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1. Introduction
In this work, we are concerned with the derivation of full asymptotic expansions, as s — oo, for the Fourier integrals
b
F[f; +s) :/ f(x)e***dx, |[a,b]finite, s> 0, (1.1)
a

when the function f{x) has arbitrary algebraic and logarithmic singularities at the endpoints x = a and/or x = b. Specifically,
we assume that f{x) has the following properties:

1. fe C(a,b) and has the asymptotic expansions

fX) ~ > U(log(x — @) (x — ) as x — a+,
= (1.2)
f(x) ~ > Vj(log(b —x))(b—x)" as x — b-,
j=0
where Uj(y) and Vj(y) are some polynomials in y, and y; and ¢; are in general complex and satisfy
V#E L =2 Ry <Ry <Ry, < limM Ry = +oo,
J—0o0
13
51'75—1,—2,...; Rog < RO < ROy < -+ llm9z5]:+00 ( )
J—0o0
Here, Rz stands for the real part of z.
2. If we let p; = deg(U;) and g; = deg(V;) for each j, then y; and §; are ordered such that
pj = pia i Ry =Ry @5 > gy 0f R = Noj. (1.4)
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3. By (1.2), we mean that, foreachm=1,2,...,
m—1
fx) = Ui(log(x —a))(x — a)’ = O(Up(log(x — a))(x —a)’™) as x — a+,
j=
(1.5)

fx) = " Vi(log(b — x))(b — x) = O(Vy(log(b — x))(b —x)’") asx—b—.

s=

3
L o

(=]

This is consistent with (1.3).
4. For each k=1,2,..., the kth derivative of flx) [f¥(x)] also has asymptotic expansions as x — a+ and x — b— that are
obtained by differentiating those in (1.2) term by term.

Remark. Note that if

f(x) = (x— a)’ [log(x — a)/"g,(x) = (b —x)°[log(b — x)|"g, (),
where p and q are nonnegative integers, g, g, € C[a,b], and g,(x) and g,(x) have full Taylor series about x=a and x = b,
respectively, then f(x) is as in (1.2)-(1.5) with

(yj=7+J, pj=p) and (§=0+j, ¢;=q), j=0,1,....

The following are consequences of (1.3):

(i) There are only a finite number of y; and only a finite number of §; having the same real parts; consequently, Ry; < Ry;,
and RJ; < NIy, for infinitely many values of the indices j and j'.

(ii) The sequences {(x — a)” }7o and {(b — x) }7Zo are asymptotic scales as x — a+ and x — b—, respectively, in the following
sense: For eachs=0,1,...,

i |E @7 | [0 9 = 9,
x—at | (x—a) | ) 0 if Ry, < Ry,
lim (b—x)%| {1 if N = Noj1,
b (h—x)" | L0 if RS < Rjs.

(iii) The integral f:f(x)eii“ dx exists in the ordinary sense provided Ry, > —1 and R, > —1. Otherwise, it exists as an
Hadamard finite part integral.

Asymptotic expansions for the integrals F[f;+s] = fa" f(x)e***dx and others that have general oscillatory kernels have
been derived in Bleistein and Handelsman [2, Sections 3.4, 6.3, and 6.4] by using a technique that involves neutralizers
and Mellin transforms. In this work, we derive these expansions by using a method that employs simpler and less
sophisticated tools; in fact, what is needed most is basic knowledge of asymptotic expansions. In the next section,
we state the main results that contain the full asymptotic expansions for the integral F[f; £s] as s — oo, when f(x)
is as described above. In Sections 3 and 4, we provide the proofs of these results. The asymptotic expansions of
F[f, £ s] are expressed in simplest terms based only on the asymptotic expansions in (1.2). In Section 5, we provide
some examples.

The leading terms in the asymptotic expansions derived here can also be obtained by using the method of stationary
phase. For this method, see Olver [3] and Bender and Orszag [1], for example.

Before we end this section, we would like to comment very briefly on the proof technique that we use in this work. We
split the integral fab into two: |, and frb, for some r € (a,b). Of course, under the conditions imposed in the first paragraph of
this section, f(x) is infinitely smooth in a neighborhood of x = r. We obtain the asymptotic expansions for both of these inte-
grals and show that the first contains contributions from x = a and x = r, while the second contains contributions from x =r
and x = b. It turns out that the two contributions from x = r cancel each other out completely, the end result being that the
asymptotic expansion of F(f; + s) has contributions from x = a and x = b only.

