
Asymptotic Analysis 65 (2009) 175–190 175
DOI 10.3233/ASY-2009-0950
IOS Press

Asymptotic expansions of Legendre series
coefficients for functions with endpoint
singularities

Avram Sidi
Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel
E-mail: asidi@cs.technion.ac.il; URL: http://www.cs.technion.ac.il/~asidi/

Abstract. Let
∑∞

n=0 en[f ]Pn(x) be the Legendre expansion of a function f (x) on (−1, 1). In this work, we derive an asymp-
totic expansion as n → ∞ for en[f ], assuming that f ∈ C∞(−1, 1), but may have arbitrary algebraic-logarithmic singularities
at one or both endpoints x = ±1. Specifically, we assume that f (x) has asymptotic expansions of the forms

f (x) ∼
∞∑

s=0

Us

(
log(1 − x)

)
(1 − x)αs as x → 1−,

f (x) ∼
∞∑

s=0

Vs

(
log(1 + x)

)
(1 + x)βs as x → −1+,

where Us(y) and Vs(y) are some polynomials in y. Here, αs and βs are in general complex and �αs, �βs > −1. An important
special case is that in which Us(y) and Vs(y) are constant polynomials; for this case, the asymptotic expansion of en[f ] assumes
the form

en[f ] ∼
∞∑

s=0
αs /∈Z+

∞∑
i=0

asih
αs+i+1/2 + (−1)n

∞∑
s=0

βs /∈Z+

∞∑
i=0

bsih
βs+i+1/2 as n → ∞,

where h = (n + 1/2)−2, Z
+ = {0, 1, 2, . . .}, and asi and bsi are constants independent of n.
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1. Introduction

Let
∑∞

n=0 en[f ]Pn(x) be the Legendre series of a function f (x) on (−1, 1). Here Pn(x) is the nth
Legendre polynomial standardized such that Pn(1) = 1, so that∫ 1

−1
Pm(x)Pn(x) dx =

1
n + 1/2

δm,n, m, n = 0, 1, . . . , (1.1)

and hence

en[f ] = (n + 1/2)
∫ 1

−1
f (x)Pn(x) dx, n = 0, 1, . . . . (1.2)
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It is known that when f (x) and |f (x)|2 are integrable on (−1, 1), from Parseval’s theorem (see, e.g.,
Szegő [9] or Freud [4]), we have

en[f ] = o
(√

n
)

as n → ∞. (1.3)

When f ∈ Cr[−1, 1] for some integer r � 0, then, by (1.2) and by the fact that

∫ 1

−1
Pn(x)q(x) dx = 0 for every q ∈ Πn−1,

we first have

en[f ] = (n + 1/2)
∫ 1

−1

[
f (x) − q(x)

]
Pn(x) dx for every q ∈ Πn−1.

Here Πm is the set of all polynomials of degree at most m. Thus, by the Cauchy–Schwartz inequality
(see, e.g., Apostol [2]) and by (1.1),

∣∣en[f ]
∣∣2 � (n + 1/2)

∫ 1

−1

∣∣f (x) − q(x)
∣∣2

dx for every q ∈ Πn−1.

Next, by one of Jackson’s theorems, we have

min
q∈Πn−1

max
−1�x�1

∣∣f (x) − q(x)
∣∣ = O

(
n−rωf (r) (2/n)

)
as n → ∞, (1.4)

where ωg(δ) stands for the modulus of continuity of g(x) on (−1, 1). (For moduli of continuity, see
Davis [3], pp. 7–8, or Lorentz [5], pp. 43–46, for example. For the relevant theorem of Jackson, see [5],
p. 66, Theorem 2, for example.) Therefore,

en[f ] = O
(
n−r+1/2ωf (r) (2/n)

)
as n → ∞. (1.5)

Clearly, when f (x) is continuously differentiable only r times on [−1, 1], the best we can say about
en[f ] is (1.5), and that the smaller r is, the slower the convergence of en[f ] to zero becomes.

From (1.5), it is easy to see that when f ∈ C∞[−1, 1], en[f ] tends to zero as n → ∞ faster than all
negative powers of n, that is,

en[f ] = o
(
n−μ)

as n → ∞, for every μ > 0. (1.6)

In particular, when f (z) is analytic in an open set of the z-plane that contains the interval [−1, 1] in its
interior, there holds

en[f ] = O
(
e−σn)

as n → ∞, for some σ > 0. (1.7)

Let us consider the case when f (x) = (1 + x)r+ν , 0 < ν < 1. Since f (r)(x) = (r + ν)(r + ν − 1) · · ·
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(ν + 1)(1 + x)ν , f ∈ Cr[−1, 1] but f /∈ Cr+1[−1, 1], and we have ωf (r) (δ) = Mδν for some constant
M > 0; see [3], p. 8, Example 1. Therefore, (1.5) gives en[f ] = O(n−r−ν+1/2) as n → ∞. However,
as we will show later, there holds exactly en[f ] ∼ Kn−2(r+ν)−1 as n → ∞ for some constant K,
which is a much better result. The important thing to note here is that this f (x) has an algebraic endpoint
singularity. Thus, it seems that when singularities of f (x) occur only at the endpoints x = ±1 but
f ∈ C∞(−1, 1), the result in (1.5) can be improved substantially, at least in some cases, and this is the
subject of the present work.

