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A de Montessus Type Convergence Study
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Abstract. We continue our study of convergence of IMPE, one of the vector-
valued rational interpolation procedures proposed by the author in a recent
paper, in the context of vector-valued meromorphic functions with simple
poles. So far, this study has been carried out in the presence of corresponding
residues that are mutually orthogonal. In the present work, we continue to
study IMPE in the same context, but in the presence of corresponding residues
that are not necessarily orthogonal. Choosing the interpolation points appro-
priately, we derive de Montessus type convergence results for the interpolants
and König type results for the poles and residues.
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1. Introduction

In a recent work [15], we presented three different kinds of vector-valued rational
interpolation procedures. These were modeled after some rational approximation
procedures from the MacLaurin series of vector-valued functions developed in
Sidi [13], which in turn had their origin in vector extrapolation methods. Vector
extrapolation methods are used for accelerating the convergence of certain kinds
of vector sequences, such as those produced by fixed-point iterative methods
on linear and non-linear systems of algebraic equations. Some of the algebraic
properties of these interpolants were already mentioned in [15], and their study
was continued in another paper [16] by the author.
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All three methods produce two-dimensional arrays of rational functions

Rp,k(z) =
Up,k(z)

Vp,k(z)
,

where Up,k(z) is a vector-valued polynomial of degree at most p−1, while Vp,k(z)
is a scalar-valued polynomial of degree k. In all three methods, the Rp,k(z) inter-
polate F (z) at p points counting multiplicities. The methods differ only in the
way their denominators Vp,k(z) are determined. We can order the approximations
such that the sequence {Rp,k(z)}∞p=1 form the kth row in the table.

Two of these procedures, namely, those denoted IMMPE and IMPE, were studied
in the context of meromorphic vector-valued functions by the author recently:
IMMPE was studied in [17] for functions having simple poles. IMPE was studied
in [18] for functions having simple poles and mutually orthogonal residues, and
the orthogonality of the residues enabled the author to employ the techniques
of [17] successfully with minor changes.

In the present work, we continue to study IMPE. As in [18], we assume that the
functions being interpolated are meromorphic with simple poles, but we do not
assume that the corresponding residues are mutually orthogonal. The techniques
we use to tackle this more general situation are based on those we used in [17]
and [18], but are considerably more involved.

As the definition, construction, and algebraic properties of IMPE have been
reviewed in [18], we do not go into the details of these topics. We give a very
brief summary of them in the next section, and refer the reader to [15, 16, 18]
for details. We also use the next section to set part of the notation that we use
throughout.

We first consider the application of IMPE to vector-valued rational functions F (z).
In Section 3, we derive a closed-form expression for the error when the function
F (z) being interpolated is rational with simple poles. The main results of this
section are Theorems 3.2–3.4, which form the starting point of the convergence
analysis in the subsequent sections. In Section 4, we present the choice of the
points of interpolation and its consequences. Starting with the developments of
Sections 3 and 4, in Section 5, we present a detailed convergence theory, con-
cerning vector-valued rational functions F (z) with simple poles, for sequences
of interpolants Rp,k(z) whose denominators are of a fixed degree that may be
much smaller than the number of poles of F (z), while the number of interpo-
lation conditions (hence the degree of the numerators) tends to infinity. This
theory provides us with a de Montessus [10] type theorem (Theorem 5.4) con-
cerning the convergence of Rp,k(z) as p→∞, and König [9] type theorems (The-
orems 5.2 and 5.3) concerning the denominator polynomials Vp,k(z) and their
zeros as p→∞.1 The results of Section 5 show that rational interpolation with

1Actually, König’s Theorem concerns only the [n/1] Padé approximants as n → ∞. The
generalization of König’s theorem concerning the convergence of the denominator polynomials
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a small and fixed number of poles can help approximate a rational function F (z)
that has a large number of poles very accurately in the largest possible region
depending on the location of the poles of F (z) and the number of poles of the
interpolants being considered.

Finally, Section 6 is concerned with the extension of the results of Section 5 to
functions that are meromorphic in some domain of the complex plane but are
not necessarily rational.

The following conclusions are drawn from the results of [17, 18] and the present
work, as IMMPE and IMPE are being applied to meromorphic vector-valued
functions F (z):

(i) IMPE and IMMPE provide the same rates of convergence for the inter-
polants.

(ii) When the residues of F (z) are not mutually orthogonal, IMPE and IMMPE
provide the same rates of convergence for the denominator polynomials and
poles of the interpolants as well.

(iii) When the residues of F (z) are mutually orthogonal, IMPE produces twice
as fast convergence for the denominator polynomials and poles as IMMPE.

(iv) The error formula for IMPE obtained in the present work is valid in the
presence of both orthogonal and non-orthogonal residues, and it reduces
precisely to that of [18] when the residues of F (z) are mutually orthogonal.
This is not true for the error formula pertaining to poles, however; poles
related to orthogonal residues seem to have a special and more favorable
convergence property.

Our results are in the spirit of those given by Saff [11] for the scalar rational in-
terpolation problem and by Graves-Morris and Saff [4, 5, 6, 7] for vector-valued
rational interpolants and vector-valued Padé approximants: the conditions im-
posed on the points of interpolation in our case are exactly those of [11, 4, 6],
and, when expressed as a pth root asymptotic result, our de Montessus type
convergence result for Rp,k(z) as p → ∞ is analogous to those of [11, 4, 6]. We
are also aware of a König type result [concerning the denominator of Rp,k(z)] in
[4, Eq. (2.10)]. Our method of interpolation (that is, IMPE) is different from
those in [4, 6]. So are our proofs; they employ linear algebra techniques that are
analogous to those developed in Sidi, Ford, and Smith [19] and used in Sidi [12] in
the study of Padé approximants. In addition, the techniques we use here enable
us to obtain optimally refined results in the form of asymptotic expansions and
asymptotic equalities.

of the [n/k] Padé approximants with arbitrary k is already contained in the arguments given
in [10]. For different treatments concerning this generalization, see Golomb [2], Gragg and
Householder [3], Householder [8], and Sidi [12], for example. In addition, rates of convergence
of the poles of the [n/k] Padé approximants as n→∞ are provided in [12]. For a summary of
this subject, see Sidi [14, Cha. 17, Sect. 17.8].
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2. Review of algebraic structure of IMPE

Let F (z) be a vector-valued function such that F : C→ CN . Assume that F (z) is
defined on a bounded open set Ω ⊂ C and consider the problem of interpolating
F (z) at the points ξ1, ξ2, . . ., in this set. We do not assume that the ξi are
necessarily distinct; thus we allow interpolation in the sense of Hermite. See [15]
and [16].

First, we define the scalar polynomials ψm,n(z) via

(2.1) ψm,n(z) =
n∏

r=m

(z − ξr), n ≥ m ≥ 1; ψm,m−1(z) = 1, m ≥ 1.