2. Main results

We now state theorems on asymptotic expansion for the integral ff f(t)e*s*dx as s — oo, whether this integral converges
and exists in the ordinary sense or diverges and is defined in the sense of Hadamard finite part. Theorem 2.1 concerns the
special case of (1.2) in which Uj(y) and Vj(y) are constant polynomials. This case is of importance by itself. Theorem 2.2 covers
the general case in which Uj(y) and V|(y) are arbitrary polynomials.

Theorem 2.1. Let f(x) be as in the first paragraph of Section 1, such that Uj(y) and Vj(y) are constant polynomials. That is, f(x) has
asymptotic expansions of the form
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fx)~ ch(x —a)i asx— a+,
~ 2.1)
fx) ~> di(b—x)" asx— b-,
=0
where ¢; and d; are some nonzero constants. Let w = xis with s > 0. Then
b = I(y+1) b, 16+ 1)
/ﬂ f(x)eW"dXNeW“j:ZOC,-W—keW jzzodjW as s — oo. (2.2)

Theorem 2.2. Let f{(x) be as in the first paragraph of Section 1, with U;(y) = Zf;ouﬁy" and V;(y) = Z?;O v;y', where u;; and vj; are
constants, and let w = +is with s > 0. Denote £ by D,,,. For an arbitrary polynomial S(y) = fozoeiyi and an arbitrary function g that
depends on w, define also

) |
; d
S(Du)g = eiDigl = > eir .
i=0 i
Then

/17“

«+1

/f x)e"*dx ~ eW”ZU )

Remarks

w +1
ebZV ,)J{WM )} as s — oc. (2.3)

1. In case f € C[a,b], we have y; = 9; = and ¢i=f9a)[j!, dj=(~1Yf9(b)/j!j=0,1,..., in (2.2). This result can also be obtained
by repeated integration by parts of fa (x)e"* dx. See, Wong [4, Chapter 1], for example.

2. For (2.2) to be a genuine asymptotic expansion, it is necessary (but not sufficient) that the sequences {w*”’f*l}jﬁo and
{w=i1}, be asymptotic scales, and this is indeed the case.

3. For (2.3) to be a genuine asymptotic expansion, it is necessary (but not sufficient) that the sequences {U;(D, )[F(y} +1)/
(—w )’“]} o and {V;(Ds)[I(5; + 1) /w’ ”]}] o be asymptotic scales, and this is also the case. To see that thlS is true, it is
enough to observe that now

Fo;+ 1) ! lynomial inlogw of d
U;(Dy,) (_W)vjﬂ = (—w)""f“ x (a polynomial inlogw of degree p;),
and ‘
V;(Ds,) [%} = x (a polynomial inlogw of degree g;).

4. It is understood that, in both theorems, z is defined as follows: with z=|z|e",

4 = (|Z‘He—v0)ei(p0+vlog\z\)'

5. Of course, Theorems 2.1 and 2.2 can also be applied to the integrals fff(x)ew" dx, where f(x) and/or its derivatives have
singularities at one or more points in (A, B). For this, we subdivide the interval [A,B] into several subintervals appropri-
ately to ensure that f{x) is infinitely differentiable in each of these (open) subintervals and may be singular at the end-
points only, and apply the theorems in each of these subintervals.

|0)<m, and u=p+iv, we have

3. Proof of Theorem 2.1
3.1. Preliminaries
The following lemma will be used in the proof of Theorem 2.1.

Lemma 3.1. Let « be a complex number different from —1,-2,..., and let ¢ > 0 and s > 0. Then, with w = #is, we have

Tt 1) | &2 e A [~
o LWt _ wE k> _(_1\m m o—m oWt
/0 tre™dt = e +e ;( [ e e G e / tmeMtdt, m > Ra, (3.1
and the asymptotic expansion
¢ Fo+1) & k[0, &7*
o LWt we _1\k MMk _
/0 t e dt e +e 1;( DiSle ass— oo, (32)
where [a]o=1 and [], = " l( —1i) fork=1,2,.... In case of divergence, that is, in case Ro < —1, the integral fo t*e"t dt is de-

fined in the sense of Hadamard finite part.
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Proof. To begin, we assume that —1 < Ra < 0, so that the integral f(f t*e"t dt exists in the ordinary sense for all w and is an
analytic function of o. In addition, we can also write

