ψ ∈ C1 [0, 1]; ψ(0) = 0, ψ(1) = 1; ψ′(t) > 0 for t ∈ (0, 1).

Letting x = ψ(t) in (1.1), we obtain the transformed integral

(1.5) I[f ] =
∫ 1

0

f̂(t) dt = I[f̂ ]; f̂(t) = f(ψ(t)) ψ′(t).

Following this transformation, we apply the Gauss–Legendre quadrature to the
integral I[f̂ ] and obtain good approximations to I[f ]. Thus, the n-point Gauss–
Legendre quadrature rule now gives

(1.6) Gn[f̂ ] =
n∑

i=1

wnif̂(xni) =
n∑

i=1

wnif
(
ψ(xni)

)
ψ′(xni) ≡ Ĝn[f ].

The error in Ĝn[f ] is

(1.7) Ên[f ] = I[f ] − Ĝn[f ].

To see what can be achieved by this approach, let us consider the case in which
f(x) = xαg(x), with �α > −1 but α �= 0, 1, . . . , and g ∈ C∞[0, 1]. Let us consider
a variable transformation ψ(t), such that ψ ∈ C∞[0, 1] and ψ′(t) = O(ts) as t → 0,
hence ψ(t) = O(ts+1) as t → 0, s being a positive integer. Then, we have that
f̂(t) = O(tω) as t → 0+, where ω = α + (α + 1)s. Thus, f̂(t) = tω ĝ(t), where
ĝ ∈ C∞[0, 1]. Because �α + 1 > 0, by choosing s sufficiently large, we can achieve
a sufficiently large value for �ω. As a result, we can achieve very high accuracy by
using Ĝn[f ], as explained above.
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This approach, with ψ ∈ C∞[0, 1], was used in the works of Johnston [4], [5]
and Monegato and Scuderi [7]. In [4] and [5], the integrand f(x) is assumed to
be singular only at one of the endpoints, whereas in [7], it is allowed to have
singularities at both x = 0 and x = 1. An analogous approach to the computation
of integrals I[f ] =

∫ 1

0
f(x) dx, where the functions f(x) have only one (integrable)

singularity in (0, 1), the interior of the interval of integration, but are regular at the
endpoints x = 0 and x = 1, was used by Monegato and Sloan [8]. These authors use
a polynomial variable transformation that causes the integrand to be continuously
differentiable on the whole interval [0, 1] as many times as required, and this enables
Gauss–Legendre quadrature to produce very good results.

In this work, we focus on the computation of integrals I[f ] of functions f(x) that
are in C∞(0, 1) but have algebraic singularities at one or both of the endpoints
x = 0 and x = 1. We adopt the approach described via (1.4)–(1.7), whereby
Gauss–Legendre quadrature is applied after performing a variable transformation.
Our approach has two novel features:

(i) Unlike those used in [4], [5], and [7], the variable transformations ψ(t) we
use are not necessarily in C∞[0, 1] but only in C∞(0, 1), and they can be
singular at t = 0 and/or t = 1. In particular, ψ′(t) = O(tp) as t → 0+ and
ψ′(t) = O((1− t)q) as t → 1−, and p and/or q are not necessarily integers.
Specifically, ψ ∈ S̃p,q, where S̃p,q is a new class of variable transformations
that is analogous to, and also contains, the class Sp,q due to the author
[15].

(ii) More importantly, by adjusting the singular behavior of ψ(t) at t = 0 and
t = 1, that is, by choosing p and q suitably, the accuracy of the transformed
rule Ĝn[f ] is optimized when f(x) has algebraic endpoint singularities.

This approach to numerical integration was suggested by the author in the context
of the trapezoidal rule in several publications. See [12], [13], [15], for example. We
employ it in the context of Gauss–Legendre quadrature here, the variable transfor-
mations we use being from S̃p,q.

Before proceeding further, we would like to present the line of thought that
motivates the search for the special values of p and q that optimize the accuracy
of Ĝn[f ]. For this, we introduce the concept of quality of the numerical quadrature
formula Ĝn[f ] in a way that is relevant to nonsymmetric transformations of the kind
described in the preceding paragraph. This concept was first introduced in [12] for
symmetric variable transformations and later extended to nonsymmetric ones in [13]
and [15]. In the present context, it is defined as follows: If ψ′(t) ∼ αtp as t → 0+
and ψ′(t) ∼ β(1− t)q as t → 1−, and if Ên[f ] = I[f ]− Ĝn[f ] = O(n−σ) as n → ∞,
for some σ > 0, the quality of Ĝn[f ] is the ratio σ/w, where w = max{p+1, q +1}.
Note that the effective abscissas for Ĝn[f ] in (1.6) are ξni ≡ ψ(xni), and these cluster
near x = 0 and x = 1 in the variable x because, for all finite i, limn→∞ xni = 0 and
limn→∞ xn−i+1 = 1, and hence limn→∞ ψ(xni) = 0 and limn→∞ ψ(xn−i+1) = 1. In
addition, the clustering increases with increasing p and q, simultaneously with the
accuracy of Ĝn[f ]. Because too much clustering can cause overflows and underflows
in floating-point arithmetic, hence is not desirable, we would like to get as much
accuracy as possible from a given amount of clustering. In other words, we would
like the quality of Ĝn[f ] to be as high as possible. This is achieved by the variable
transformations in S̃p,q with special (not necessarily integer) values of p and q.
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In the next section, we define the class S̃p,q, and show how variable transforma-
tions ψ(t) in this class can be constructed. We also study a member of this class
that forms an extension of the Korobov [6] transformation, and show how it can
be computed efficiently. In Section 3, we review a recent result of the author [14]
concerning the asymptotic expansion of En[u] when u(x) is a function in C∞(0, 1)
but has arbitrary algebraic singularities at x = 0 and/or x = 1. In Section 4,
we analyze the asymptotic behavior of Ên[f ] as n → ∞ for the class of functions
discussed in Section 3 and with variable transformations from S̃p,q. We show that
optimal results of remarkably high accuracies from Gauss–Legendre quadrature can
be obtained by adjusting the singular behavior of the transformation ψ(t) at t = 0
and t = 1 in a simple way. The main results of this section are Theorem 4.1 and
Corollary 4.2, and the optimal results are the subject of parts (ii) of this theorem
and corollary. Finally, in Section 5, we provide numerical examples that confirm
the theory presented in Section 4.

