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An important issue that arises in application of convergence acceleration (extrapolation)
methods is that of stability in the presence of floating-point arithmetic. This issue turns
out to be critical because numerical instability is inherent, even built in, when convergence
acceleration methods are applied to certain types of sequences that occur commonly in
practice. If methods are applied without taking this issue into account, the attainable
accuracy is limited, and eventually destroyed completely, as more terms are added in the
process. Therefore, it is important to understand the origin of the problem and to propose
practical ways to solve it effectively. In this work, we present a general discussion of the
issue of stability within the context of a generalization of the Richardson extrapolation
process, and review some of the recent developments that have taken place in the
theoretical study of many of the known acceleration methods. We discuss approaches that
have been proposed to cope with built-in instabilities when applying various methods, and
illustrate the effectiveness of these strategies with some numerical examples.

© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

An important issue that arises when applying convergence acceleration methods (equivalently, extrapolation methods
or sequence transformations) to slowly converging or diverging sequences is that of numerical stability in the presence of
floating-point arithmetic. As always, we measure the extent of stability, or its lack thereof, in the classical sense, namely, by
assessing the rate of propagation of the errors in the input to the error in the output. In our case, the input is the sequence
whose convergence we would like to accelerate, while the output is the approximations produced by the acceleration
process. In general, errors in the input are caused by the finite precision of the floating-point arithmetic that is being used,
although they can be caused in other ways too.

For some classes of sequences, the rate at which input errors propagate into the output are seen to be negligible. For
some other classes, however, it may be very significant; in such cases, the accuracy of the approximations obtained by the
acceleration process may eventually be lost completely, and this makes the output quite unreliable.

In this work, we would like to survey the experience and knowledge that has been accumulated throughout the recent
years concerning this phenomenon. Specifically, we first show how the issue of stability can be understood at least for some
extrapolation methods, and give some examples to illustrate the validity of this explanation. We next discuss the theoretical
assessment of stability for several methods. Based on these assessments, we propose effective strategies for improving the
stability properties of extrapolation methods, and illustrate these with numerical examples.
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2. Understanding stability in extrapolation

2.1. Algebraic structure of extrapolation methods

We start by observing that every sequence {Am} can be related to a function A(y) defined (that is, computable) on an
interval (0,b], where the variable y may be continuous or discrete, and Am = A(y′

m) for some monotonically decreasing
sequence {y′

m}, such that limm→∞ y′
m = 0. Of course, in case limm→∞ Am = A, we have limy→0 A(y) = A as well.

Example 2.1. As an example, consider the sequence of trapezoidal rule approximations

Q m = 1

m

[
1

2
f (0) +

m−1∑
i=1

f (i/m) + 1

2
f (1)

]
, m = 1,2, . . . ,

to the integral I = ∫ 1
0 f (x)dx. Clearly, the sequence {Q m} is related to a function A(y), for which, y′

m = 1/m and A(y′
m) =

Q m , and y assumes only the discrete values 1,1/2,1/3, . . . . In addition, A(y) has some additional interesting properties
when f (x) has a number of continuous derivatives on [0,1]. The following result concerning A(y) is a special case of a
more general result that is stated and proved in Sidi [33, Theorem D.4.1, pp. 471–472] and has proved to be very useful
in the analysis of Romberg integration, which is a Richardson extrapolation procedure: When f ∈ C∞[0,1], A(y) can be
continued to all real values of y ∈ [0,1] such that a(t) = A(t1/2) is infinitely differentiable on [0,1] as a function of the
continuous variable t , in addition to satisfying the interpolation conditions a(m−2) = A(m−1) = Q m , m = 1,2, . . . .2

To put things in proper context, we will treat stability within the formalism of the generalized Richardson extrapolation
process. Most of the developments below can be found in [33, Introduction and Chapter 3]. For earlier treatments covering
some of the aspects of that given here, see Albrecht [2], Håvie [12], Brezinski [4], Sidi [21,24], and also Brezinski and Redivo
Zaglia [5, Chapter 2], for example.

For most known extrapolation methods, some of which we discuss later in this work, the approximations A( j)
n to

limy→0 A(y) = A are defined via systems of linear equations, or can be shown to satisfy systems of linear equations, of
the form

A(yl) = A( j)
n +

n∑
k=1

αkφk(yl), j � l � j + n; j = 0,1, . . . , n = 1,2, . . . , (1)

with the ym chosen such that

y0 > y1 > · · · > 0, lim
m→∞ ym = 0. (2)

Here φk(y) are some functions known for y > 0, just as A(y) is, and they are determined uniquely by the relevant extrapo-
lation method. Of course, this linear system can be expressed in matrix form as Mx = b, where

M =

⎡⎢⎢⎣
1 φ1(y j) . . . φn(y j)

1 φ1(y j+1) . . . φn(y j+1)

...
...

...

1 φ1(y j+n) . . . φn(y j+n)

⎤⎥⎥⎦ , x =

⎡⎢⎢⎣
A( j)

n
α1
...