Next, we define the vectors Dm,n via

(2.2) Dm,n = F [ξm, ξm+1, . . . , ξn], n ≥ m,

where F [ξi] = F (ξi) and F [ξr, ξr+1, . . . , ξr+s] is the divided difference of order s of
F (z) over the set of points {ξr, ξr+1, . . . , ξr+s}. With these, Gm,n(z), the vector-
valued polynomial (of degree at most n−m) that interpolates F (z) at the points
ξm, ξm+1, . . . , ξn in the sense of Hermite, has the Newtonian form

(2.3) Gm,n(z) =
n∑

i=m

Dm,i ψm,i−1(z).

For divided differences and the Newton interpolation formula, see, for example,
Atkinson [1] and Stoer and Bulirsch [20].

The vector-valued rational interpolants to the function F (z) developed in [15]
are all of the general form

(2.4) Rp,k(z) =
Up,k(z)

Vp,k(z)
=

∑k
j=0 cj ψ1,j(z)Gj+1,p(z)∑k

j=0 cj ψ1,j(z)
,

where p and k are arbitrary positive integers, and c0, c1, . . . , ck are complex
scalars. For IMPE, the cj are defined as the solution to the linear least-squares
problem

(2.5) min
c0,c1,...,ck−1

∥∥∥∥∥
k∑
j=0

cjDj+1,p+1

∥∥∥∥∥ , subject to ck = 1.

Here ‖·‖ is a vector l2-norm that is induced by some inner product (· , ·). That is,

for any vector x ∈ CN , we have ‖x‖ =
√

(x, x). We also define this inner product
such that, for arbitrary x, y ∈ CN and α, β ∈ C, we have (αx, βy) = αβ(x, y).

Note that the cj are determined by the function values F (ξi), 1 ≤ i ≤ p + 1,
while Rp,k(ξi) = F (ξi), 1 ≤ i ≤ p.

The denominator polynomial Vp,k(z) of Rp,k(z) is a symmetric function of ξi,
i = 1, . . . , p + 1, and Rp,k(z) itself is a symmetric function of ξi, i = 1, . . . , p,
provided Vp,k(ξi) 6= 0, i = 1, . . . , p.
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Provided a unique solution to these equations exists, Rp,k(z) has a determinantal
representation given as in

(2.6) Rp,k(z) =
P (z)

Q(z)
=

∣∣∣∣∣∣∣∣∣∣

ψ1,0(z)G1,p(z) ψ1,1(z)G2,p(z) · · · ψ1,k(z)Gk+1,p(z)
u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1,0(z) ψ1,1(z) · · · ψ1,k(z)
u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣

,

where

(2.7) ui,j = (Di,p+1, Dj+1,p+1).

Here, the numerator determinant P (z) is vector-valued and is defined by its
expansion with respect to its first row. That is, if Mj is the cofactor of the term
ψ1,j(z) in the denominator determinant Q(z), then

(2.8) Rp,k(z) =

∑k
j=0 Mj ψ1,j(z)Gj+1,p(z)∑k

j=0Mj ψ1,j(z)
.

A unique solution for the cj exists provided Mk 6= 0. This also guarantees the
uniqueness of Rp,k(z) provided Vp,k(ξi) 6= 0, i = 1, . . . , p. For Mk 6= 0 to be
true, it is necessary and sufficient that the vectors D1,p+1, D2,p+1, . . . , Dk,p+1 be
linearly independent. It is shown in [16, Sec. 2 & 5] that this holds when F (z)
is a vector-valued rational function of the form

(2.9) F (z) = u(z) +
σ∑
s=1

rs∑
j=1

vsj
(z − zs)j

,

where u(z) is an arbitrary vector-valued polynomial, the vectors vsj ∈ CN ,
1 ≤ j ≤ rs, 1 ≤ s ≤ σ, are linearly independent, z1, . . . , zσ are distinct points in
C and k ≤

∑σ
s=1 rs ≤ N .

The denominator polynomial Vp,k(z) of the IMPE interpolant Rp,k(z) is a sym-
metric function of all the ξi used to construct it, namely, of ξ1, ξ2, . . . , ξp+1, while
Rp,k(z) itself is a symmetric function of the points of interpolation, namely, of
ξ1, ξ2, . . . , ξp. That is, Rp,k(z) is independent of the order of the interpolation
points ξ1, . . . , ξp. See [16, Lem. 3.4 and Thm. 3.5].

Let F (z) be a vector-valued rational function of the form F (z) = Ũ(z)/Ṽ (z),
where Ũ(z) is a vector-valued polynomial of degree at most p − 1 and Ṽ (z) is
a scalar polynomial of degree exactly k. Provided the cofactor Mk in (2.8) is
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non-zero and Vp,k(ξi) 6= 0, i = 1, . . . , p, holds, IMPE reproduces F (z), that is
Rp,k(z) ≡ F (z). See [16, Thm. 4.1].

Finally, the error in Rp,k(z) has the determinantal representation

(2.10) F (z)−Rp,k(z) =
∆(z)

Q(z)
,

where Q(z) is the denominator determinant of Rp,k(z) in (2.6) and

(2.11) ∆(z) =

∣∣∣∣∣∣∣∣∣∣

∆0(z) ∆1(z) · · · ∆k(z)
u1,0 u1,1 · · · u1,k

u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣
, ∆j(z) = ψ1,j(z) [F (z)−Gj+1,p(z)] ,

3. IMPE error formula for F (z) a vector-valued rational
function

As in [17] and [18], we start our study of IMPE for the case in which the function
F (z) is a vector-valued rational function with simple poles, namely,

(3.1) F (z) = u(z) +

µ∑
s=1

vs
z − zs

,

where

(i) u(z) is an arbitrary vector-valued polynomial, z1, . . . , zµ are distinct com-
plex numbers, and

(ii) the corresponding residues, namely, v1, . . . , vµ, are constant vectors in CN ,
which we assume to be linearly independent, and

(iii) the vi are not assumed to be mutually orthogonal with respect to the inner
product used in defining IMPE.

Clearly, µ ≤ N .

Example. Let A be an N × N diagonalizable matrix with eigenpairs (λi, wi),
i = 1, . . . , N , and let b be an N -vector, and consider the solution to the linear
system of equations (I − zA)x = b. Because w1, . . . , wN span CN , we have

b =
∑N

i=1 αiwi for some scalars αi. Then, for z 6= λ−1
i , i = 1, . . . , N , the solution

to (I − zA)x = b has the representation

x = F (z) = (I − zA)−1b =
N∑
i=1

αiwi
1− zλi

.

Thus, F (z) is precisely of the form described in (3.1). In case A is singular,
u(z) ≡ v0, where v0 is either an eigenvector of A corresponding to its zero
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eigenvalue or v0 = 0; therefore, u(z) is a constant polynomial. If A is non-
singular, u(z) ≡ 0. WhetherA is singular or not, the zs in (3.1) are the reciprocals
of some or all of the distinct non-zero λi (hence µ ≤ N), and, for each s, vs is a
linear combination of the eigenvectors corresponding to the eigenvalue z−1

s , hence
is itself an eigenvector of A, that is, Avs = z−1

s vs, s = 1, . . . , µ.