By now, it is clear that here we are dealing with variable transformations ψ(t)
that have power-like behavior at t = 0 and t = 1. Before we end this section, we
would like to comment on the use of exponential type variable transformations ψ(t),
such as the tanh transformation of Sag and Szekeres [10], the IMT transformation
of Iri, Moriguti, and Takasawa [3], and the double exponential transformation of
Mori [9]. These transformations have the property that ψ(i)(0) = ψ(i)(1) = 0,
i = 1, 2, . . . , and the transformed integrand f̂(t) = f(ψ(t)) ψ′(t), even when it has
algebraic singularities at x = 0 and/or x = 1, satisfies f̂ (i)(0) = f̂ (i)(1) = 0, i =
0, 1, . . . , which also means that f̂ ∈ C∞[0, 1]. Consequently, when Gauss-Legendre
quadrature is applied to

∫ 1

0
f̂(t) dt as in (1.6), the error Ên[f ] in (1.7) satisfies

Ên[f ] = O(n−µ) as n → ∞, for every µ > 0. However, in floating point arithmetic,
we may run into serious numerical problems in the form of underflows and overflows
when using exponential type variable transformations, without achieving machine
accuracy. This can be understood as follows: To begin with, the Gauss-Legendre
abscissas xni cluster near x = 0 and x = 1. Consequently, the clustering of the
effective abscissas ξni = ψ(xni) in (1.6) near the endpoints t = 0 and t = 1 is
much worse than those of the xni, because ψ(t) → 0 as t → 0+ and ψ(t) → 1
as t → 1− exponentially. For this reason, when f(0) and/or f(1) are infinite, the
floating-point computation of f(ψ(xni)) for i close to 1 and/or n may result in
overflows, even though f̂(0) = f̂(1) = 0. In addition, for i close to 1 and n, the
corresponding ψ′(xni), which are part of of the weights in (1.6), become extremely
small; consequently, their computation may result in underflows. See [11] and [7].
By comparison, for the variable transformations considered in the present work
(and its predecessors as well), the problem of overflows and underflows is much
milder.

2. The class S̃p,q and extended Korobov transformation

In what follows we define the class S̃p,q and show how functions in this class
can be constructed. We also give the most immediate representative of S̃p,q, the
extended Korobov [6] transformation, which we call the Kp,q transformation.



VARIABLE TRANSFORMATIONS AND GAUSS–LEGENDRE QUADRATURE 1597

2.1. The class S̃p,q.

Definition 2.1. A function ψ(t) is in the class S̃p,q, with p, q > 0 but arbitrary, if
it has the following properties:

(1) ψ ∈ C1 [0, 1] and ψ ∈ C∞(0, 1); ψ(0) = 0, ψ(1) = 1, and ψ′(t) > 0 on (0, 1).
(2) ψ′(t) has the following asymptotic expansions as t → 0+ and t → 1−:

ψ′(t) ∼
∞∑

i=0

ε
(0)
i tp+i as t → 0+; ε

(0)
0 > 0,

ψ′(t) ∼
∞∑

i=0

ε
(1)
i (1 − t)q+i as t → 1−; ε

(1)
0 > 0.

(2.1)

Consequently,

ψ(t) ∼
∞∑

i=0

ε
(0)
i

tp+i+1

p + i + 1
as t → 0+,

ψ(t) ∼ 1 −
∞∑

i=0

ε
(1)
i

(1 − t)q+i+1

q + i + 1
as t → 1 − .

(2.2)

(3) For each positive integer k, ψ(k)(t) has asymptotic expansions as t → 0+
and t → 1− that are obtained by differentiating those of ψ(t) term by term
k times.

Remark. When p = q = m and ψ′(1−t) = ψ′(t), which also implies that ε
(0)
i = ε

(1)
i ,

i = 0, 1, . . . , in (2.1) and (2.2), ψ(t) has the property that ψ′(t) is symmetric with
respect to t = 1/2 and ψ(1 − t) = 1 − ψ(t). We denote the class of these functions
S̃m. When p = q = m but ε

(0)
i �= ε

(1)
i for some i in (2.1) and (2.2), ψ(t) does not

have this symmetry property. This means that not all functions in the class S̃m,m

have this symmetry property. Thus, S̃m ⊂ S̃m,m. Obviously, functions ψ(t) in S̃p,q

with p �= q do not have this symmetry property.

We now turn to the construction of functions in S̃p,q. For this, we first define a
class of functions we denote K̃r:

Definition 2.2. We say that a function g(t) is in K̃r, r > 0, if

g(t) = trχ(t); χ ∈ C∞[0, 1], χ(t) > 0 on [0, 1],

so that

g(t) > 0 on (0, 1]; g(t) ∼
∞∑

i=0

εit
r+i as t → 0+.

First, by invoking (2.1) and (2.2), it is easy to verify that ψ ∈ S̃p,q can be
constructed as in the next theorem.

Theorem 2.3. Let p > 0 and q > 0, and define

(2.3) ψ(t) =
Θ(t)
Θ(1)

; Θ(t) =
∫ t

0

v(u)w(1 − u) du; v ∈ K̃p, w ∈ K̃q.

Then ψ ∈ S̃p,q.
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Next, we construct some special ψ(t) in S̃p,q. Now, if µ ∈ K̃1, r > 0, and
g(t) = [µ(t)]r, then g ∈ K̃r. With this in mind, we choose

v(t) = [µ(t)]p, w(t) = [µ(t)]q; µ ∈ K̃1, p, q > 0.

With this choice of v(t) and w(t), (2.3) becomes

(2.4) Θ(t) = Θp,q(t) =
∫ t

0

[µ(u)]p[µ(1 − u)]q du.

Then, the following facts are easy to verify:

Θp,q(1) = Θq,p(1),(2.5)

Θp,q(1) = Θp,q(t) + Θq,p(1 − t) = Θq,p(1),(2.6)

Θp,q(1) = Θp,q(1/2) + Θq,p(1/2) = Θq,p(1).(2.7)

Letting ψa,b(t) = Θa,b(t)/Θa,b(1), from these, we also have

(2.8) ψp,q(t) = 1 − ψq,p(1 − t).

In view of (2.8), it is sufficient to compute Θp,q(t) and Θq,p(t) for t ∈ [0, 1/2] in
order to compute ψp,q(t) for t ∈ [0, 1]. Thus, after computing Θp,q(1) = Θq,p(1) via
(2.7), we have

(2.9) ψp,q(t) =
Θp,q(t)
Θp,q(1)

, 0 ≤ t ≤ 1/2; ψp,q(t) = 1− Θq,p(1 − t)
Θq,p(1)

, 1/2 ≤ t ≤ 1.

Clearly, with Θp,q(t) as in (2.4), when p = q = m, ψ′(t) is symmetric with respect
to t = 1/2, hence ψm,m ∈ S̃m. Recall that S̃m is defined in the remark following
Definition 2.1.

2.2. A representative of S̃p,q: The extended Korobov transformation. The
simplest representative of the class S̃p,q seems to be an extension of the Korobov
transformation, for which µ(t) = t in (2.4)–(2.9). That is,

(2.10) ψp,q(t) =
Θp,q(t)
Θp,q(1)

; Θp,q(t) =
∫ t

0

up(1 − u)q du.