In this paper, we first study the case in which f ∈ C∞(−1, 1) and has arbitrary integrable algebraic-
logarithmic singularities at one or both endpoints x = ±1. We derive a full asymptotic expansion
for en[f ] as n → ∞. One special case of such functions is f (x) = [(1 − x)α log(1 − x)p] ×
[(1 + x)β log(1 + x)q]g(x), where g ∈ C∞[−1, 1] and p and q are nonnegetive integers. The main
results concerning such f (x) are presented in the next section, and their proofs are provided in Sec-
tion 3. An interesting feature of the asymptotic expansions derived here is that they can be written down
easily by looking only at the asymptotic expansions of f (x) as x → ±1, nothing else being needed.

In Section 4, we relax the assumption that f ∈ C∞(−1, 1), and extend the results of Section 2 to
the cases in which f ∈ Cr(−1, 1) for some nonnegative integer r. Assuming further that f ∈ C∞(−1,
−1 + η) and f ∈ C∞(1 − η, 1) for some η > 0, and that f (x) again has arbitrary integrable algebraic-
logarithmic singularities at one or both endpoints x = ±1, we derive an asymptotic expansion for en[f ]
as n → ∞ for this case as well.

To the best of our knowledge, these expansions have not been given before.
The results of this work, in addition to being of interest by themselves, can have applications in

asymptotic analyses involving Legendre expansions, such as integral equations, numerical quadrature,
and in series of spherical harmonics. They can be used to obtain the form of the asymptotic expansions
of partial sums of Legendre series, which can then be used in accelerating the convergence of these
series. For this topic, see Sidi [7], Chapter 6, for example.

Before we go on, we would like to mention that the proofs of Section 3 are almost identical
to those in the recent paper [8] by the author concerning the asymptotic expansions of Gauss–
Legendre quadrature rules when the integrand is as described in Section 2. This is made possi-
ble by the special form of the asymptotic expansion of en[u], u(x) = (1 − x)ω, that is derived
in Theorem 2.1. We have chosen to provide the proofs in complete form to make this paper self-
contained.

2. Main results

Throughout this section, we assume that the function f (x) in (1.2) has the following properties:

1. f ∈ C∞(−1, 1) and has the asymptotic expansions

f (x) ∼
∞∑

s=0

Us
(
log(1 − x)

)
(1 − x)αs as x → 1−,

(2.1)

f (x) ∼
∞∑

s=0

Vs
(
log(1 + x)

)
(1 + x)βs as x → −1+,
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where Us(y) and Vs(y) are some polynomials in y, and αs and βs are in general complex and satisfy

−1 < �α0 � �α1 � �α2 � · · · ; lim
s→∞

�αs = +∞,
(2.2)

−1 < �β0 � �β1 � �β2 � · · · ; lim
s→∞

�βs = +∞.

Here, �z stands for the real part of z.
2. If we let us = deg(Us) and vs = deg(Vs), then the αs and βs are ordered such that

us � us+1 if �αs+1 = �αs; vs � vs+1 if �βs+1 = �βs. (2.3)

3. By (2.1), we mean that, for each r = 1, 2, . . . ,

f (x) −
r−1∑
s=0

Us
(
log(1 − x)

)
(1 − x)αs = O

(
Ur

(
log(1 − x)

)
(1 − x)αr

)
as x → 1−,

(2.4)

f (x) −
r−1∑
s=0

Vs
(
log(1 + x)

)
(1 + x)βs = O

(
Vr

(
log(1 + x)

)
(1 + x)βr

)
as x → −1+.

4. For each k = 1, 2, . . . , the kth derivative of f (x) also has asymptotic expansions as x → ±1 that
are obtained by differentiating those in (2.1) term by term.
The following are consequences of (2.2) and (2.3):

(i) There are only a finite number of αs that have the same real parts. Similarly, there are only
a finite number of βs that have the same real parts. Consequently, �αs < �αs+1 and �βs′ <
�βs′+1 for infinitely many values of the indices s and s′.