We now recall some technical tools that were used in [17] and will be used
throughout this work as well. The following lemma is the same as Lemma 3.4
in [17], with the exception of (3.4), which can be proved by invoking (3.1) in
(Dm′,n′ , Dm,n). Both parts of this lemma can be proved with the help of the
result

(3.2) ωa(z) = (z − a)−1 ⇒ ωa[ξm, . . . , ξn] = − 1

ψm,n(a)
= −ψ1,m−1(a)

ψ1,n(a)
,

and by recalling that g[x0, x1, . . . , xq] = 0 whenever g(x) is a polynomial in x of
degree less than q.

Lemma 3.1. Let F (z) be given as in (3.1). Let n−m > deg(u). Then, whether
the ξi are distinct or not, the following are true:

(i) Dm,n = F [ξm, . . . , ξn] is given as in

(3.3) Dm,n = −
µ∑
s=1

vs
ψm,n(zs)

= −
µ∑
s=1

vs
ψ1,m−1(zs)

ψ1,n(zs)
.

Therefore, we also have

(3.4) (Dm′,n′ , Dm,n) =

µ∑
r=1

µ∑
s=1

αr,s
ψ1,m′−1(zr)

ψ1,n′(zr)

ψ1,m−1(zs)

ψ1,n(zs)
, αr,s = (vr, vs).

(ii) F (z)−Gm,n(z) = F [z, ξm, . . . , ξn]ψm,n(z) is given as in

(3.5) F (z)−Gm,n(z) = ψm,n(z)

µ∑
s=1

es(z)
ψ1,m−1(zs)

ψ1,n(zs)
, es(z) =

vs
z − zs

.

We start with the analysis ofQ(z), the denominator determinant of F (z)−Rp,k(z)
and of Rp,k(z) in equations (2.10) and (2.6), respectively. The following theorem
gives a closed form expression for Q(z) in simple terms, and is the analogue of
[17, Thm. 3.6].

Theorem 3.2. Let F (z) be the vector-valued rational function in (3.1), and
precisely as described in the first paragraph of this section, with the notation
therein. Let also

(3.6) Ψp(z) = ψ1,p+1(z).
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Then, with p > k + deg(u), the denominator determinant Q(z) in (2.6) and
(2.10) has the expansion

Q(z) =
∑

1≤r1<r2<···<rk≤µ

V (zr1 , zr2 , . . . , zrk)

[
k∏
i=1

Ψp(zri)

]−1

(3.7)

×
∑

1≤s1<s2<···<sk≤µ

T r1,...,rks1,...,sk
V (z, zs1 , zs2 , . . . , zsk)

[
k∏
i=1

Ψp(zsi)

]−1

,

where

(3.8) T r1,...,rks1,...,sk
=

∣∣∣∣∣∣∣∣
αr1,s1 αr1,s2 · · · αr1,sk
αr2,s1 αr2,s2 · · · αr2,sk

...
...

...
αrk,s1 αrk,s2 · · · αrk,sk

∣∣∣∣∣∣∣∣ , αr,s = (vr, vs),

and V (x0, x1, . . . , xn) is the Vandermonde determinant defined by

(3.9) V (x0, x1, . . . , xn) =

∣∣∣∣∣∣∣∣
1 x0 x

2
0 · · · xn0

1 x1 x
2
1 · · · xn1

...
...

...
...

1 xn x
2
n · · · xnn

∣∣∣∣∣∣∣∣ =
∏

0≤i<j≤n

(xj − xi).

Proof. Taking p > k + deg(u), and invoking (3.4) in the determinant represen-
tation of Q(z) in (2.6), we obtain

Q(z) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1,0(z) ψ1,1(z) · · · ψ1,k(z)P
r1,s1

αr1,s1
ψ1,0(zr1 )

Ψp(zr1 )

ψ1,0(zs1 )

Ψp(zs1 )

P
r1,s1

αr1,s1
ψ1,0(zr1 )

Ψp(zr1 )

ψ1,1(zs1 )

Ψp(zs1 )
· · ·

P
r1,s1

αr1,s1
ψ1,0(zr1 )

Ψp(zr1 )

ψ1,k(zs1 )

Ψp(zs1 )P
r2,s2

αr2,s2
ψ1,1(zr2 )

Ψp(zr2 )

ψ1,0(zs2 )

Ψp(zs2 )

P
r2,s2

αr2,s2
ψ1,1(zr2 )

Ψp(zr2 )

ψ1,1(zs2 )

Ψp(zs2 )
· · ·

P
r2,s2

αr2,s2
ψ1,1(zr2 )

Ψp(zr2 )

ψ1,k(zs2 )

Ψp(zs2 )

...
...

...P
rk,sk

αrk,sk

ψ1,k−1(zrk
)

Ψp(zrk
)

ψ1,0(zsk
)

Ψp(zsk
)

P
rk,sk

αrk,sk

ψ1,k−1(zrk
)

Ψp(zrk
)

ψ1,1(zsk
)

Ψp(zsk
)
· · ·

P
rk,sk

αrk,sk

ψ1,k−1(zrk
)

Ψp(zrk
)

ψ1,k(zsk
)

Ψp(zsk
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Because determinants are multilinear in their rows (and columns), we can take
the summations outside. Following that, we take out the common factors from
each row of the remaining determinant. We obtain

Q(z) =
∑
r1,s1

∑
r2,s2

· · ·
∑
rk,sk

(
k∏
i=1

αri,si

)[
k∏
i=1

ψ1,i−1(zri)

Ψp(zri)

]
(3.10)

×

[
k∏
i=1

Ψp(zsi)

]−1

X(z, zs1 , zs2 , . . . , zsk),
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where

(3.11) X(y0, y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣
ψ1,0(y0) ψ1,1(y0) · · · ψ1,k(y0)
ψ1,0(y1) ψ1,1(y1) · · · ψ1,k(y1)

...
...

...
ψ1,0(yk) ψ1,1(yk) · · · ψ1,k(yk)

∣∣∣∣∣∣∣∣ .
Now, since ψ1,r(z) is a monic polynomial in z of degree r, [17, Lem. 3.2] applies,
and we also have

(3.12) X(y0, y1, . . . , yn) = V (y0, y1, . . . , yn) =
∏

0≤i<j≤n

(yj − yi)

is the Vandermonde determinant. Consequently,

(3.13) X(z, zs1 , zs2 , . . . , zsk) = V (z, zs1 , zs2 , . . . , zsk).

Since, by (3.11), the product[
k∏
i=1

Ψp(zsi)

]−1

X(z, zs1 , zs2 , . . . , zsk)

is odd under an interchange of any two of the indices s1, . . . , sk, [17, Lem. 3.1]
(originally, given in [19]) applies to the summation

∑
s1

∑
s2
· · ·
∑

sk
, and we

obtain

Q(z) =
∑
r1

∑
r2

· · ·
∑
rk

[
k∏
i=1

ψ1,i−1(zri)

Ψp(zri)

]
(3.14)

×
∑

1≤s1<s2<···<sk≤µ

T r1,...,rks1,...,sk
V (z, zs1 , zs2 , . . . , zsk)

[
k∏
i=1

Ψp(zsi)

]−1

.