We call it the Kp,q transformation for short.
This transformation, with p = q = m and integer m, was first proposed in

Korobov [6]. It was generalized to p �= q precisely as in (2.10), again with integer p
and q, in Monegato and Scuderi [7]. We now propose to use (2.10) with arbitrary
p and q that are not necessarily integers. Note also that, with p = q = m in (2.10),
the Km,m transformation is symmetric with respect to t = 1/2, in the sense that
ψ′

m,m(t) = ψ′
m,m(1 − t), hence is in S̃m.

It is interesting to observe that ψp,q(t), as given in (2.10), is actually related to
the regularized incomplete Beta function Ix(a, b) via

(2.11) ψp,q(t) = It(p + 1, q + 1).

Here

(2.12) Ix(a, b) =
Bx(a, b)
B(a, b)

,
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where

(2.13) B(a, b) =
∫ 1

0

ξa−1(1 − ξ)b−1 dt, Bx(a, b) =
∫ x

0

ξa−1(1 − ξ)b−1 dt,

and B(a, b) and Bx(a, b) are the Beta function and the incomplete Beta function,
respectively. See Abramowitz and Stegun [1, p. 263, formulas 6.6.1 and 6.6.2].

When p or q is an integer, ψp,q(t) has a finite expansion of the form ψ(t) =
1−

∑p
i=0 ε̄

(1)
i (1− t)q+i+1 or ψ(t) =

∑q
i=0 ε̄

(0)
i tp+i+1, respectively. Of course, ψp,q(t)

is a polynomial of degree p + q + 1 when both p and q are integers.
In case p or q is an integer, ψp,q(t) can also be computed by using the three-term

recursion relations for the incomplete Beta function given in [1, p. 263, formu-
las 6.6.5–6.6.7], since initial conditions for these recursions are readily available,
namely,

ψa,0(t) = ta+1 and ψ0,b(t) = 1 − (1 − t)b+1.

When p and/or q are not integers, ψp,q(t) can be determined via (2.5)–(2.9) as
follows:

(1) Compute Θp,q(1/2) and Θq,p(1/2), and set cp,q = cq,p = Θp,q(1/2) +
Θq,p(1/2).

(2) For t ∈ [0, 1/2], compute Θp,q(t) and Θq,p(t), and set ψp,q(t) = Θp,q(t)/cp,q

and ψq,p(t) = Θq,p(t)/cq,p.
(3) For t ∈ [1/2, 1], compute ψp,q(t) via ψp,q(t) = 1 − ψq,p(1 − t).

Clearly, before everything else, one must have a code for computing Θa,b(t) for
0 ≤ t ≤ 1/2 to machine accuracy. This can be achieved by summing the infinite
series representation

(2.14) Θa,b(t) =
∞∑

k=0

(−1)k

(
b

k

)
ta+k+1

a + k + 1
=

∞∑
k=0

(−b)k

k!
ta+k+1

a + k + 1
,

where (z)k =
∏k

i=1(z+ i−1) is the Pochhammer symbol. This series is obtained by
integrating the expansion in powers of u of ua(1−u)b (about u = 0) term by term.
Its terms are ultimately of the same sign. It converges quickly for t ∈ [0, 1/2] since
its kth term tends to zero as k → ∞ essentially like k−b−2tk and hence, at worst,
like k−b−22−k. Finally, the number of terms of the series required for computing its
sum to machine accuracy becomes smaller as t becomes smaller.

It is easy to see from (2.14) that Θa,b(t) can also be expressed in terms of the
hypergeometric series as in

(2.15) Θa,b(t) =
ta+1

a + 1 2F1(−b, a + 1; a + 2; t).

2.3. The class Sp,q and the sinp,q transformation. As mentioned earlier, the
class S̃p,q is analogous to the class Sp,q of the author [15]. Actually, if ψ ∈ Sp,q,
then ψ ∈ S̃p,q as well, but with ε

(0)
2i+1 = 0 = ε

(1)
2i+1, i = 0, 1, . . . , in (2.1) and (2.2).

Thus, Sp,q is a proper subset of S̃p,q.
A representative of Sp,q is the sinp,q transformation that is defined via the integral

representation

(2.16) ψp,q(t) =
Θp,q(t)
Θp,q(1)

; Θp,q(t) =
∫ t

0

(
sin 1

2πu
)p( cos 1

2πu
)q

du.
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The case p = q = m , with integer m, was first given by the author in [11],
and is known as the sinm transformation. The transformation in (2.16), again
with integers p and q, was proposed by Monegato and Scuderi in [7]. The sinm

transformation and the sinp,q transformations were extended to arbitrary m, p,
and q by the author in [12] and [15], respectively. Transformations in the class Sp,q

are very effective (in fact, much more effective than other transformations in S̃p,q)
when used in conjunction with the trapezoidal rule approximation of the integrals
in (1.1).

When p, q and m are integers, these transformations can be computed by short
recurrences. For noninteger values of p, q and m, their computation can be achieved
with machine accuracy in an efficient manner by summing some infinite series rep-
resentations of theirs. For details, see [12] and [15].

Finally, by making the substitution ξ = sin2( 1
2πu) in the integral for Θp,q(t) in

(2.16), we obtain the representation

(2.17) Θp,q(t) =
1
π

∫ S2

0

ξ(p−1)/2(1 − ξ)(q−1)/2 dξ; S = sin
πt

2
.

Now invoking (2.12) and (2.13), we realize that the sinp,q transformation in (2.16)
is also related to the regularized Beta function Ix(a, b) via

(2.18) ψp,q(t) = IS2(p+1
2 , q+1

2 ); S = sin
πt

2
.

3. Asymptotic expansions for En[u] in the presence

of algebraic endpoint singularities

An important tool that we will be using in the sequel is the asymptotic expansion
of En[u] as n → ∞ when the integrand u(x) in I[u] =

∫ 1

0
u(x) dx has arbitrary

algebraic singularities at the endpoints x = 0 and/or x = 1. The following result is
Theorem 2.1 in [14]. It is a special case of a more general theorem in [14] in which
the function u(x) is allowed to have arbitrary algebraic-logarithmic singularities at
the endpoints.

Theorem 3.1. Let u ∈ C∞(0, 1), and assume that u(x) has the asymptotic expan-
sions

(3.1) u(x) ∼
∞∑

s=0

Asx
αs as x → 0+; u(x) ∼

∞∑
s=0

Bs(1 − x)βs as x → 1−,

where As and Bs are some constants and αs and βs are in general complex and
satisfy

−1 < �α0 ≤ �α1 ≤ �α2 ≤ · · · ; lim
s→∞

�αs = +∞,

−1 < �β0 ≤ �β1 ≤ �β2 ≤ · · · ; lim
s→∞

�βs = +∞.
(3.2)

Assume, furthermore, that for each k = 1, 2, . . . , the kth derivative of u(x) also has
asymptotic expansions as x → 0+ and x → 1− that are obtained by differentiating
those in (3.1) term by term. Then, with h = (n + 1/2)−2 and Z

+ = {0, 1, 2, . . .},
there holds

(3.3) En[u] ∼
∞∑

s=0
αs �∈Z

+

∞∑
k=1

askhαs+k +
∞∑

s=0
βs �∈Z

+

∞∑
k=1

bskhβs+k as n → ∞.
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Here, ask and bsk are some constants independent of n. Those ask and bsk cor-
responding to αs, βs ∈ Z

+ are simply zero, hence absent from the summations in
(3.3).