(ii) The sequences {Us(log(1 − x))(1 − x)αs}∞
s=0 and {Vs(log(1+x))(1+x)βs}∞

s=0 are asymptotic
scales, respectively, as x → 1− and x → −1+, in the following sense: For {Us(log(1 − x)) ×
(1 − x)αs}∞

s=0, we have

lim
x→1−

∣∣∣∣Us+1(log(1 − x))(1 − x)αs+1

Us(log(1 − x))(1 − x)αs

∣∣∣∣
=

{
0 if �αs < �αs+1, or if �αs = �αs+1 and us > us+1,
Cs if �αs = �αs+1 and us = us+1.

Here Cs are some positive constants. This limit is zero an infinite number of times since �αs <
�αs+1 an infinite number of times. In the same sense, the sequence {Vs(log(1 + x))(1 +
x)βs}∞

s=0 is an asymptotic scale.
(For a discussion of asymptotic scales, see Olver [6], p. 25, for example.)

In view of (2.2)–(2.4), the expansions in (2.1) are thus genuine asymptotic expansions.

As for the fourth assumption on the termwise differentiability of the asymptotic expansions in (2.1),
we mention that this assumption is crucial. It is automatically satisfied in many cases of practical interest.
One such example is that for which f (x) = [(1 − x)α log(1 − x)p][(1 + x)β log(1 + x)q]g(x), where
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g ∈ C∞[−1, 1] and p and q are nonnegative integers. For simplicity, let us consider the case p = q = 0
and β = 0. For this case, f (x) = (1 − x)αg(x), and we have

f (x) ∼
∞∑

s=0

(−1)s
g(s)(1)

s!
(1 − x)α+s as x → 1−.

Note that this expansion is nothing but the product of (1 − x)α and the Taylor series of g(x) at x = 1. By
the fact that f (k) ∈ C∞(−1, 1) for all k � 0, it is easy to show that, just like f (x), f (k)(x), k = 1, 2, . . . ,
has an asymptotic expansion as x → 1−, and that termwise differentiation k times of the asymptotic
expansion of f (x) results in the same expansion.

We now proceed to the main results of this work. Let us define

f ±
ω (x) = (1 ± x)ω. (2.5)

Then, by (1.2) and by the fact that Pn(−x) = (−1)nPn(x),

en
[
f+

ω

]
= (−1)nen

[
f −

ω

]
. (2.6)

By invoking Rodrigues’ formula for Pn(x) in
∫ 1

−1(1 − x)ωPn(x) dx, and by repeated integration by parts,
we also have (see Davis [3], p. 327, Exercise 16)

en
[
f −

ω

]
= 2ω(2n + 1)

(−ω)n
(1 + ω)n+1

, n = 0, 1, . . . , (2.7)

where (a)k is the Pochhammer symbol defined by (a)0 = 1 and (a)k =
∏k

i=1(a + i − 1), k = 1, 2, . . . .
Note that en[f ±

ω ] are analytic for �ω > −1. We now state and prove a result concerning the asymptotic
expansion of en[f ±

ω ] as n → ∞ that we will use in the rest of this work.

Theorem 2.1. Let f ±
ω (x) be as in (2.5), with �ω > −1 but ω /∈ Z

+, where Z
+ = {0, 1, 2, . . .}. Then,

with h = (n + 1/2)−2, we have the asymptotic expansion

(−1)nen

[
f+

ω

]
= en

[
f −

ω

]
∼

∞∑
k=0

ck(ω)hω+k+1/2 as n → ∞,

ck(ω) = 2ω+1 Γ(1 + ω)
Γ(−ω)

B(σ)
2k (σ/2)
(2k)!

Γ(2k + 2ω + 2)
Γ(2ω + 2)

, k = 0, 1, . . . ,

σ = −2ω − 1, (2.8)

that is valid uniformly in every strip −1 < d1 � �ω � d2 < ∞ of the ω-plane. The ck(ω) are analytic
functions of ω for �ω > −1. B(σ)

s (u) is the sth generalized Bernoulli polynomial.1 When ω ∈ Z
+, there

holds ck(ω) = 0 for each k = 0, 1, . . . ; in this case, we also have en[f ±
ω ] = 0 for all n > ω.

1The generalized Bernoulli polynomials B(σ)
s (u) are defined via (see Andrews, Askey and Roy [1], p. 615, for example)(

t

et − 1

)σ

eut =

∞∑
s=0

B(σ)
s (u)

ts

s!
, |t| < 2π.

They satisfy B(σ)
s (σ − u) = (−1)sB(σ)

s (u), hence B(σ)
s (σ/2) = 0 for s = 1, 3, 5, . . . .
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Proof. We start by rewriting (2.7) in the form

en
[
f −

ω

]
= 2ω(2n + 1)

Γ(1 + ω)
Γ(−ω)

Γ(n − ω)
Γ(n + ω + 2)

, n = 0, 1, . . . . (2.9)

Applying to Γ(n − ω)/Γ(n + ω + 2) a result concerning the ratio of two Gamma functions, namely,

Γ(x + a)
Γ(x + b)

∼
∞∑

k=0

B(σ)
2k (σ/2)
(2k)!