/'t“eW‘dt:/ t“ewfdt—/ te dt, (3.3)
0 0 ¢

because both [* t*e"dt and I t*e**dt exist in the ordinary sense when —1 < %o < 0. We compute the first of these inte-
grals by rotating the contour of integration (that is the positive real axis in the t-plane) by 90° when w = is and by —90° when
= —is. We obtain

0 . S I'o+1) T'(e+1)
t*eWt — (+ o+1 / st o+1 _ ) 4
/0 eV dt = (+i) A %e~tdt = (£ 1) g Cwy (3.4)
By repeated integration by parts, the second integral becomes
00 a 50( o 00 "
[ (e dr — Z V]";k“ + (—l)m[w—]n'j’ / (rmemt g, (3.5)

Thus, combining (3.4) and (3.5) in (3.3), we obtain (3.1).

The right-hand side of (3.1) is analytic for & € S; = {& : Ro. < m} and has simple poles [those of I'(az+1)] at o= —-1,-2,...,
while the left-hand sideis analyticforo € S; = {o : Ror > —1}.BecauseS; NS, # 0, and because m can be chosen arbitrarily large,
the right-hand side of (3.1) is the analytic continuation of the left-hand side, as a function of «, to the whole «-plane. In addition,

gel
/ - MmeWt dt <

independently of w. From (3.1) and (3.6), we thus have that the last term on the right-hand side of (3.1) is O(w ™) as s — occ.
From this and from the fact that m is an arbitrary integer, the result in (3.2) follows. It is also easy to see that, in case
Ro < —1, the right-hand side of (3.1) is indeed the Hadamard finite part of [; t*e"dt. O

é‘.]mffm+l

m-Ra-1’

if m> Ro+1, (3.6)

Remark. That the integral fo t*e" dt can be continued to a meromorphic function of « can also be shown as follows: Expand-
ing e"* in powers of t, and integrating term by term, we obtain

13 o0 W v,4+k+1
o pWE
/Ote dt = 2:—1 LT (3.7)

k=0

Because it converges absolutely and uniformly in o, the infinite series in (3.7) represents a function that is meromorphic in
the o-plane with simple poles at o = —1,—2,.. .. Thus, the right-hand side of (3.7) is the analytic continuation of [; t*e"dt to
the whole o-plane, with « = —1,-2,.. ., removed; it is also the Hadamard finite part of it when Ro < -1 but o # —-1,-2,...

3.2. The proof

Let us write the integral f: f(x)e"*dx as a sum of two integrals as in

b
/ fx)e™dx =l + Iy, (3.8)
where
r b
Lia s :/ fx)e™dx, Iy :/ fx)e"*dx, a<r<b. (3.9)

Next, choose a positive integer m such that ®y,, > 0 and Rd, > 0, and set
Km = min{[Ry,, — 1], [Ron — 1]}. (3.10)

Such an integer m exists because lim; ., Ry; = co and lim; ., RJ; = oo by (1.3).
We now proceed to the proof of Theorem 2.1. We shall give all the details of this proof.
We first treat I, ;. Making the substitution t=x — a and ¢ =r — a, we have

Loy = € / fla+temdt. (3.11)
JO

Invoking (2.1), let us define

3

P(t) =S ¢ith,  En(t) =f(a+t) — Py(t). (3.12)

T
o
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Hence )
[ay = €" V P (t)e™dt + /”Em(t)ewfdt]. (3.13)
Jo 0
By (3.12) and (2.1) and our assumptions on f(x),
EV(6) ~ > glylti™ ast—0+, k=0,1,.... (3.14)
j=m
By (3.14) and (3.10), we have
EY©0)=0, k=0,1,...,Kn (3.15)
Therefore, E,(t) is in C*"[0, £]. Consequently, by integration by parts, we obtain
: wt WE ol k E( Km K, ewt
/0 En(t)e™dt — e v’;(—l) W,M ka / EC dt, (3.16)
and, because EX™(t) is continuous on [0,¢],
/’ EU) (F)e" de — o(1) as 5 — o, (3.17)
0
by the Riemann-Lebesgue lemma. Therefore,
¢ Km—1 (k)
eW"/ En(t)e"dt = e Z (*UkEWk(j) +0(s"m) as s — oo. (3.18)
0 k=0
By Lemma 3.1,
nE m—1 ¢ m=1 " [(y. +1 m-1 Km—1 n. ] £k )
e"“’/ Pn(t)e" dt =" g / tie"dt = ey "¢ Lo+ _,H) +e gl Y (-1 [/’]k,il +0(s"m)
0 = Jo o (=w)d =0 | k=0 w
Km—1 (k) [ =
Py(¢ _
W”ZJ e S (1P oy ass— o, 319)

j=0 k=0
Here we have made use of the fact that

k m-1

¢ d o) [ =
Gilyl&h™ ’ Z Jdv,(é” :EZQCJ :PE,’I)(g).