Let us rewrite this in the form

Q(z) =
∑

1≤s1<s2<···<sk≤µ

V (z, zs1 , zs2 , . . . , zsk)

[
k∏
i=1

Ψp(zsi)

]−1

(3.15)

×
∑
r1

∑
r2

· · ·
∑
rk

T r1,...,rks1,...,sk

[
k∏
i=1

Ψp(zri)

]−1 [ k∏
i=1

ψ1,i−1(zri)

]
.

Observing, by (3.8), that the product

T r1,...,rks1,...,sk

[
k∏
i=1

Ψp(zri)

]−1
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is odd under an interchange of any two of the indices r1, . . . , rk, this time, we
apply [17, Lem. 3.1] to the summation

∑
r1

∑
r2
· · ·
∑

rk
, to obtain

Q(z) =
∑

1≤s1<s2<···<sk≤µ

V (z, zs1 , zs2 , . . . , zsk)

[
k∏
i=1

Ψp(zsi)

]−1

(3.16)

×
∑

1≤r1<r2<···<rk≤µ

T r1,...,rks1,...,sk

[
k∏
i=1

Ψp(zri)

]−1

X(zr1 , . . . , zrk).

Invoking (3.12) in (3.16), we obtain the result in (3.7).

Note that, even though the functions ψm,n(z) that define X(y0, y1, . . . , yn) in
(3.11) depend on the ξi, X(y0, y1, . . . , yn) itself is independent of the ξi. As
a result, as is clear from (3.7), Q(z) depends on the ξi only via the products∏k

i=1 Ψp(zri) and
∏k

i=1 Ψp(zsi). This has important implications in the asymp-
totic behavior of Q(z) and hence of Rp,k(z) as p→∞, as we shall soon see.

We next turn to ∆(z), the numerator determinant of F (z)−Rp,k(z) in (2.10).

Theorem 3.3. Let F (z) be the vector-valued rational function in (3.1), and
precisely as described in the first paragraph of this section, with the notation
therein. With αr,s, es(z), and Ψp(z) as in (3.4), (3.5), and (3.6), respectively,
define

(3.17) ê(p)
s (z) = es(z)(zs − ξp+1)

and

(3.18) T̂ r1,...,rks0,s1,...,sk
(z; p) =

∣∣∣∣∣∣∣∣∣∣∣

ê
(p)
s0 (z) ê

(p)
s1 (z) · · · ê(p)

sk (z)
αr1,s0 αr1,s1 · · · αr1,sk
αr2,s0 αr2,s1 · · · αr2,sk

...
...

...
αrk,s0 αrk,s1 · · · αrk,sk

∣∣∣∣∣∣∣∣∣∣∣
.

Then, with p > k + deg(u), we have

∆(z)

ψ1,p(z)
=

∑
1≤r1<r2<···<rk≤µ

V (zr1 , zr2 , . . . , zrk)

[
k∏
i=1

Ψp(zri)

]−1

(3.19)

×
∑

1≤s0<s1<···<sk≤µ̂

T r1,...,rks0,s1,...,sk
(z; p)V (zs0 , zs1 , . . . , zsk)

[
k∏
i=0

Ψp(zsi)

]−1

.
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Proof. Taking p > k + deg(u), and invoking (3.5) in (2.11), we first have

∆j(z) = ψ1,j(z)

[
ψj+1,p(z)

µ∑
s=1

es(z)
ψ1,j(zs)

ψ1,p(zs)

]
(3.20)

= ψ1,p(z)

µ∑
s=1

ê(p)
s (z)

ψ1,j(zs)

Ψp(zs)
.

Substituting (3.20) and (3.4) in the determinant ∆(z) of (2.11), and factoring
out ψ1,p(z) from the first row, we have

(3.21) ∆(z) = ψ1,p(z)W (z),

where

W (z) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P
s0

be(p)
s0 (z)

ψ1,0(zs0 )

Ψp(zs0 )

P
s0

be(p)
s0 (z)

ψ1,1(zs0 )

Ψp(zs0 )
· · ·

P
s0

be(p)
s0 (z)

ψ1,k(zs0 )

Ψp(zs0 )P
r1,s1

αr1,s1
ψ1,0(zr1 )

Ψp(zr1 )

ψ1,0(zs1 )

Ψp(zs1 )

P
r1,s1

αr1,s1
ψ1,0(zr1 )

Ψp(zr1 )

ψ1,1(zs1 )

Ψp(zs1 )
· · ·

P
r1,s1

αr1,s1
ψ1,0(zr1 )

Ψp(zr1 )

ψ1,k(zs1 )

Ψp(zs1 )P
r2,s2

αr2,s2
ψ1,1(zr2 )

Ψp(zr2 )

ψ1,0(zs2 )

Ψp(zs2 )

P
r2,s2

αr2,s2
ψ1,1(zr2 )

Ψp(zr2 )

ψ1,1(zs2 )

Ψp(zs2 )
· · ·

P
r2,s2

αr2,s2
ψ1,1(zr2 )

Ψp(zr2 )

ψ1,k(zs2 )

Ψp(zs2 )

...
...

...P
rk,sk

αrk,sk

ψ1,k−1(zrk
)

Ψp(zrk
)

ψ1,0(zsk
)

Ψp(zsk
)

P
rk,sk

αrk,sk

ψ1,k−1(zrk
)

Ψp(zrk
)

ψ1,1(zsk
)

Ψp(zsk
)
· · ·

P
rk,sk

αrk,sk

ψ1,k−1(zrk
)

Ψp(zrk
)

ψ1,k(zsk
)

Ψp(zsk
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proceeding as in the proof of Theorem 3.2, we first take the summations outside.
Following that, we take out the common factors from each row of the remaining
determinant. We obtain

W (z) =
∑
s0

∑
r1,s1

· · ·
∑
rk,sk

ê(p)
s0

(z)

(
k∏
i=1

αri,si

)[
k∏
i=1

ψ1,i−1(zri)

Ψp(zri)

]
(3.22)

×

[
k∏
i=0

Ψp(zsi)

]−1

X(zs0 , zs1 , . . . , zsk),

with X(y0, y1, y2, . . . , yn) as given in (3.11). Since the product

[
k∏
i=0

Ψp(zsi)

]−1

X(zs0 , zs1 , . . . , zsk)
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is odd under an interchange of any two of the indices s0, s1, . . . , sk, [17, Lem. 3.1]
applies to the summation

∑
s0

∑
s1
· · ·
∑

sk
. Invoking also (3.12), we obtain

W (z) =
∑
r1

∑
r2

· · ·
∑
rk

[
k∏
i=1

ψ1,i−1(zri)

Ψp(zri)

]
(3.23)

×
∑

1≤s0<s1<···<sk≤µ̂

T r1,...,rks0,s1,...,sk
(z; p)V (zs0 , zs1 , . . . , zsk)

[
k∏
i=0

Ψp(zsi)

]−1

.