Γ(2k + b − a)
Γ(b − a)

1
(x + a − σ/2)2k+b−a

as x → ∞,

(2.10)
σ = a + 1 − b, �(b − a) > 0,

that is given in Andrews, Askey and Roy [1], p. 216, for example, we obtain (2.8).
We leave the details to the reader. �

Remark.

1. By using a different asymptotic expansion for Γ(x + a)/Γ(x + b) that is simpler and less sophisti-
cated than that in (2.10), we obtain an asymptotic expansion for en[f ±

ω ] that contains the powers
n−2ω−k−1, k = 0, 1, . . . . It is easy to see that this expansion has twice as many terms as that given
in (2.8), however. See [1], pp. 215–216.

2. From Theorem 2.1 it follows that, with αs and βs as in (2.2), the sequences {en[f −
αs

]}∞
s=0 and

{en[f+
βs

]}∞
s=0 are both asymptotic scales as n → ∞.

We now state the main results of this work. We start with the following special case of pure algebraic
(nonlogarithmic) endpoint singularities that is important and of interest in itself:

Theorem 2.2. Let f (x) be exactly as described in the first paragraph of this section with the same
notation, Us(y) = As �= 0 and Vs(y) = Bs �= 0 being constant polynomials for all s. Then, with
h = (n + 1/2)−2 and Z

+ = {0, 1, 2, . . .}, there holds

en[f ] ∼
∞∑

s=0
αs /∈Z+

Asen
[
f −

αs

]
+

∞∑
s=0

βs /∈Z+

Bsen
[
f+

βs

]
as n → ∞. (2.11)

Consequently,

en[f ] ∼
∞∑

s=0
αs /∈Z+

As

∞∑
k=0

ck(αs)hαs+k+1/2

+ (−1)n
∞∑

s=0
βs /∈Z+

Bs

∞∑
k=0

ck(βs)hβs+k+1/2 as n → ∞. (2.12)

Here, ck(ω) are precisely as given in Theorem 2.1.



A. Sidi / Asymptotics of Legendre series coefficients 181

Remark.

1. By (2.2), the sequences {hαs+k+1/2}∞
s=0 and {hβs+k+1/2}∞

s=0 are asymptotic scales as n → ∞, and
the expansion in (2.12) is a genuine asymptotic expansion when its terms are reordered according
to their size.

2. Note that, when Us(y) and Vs(y) are constants, the nonnegative integer powers (1−x)s and (1+x)s,
if present in the asymptotic expansions of (2.1), do not contribute to the expansion of en[f ] as
n → ∞.

3. In case αs, βs are all nonnegative integers in Theorem 2.2, of course, f ∈ C∞[−1, 1], and the
asymptotic expansion in (2.12) is empty (zero). This does not necessarily mean that en[f ] = 0,
however. It only means that en[f ] tends to zero as n → ∞ faster than all negative powers of n,
which is consistent with the known result we mentioned in Section 1. Of course, when f (x) is
a polynomial, en[f ] = 0 for all n > deg f .

4. If αs = α + s and βs = s for all s = 0, 1, . . . , in Theorem 2.2, then f (x) is of the form f (x) =
(1 − x)αg(x) with g ∈ C∞[−1, 1] and As = (−1)sg(s)(1)/s!, s = 0, 1, . . . . In this case, the second
double sum in (2.12) disappears and the first double sum can be rearranged so that

en[f ] ∼
∞∑

k=0

akh
α+k+1/2 as n → ∞, (2.13)

where ak are functions of α given by

ak =
k∑

s=0

Asck−s(α + s), k = 0, 1, . . . , (2.14)

and are analytic in every strip −1 < d1 � �α � d2 < ∞ of the α-plane.
5. If αs = α + s and βs = β + s for all s = 0, 1, . . . , in Theorem 2.2, then f (x) is of the form

f (x) = (1 − x)α(1 + x)βg(x) with g ∈ C∞[−1, 1], and As and Bs are given by

As =
(−1)s

s!
ds

dxs

[
(1 + x)βg(x)

]∣∣∣∣
x=1

= (−1)s
s∑

i=0

(
β

i

)
g(s−i)(1)
(s − i)!

2β−i,

(2.15)

Bs =
1
s!

ds

dxs

[
(1 − x)αg(x)

]∣∣∣∣
x=−1

=
s∑

i=0

(−1)i
(

α

i

)
g(s−i)(−1)

(s − i)!
2α−i.