Remarks.
(1) If u(x) = xµ(1 − x)νg(x), g(x) being infinitely differentiable on [0, 1], then

u(x) satisfies the conditions of the theorem. In such a case, if g(x) has full
Taylor series at x = 0 and x = 1, we have γs = µ + s and δs = ν + s,
s = 0, 1, . . .. Note that this u(x) has an algebraic branch singularity at
x = 0 if µ is not a nonnegative integer. Similarly, it has an algebraic
branch singularity at x = 1 if ν is not a nonnegative integer.

(2) It is clear from (3.3) that nonnegative integer powers xj and (1 − x)j ,
even when they are present in the asymptotic expansions of u(x) given
in (3.1), do not contribute to the asymptotic expansion of En[u] in (3.3).
Consequently, if αµ is the first of the αs that is different from 0, 1, 2, . . . ,
and if βν is the first of the βs that is different from 0, 1, 2, . . . , then

(3.4) En[f ] = O(hσ+1) as n → ∞; σ = min{�αµ,�βν}.
This is a crucial observation that forms the motivation for the present paper:
By using a variable transformation in S̃p,q first, and by choosing p and q
in a suitable manner, we are able to cause several of the dominant powers
of t and (1 − t) in the asymptotic expansions, as t → 0+ and as t → 1−,
of the transformed integrand f̂(t) in (1.5) to be nonnegative integers; thus
forcing the asymptotic expansion of Ên[f ] to start with a very high power
of h.

4. Analysis of Ên[f ] with class S̃p,q transformations

In this section, we analyze the behavior of Ên[f ], the error in Ĝn[f ] given in
(1.6), as n → ∞, when the integrand f(x) is infinitely differentiable in (0, 1) and
possibly has algebraic singularities at x = 0 and/or x = 1 of the type discussed in
Theorem 3.1.

Here is our main result:

Theorem 4.1. Let f ∈ C∞(0, 1), and assume that f(x) has the asymptotic expan-
sions

(4.1) f(x) ∼
∞∑

s=0

csx
γs as x → 0+; f(x) ∼

∞∑
s=0

ds(1 − x)δs as x → 1 − .

Here γs and δs are distinct complex numbers that satisfy

(4.2)
−1 < �γ0 ≤ �γ1 ≤ �γ2 ≤ · · · ; lims→∞ �γs = +∞,

−1 < �δ0 ≤ �δ1 ≤ �δ2 ≤ · · · ; lims→∞ �δs = +∞.

Assume, furthermore, that for each positive integer k, f (k)(x) has asymptotic expan-
sions as x → 0+ and x → 1− that are obtained by differentiating those of f(x) term
by term k times. Let I[f ] =

∫ 1

0
f(x) dx, and make the transformation of variable

x = ψ(t), where ψ ∈ S̃p,q, in I[f ]. Finally, approximate I[f ] via the n-point Gauss–
Legendre rule Ĝn[f ] =

∑n
i=1 wnif(ψ(xni))ψ′(xni). Then, with h = (n+1/2)−2 and
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Z
+ = {0, 1, 2, . . .}, Ên[f ] has an asymptotic expansion of the form

(4.3) Ên[f ] ∼
∞∑

s=0
γs(p+1)+p�∈Z

+

∞∑
j=0

asjh
(γs+1)(p+1)+j

+
∞∑

s=0
δs(q+1)+q �∈Z

+

∞∑
j=0

bsjh
(δs+1)(q+1)+j as n → ∞.

As a result, the following hold:
(i) For arbitrary p and q, in the worst case,

(4.4) Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(�γ0 + 1)(p + 1), (�δ0 + 1)(q + 1)}.

(ii) If γ0 and δ0 are real, and

(4.5) p = (k − γ0)/(γ0 + 1) > 0, q = (l − δ0)/(δ0 + 1) > 0, k, l ∈ Z
+,

then, in the worst case, the outer summations in the asymptotic expansion
in (4.3) begin with s = 1 terms, and we have

(4.6) Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(�γ1 + 1)(p + 1), (�δ1 + 1)(q + 1)}.

A more refined version of this result is

(4.7) Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(�γµ + 1)(p + 1), (�δν + 1)(q + 1)},

where γµ is the first of the γs, s ≥ 1, for which (γs + 1)(p + 1) �= integer,
and δν is the first of the δs, s ≥ 1, for which (δs + 1)(q + 1) �= integer.

Remark. The special values of the parameters p and q given in (4.5) in part (ii)
of the theorem are the optimal values we alluded to earlier in this work. Clearly,
for these values of p and q, Ên[f ] is much better than the ones achieved by other
values.

Proof. It is clear that Theorem 3.1 applies because the transformed integrand
f̂(t) = f(ψ(t))ψ′(t) is as described there. Thus, we need to analyze the asymp-
totic expansions of f̂(t) as t → 0+ and t → 1−. To proceed with this analysis, we
need the following: Let v(ξ) denote generically any function that has an asymptotic
expansion of the form

∑∞
i=0 viξ

i as ξ → 0+. Then

g(ξ) = ξrv(ξ) ⇒ [g(ξ)]µ = ξµrv(ξ)

and

gi(ξ) = ξriv(ξ), i = 1, . . . , k, ⇒
k∏

i=1

gi(ξ) = ξrv(ξ), r =
k∑

i=1

ri.

Because ψ(t) → 0 as t → 0+ and ψ(t) → 1 as t → 1−, from (4.1) and (4.2), we
first have

(4.8)

f̂(t) ∼
∞∑

s=0

cs[ψ(t)]γsψ′(t) as t → 0+;

f̂(t) ∼
∞∑

s=0

ds[1 − ψ(t)]δsψ′(t) as t → 1 − .
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Invoking (2.1) and (2.2), and re-expanding these asymptotic series, we have that
the sth term in the first of these series contributes the sum

(4.9)
K(0)

s (t) :=
∞∑

i=0

e
(0)
si tγs(p+1)+p+i as t → 0+;

e
(0)
s0 = cs

[
ε
(0)
0

]γs+1
/(p + 1)γs �= 0,

whereas the sth term in the second series contributes the sum

(4.10)
K(1)

s (t) :=
∞∑

i=0

e
(1)
si (1 − t)δs(q+1)+q+i as t → 1−;

e
(1)
s0 = ds

[
ε
(1)
0

]δs+1
/(q + 1)δs �= 0.