αn

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
A(y j)

A(y j+1)

...

A(y j+n)

⎤⎥⎥⎦ . (3)

Solving this system for A( j)
n by Cramer’s rule, we obtain the determinant representation

A( j)
n = D{A(y j), A(y j+1), . . . , A(y j+n)}

D{1,1, . . . ,1} , (4)

where

D{v0, v1, . . . , vn} = det

⎡⎢⎢⎣
v0 φ1(y j) . . . φn(y j)

v1 φ1(y j+1) . . . φn(y j+1)

...
...

...

vn φ1(y j+n) . . . φn(y j+n)

⎤⎥⎥⎦ .

Note that this representation of A( j)
n is very useful for the theoretical analysis of the extrapolation methods. It should not

be used for actual computation of A( j)
n , however; other less expensive and numerically better ways should be employed

2 Using this result, it is proved in [33, p. 53, Theorem 2.4.1] that all columns of the Romberg table in this case converge to I = ∫ 1
0 f (x)dx, and accelerate

the convergence of the sequence {Q mk }∞k=0 for arbitrarily chosen stepsizes hk = 1/mk , and this is quite surprising.
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Table 1
Arrangement of extrapolation table.

A(0)
0

A(1)
0 A(0)

1

A(2)
0 A(1)

1 A(0)
2

A(3)
0 A(2)

1 A(1)
2 A(0)

3
.
.
.

.

.

.

.

.

.

.

.

.
. . .

for this purpose. Indeed, very efficient recursive algorithms exist for computing the extrapolation tables resulting from
most methods. (In case the φk(ym) do not have any particular structure, one can use the E algorithm of Schneider [16],
Brezinski [4] and Håvie [12] or the FS algorithm of Ford and Sidi [10].)

The approximations A( j)
n can be arranged in a two-dimensional array as in Table 1.

In agreement with the arrangement of the A( j)
n in this array, we will call the sequences {A( j)

n }∞j=0, with fixed n, “column

sequences.” Similarly, we will call the sequences {A( j)
n }∞n=0, with fixed j, “diagonal sequences.” Practical experience and some

theoretical results suggest strongly that the diagonal sequences have superior convergence properties.
Denoting the cofactor of A(y j+i) in the numerator determinant of (4) by Ci , and expanding both the numerator and

denominator determinants with respect to their first columns, we obtain

A( j)
n =

∑n
i=0 Ci A(y j+i)∑n

i=0 Ci
,

which can also be written as in

A( j)
n =

n∑
i=0

γ
( j)

ni A(y j+i) with
n∑

i=0

γ
( j)

ni = 1; γ
( j)

ni = Ci∑n
s=0 Cs

, i = 0,1, . . . ,n. (5)

Actually, we can say more about the γ
( j)

ni : Let us denote the first row of M−1 by [m0,m1, . . . ,mn]. Then

γ
( j)

ni = mi, i = 0,1, . . . ,n. (6)

Thus, the γ
( j)

ni satisfy the linear system

MTγ = e1; γ = [
γ

( j)
n0 , γ

( j)
n1 , . . . , γ

( j)
nn

]T
, e1 = [1,0, . . . ,0]T. (7)

Finally, as shown in [24], the γ
( j)

ni also satisfy

n∑
i=0

γ
( j)

ni zi = H ( j)
n (z)

H ( j)
n (1)

, (8)

where

H ( j)
n (z) = det

⎡⎢⎢⎢⎣
z0 φ1(y j) . . . φn(y j)

z1 φ1(y j+1) . . . φn(y j+1)

...
...

...

zn φ1(y j+n) . . . φn(y j+n)

⎤⎥⎥⎥⎦ . (9)

Theoretical studies of extrapolation methods are ultimately carried out by analyzing H ( j)
n (z) asymptotically. This analysis

seems to be possible for column sequences {A( j)
n }∞j=0 ( j → ∞ and n fixed) in quite a few cases. It is extremely difficult for

diagonal sequences {A( j)
n }∞n=0 (n → ∞ and j fixed), and there are very few such cases. Nevertheless, conclusions drawn from

j → ∞ asymptotics and that are relevant for column sequences seem to be generally just as relevant and valid for diagonal
sequences.

2.2. Assessing stability in extrapolation

As mentioned earlier, we assess the stability of the extrapolation method by analyzing the rate at which errors in the
A(ym) propagate into A( j)

n . We turn to this analysis next. Writing Am = A(ym) for simplicity of notation, we let Ām = Ā(ym),
the computed Am , be Ām = Am + εm , where εm is the error incurred in the computation of Am . Let also γ̄

( j)
ni = γ

( j)
ni + δ

( j)
ni

be the computed γ
( j) . Then the computed A( j)

n is
ni
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Ā( j)
n =

n∑
i=0

γ̄
( j)

ni Ā j+i . (10)

Consequently,∣∣ Ā( j)
n − A

∣∣ �
∣∣A( j)

n − A
∣∣ +

n∑
i=0

∣∣γ ( j)
ni

∣∣|ε j+i| +
n∑

i=0

∣∣δ( j)
ni

∣∣| Ā j+i|.