Note that As are functions of β only, while Bs are functions of α only. In addition, they are entire,
because

(z
i

)
2z is an entire function of the complex variable z. In this case, by rearranging both of

the double sums in (2.12), we have

en[f ] ∼
∞∑

k=0

akh
α+k+1/2 + (−1)n

∞∑
k=0

bkh
β+k+1/2 as n → ∞. (2.16)

Here, ak and bk are functions of both α and β given by

ak =
k∑

s=0

Asck−s(α + s), bk =
k∑

s=0

Bsck−s(β + s), k = 0, 1, . . . , (2.17)
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and are analytic when α and β are such that −1 < d1 � �α � d2 < ∞ and −1 < d′
1 � �β �

d′
2 < ∞, respectively.

The next theorem deals with the general case, in which algebraic-logarithmic singularities may occur
at the endpoints.

Theorem 2.3. Let f (x) be exactly as described in the first paragraph of this section with the same
notation, and let Us(y) =

∑us
i=0 σsiy

i and Vs(y) =
∑vs

i=0 τsiy
i. Denote d

dω by Dω. For an arbitrary
polynomial W (y) =

∑k
i=0 εiy

i and an arbitrary function g that depends on ω, define also

W (Dω)g :=
k∑

i=0

εi
[
Di

ωg
]
=

k∑
i=0

εi
dig

dωi
.

Then, with h = (n + 1/2)−2, there holds

en[f ] ∼
∞∑

s=0

Us(Dαs)en
[
f −

αs

]
+

∞∑
s=0

Vs(Dβs)en
[
f+

βs

]
as n → ∞. (2.18)

Consequently,

en[f ] ∼
∞∑

s=0

∞∑
k=0

Us(Dαs)
[
ck(αs)hαs+k+1/2]

+ (−1)n
∞∑

s=0

∞∑
k=0

Vs(Dβs)
[
ck(βs)hβs+k+1/2] as n → ∞. (2.19)

Here, ck(ω) are precisely as given in Theorem 2.1.

Remark.

1. To see the explicit form of the expansion in Theorem 2.3, we also need

Di
ω

[
ck(ω)hω+k+1/2] = hω+k+1/2

i∑
j=0

(
i

j

)
c(i−j)
k (ω)(log h)j ,

where c(r)
k (ω) stands for the rth derivative of ck(ω). Using this, it can be seen that, for example,

Us(Dαs)
[
ck(αs)hαs+k+1/2] = hαs+k+1/2

us∑
j=0

esj(log h)j ,

where

esj =
us∑
i=j

(
i

j

)
σsic

(i−j)
k (αs), j = 0, 1, . . . , us.
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Note that esus = σsusck(αs). By Theorem 2.1, this implies that esus = 0 when αs ∈ Z
+.

Thus, (2.19) assumes the following explicit form:

en[f ] ∼
∞∑

s=0

∞∑
k=0

Ûsk(log h)hαs+k+1/2

+ (−1)n
∞∑

s=0

∞∑
k=0

V̂sk(log h)hβs+k+1/2 as n → ∞, (2.20)

where Ûsk(y) and V̂sk(y) are polynomials in y with deg(Ûsk) � us and deg(Vs) � vs. If αs ∈ Z
+,

then deg(Ûsk) � us − 1; otherwise, deg(Ûsk) = us. Similarly, if βs ∈ Z
+, then deg(V̂sk) � vs − 1;

otherwise, deg(V̂sk) = vs.
2. Invoking now (2.2) and (2.3), we conclude that the sequences

{
Us(Dαs)

[
ck(αs)hαs+k+1/2]}∞

s=0 and
{
Vs(Dβs)

[
ck(βs)hβs+k+1/2]}∞

s=0

are asymptotic scales as n → ∞, and that the expansion in (2.19) is a genuine asymptotic expan-
sion.

3. When αs = α + s and βs = β + s, for all s = 0, 1, . . . , and u0 = u1 = · · · = p and v0 = v1 =
· · · = q, we can rearrange the double sums in (2.20), and obtain

en[f ] ∼
∞∑

k=0

Ǔk(log h)hα+k+1/2 + (−1)n
∞∑

k=0

V̌k(log h)hβ+k+1/2 as n → ∞, (2.21)

where Ǔk(y) =
∑k

s=0 Ûs,k−s(y) and V̌k(y) =
∑k

s=0 V̂s,k−s(y) are polynomials in y of degree
at most p and q, respectively. If α ∈ Z

+, then deg(Ǔk) � p − 1. Similarly, if β ∈ Z
+, then

deg(V̌k) � q − 1.
4. The case in the preceding remark arises, for example, when

f (x) = (1 − x)α(1 + x)β
[
log(1 − x)

]p[
log(1 + x)