Let us rewrite this in the form

W (z) =
∑

1≤s0<s1<···<sk≤µ

V (zs0 , zs1 , . . . , zsk)

[
k∏
i=0

Ψp(zsi)

]−1

(3.24)

×
∑
r1

∑
r2

· · ·
∑
rk

T̂ r1,...,rks0,s1,...,sk
(z; p)

[
k∏
i=1

Ψp(zri)

]−1 [ k∏
i=1

ψ1,i−1(zri)

]
.

Observing, by (3.18), that now the product

T̂ r1,...,rks0,s1,...,sk
(z; p)

[
k∏
i=1

Ψp(zri)

]−1

is odd under an interchange of any two of the indices r1, . . . , rk, we apply [17,
Lem. 3.1] to the summation

∑
r1

∑
r2
· · ·
∑

rk
, to obtain

W (z) =
∑

1≤s0<s1<···<sk≤µ

V (zs0 , zs1 , . . . , zsk)

[
k∏
i=0

Ψp(zsi)

]−1

(3.25)

×
∑

1≤r1<r2<···<rk≤µ̂

T r1,...,rks0,s1,...,sk
(z; p)

[
k∏
i=1

Ψp(zri)

]−1

X(zr1 , . . . , zrk).

Invoking (3.12) in (3.25), we obtain the result in (3.19).

Finally, combining (3.7) and (3.19) in (2.10), we obtain a simple and elegant
expression for F (z)−Rp,k(z) when F (z) is a vector-valued rational function with
simple poles. This is the subject of the following theorem.

Theorem 3.4. For the error in Rp,k(z), with p > k+deg(u), we have the closed-
form expression

F (z)−Rp,k(z) = ψ1,p(z)(3.26)

×

∑
1≤r1<···<rk≤µ

V (zr1 ,...,zrk )Qk
i=1 Ψp(zri )

∑
1≤s0<s1<···<sk≤µ̂

T r1,...,rks0,s1,...,sk
(z; p)

V (zs0 ,zs1 ,...,zsk )Qk
i=0 Ψp(zsi )∑

1≤r1<r2<···<rk≤µ

V (zr1 ,...,zrk )Qk
i=1 Ψp(zri )

∑
1≤s1<···<sk≤µ

T r1,...,rks1,...,sk
V (z,zs1 ,...,zsk )Qk

i=1 Ψp(zsi )

.
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Remarks.

• When k = µ in Theorem 3.4, the summation on s0, s1, . . . , sk in the nu-
merator on the right-hand side of (3.26) is empty, and this implies that
Rp,k(z) ≡ F (z). Thus, this theorem provides an independent proof of the
reproducing property of IMPE.
• The error formula (3.26) for IMPE obtained in the present work is valid in

the presence of both orthogonal and non-orthogonal residues, and it reduces
precisely to that of [18] when the residues of F (z) are mutually orthogonal,
as it should.

4. Preliminaries to convergence theory

Let E be a closed and bounded set in the z-plane, whose complement K, in-
cluding the point at infinity, is connected and has a classical Green’s function
g(z) with a pole at infinity, which is continuous on ∂E, the boundary of E, and
is zero on ∂E. For each σ, let Γσ be the locus g(z) = log σ, and let Eσ denote
the interior of Γσ. Then, E1 is the interior of E and, for 1 < σ < σ′, we have
E ⊂ Eσ ⊂ Eσ′ .

For each p ∈ {1, 2, . . .}, let

(4.1) Ξp =
{
ξ

(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
p+1

}
be the set of interpolation points used in constructing the IMPE interpolant

Rp,k(z). Assume that the sets Ξp are such that ξ
(p)
i have no limit points in K

and

(4.2) lim
p→∞

∣∣∣∣∣
p+1∏
i=1

(
z − ξ(p)

i

)∣∣∣∣∣
1/p

= κΦ(z), κ = cap(E), Φ(z) = exp[g(z)],

uniformly in z on every compact subset of K, where cap(E) is the logarithmic
capacity of E defined by

cap(E) = lim
n→∞

(
min
r∈Pn

max
z∈E
|r(z)|

)1/n

, Pn = {r(z) : r ∈ Πn and monic}.

Such sequences {ξ(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
p+1}, p = 1, 2, . . ., exist, see Walsh [21, p. 74].

Note that, in terms of Φ(z), the locus Γσ is defined by Φ(z) = σ for σ > 1, while
∂E = Γ1 is simply the locus Φ(z) = 1.

Recalling that
∏p+1

i=1 (z − ξ(p)
i ) = Ψp(z) (see (3.6)), we can write (4.2) also as in

(4.3) lim
p→∞
|Ψp(z)|1/p = κΦ(z),

uniformly in z on every compact subset of K.

It is clear that if z′ ∈ Γσ′ and z′′ ∈ Γσ′′ and 1 < σ′ < σ′′, then Φ(z′) < Φ(z′′).
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The following lemma that we use in our convergence study later gathers the
results of [17, Lem. 4.1–4.3].

Lemma 4.1.

(i) Let K ′ be some compact subset of K. Then, for every ε > 0, there is an
integer p0 depending only on ε, such that

(4.4) [(1− ε)κΦ(z)]p < |Ψp(z)| < [(1 + ε)κΦ(z)]p for all z ∈ K ′ and p > p0.

(ii) For every ε > 0, there is an integer p0 depending only on ε, such that

(4.5) |Ψp(z)| < [(1 + ε)κ]p for all z ∈ E and p > p0.

As a result, we also have that

(4.6) lim sup
p→∞

|Ψp(z)|1/p ≤ κ for all z ∈ E.

(iii) Let (a) z′, z′′ ∈ K and Φ(z′) < Φ(z′′), or (b) z′ ∈ E and z′′ ∈ K. Then

lim
p→∞

∣∣∣∣Ψp(z
′)

Ψp(z′′)

∣∣∣∣1/p =
Φ(z′)

Φ(z′′)
< 1 in case (a),(4.7)

lim sup
p→∞

∣∣∣∣Ψp(z
′)

Ψp(z′′)

∣∣∣∣1/p ≤ 1

Φ(z′′)
< 1 in case (b).(4.8)

In both cases,

(4.9) lim
p→∞

Ψp(z
′)

Ψp(z′′)
= 0.

The result of (4.4) in part (i) of Lemma 4.1 suggests that Ψp(z) behaves practi-
cally like [κΦ(z)]p as p→∞.

5. Convergence theory for rational F (z)

In this section, we provide a convergence theory for the sequences {Rp,k(z)}∞p=1

with k < µ and fixed, in case F (z) is a vector-valued rational function with
simple poles as in (3.1). The theorems that follow can be proved as those given
in [17, Sec. 5]. Therefore, also to keep this work short, we only sketch some of
the proofs. In what follows, we continue to use the notation of the preceding
sections.

Note that, by the reproducing property mentioned at the end of Section 3, for
k = µ, Rp,k(z) ≡ F (z) for all p ≥ p0, where p0− 1 is the degree of the numerator
of F (z), namely, p0− 1 = µ+ deg(u). Also, as we will let p→∞ in our analysis,
the condition that p > k+ deg(u) is satisfied for all large p. Recall that it is this
condition that makes the results of Section 3 possible.
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We now turn to F (z) in (3.1). We assume that F (z) is analytic in E. This
implies that its poles z1, . . . , zµ are all in K. We order the poles of F (z) such
that

(5.1) Φ(z1) ≤ Φ(z2) ≤ . . . ≤ Φ(zµ).