Substituting (4.9) and (4.10) in (4.8), and applying Theorem 3.1, we first obtain

(4.11) Ên[f ] ∼
∞∑

s=0

∞∑
i=0

∞∑
k=1

C
(0)
sikhγs(p+1)+p+i+k

+
∞∑

s=0

∞∑
i=0

∞∑
k=1

C
(1)
sikhδs(q+1)+q+i+k as n → ∞.

Since i + k = 1, 2, 3, . . . in both summations in (4.11), the summations over i and k
can be combined into one, and this results in (4.3).

Thus, by Theorem 3.1, the most dominant terms in the expansion of Ên[f ] as
n → ∞ are e

(0)
00 h(γ0+1)(p+1) coming from the endpoint x = 0, and e

(1)
00 h(δ0+1)(q+1)

coming from the endpoint x = 1. This proves (4.4).
To prove (4.6), we note from Theorem 3.1 that if we choose p such that

γs(p + 1) + p is a nonnegative integer, then all the powers of t in the asymptotic
expansion K

(0)
s (t) of (4.9) are also nonnegative integers, hence do not contribute to

the asymptotic expansion of Ên[f ]. Similarly, if we choose q such that δs(q +1)+ q
is a nonnegative integer, then all the powers of (1− t) in the asymptotic expansion
K

(1)
s (t) of (4.10) are also nonnegative integers, hence do not contribute to the as-

ymptotic expansion of Ên[f ]. Thus, when γ0 and δ0 are real, if we choose p > 0
and q > 0 such that γ0(p + 1) + p = k and δ0(q + 1) + q = l, where k and l are
nonnegative integers, then neither K

(0)
0 (t) in (4.9) nor K

(1)
0 (t) in (4.10) contributes

to the asymptotic expansion of Ên[f ]. By (3.4), the largest terms that possibly
contribute are (i) e

(0)
10 tγ1(p+1)+p, the first term of K

(0)
1 (t), provided γ1(p + 1) + p

is not a nonnegative integer, and (ii) e
(1)
10 (1 − t)δ1(q+1)+q, the first term of K

(1)
1 (t),

provided δ1(q + 1) + q is not a nonnegative integer. Under these conditions, the
contributions of these terms to Ên[f ] are a(0)h(γ1+1)(p+1) and a(1)h(δ1+1)(q+1), re-
spectively, a(0), a(1) being some constants. This completes the proof of (4.6). The
proof of (4.7) is the same. �

Corollary 4.2. In case f(x) = xµ(1 − x)νg(x) and g ∈ C∞[0, 1], such that �µ >
−1, �ν > −1 but µ �∈ Z

+, ν �∈ Z
+, the following hold:

(i) In the worst case,

(4.12) Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(�µ + 1)(p + 1), (�ν + 1)(q + 1)}.
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(ii) If µ and ν are real, and if

(4.13) p = (k − µ)/(µ + 1) > 0, q = (l − ν)/(ν + 1) > 0, k, l ∈ Z
+,

then, in the worst case,

(4.14) Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(µ + 2)(p + 1), (ν + 2)(q + 1)}.

Remark. The special values of the parameters p and q given in (4.13) in part (ii)
of the corollary are the optimal values.

When µ = ν = λ in part (ii) of Corollary 4.2, we can use a class S̃m,m variable
transformation with m = (k−λ)/(λ+1) to obtain the optimal result Ên[f ] = O(hω)
as h → 0, where ω = (λ + 2)(m + 1).

When µ �= ν in part (ii) of Corollary 4.2, we choose the integers k and l such
that (µ + 2)(p + 1) ≈ (ν + 2)(q + 1), that is,

k + 1
l + 1

≈ ν + 2
ν + 1

· µ + 1
µ + 2

.

(Thus, by choosing k first, we can determine l, and vice versa.) This guarantees that
the singularities of the transformed integrand f̂(t) = f(ψ(t))ψ′(t) at the endpoints
are of approximately the same strength.

Note that, when f(x) is as in Corollary 4.2, I[f ] can be computed by Gauss–
Jacobi quadrature formulas for the weight function w(x) = xµ(1−x)ν . The compu-
tation of the abscissas and weights for these formulas with arbitrary values of µ and
ν is possible, provided one has suitable software. No special software is needed for
computing Ĝn[f ] since the abscissas and weights for Gauss–Legendre quadrature
formulas have been tabulated extensively, hence are readily available, and the Kp,q

transformation can be computed to machine accuracy in an efficient manner, as
explained in subsection 2.2. This makes the use of the combined numerical quad-
rature rule Ĝn[f ] quite simple and accessible. In addition, by choosing p and q
optimally, we are able to attain very high accuracies with a small number of func-
tion evaluations, as mentioned earlier and as will be illustrated in the next section.
These facts make the combined optimal numerical quadrature rule competitive.

In Corollary 4.2, if the values of the function g(x) at the endpoints are known,
then even better results can be obtained as stated in the next corollary.

Corollary 4.3. Let f(x) = xµ(1 − x)νg(x) and g ∈ C∞[0, 1], such that �µ > −1,
�ν > −1 but µ �∈ Z

+, ν �∈ Z
+. Assume that g(0) and g(1) are known and that

|g(0)| + |g(1)| �= 0. Let U(x) be the linear interpolant to g(x) at x = 0 and x = 1,
that is, U(x) = g(0) + [g(1) − g(0)]x. Also, let f0(x) = xµ(1 − x)νU(x) and
f(x) = f(x)− f0(x). Take Gn[f ] = Ĝn[f ]+ I[f0] as the approximation to I[f ], and
denote En[f ] = I[f ] − Gn[f ]. Then the following hold:

(i) In the worst case,

En[f ] = O(hω) as n → ∞; ω = min{(�µ + 2)(p + 1), (�ν + 2)(q + 1)}.
(ii) If µ and ν are real, and if

p = (k − µ − 1)/(µ + 2) > 0, q = (l − ν − 1)/(ν + 2) > 0, k, l ∈ Z
+,

then, in the worst case,

En[f ] = O
(
hω

)
as n → ∞; ω = min{(µ + 3)(p + 1), (ν + 3)(q + 1)}.
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Here,
I[f0] = g(0)B(µ + 1, ν + 1) + [g(1) − g(0)]B(µ + 2, ν + 1),

where B(a, b) is the Beta function defined in (2.13).

Proof. First, I[f ] = I[f ] + I[f0]. Therefore, En[f ] = Ên[f ]. Next,

f(x) = xµ(1 − x)νv(x), v(x) = g(x) − U(x) and v(0) = v(1) = 0.

Consequently, f(x) is of the form f(x) = xµ+1(1−x)ν+1g(x) for some g ∈ C∞[0, 1].
Now applying Corollary 4.2 with f(x), the result follows. �

5. Numerical examples

In this section, we provide three examples to illustrate the validity of the results
of the preceding section. Even though the combined computational technique that
we use is the same for all three examples, each example brings something special
with respect to the asymptotics of Ên[f ].