j=0 > j=0

Substituting now (3.18) and (3.19) in (3.13), and noting that Eﬁ,’j)(é) +PE,’?(;“) =f®(r), k=0,1,..., by (3.12), we obtain

L

m-—

.

m-1 r .+1 Km—1 (k)
Iw=eW”ZCJ%+eWZH>"f 1) o5 n) as's — ox. (3.20)

£ Wi
The treatment of I, follows directly from that of Ij4,. We first rewrite I as in
sy = / : Fl—x)e " dx. (3.21)
Next, we note that, by (2.1),
—X) ~ f:dj(x +b)% asx— —b. (3.22)

We can now apply the result in (3.20) with the substitutions a — —b, r — —r, f(x) — f(—x), ¢; — d;, y; — 9;, and w — —w. We
obtain

P@+1) e o .
—eWbZd o+, > <{ §k31+0<s ) as s — oo (3.23)

Substituting (3.20) and (3.23) in (3.8), and observing that the two summations involving the f*)(r) cancel each other out
completely, we obtain

b =Ty rEi+1) .
/ flxyemdx =e"y —"—— ) +1 e Z di—2 Wo,+1 O(s™m) as s — oo. (3.24)
a j:0

The result in (2.2) follows by realizing that lim,,_, ..k, = oco. This completes the proof of Theorem 2.1. O
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4. Proof of Theorem 2.2
4.1. Preliminaries
The following lemma will be used in the proof of Theorem 2.2.

Lemma 4.1. Let o be a complex number different from —1,-2,..., and let ¢ >0 and s > 0. Then, with w=tisand p=1,2,..., we

have )
: @ T@+T) e S g0 m o]
D 40 oWt _ = wé _1\k Mk o Mm =M oWt q
/O (ogeytre"de = |0 S ve k;( I e / emendt|, m > Ra, 4.1)
and the asymptotic expansion
¢ . g F(oc +1 o 2 [(log ey e’]
where [o]o =1 and [o], = f‘;o] (ot — z)for k= 1,2,4 ... In case of divergence, that is, in case Ro. < —1, the integral j'(f(log t)Pt et dt is

defined in the sense of Hadamard finite part.

Proof. To begin, we assume that —1 < Ro < 0, so that the integral f(f(log t)Pt*e"t dt exists in the ordinary sense for all w and
is an analytic function of «. In addition,

¢ dp dl’ ¢
D 0L Wt _ o wt — o Wt
/O (logt)’t*e dt_/O <—d St ) dt —dap/o t*e" dt.

From this, from Lemma 3.1, and from the fact that the right-hand side of (3.1) is the analytic continuation in « of f(; t*e" dt to
Ro < m, the result in (4.1) follows. The result in (4.2) can be shown to be true by observing that, in (4.1),

go—kY\ _ ap a’( o) _ a’( 8p P ak
dacP ([ 1€ ) _8@0&’(85"5 ) —W<m€ ) é {(]085) ]

and that the last term there is O(s™™) as s — oo since

dd; <[oc] / t-me wrdt> ( )(dd:pkk m) ( dd_; /jtmewtdt>
( )(dcipkk (o] )( / m(logt)"t“*'"ewtdt>

as s — oo, if m>NRa+1.

This completes the proof of the lemma. O
4.2. The proof
The proof of Theorem 2.2 is achieved in exactly the same way as that of Theorem 2.1, with appropriate changes. We start

by defining Ij4r and I;p; as in (3.8) and (3.9), and k;, as in (3.10).
In the treatment of Ij4,}, as before, we make the substitution t=x — a and ¢ =1 — q, and define

m-1
t) => Uj(logt)th, En(t) =f(a+t) - Pu(t). (4.3)
=0
After proceeding as in the preceding section, and using Lemma 4.1 this time, we obtain
m-1 +1 Km—1 (k) r )
Iy =e"™ Z U;(D /J " +1) +e ) (fukfwkﬁﬁ +0(s ) as s — oo. (4.4)
k=0