By (4.7) in part (i) of Lemma 4.1, if z′ and z′′ are two different poles of F (z), and
Φ(z′) < Φ(z′′), then z′ and z′′ lie on two different loci Γσ′ and Γσ′′ . In addition,
σ′ < σ′′, that is, the set Eσ′ is in the interior of Eσ′′ .

Lemma 5.1 below plays an important role in the proofs of the results that follow.

Lemma 5.1. Under the condition that the vectors vs in (3.1) are linearly inde-
pendent, with T r1,...,rks1,...,sk

as in (3.8), we have

(5.2) T 1,...,k
1,...,k > 0.

Proof. By (3.8),

(5.3) T 1,...,k
1,...,k =

∣∣∣∣∣∣∣∣
(v1, v1) (v1, v2) · · · (v1, vk)
(v2, v1) (v2, v2) · · · (v2, vk)

...
...

...
(vk, v1) (vk, v2) · · · (vk, vk)

∣∣∣∣∣∣∣∣ .
In words, T 1,...,k

1,...,k is the Gram determinant of the vectors v1, . . . , vk, hence is
positive by the linear independence of these vectors.

5.1. Convergence analysis for Vp,k(z). We now state a König-type conver-
gence theorem for Vp,k(z), the denominator (monic) polynomial of Rp,k(z) in (2.4)
and another theorem concerning its zeros (equivalently, poles of Rp,k(z)), assum-
ing that Φ(zk) < Φ(zk+1). These results are analogous to, and in the spirit of,
the ones given in [12] for denominators of Padé approximants. They are also
similar to the corresponding results pertaining to IMMPE given in [17].

Theorem 5.2. Assume

(5.4) Φ(zk) < Φ(zk+1) = . . . = Φ(zk+r) < Φ(zk+r+1),

in addition to (5.1). In case k + r = µ, we define Φ(zk+r+1) =∞. Then,

Q(z) = (−1)kT 1,...,k
1,...,k

∣∣∣∣∣V (z1, . . . , zk)∏k
i=1 Ψp(zi)

∣∣∣∣∣
2

(5.5)

×

[
S(z) +O

(
Ψp(zk)

Ψ̃p,k

)]
as p→∞,

uniformly in every compact subset of C \ {z1, z2, . . . , zk}, where

(5.6)
∣∣∣Ψ̃p,k

∣∣∣ = min
1≤j≤r

|Ψp(zk+j)| ,
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and

(5.7) S(z) =
k∏
i=1

(z − zi).

Consequently,

(5.8) Vp,k(z)− S(z) = O

(
Ψp(zk)

Ψ̃p,k

)
as p→∞,

from which we also have

(5.9) lim sup
p→∞

|Vp,k(z)− S(z)|1/p ≤ Φ(zk)

Φ(zk+1)
< 1.

Proof. By (5.1), (5.4), part (i) of Lemma 4.1, and Lemma 5.1, the largest term
in (3.7) is that with the indices

(r1, . . . , rk) = (s1, . . . , sk) = (1, . . . , k).

The next largest terms are those with

(r1, . . . , rk) = (1, . . . , k) and (s1, . . . , sk) = (1, . . . , k − 1, k + j)

and with

(r1, . . . , rk) = (1, . . . , k − 1, k + j) and (s1, . . . , sk) = (1, . . . , k),

1 ≤ j ≤ r. Obviously, we have

lim
p→∞

Ψp(zk)

Ψ̃p,k

= 0.

In addition,

(5.10) V (z, z1, . . . , zk) = (−1)kV (z1, . . . , zk)
k∏
i=1

(z − zi).

This completes the proof of (5.5). The result in (5.8) follows from (5.5), and
that in (5.9) follows from (5.8) and (4.3).

Theorem 5.2 implies that, for all large p, Vp,k(z) has precisely k zeros that tend
to those of S(z). In the next theorem, we provide the rate of convergence of each
of these zeros.

Theorem 5.3. Under the conditions of Theorem 5.2, Vp,k(z) is of degree exactly

k. Let us denote its zeros z
(p)
1 , . . . , z

(p)
k . Then limp→∞ z

(p)
m = zm, m = 1, . . . , k.

In addition, we have the refined result

(5.11) z(p)
m − zm ∼

r∑
j=1

C
(m)
j

Ψp(zm)

Ψp(zk+j)
+ · · · as p→∞,
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where C
(m)
j are scalars independent of p given by

(5.12) C
(m)
j = (−1)k−m

T 1,...,k
1,...,m−1,m+1,...,k,k+j

T 1,...,k
1,...,k

S(zk+j)

S ′(zm)
, j = 1, . . . , r,

from which, for r ≥ 2,

(5.13) z(p)
m − zm = O

(
Ψp(zm)

Ψ̃p,k

)
as p→∞,

with Ψ̃p,k as in (5.6). From this, it follows that

(5.14) lim sup
p→∞

∣∣z(p)
m − zm

∣∣1/p ≤ Φ(zm)

Φ(zk+1)
< 1,

In case r = 1 in (5.4), and provided C
(m)
1 6= 0, we have the asymptotic equality

(5.15) z(p)
m − zm ∼ C

(m)
1

Ψp(zm)

Ψp(zk+1)
as p→∞,

hence

(5.16) lim
p→∞

∣∣z(p)
m − zm

∣∣1/p =
Φ(zm)

Φ(zk+1)
< 1.

Proof. We start with the following asymptotic equality that is given in [17]:

(5.17) z(p)
m − zm ∼ −

Vp,k(zm)

V ′p,k(zm)
= −Q(zm)

Q′(zm)
as p→∞.

First, it is not difficult to see that Q′(zm) satisfies the asymptotic equality

(5.18) Q′(zm) ∼ (−1)kT 1,...,k
1,...,k

∣∣∣∣∣V (z1, . . . , zk)∏k
i=1 Ψp(zi)

∣∣∣∣∣
2

S ′(zm) as p→∞,

that is obtained simply by differentiating that in (5.5) formally. The validity
of this can be shown by actually differentiating the expansion of Q(z) given in
Theorem 3.2, letting z = zm in the resulting expansion, and noting that the
dominant term in this expansion as p→∞ is that given on the right-hand side
of (5.18) and is non-zero.

Next, setting z = zm in (3.7), and recalling that V (y0, y1, . . . , yk) vanishes when
any two of the yj are equal, we have that the summation on s1, . . . , sk there
does not contain the terms for which si = m, i = 1, . . . , k. Given this fact, the
largest terms in the expansion of Q(zm) are those with (r1, . . . , rk) = (1, . . . , k)
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and (s1, . . . , sk) = (1, . . . ,m− 1,m+ 1, . . . , k, k+ j), j = 1, . . . , r. Consequently,
as p→∞, Q(zm) is as in

Q(zm) ∼ V (z1, . . . , zk)∏k
i=1 Ψp(zi)

(5.19)

×
r∑
j=1

T 1,...,k
1,...,m−1,m+1,...,k,k+j

×V (zm, z1, . . . , zm−1, zm+1, . . . , zk, zk+j)∏k
i=1 Ψp(zsi)

× Ψp(zm)

Ψp(zk+j)
+ · · · .