The computations for these examples were done in quadruple-precision arith-
metic (approximately 35 decimal digits) using both the Kp,q (extended Korobov)
transformation and the sinp,q transformation. Since the numerical results with both
transformations are very similar (recall that they both belong to S̃p,q), we show only
the ones obtained with the Kp,q transformation.

Now, with quadruple-precision arithmetic, we need the abscissas xni and the
weights wni to have machine precision (about 35 decimal digits). In the absence
of software that can produce them with this accuracy, we can use the numerical
approach mentioned in [2, pp. 113–114] to achieve this goal.

Note that in our computations we have taken n = 2k. Thus, if Ên[f ] ∼ Chω as
n → ∞ for some constant C, then the numbers

ρp,q,k =
1

log 2
· log

(
|Ê2k [f ]|
|Ê2k+1 [f ]|

)
tend to 2ω as n → ∞, because h ∼ n−2 as n → ∞. In our examples, we provide
these numbers as a confirmation of our theory of convergence.

In Section 1, we described the concept of the quality of a numerical quadrature
formula in the context of the rules Ĝn[f ]. There, we concluded that it is important
that the quality of Ĝn[f ] be as high as possible. As seen from parts (ii) of Theorem
4.1 and Corollary 4.2, this is achieved by the variable transformations in S̃p,q with
special (not necessarily integer) values of p and q in (4.5) and (4.13). Indeed,
comparing the ω in (4.4) with those in (4.6) and (4.7), for example, we realize that
the quadrature rule Ĝn[f ] with optimal p and q has substantially higher quality
than that with p and q that are even slightly different from the optimal ones. This
is precisely how we compare the effect of optimal and nonoptimal choices of p and
q in our examples.

Example 5.1. Consider the integral∫ 1

0

xµ dx =
1

1 + µ
, µ > −1.

In this case, we have

f(x) = xµ and f(x) =
∞∑

s=0

(−1)s

(
µ

s

)
(1 − x)s.
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Of these, the first is a single-term series representing f(x) asymptotically as x → 0+
with γ0 = µ, while the second is a (convergent) series representing f(x) asymptot-
ically as x → 1− with δs = s, s = 0, 1, . . . . (Note that now, in the notation of
Corollary 4.2, ν = 0.) Thus, if we choose p and q arbitrarily, we will obtain, by
part (i) of Theorem 4.1 and Corollary 4.2,

Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(µ + 1)(p + 1), (q + 1)}.

In case p = (k − µ)/(1 + µ) and q = l, with k and l nonnegative integers, we will
obtain, by part (ii) of Theorem 4.1,

Ên[f ] = O
(
hω

)
as n → ∞, for every ω > 0.

This is so because the asymptotic expansion of Ên[f ] is empty due to the fact that
the asymptotic expansion of f(x) as x → 0+ consists of only the term xµ. In the
special case with k = 0 and l = 0, we have p = −µ/(µ + 1) and q = 0, so that
the extended Korobov transformation becomes simply ψp,q(t) = t1/(µ+1) and the
transformed integrand becomes f̂(t) = 1/(µ + 1), which implies that Ên[f ] = 0 for
every n with this ψp,q(t).

In our computations, we have taken µ = 0.1.
In Tables 1 and 3, we give the errors |Ên[f ]| for n = 2k, k = 1, . . . , 6, obtained

with the Kp,q transformation. In column j of Table 1, we have chosen (nonopti-
mally) p = (j − µ)/(1 + µ) + 0.1 and q = j + 0.1. In column j of Table 3, we have
chosen p = (j − µ)/(1 + µ) and q = j, which are the optimal values of p and q.
The superior convergence of Ĝn[f ] with optimal p and q is clearly demonstrated in
Table 3.

In Table 2, we give the numbers ρp,q,k for those values of p and q that are used in
Table 1. It is seen that, with increasing k, the ρp,q,k are tending to 2(µ + 1)(p+ 1),
completely in accordance with Theorem 4.1 and Corollary 4.2.

Example 5.2. Consider the integral∫ 1

0

f(x) = π 21/4, f(x) =
x−3/4 (1 − x)−1/4

1 + x
.

Thus, f(x) = xµ(1 − x)νg(x), precisely as in Corollary 4.2, with

µ = −3/4, ν = −1/4, g(x) = 1/(1 + x).

Therefore, γ0 = µ and δ0 = ν in Theorem 4.1. Thus, if we choose p and q arbitrarily,
we will obtain, by part (i) of Theorem 4.1 and Corollary 4.2,

Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(p + 1)/4, 3(q + 1)/4}.

In case p = (k−µ)/(1+µ) = 4k+3 and q = (l−ν)/(1+ν) = (4l+1)/3, with k and
l nonnegative integers, we will obtain, by part (ii) of Theorem 4.1 and Corollary
4.2,

Ên[f ] = O
(
hω

)
as n → ∞; ω = (ν + 2)(q + 1) = 7(l + 1)/3,

because now (µ + s)(p + 1) + p are all nonnegative integers for all s = 0, 1, . . . .

In Tables 4 and 6, we give the errors |Ên[f ]| for n = 2k, k = 1, . . . , 6, obtained
with the Kp,q transformation. In column j of Table 4, we have chosen (nonopti-
mally) p = 4j +3+0.1 and q = (4j +3)/3+0.1, whereas in column j of Table 6, we
have chosen p = 4j + 3 and q = (4j + 3)/3, which are optimal values of p and q. It
is interesting to note that, with j + 1 = 3, 6, 9, . . . , we have that (ν + s)(q + 1) + q,
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s = 0, 1, . . . , are nonnegative integers; therefore, the asymptotic expansion of Ên[f ]
is now empty, that is,

Ên[f ] = O
(
hω

)
as n → ∞, for every ω > 0.

This explains the very high quality of the results in the j = 2 column in Table 6.
In Tables 5 and 7, we give the numbers ρp,q,k that result from Tables 4 and 6,

respectively. It is seen that, with increasing k, the ρp,q,k are tending to 2ω.

Example 5.3. Consider the integral∫ 1

0

f(x) = 0, f(x) =
d

dx

[
xµ+1(1 − x)ν+1w(x)

]
, µ, ν > −1, w ∈ C∞[0, 1].

In this case, we have
f(x) = xµ(1 − x)νg(x),

where
g(x) =

[
(µ + 1)(1 − x) − (ν + 1)x

]
w(x) + x(1 − x)w′(x).

If w(0) and w(1) are both nonzero, we have that g(0) and g(1) are both nonzero
as well, and this implies that γ0 = µ and δ0 = ν. Thus, if we choose p and q
arbitrarily, we will obtain, by part (i) of Theorem 4.1 and Corollary 4.2,

Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(µ + 1)(p + 1), (ν + 1)(q + 1)}.