]q
g(x)

with g ∈ C∞[−1, 1]. In this case, the asymptotic expansion of en[f ] can be obtained by differ-
entiating the asymptotic expansion of en[f̃ ], where f̃ (x) = (1 − x)α(1 + x)βg(x), p times with
respect to α and q times with respect to β. Note that f̃ (x) here is precisely the function f (x) given
in Remark 5 following Theorem 2.2, and the asymptotic expansion of en[f̃ ] is as given in (2.16)
and (2.17). Recall that the ak and bk there are analytic functions of both α and β. Thus, applying
∂p+q/∂αp ∂βq to (2.16), we obtain the expansion in (2.21).
A simpler special case is one in which β = 0 and q = 0. For this case, we have f (x) = (1 −
x)α[log(1 − x)]pg(x) with p a positive integer and g ∈ C∞[−1, 1]. The asymptotic expansion of
en[f ] is now of the form

en[f ] ∼
∞∑

k=0

Ǔk(log h)hα+k+1/2 as n → ∞, (2.22)
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where Ǔk(y), as before, are polynomials in y of degree at most p, and this can be obtained by
differentiating the asymptotic expansion of en[f̃ ], where f̃ (x) = (1 − x)αg(x), p times with respect
to α.

3. Proofs of main results

3.1. Proof of Theorem 2.2

With Us(y) = As and Vs(y) = Bs, and an arbitrary positive integer m, let

p(x) =
m−1∑
s=0

As(1 − x)αs +
m−1∑
s=0

Bs(1 + x)βs =
m−1∑
s=0

Asf
−
αs

(x) +
m−1∑
s=0

Bsf
+
βs

(x). (3.1)

Here, f ±
ω (x) are as defined in (2.5). Then,

f (x) = p(x) + φ(x); φ(x) := f (x) − p(x). (3.2)

Thus,

en[f ] = en[p] + en[φ]. (3.3)

By Theorem 2.1,

en[p] =
m−1∑
s=0

Asen
[
f −

αs

]
+

m−1∑
s=0

Bsen
[
f+

βs

]

∼
m−1∑
s=0

As

∞∑
k=0

ck(αs)hαs+k+1/2 + (−1)n
m−1∑
s=0

Bs

∞∑
k=0

ck(βs)hβs+k+1/2 as n → ∞. (3.4)

We now have to analyze en[φ]. For this, we need to know the differentiability properties of φ(x)
on [−1, 1]. First, φ ∈ C∞(−1, 1). At x = ±1, φ(x) has the asymptotic expansions

φ(x) ∼ w+
m(x) +

∞∑
s=m

As(1 − x)αs as x → 1−; w+
m(x) = −

m−1∑
s=0

Bs(1 + x)βs ,

(3.5)

φ(x) ∼ w−
m(x) +

∞∑
s=m

Bs(1 + x)βs as x → −1+; w−
m(x) = −

m−1∑
s=0

As(1 − x)αs .

Note that w+
m(x) is infinitely differentiable at x = 1 while w−

m(x) is infinitely differentiable at x = −1.
Thus, what determines the differentiability properties on [−1, 1] of φ(x) are the infinite sums in (3.5). By
the fourth of the properties of f (x) mentioned in the beginning of Section 2, the asymptotic expansions
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of φ(x) in (3.5) can be differentiated termwise as many times as we wish. Then, for every positive
integer j, there holds

dj

dxj
φ(x) ∼ dj

dxj
w+

m(x) +
∞∑

s=m

Asαs(αs − 1) · · · (αs − j + 1)(1 − x)αs −j as x → 1−,

(3.6)
dj

dxj
φ(x) ∼ dj

dxj
w−

m(x) +
∞∑

s=m

Bsβs(βs − 1) · · · (βs − j + 1)(1 + x)βs−j as x → −1+.

Clearly,

lim
x→1−

dj

dxj
φ(x) = − djw+

m

dxj

∣∣∣∣
x=1

, j = 0, 1, . . . , 	 �αm − 1
,

(3.7)

lim
x→−1+

dj

dxj
φ(x) = − djw−

m

dxj

∣∣∣∣
x=−1

, j = 0, 1, . . . , 	 �βm − 1
,

which also means that φ(x) has 	 �αm − 1
 continuous derivatives at x = 1 and 	 �βm − 1
 continuous
derivatives at x = −1, in addition to being in C∞(−1, 1). Consequently, φ ∈ Cκm[−1, 1], where
κm = min{	 �αm − 1
, 	 �βm − 1
}.