Applying (4.4) to I[r b}, With appropriate substitutions, as in the preceding section, we obtain

eV +1 Weri1 f(k) r —K
- bZV )| " +e 2 w§k31+0<s ) ass - oc. (45)
k=0 \ ™
Combining (4.4) and (4. 5) we obtain
wa D] e Ioi+1 i
/f X)dx=e ZUJ ) ),,JH +e bzvj(Db}){%} +0(s7*m) as s — oo. (4.6)
=0

The result in (2.3) now follows from the fact that lim,,_, . K = co.
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5. Applications

Example 1. In case f{x) has no singularities on [a,b], we have y;=¢;=j and ¢;=f9(a)/j!, dj= (-1Yf(b)/j!j=0,1,.. .. Hence
Theorem 2.1 gives the following known asymptotic expansion that can also be obtained by repeated integration by parts, as
already mentioned in Section 2:

je?f0 (b) —e™fV(a)

/f e dx ~ 0( 1y i as s — oo, for w=is. (5.1)
Jj=

Example 2. In case f(x) = g(x)|x — r|°, whereg € C[a,b],a<r<b,and gisrealand o # —1,-2,.. ., we can apply Theorem 2.1 to
the integrals [ f(x)e™ dx = [} g(x)(r — a)’e"* dx and frbf(x)e""" dx = frbg(x) (x — r)’e"* dx. After some manipulation, we obtain

/ ’ Fix)e™ dx ~ i(—l)f efO(b) — e fI(@) _ 5ips ion2 gin(gm/2)e™

j+1
j 5 w

YT as s — oo, forw=4is. (5.2)

o0 U ;
XZ ]g I'c+j+1)
j=0

Example 3. In case fx)=g(x) log |x —r|, where ge C*[a,b] and a<r<b, we can apply Theorem 2.2 to the integrals
ﬂf(x)e‘”x dx and ,/;bf(x)ew" dx. This amounts to differentiating in (5.2) the term involving e"" with respect to o, and setting
o = 0 following that. This gives

bw £(j) _ pawf(j)
/f WXdXNZ (~1y¢ [7(b) — ey $171:e"”2 H] as s — oo, for w= +is. (5.3)

ji+1
j=0 w

Example 4. Let flx) be 2n-periodic on (—oo,c0) and infinitely differentiable there, except at the points x =r+* 2k,
k=0,1,2,..., where it has logarithmic singularities. Specifically, with 0 < r < 27, assume that f{x) can be written as in

fX)=hi(x) + ha(x), 0<x<2m; hi(x)=gx)log|x—r|, g hy e C[0,27]. (5.4)

[Note that hy(x) and hy(x) are not periodic by themselves, but their sum is.] Assume that we are interested in the nth Fourier
coefficient of f(x), namely,

2n
f(x)ei""dx, n=0,+1,42,...,.

Applying (5. 3) of the preceding example to the integral f x)e" dx, w = +in, we have
7Ih (x)e" dx ~ Em (fl)jM ime™ E as n — oo (5.5)
o — witl i WJ“ ’ '
Jj=

Applying (5.1) in Example 1 to the integral fo hy(x)e"*dx, w = +in, we have

21 S () (0)]
[ haweax~ Y (17 W 25 11— co. (5.6)
0

Adding (5.6) to (5.5), and recalling that h;(x) + hx(x) = f{x) and that, being 27-periodic, f(x) satisfies f¥(0) = f¥(2n), k= 0,1,.. .,
we obtain

2 +i g N j g(i)(r)
e = | f(x)er ™ dx ~ Fime l”’z;(—l)J Gy as n — oo. (5.7)
J:

That is, due to 2n-periodicity of f{x) and its being infinitely differentiable at the points x = 0 and x = 27, there are no contri-
butions from these points to the asymptotic expansions of e., as n — too. The only contribution comes from the point of
singularity.

An example of functions considered here is f(x) = u(x)log (c|sinl (x — r)|), where 0 <r<2m, u € C(—o0,00) and is 27-
periodic, and c is some positive scalar. For this function,

hi(x) = u(x)log|x —r|, hy(x)=u(x)log (c
Hence g(x) = u(x). Such functions appear as kernels of some weakly singular Fredholm integral equations that arise from two-
dimensional boundary value problems.

sing (x —r)
X—r
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