Now, by (3.9) and (5.10),

V (zm, z1, . . . , zm−1, zm+1, . . . , zk, zk+j)(5.20)

= (−1)m−1V (z1, . . . , zk, zk+j)

= (−1)m−1V (z1, . . . , zk)S(zk+j).

Combining (5.18), (5.19), and (5.20) in (5.17), we obtain (5.11) with (5.12).
(5.13) and (5.15) follow directly from (5.11), while (5.14) follows from (5.13) and
(4.3).

Remarks.

• In proving (5.11), we divided the right-hand side of (5.19) by the right-
hand side of (5.18). We would like to emphasize that this operation is
made possible strictly on account of the asymptotic equality for Q′(zm)
given in (5.18).
• Being a limit result, (5.16) concerning r = 1 is stronger than the limsup

result in (5.14) for r ≥ 2. The result in (5.14) for r ≥ 2 is the best that can
be obtained unless we have more information about Ψp(z), hence about the

ξ
(p)
i , than that given in (4.3).

• The results of Theorems 5.2 and 5.3 are the best that can be obtained
when the residues vs are not mutually orthogonal. This shows that the
corresponding results of [18] pertaining to orthogonal residues (that show
twice as fast convergence as those of Theorems 5.2 and 5.3) are indeed quite
special.

5.2. Convergence analysis for Rp,k(z). We now continue to the analysis of
F (z) − Rp,k(z), as p → ∞. Throughout the rest of this work, ‖Y ‖ denotes the
vector norm of Y ∈ CN .
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Theorem 5.4. Under the conditions of Theorem 5.2, Rp,k(z) exists and is unique
for all large p and satisfies

F (z)−Rp,k(z) ∼ (−1)k
r∑
j=1

T̂ 1,...,k
1,...,k,k+j(z; p)

T 1,...,k
1,...,k

S(zk+j)

S(z)
(5.21)

× ψ1,p(z)

Ψp(zk+j)
+ · · · as p→∞,

and hence

(5.22) F (z)−Rp,k(z) = O

(
Ψp(z)

Ψ̃p,k

)
as p→∞,

uniformly on every compact subset of C \ {z1, . . . , zµ}, with Ψ̃p,k as defined in
(5.6). From this, it also follows that

(5.23) lim sup
p→∞

‖F (z)−Rp,k(z)‖1/p ≤ Φ(z)

Φ(zk+1)
, z ∈ K̃ = K \ {z1, . . . , zµ},

uniformly on each compact subset of K̃, and

(5.24) lim sup
p→∞

‖F (z)−Rp,k(z)‖1/p ≤ 1

Φ(zk+1)
, z ∈ E,

uniformly on E. Thus, uniform convergence takes place for z in any compact

subset of the set K̃k, where

K̃k = {z : Φ(z) < Φ(zk+1)} \ {z1, . . . , zk}.

Proof. We have already analyzed Q(z) in Theorem 5.2 and obtained the result
in (5.5), from which we also have the asymptotic equality

(5.25) Q(z) ∼ (−1)kT 1,...,k
1,...,k

∣∣∣∣∣V (z1, . . . , zk)∏k
i=1 Ψp(zi)

∣∣∣∣∣
2

S(z) as p→∞,

that holds uniformly in every compact subset of C \ {z1, z2, . . . , zk}. This shows

that, for all large p, Vp,k(z) is such that Vp,k(ξ
(p)
i ) 6= 0, for i = 1, . . . , p, since the

ξ
(p)
i have no limit points in the set K, the complement of E, whereas the zeros

of Vp,k(z) are all in the set K. In addition, Mk, the cofactor of ψ1,k(z) in the
determinant Q(z) of (2.6), is non-zero because

Mk = (−1)k

∣∣∣∣∣∣∣∣
u1,0 u1,1 · · · u1,k−1

u2,0 u2,1 · · · u2,k−1
...

...
...

uk,0 uk,1 · · · uk,k−1

∣∣∣∣∣∣∣∣ =
Q(k)(0)

k!
,
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and, by (5.25),

Q(k)(0) ∼ (−1)kk!T 1,...,k
1,...,k

∣∣∣∣∣V (z1, . . . , zk)∏k
i=1 Ψp(zi)

∣∣∣∣∣
2

6= 0 as p→∞.

Under these, Rp,k(z) exists and is unique for all large p, as mentioned in Section 2,
following (2.8).

To complete the proof, we need to analyze the asymptotic behavior of ∆(z)
in (2.11). From (3.19) in Theorem 3.3, we realize that it is necessary to first

analyze the asymptotic behavior of the T̂ 1,...,k
s0,s1,...,sk

(z; p) as p → ∞. Expanding

the determinant representation of T̂ 1,...,k
s0,s1,...,sk

(z; p) given in (3.18) with respect to
its first row, we have

T̂ 1,...,k
s0,s1,...,sk

(z; p) =
k∑
i=0

wi ê
(p)
si

(z), wi = (−1)iT 1,...,k
s0,...,si−1,si+1,...,sk

.

By (3.8), the cofactors wi are independent of z and p. By (3.17), and by the fact

that the ξ
(p)
i , and hence ê

(p)
si (z), are all bounded in p, we get

T̂ 1,...,k
s0,s1,...,sk

(z; p) = O(1) as p→∞.

Turning now to ∆(z), arguing as before, we have that, by (5.4), the dominant
terms in the summation in (3.19) as p→∞ are those having indices

(r1, . . . , rk) = (1, . . . , k) and (s0, s1, . . . , sk) = (1, . . . , k, k + j), 1 ≤ j ≤ r.

The rest of the terms are negligible by Lemma 4.1. Thus, uniformly in every
compact subset of the set C \ {z1, . . . , zµ},

∆(z)

ψ1,p(z)
∼ V (z1, . . . , zk)∏k

i=1 Ψp(zi)
(5.26)

×
r∑
j=1

T̂ 1,...,k
1,...,k,k+j(z; p)

V (z1, . . . , zk, zk+j)

Ψp(zk+j)
∏k

i=1 Ψp(zi)
+ · · · as p→∞,

which, by (5.10), becomes

∆(z)

ψ1,p(z)
∼

∣∣∣∣∣V (z1, . . . , zk)∏k
i=1 Ψp(zi)

∣∣∣∣∣
2

(5.27)

×
r∑
j=1

T̂ 1,...,k
1,...,k,k+j(z; p)

S(zk+j)

Ψp(zk+j)
+ · · · as p→∞.

Combining (5.25) and (5.27) in (2.10), we obtain (5.21). (5.22) follows directly
from (5.21), while (5.23) and (5.24) follow from (5.22). This completes the
proof.
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5.3. Approximation of residues. With Theorems 5.2 and 5.4 available, we
can prove that the residues of Rp,k(z) converge to corresponding residues of F (z),
their rates of convergence being the same as those of the corresponding poles.