Next, by (1.5) in the second paragraph of Section 1,

en[φ] = O
(
n−κm+1) = O

(
hκm/2−1/2) as n → ∞. (3.8)

Combining (3.4) and (3.8) in (3.3), and considering only those terms with �αs + k < �αm and �βs +
k < �βm in, respectively, the first and second double summations in (3.4), we have

en[f ] =
∑

0�s�m−1
0�k<�(αm −αs)

Asck(αs)hαs+k+1/2 + O
(
hαm+1/2)

+ (−1)n
∑

0�s�m−1
0�k<�(βm −βs)

Bsck(βs)hβs+k+1/2 + O
(
hβm+1/2)

+ O
(
hκm/2−1/2) as n → ∞. (3.9)

Now, limm→∞ κm = ∞ and limm→∞ �αm = ∞ and limm→∞ �βm = ∞ simultaneously, by (2.2).
From this and from (3.9), we conclude that en[f ] has the true asymptotic expansion

en[f ] ∼
∞∑

s=0

As

∞∑
k=0

ck(αs)hαs+k+1/2 + (−1)n
∞∑

s=0

Bs

∞∑
k=0

ck(βs)hβs+k+1/2 as n → ∞. (3.10)

Finally, the result in (2.12) follows by invoking the fact that ck(ω) = 0 when ω ∈ Z
+.
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3.2. Proof of Theorem 2.3

We first observe that, with f ±
ω (x) as defined in (2.5),

f ±
ω,i(x) :=

[
log(1 ± x)

]i
(1 ± x)ω =

di

dωi
f ±

ω (x). (3.11)

Consequently, we also have

en
[
f ±

ω,i

]
=

di

dωi
en

[
f ±

ω

]
(3.12)

and

en
[
f+

ω,i

]
= (−1)nen

[
f −

ω,i

]
. (3.13)

The following theorem, which we employ in our proof, can be proved as Theorem 1.1 in [6], p. 323.

Theorem 3.1. Let �ω > −1. Then, with h = (n+1/2)−2, for each i = 1, 2, . . . , we have the asymptotic
expansion

(−1)nen
[
f+

ω,i

]
= en

[
f −

ω,i

]
∼

∞∑
k=0

di

dωi

[
ck(ω)hω+k+1/2] as n → ∞, (3.14)

that is valid uniformly in every strip −1 < d1 � �ω � d2 < ∞ of the ω-plane.

Remark. In other words, the asymptotic expansion of en[f ±
ω,i] is obtained by differentiating that

of en[f ±
ω ] term by term i times. Recall that the functions en[f ±

ω ] are analytic for �ω > −1 and so
are the ck(ω). Note, however, that even though ck(ω) vanish when ω ∈ Z

+, c(i)
k (ω), i � 1, do not have

to.

For an arbitrary positive integer m, let

p(x) =
m−1∑
s=0

Us

(
log(1 − x)

)
(1 − x)αs +

m−1∑
s=0

Vs

(
log(1 + x)

)
(1 + x)βs

=
m−1∑
s=0

us∑
i=0

σsif
−
αs,i(x) +

m−1∑
s=0

vs∑
i=0

τsif
+
βs,i(x) (3.15)

and write, as before,

f (x) = p(x) + φ(x); φ(x) := f (x) − p(x) (3.16)

and

en[f ] = en[p] + en[φ]. (3.17)
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However, this time,

en[p] =
m−1∑
s=0

us∑
i=0

σsien
[
f −

αs,i

]
+

m−1∑
s=0

vs∑
i=0

τsien
[
f+

βs,i

]
. (3.18)

By Theorem 3.1, this gives

en[p] ∼
m−1∑
s=0

∞∑
k=0

Us(Dαs)
[
ck(αs)hαs+k+1/2]

+ (−1)n
m−1∑
s=0

∞∑
k=0

Vs(Dβs)
[
ck(βs)hβs+k+1/2] as n → ∞. (3.19)

To analyze en[φ], we again need to study the differentiability properties of φ(x) on [−1, 1]. Clearly,
φ ∈ C∞(−1, 1). At x = ±1, φ(x) has the asymptotic expansions

φ(x) ∼ w+
m(x) +

∞∑
s=m

us∑
i=0

σsi
[
log(1 − x)

]i
(1 − x)αs as x → 1−,

(3.20)

φ(x) ∼ w−
m(x) +

∞∑
s=m

vs∑
i=0

τsi
[
log(1 + x)

]i
(1 + x)βs as x → −1+,

with

w+
m(x) = −

m−1∑
s=0

Vs
(
log(1 + x)

)
(1 + x)βs ,

(3.21)

w−
m(x) = −

m−1∑
s=0

Us
(
log(1 − x)

)
(1 − x)αs .