If p = (k − µ)/(1 + µ) and q = (l − ν)/(1 + ν), with k and l nonnegative integers,
we will obtain, by part (ii) of Theorem 4.1 and Corollary 4.2,

Ên[f ] = O
(
hω

)
as n → ∞; ω = min{(µ + 2)(p + 1), (ν + 2)(q + 1)}.

In our computations, we have taken µ = 1/4 and ν = −1/3 and w(x) = 1/(1+x).
In Tables 8 and 11, we give the errors |Ên[f ]| for n = 2k, k = 1, . . . , 6, obtained

with the Kp,q transformation. In column j of Table 8, we have chosen (nonopti-
mally) p = (4j − 1)/5 + 0.1 and q = (3j + 1)/2 + 0.1, whereas in column j of Table
10, we have chosen p = (4j − 1)/5 and q = (3j + 1)/2, which are optimal values
of p and q. Note that, with j + 1 = 5, 10, 15, . . . , we have that (µ + s)(p + 1) + p,
s = 0, 1, . . . are nonnegative integers. Similarly, with j + 1 = 2, 4, 6, . . . , we have
that (ν +s)(q+1)+q, s = 0, 1, . . . are nonnegative integers. Clearly, this causes an
infinite number of terms in the asymptotic expansion of Ên[f ] to disappear. Thus,
when we look for the precise value of ω in Corollary 4.2, we need to take these
vanishing terms into account.

In Tables 9 and 11, we give the numbers ρp,q,k that result from Tables 8 and
10, respectively. It is seen that, with increasing k, the ρp,q,k are tending to 2ω,
completely in accordance with Theorem 4.1 and Corollary 4.2.
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Table 1. Errors Ên[f ] for the integral of Example 5.1 obtained
with n = 2k, k = 1(1)6, and with the Kp,q transformation. In
column j, we have chosen p = (j−µ)/(1+µ)+0.1 and q = j +0.1.
(Nonoptimal p, q.)

n j = 0 j = 1 j = 2 j = 3 j = 4
2 1.67D − 02 1.41D − 02 1.72D − 01 3.39D − 01 4.82D − 01
4 4.40D − 03 6.77D − 04 3.29D − 04 1.01D − 03 1.57D − 02
8 1.07D − 03 4.18D − 05 4.56D − 06 1.06D − 06 6.82D − 07

16 2.46D − 04 2.48D − 06 6.67D − 08 3.46D − 09 3.01D − 10
32 5.49D − 05 1.42D − 07 9.64D − 10 1.24D − 11 2.62D − 13
64 1.21D − 05 7.90D − 09 1.36D − 11 4.39D − 14 2.31D − 16

Table 2. The numbers ρp,q,k = 1
log 2 · log

( |Ê2k [f ]|
|Ê2k+1 [f ]|

)
, with

p, q, f(x), and Ên[f ] as in Table 1, for k = 1(1)5.

k j = 0 j = 1 j = 2 j = 3 j = 4
1 1.926 4.381 9.029 8.395 4.943
2 2.044 4.019 6.175 9.892 14.490
3 2.119 4.072 6.094 8.257 11.145
4 2.163 4.129 6.113 8.123 10.168
5 2.186 4.167 6.152 8.144 10.144
∞ 2.2 4.2 6.2 8.2 10.2

Table 3. Errors Ên[f ] for the integral of Example 5.1 obtained
with n = 2k, k = 1(1)6, and with the Kp,q transformation. In
column j, we have chosen p = (j−µ)/(1+µ) and q = j. (Optimal
p, q.)

n j = 0 j = 1 j = 2 j = 3 j = 4
2 0.00D + 00 1.26D − 03 1.54D − 01 3.22D − 01 4.68D − 01
4 1.93D − 34 1.51D − 06 1.64D − 05 2.87D − 04 1.34D − 02
8 4.81D − 34 1.00D − 11 1.21D − 09 2.33D − 08 1.94D − 07

16 2.02D − 33 1.25D − 21 7.09D − 19 6.76D − 16 1.75D − 14
32 1.93D − 34 9.63D − 35 3.85D − 34 9.03D − 31 2.16D − 27
64 4.91D − 33 9.63D − 35 9.63D − 35 1.93D − 34 4.81D − 34
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Table 4. Errors Ên[f ] for the integral of Example 5.2 obtained
with n = 2k, k = 1(1)6, and with the Kp,q transformation. In
column j, we have chosen p = (j − µ)/(1 + µ) + 0.1 and q =
(j − ν)/(1 + ν) + 0.1. (Nonoptimal p, q.)

n j = 0 j = 1 j = 2 j = 3 j = 4
2 2.87D − 02 1.91D − 01 6.13D − 01 8.67D − 01 9.63D − 01
4 6.47D − 03 6.37D − 04 1.08D − 02 1.40D − 02 7.88D − 02
8 2.10D − 03 1.20D − 04 6.14D − 04 5.30D − 04 2.81D − 03

16 5.25D − 04 8.58D − 06 5.60D − 07 9.35D − 07 4.66D − 06
32 1.26D − 04 5.09D − 07 7.28D − 09 2.21D − 10 1.52D − 11
64 2.99D − 05 2.98D − 08 1.06D − 10 7.91D − 13 9.87D − 15

Table 5. The numbers ρp,q,k = 1
log 2 · log

( |Ê2k [f ]|
|Ê2k+1 [f ]|

)
, with p, q,

f(x), and Ên[f ] as in Table 4, for k = 1(1)5.

k j = 0 j = 1 j = 2 j = 3 j = 4
1 2.149 8.225 5.826 5.957 3.611
2 1.623 2.409 4.136 4.719 4.809
3 2.000 3.806 10.099 9.146 9.236
4 2.057 4.075 6.265 12.048 18.229
5 2.079 4.094 6.105 8.125 10.586
∞ 2.05 4.05 6.05 8.05 10.05

Table 6. Errors Ên[f ] for the integral of Example 5.2 obtained
with n = 2k, k = 1(1)6, and with the Kp,q transformation. In
column j, we have chosen p = (j−µ)/(1+µ) and q = (j−ν)/(1+ν).
(Optimal p, q.)

n j = 0 j = 1 j = 2 j = 3 j = 4
2 5.00D − 02 1.72D − 01 5.81D − 01 8.32D − 01 9.25D − 01
4 1.67D − 03 3.61D − 03 6.45D − 03 1.77D − 02 8.16D − 02
8 5.81D − 05 2.16D − 05 4.71D − 04 4.21D − 04 3.04D − 03

16 2.51D − 06 1.42D − 08 5.65D − 08 8.53D − 07 3.71D − 06
32 1.04D − 07 2.03D − 11 4.22D − 16 6.70D − 14 4.42D − 12
64 4.23D − 09 3.20D − 14 1.69D − 30 1.40D − 21 4.88D − 25
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Table 7. The numbers ρp,q,k = 1
log 2 · log

( |Ê2k [f ]|
|Ê2k+1 [f ]|

)
, with p, q,

f(x), and Ên[f ] as in Table 6, for k = 1(1)5.