Theorem 5.5. Assume that the conditions of Theorems 5.4 and 5.3 are fulfilled.
For m = 1, . . . , k, let

v(p)
m = ResRp,k(z)

∣∣∣
z=z

(p)
m

.

Then, limp→∞ v
(p)
m = vm. In fact, we have

(5.28) lim sup
p→∞

‖v(p)
m − vm‖1/p ≤ Φ(zm)

Φ(zk+1)
< 1.

Another result that concerns the approximation of H(zm), where H(z) is a scalar-
valued or vector-valued function analytic at z = zm, is given in the next theorem.

Theorem 5.6. Let H(z) be a scalar-valued or vector-valued function analytic at

z = zm, m ∈ {1, . . . , k}. Then H(zm) can be approximated by H(z
(p)
m ) as follows:

(5.29) H(z(p)
m )−H(zm) ∼ H ′(zm)(z(p)

m − zm) as p→∞,
hence

(5.30) lim sup
p→∞

|H(z(p)
m )−H(zm)|1/p ≤ Φ(zm)

Φ(zk+1)
.

Here, |T | stands for the modulus or the norm of T in case T is a scalar or a
vector, respectively.

The proofs of both of these theorems are identical to those of Theorems 5.4
and 5.5 in [18].

6. Convergence theory for meromorphic F (z) with simple
poles

Let the sets of interpolation points {ξ(p)
1 , . . . , ξ

(p)
p+1} be as in Sections 4 and 5. We

now turn to the convergence analysis of Rp,k(z) as p → ∞, when the function
F (z) is analytic in E and meromorphic in Eρ = int Γρ, where Γρ, as before, is
the locus Φ(z) = ρ for some ρ > 1. Assume that F (z) has µ distinct simple poles
z1, . . . , zµ in Eρ. Thus, F (z) has the following form:

(6.1) F (z) =

µ∑
s=1

vs
z − zs

+ Θ(z),

Θ(z) being analytic in Eρ. We assume, as before, that the vectors v1, . . . , vµ are
linearly independent.

The treatment of this case is based entirely on that of the preceding section, the
differences being minor. Note that the polynomial u(z) of (3.1) is now replaced
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by Θ(z) in (6.1). Previously, we had u[ξm, . . . , ξn] = 0 for all large n − m, as
a consequence of which, we had (3.3) for Dm,n and (3.5) for F (z) − Gm,n(z).
Instead of these, we now have

(6.2) Dm,n = −
µ∑
s=1

vs
ψ1,m−1(zs)

ψ1,n(zs)
+ Θ[ξm, . . . , ξn]

and

(6.3) F (z)−Gm,n(z) = ψm,n(z)

(
µ∑
s=1

es(z)
ψ1,m−1(zs)

ψ1,n(zs)
+ Θ[z, ξm, . . . , ξn]

)
,

with es(z) as in (3.5).

It is clear that the treatment of the general meromorphic F (z) will be the same as
that of the rational F (z) provided the contributions from Θ(z) to ui,j in (2.7) and
∆j(z) in (2.11), as p→∞, are negligible compared to the relevant dominant and
subdominant terms we encountered earlier. This is guaranteed by the following
lemma, which is [17, Lem. 6.1].

Lemma 6.1. With F (z) as in the first paragraph, we have

(6.4) lim sup
p→∞

∥∥∥Θ[ξ
(p)
j+1, . . . , ξ

(p)
p+1]
∥∥∥1/p

≤ 1

κρ
.

We also have

(6.5) lim sup
p→∞

∥∥∥Θ[z, ξ
(p)
j+1, . . . , ξ

(p)
p ]
∥∥∥1/p

≤ 1

κρ
,

uniformly in every compact subset of Eρ.

With this information, we can now prove the following theorems for general
meromorphic F (z). Again, we order the poles z1, . . . , zµ of F (z) such that

(6.6) Φ(z1) ≤ Φ(z2) ≤ . . . ≤ Φ(zµ) < ρ.

We also adopt the notation of Theorems 5.2, 5.3, and 5.4.

Theorem 6.2.

(i) When k < µ, assume that

(6.7) Φ(zk) < Φ(zk+1) = . . . = Φ(zk+r) <

{
Φ(zk+r+1) if k + r < µ,

ρ if k + r = µ,

in addition to (6.6). Then, all the results of Theorem 5.2 hold.
(ii) When k = µ,

(6.8) lim sup
p→∞

|Vp,k(z)− S(z)|1/p ≤ Φ(zk)

ρ

uniformly on every compact subset of C \ {z1, . . . , zµ}.
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Theorem 6.2 implies that Vp,k(z) has precisely k zeros that tend to those of S(z).

Let us denote the zeros of Vp,k(z) by z
(p)
m , m = 1, . . . , k. Then limp→∞ z

(p)
m = zm,

m = 1, . . . , k. In the next theorem, we provide the rate of convergence of each
of these zeros.

Theorem 6.3. Assume the conditions of Theorem 5.3.

(i) When k < µ, all the results of Theorem 5.3 hold.
(ii) When k = µ,

(6.9) lim sup
p→∞

∣∣z(p)
m − zm

∣∣1/p ≤ Φ(zm)

ρ
, m = 1, . . . , k.

Theorem 6.4. Assume the conditions of Theorem 5.4. Then Rp,k(z) exists and
is unique.

(i) When k < µ, all the results of Theorem 5.4 hold with K̃ = Eρ\{z1, . . . , zµ}.
(ii) When k = µ, we have

(6.10) lim sup
p→∞

‖F (z)−Rp,k(z)‖1/p ≤ Φ(z)

ρ
, z ∈ K̃ = Eρ \ {z1, . . . , zµ},

uniformly on each compact subset of K̃, and

(6.11) lim sup
p→∞

‖F (z)−Rp,k(z)‖1/p ≤ 1

ρ
, z ∈ E,

uniformly on E.

Theorem 6.5. Assume that the conditions of Theorems 6.4 and 6.3 hold. For
m = 1, . . . , k, let

v(p)
m = ResRp,k(z)

∣∣∣
z=z

(p)
m

.

Then, limp→∞ v
(p)
m = vm. In fact, we have the following:

(i) When k < µ, the result of Theorem 5.5 is true.
(ii) When k = µ, we have

(6.12) lim sup
p→∞

‖v(p)
m − vm‖1/p ≤ Φ(zm)

ρ
< 1.

The proofs of Lemma 6.1 and Theorems 6.2–6.4 are the same as those of the
corresponding results in [17, Sec. 6]. The proof of Theorem 6.5 is similar to that
of Theorem 5.5 of the present work.
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9. J. König, Über eine Eigenschaft der Potenzreihen, Math. Ann. 23 (1884), 447–449.
10. R. de Montessus de Ballore, Sur les fractions continue algébriques, Bull. Soc. Math. France

30 (1902), 28–36.
11. E. B. Saff, An extension of Montessus de Ballore theorem on the convergence of interpo-

lating rational functions, J. Approx. Theory 6 (1972), 63–67.
12. A. Sidi, Quantitative and constructive aspects of the generalized Koenig’s and de Montes-
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