As was the case in the proof of Theorem 2.2, again w+
m(x) is infinitely differentiable at x = 1 while

w−
m(x) is infinitely differentiable at x = −1. By the fourth of the properties of f (x) mentioned in the

beginning of Section 2, the asymptotic expansions of φ(x) in (3.20) can be differentiated termwise as
many times as we wish. Then, for every positive integer j, there holds

dj

dxj
φ(x) ∼ dj

dxj
w+

m(x) +
∞∑

s=m

Ũs
(
log(1 − x)

)
(1 − x)αs−j as x → 1−,

(3.22)
dj

dxj
φ(x) ∼ dj

dxj
w−

m(x) +
∞∑

s=m

Ṽs
(
log(1 + x)

)
(1 + x)βs−j as x → −1+,

where Ũs(y) and Ṽs(y) are polynomials in y of degree us and vs, respectively. It is easy to see that, in



188 A. Sidi / Asymptotics of Legendre series coefficients

this case too, we have

lim
x→1−

dj

dxj
φ(x) = − djw+

m

dxj

∣∣∣∣
x=1

, j = 0, 1, . . . , 	 �αm − 1
,

(3.23)

lim
x→−1+

dj

dxj
φ(x) = − djw−

m

dxj

∣∣∣∣
x=−1

, j = 0, 1, . . . , 	 �βm − 1
,

which also means that φ(x) has 	 �αm − 1
 continuous derivatives at x = 1 and 	 �βm − 1
 continuous
derivatives at x = −1, in addition to being in C∞(−1, 1). Consequently, φ ∈ Cκm[−1, 1], where
κm = min{	 �αm − 1
, 	 �βm − 1
}.

The proof of Theorem 2.3 can now be completed as that of Theorem 2.2. We leave the details to the
reader.

4. Further developments

In the preceding sections, we assumed that the function f (x) is infinitely differentiable on (−1, 1).
However, the proofs of Theorems 2.2 and 2.3 suggest that these theorems can be extended to the case in
which the function f (x) is not necessarily in C∞(−1, 1).

Theorems 4.1 and 4.2 below are extensions of Theorems 2.2 and 2.3, respectively, precisely to this
case. In these theorems, we assume that f (x) is exactly as in the first paragraph of Section 2, except that
it ceases to be infinitely differentiable at a finite number of points in (−1, 1), and that it is in Cr(−1, 1)
for some nonnegative integer r. Of course, f (x) continues to be infinitely differentiable in the open
intervals (−1, −1+η) and (1 − η, 1), where η is sufficiently small and, in addition, as x → ±1, f (x) has
the asymptotic expansions given in (2.1), with (2.2)–(2.4). Below, we adopt the notation of Sections 2
and 3.

Theorem 4.1. Let f (x) be as in the second paragraph of this section with the same notation, Us(y) =
As �= 0 and Vs(y) = Bs �= 0 being constant polynomials for all s. Let m− and m+ be the smallest
integers for which

r < �αm− and r < �βm+ . (4.1)

Then, with h = (n + 1/2)−2 and Z
+ = {0, 1, 2, . . .}, there holds

en[f ] =
m− −1∑
s=0

αs /∈Z+

�r/2− �αs −1�∑
k=0

Asck(αs)hαs+k+1/2

+ (−1)n
m+−1∑
s=0

βs /∈Z+

�r/2− �βs −1�∑
k=0

Bsck(βs)hβs+k+1/2 + O
(
hr/2−1/2) as n → ∞. (4.2)
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Theorem 4.2. Let f (x) be as in the second paragraph of this section with the same notation, Us(y)
and Vs(y) being polynomials in y of degree us and vs, respectively. Let m− and m+ be the smallest
integers for which

r < �αm− and r < �βm+ . (4.3)

Then, with h = (n + 1/2)−2, there holds

en[f ] =
m− −1∑
s=0

�r/2− �αs −1�∑
k=0

Us(Dαs)
[
ck(αs)hαs+k+1/2]

+
m+−1∑
s=0

�r/2− �βs −1�∑
k=0

Vs(Dβs)
[
ck(βs)hβs+k+1/2] + O

(
hr/2−1/2) as n → ∞. (4.4)

The proof of Theorem 4.1 is achieved precisely as that of Theorem 2.2 by modifying p(x) in (3.1) as
in

p(x) =
m− −1∑
s=0

As(1 − x)αs +
m+−1∑
s=0

Bs(1 + x)βs . (4.5)

Similarly, the proof of Theorem 4.2 is achieved precisely as that of Theorem 2.3 by modifying p(x) in
(3.15) as in

p(x) =
m− −1∑
s=0

Us

(
log(1 − x)

)
(1 − x)αs +

m+−1∑
s=0

Vs

(
log(1 + x)

)
(1 + x)βs . (4.6)

In both cases, the functions φ(x) := f (x) − p(x) are in Cr[−1, 1] so that en[φ] = O(hr/2−1/2) as
n → ∞. We leave the details to the reader.

Note that the summations over the αs (the βs) in (4.2) and (4.4) are empty in case �α0 � r/2 − 1
(�β0 � r/2 − 1).
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