k j = 0 j = 1 j = 2 j = 3 j = 4
1 4.906 5.577 6.494 5.558 3.503
2 4.842 7.384 3.776 5.389 4.748
3 4.534 10.571 13.025 8.948 9.675
4 4.590 9.450 26.995 23.603 19.681
5 4.622 9.309 47.825 25.508 43.040
∞ 4 2

3 9 1
3 ∞ 18 2

3 23 1
3

Table 8. Errors Ên[f ] for the integral of Example 5.3 obtained
with n = 2k, k = 1(1)6, and with the Kp,q transformation. In
column j, we have chosen p = (j − µ)/(1 + µ) + 0.1 and q =
(j − ν)/(1 + ν) + 0.1. (Nonoptimal p, q.)

n j = 0 j = 1 j = 2 j = 3 j = 4
2 7.99D − 03 1.55D − 01 3.04D − 01 4.05D − 01 4.64D − 01
4 3.22D − 03 5.07D − 03 1.86D − 02 7.29D − 03 2.02D − 02
8 7.99D − 04 5.41D − 05 6.70D − 05 1.33D − 04 1.17D − 03

16 1.74D − 04 3.17D − 06 1.41D − 07 1.75D − 09 1.97D − 08
32 3.69D − 05 1.73D − 07 1.95D − 09 4.07D − 11 1.37D − 12
64 7.70D − 06 9.25D − 09 2.65D − 11 1.38D − 13 1.15D − 15

Table 9. The numbers ρp,q,k = 1
log 2 · log

( |Ê2k [f ]|
|Ê2k+1 [f ]|

)
, with p, q,

f(x), and Ên[f ] as in Table 8, for k = 1(1)5.

k j = 0 j = 1 j = 2 j = 3 j = 4
1 1.310 4.932 4.029 5.796 4.518
2 2.011 6.551 8.119 5.776 4.108
3 2.199 4.095 8.893 16.216 15.862
4 2.238 4.196 6.172 5.425 13.814
5 2.262 4.222 6.203 8.200 10.212
∞ 2 2

15 4 2
15 6 2

15 8 2
15 10 2

15
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Table 10. Errors Ên[f ] for the integral of Example 5.3 obtained
with n = 2k, k = 1(1)6, and with the Kp,q transformation. In
column j, we have chosen p = (j−µ)/(1+µ) and q = (j−ν)/(1+ν).
(Optimal p, q.)

n j = 0 j = 1 j = 2 j = 3 j = 4
2 2.96D − 02 1.39D − 01 2.95D − 01 4.03D − 01 4.67D − 01
4 2.29D − 03 1.97D − 03 2.00D − 02 1.29D − 02 1.24D − 02
8 1.70D − 04 4.99D − 06 6.94D − 05 3.76D − 05 1.02D − 03

16 1.42D − 05 5.99D − 08 1.38D − 09 5.23D − 09 4.86D − 08
32 1.20D − 06 4.34D − 10 7.05D − 13 2.62D − 15 2.43D − 16
64 1.00D − 07 3.08D − 12 4.09D − 16 1.19D − 19 1.86D − 27

Table 11. The numbers ρp,q,k = 1
log 2 · log

( |Ê2k [f ]|
|Ê2k+1 [f ]|

)
, with p, q,

f(x), and Ên[f ] as in Table 10, for k = 1(1)5.

k j = 0 j = 1 j = 2 j = 3 j = 4
1 3.697 6.141 3.883 4.971 5.237
2 3.751 8.624 8.172 8.417 3.605
3 3.584 6.378 15.621 12.812 14.352
4 3.565 7.109 10.932 20.931 27.576
5 3.574 7.138 10.751 14.420 36.928
∞ 3.6 7.2 10.8 14.4 25

Acknowledgement

This research was supported in part by the United States–Israel Binational Sci-
ence Foundation grant no. 2004353.

References

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Number 55 in Nat. Bur. Standards Appl. Math. Series.
US Government Printing Office, Washington, D.C., 1964. MR0167642 (29:4914)

[2] P.J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, New York,

second edition, 1984. MR760629 (86d:65004)
[3] M. Iri, S. Moriguti, and Y. Takasawa. On a certain quadrature formula. Kokyuroku of

Res. Inst. for Math. Sci. Kyoto Univ., 91:82–118, 1970. In Japanese. English translation in
J. Comp. Appl. Math., 17:3–20, 1987. MR884257 (88j:65057)

[4] P.R. Johnston. Application of sigmoidal transformations to weakly singular and near-
singular boundary element integrals. Intern. J. Numer. Methods Engrg., 45:1333–1348, 1999.
MR1699754 (2000c:74101)

[5] P.R. Johnston. Semi-sigmoidal transformations for evaluating weakly singular boundary ele-
ment integrals. Intern. J. Numer. Methods Engrg., 47:1709–1730, 2000. MR1750249

[6] N.M. Korobov. Number-Theoretic Methods of Approximate Analysis. GIFL, Moscow, 1963.
In Russian. MR0157483 (28:716)

[7] G. Monegato and L. Scuderi. Numerical integration of functions with boundary singularities.
J. Comp. Appl. Math., 112:201–214, 1999. MR1728460

[8] G. Monegato and I.H. Sloan. Numerical solution of the generalized airfoil equation for an
airfoil with a flap. SIAM J. Numer. Anal., 34:2288–2305, 1997. MR1480381 (98f:45009)

http://www.ams.org/mathscinet-getitem?mr=0167642
http://www.ams.org/mathscinet-getitem?mr=0167642
http://www.ams.org/mathscinet-getitem?mr=760629
http://www.ams.org/mathscinet-getitem?mr=760629
http://www.ams.org/mathscinet-getitem?mr=884257
http://www.ams.org/mathscinet-getitem?mr=884257
http://www.ams.org/mathscinet-getitem?mr=1699754
http://www.ams.org/mathscinet-getitem?mr=1699754
http://www.ams.org/mathscinet-getitem?mr=1750249
http://www.ams.org/mathscinet-getitem?mr=0157483
http://www.ams.org/mathscinet-getitem?mr=0157483
http://www.ams.org/mathscinet-getitem?mr=1728460
http://www.ams.org/mathscinet-getitem?mr=1480381
http://www.ams.org/mathscinet-getitem?mr=1480381


1612 AVRAM SIDI

[9] M. Mori. An IMT-type double exponential formula for numerical integration. Publ. Res. Inst.
Math. Sci. Kyoto Univ., 14:713–729, 1978. MR527197 (81c:65012)

[10] T.W. Sag and G. Szekeres. Numerical evaluation of high-dimensional integrals. Math. Comp.,
18:245–253, 1964. MR0165689 (29:2969)

[11] A. Sidi. A new variable transformation for numerical integration. In H. Brass and
G. Hämmerlin, editors, Numerical Integration IV, number 112 in ISNM, pages 359–373,
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