Now, in case the Ām and the γ̄
( j)

ni have been computed with machine precision, we have |εm| = |Am||ρm| and |δ( j)
ni | =

|γ ( j)
ni ||η( j)

ni |, where |ρm| � u and |η( j)
ni | � u, u being the roundoff unit of the arithmetic being used. Thus,

∣∣ Ā( j)
n − A

∣∣ �
∣∣A( j)

n − A
∣∣ + u

[
n∑

i=0

∣∣γ ( j)
ni

∣∣|A j+i| +
n∑

i=0

∣∣γ ( j)
ni

∣∣| Ā j+i|
]
.

By the fact that | Ām| � |Am| + |εm| � |Am|(1 + u), we have u| Ām| � u|Am| + O (u2). Therefore,∣∣ Ā( j)
n − A

∣∣ �
∣∣A( j)

n − A
∣∣ + 2u

n∑
i=0

∣∣γ ( j)
ni

∣∣|A j+i|.

In case {Am} converges, Am ≈ A for all large m. Therefore,∣∣ Ā( j)
n − A

∣∣ �
∣∣A( j)

n − A
∣∣ + 2u|A|

n∑
i=0

∣∣γ ( j)
ni

∣∣,
and if A �= 0,

| Ā( j)
n − A|
|A| � |A( j)

n − A|
|A| + 2u

n∑
i=0

∣∣γ ( j)
ni

∣∣.
Now, assuming that lim j→∞ A( j)

n = A or that limn→∞ A( j)
n = A, we have that the theoretical relative error in A( j)

n satisfies

|A( j)
n − A|/|A| → 0 as j → ∞ or as n → ∞. Consequently, for all large j or n,

| Ā( j)
n − A|
|A| � 2u

n∑
i=0

∣∣γ ( j)
ni

∣∣ = 2uΓ
( j)

n , (11)

where

Γ
( j)

n =
n∑

i=0

∣∣γ ( j)
ni

∣∣. (12)

We thus see that the quantity Γ
( j)

n plays a very important role when applying extrapolation methods in floating-point
arithmetic. First, by the fact that

∑n
i=0 γ

( j)
ni = 1, we have Γ

( j)
n � 1. Next, in case Γ

( j)
n is of order 10p and u is of order 10−s ,

at most s − p decimal digits of Ā( j)
n can be trusted.

In view of our conclusions above, we want sup j Γ
( j)

n or supn Γ
( j)

n to be finite and small. Of course, the ideal situation is

one in which Γ
( j)

n = 1 or lim j→∞ Γ
( j)

n = 1 or limn→∞ Γ
( j)

n = 1. In case Γ
( j)

n is bounded in j or n but is much larger than 1,

we want to be able to reduce it as much as possible. In case Γ
( j)

n is unbounded in j or n, we want to be able to force it to
be bounded or to grow as slowly as possible.

Remarks.

1. The roundoff unit u is of order 10−16 for double precision, and of order 10−35 for quadruple precision. Therefore, better
accuracy can be obtained from Ā( j)

n by increasing the precision of the floating-point arithmetic, provided the Am are
also computed to machine precision in this arithmetic.

2. In case the γ
( j)

ni have been computed exactly, we have δ
( j)
ni = 0 for all i, and hence (11) assumes the slightly different

form

| Ā( j)
n − A|
|A| � u

n∑
i=0

∣∣γ ( j)
ni

∣∣ = uΓ
( j)

n .

Nevertheless, it is easy to see that the preceding conclusions remain the same.
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A slightly different approach to stability has been proposed by Fessler, Ford, and Smith [9], and more recently by Senhadji
[17,18]. Fessler et al. consider specifically the stability of the u transformation of Levin [13] as applied to the sequence {Am}.
They estimate the uncertainty in Ā( j)

n via

∣∣δA( j)
n

∣∣ =
[

K∑
i=0

(
∂ A( j)

n

∂ai
δai

)2
]1/2

,

where ai = Ai − Ai−1, δai is the uncertainty (error) in the computed ai , and K is the number of the ai used to construct
A( j)

n . In [17], Senhadji considers quasi-linear sequence transformations [the general extrapolation procedure described by (1)
and all other transformations discussed in Section 5 are quasi-linear] and introduces the quantity

Γ
( j)
n =

n∑
i=0

∣∣∣∣ ∂ A( j)
n

∂ A j+i

∣∣∣∣
for assessing the stability of A( j)

n instead of Γ
( j)

n defined in (12). In [18], he applies treatment of [17] to the Shanks trans-
formation. Senhadji calls Γ

( j)
n the condition number of A( j)

n .

3. Illustration of numerical instability and its treatment

We now illustrate the developments above with two concrete extrapolation methods. The methods we have chosen for
this purpose are the u transformation of Levin [13] (see also [33, Chapter 19]) and the d(1) transformation of Levin and
Sidi [14] (see also [33, Chapter 6]).

3.1. The u transformation

The approximations A( j)
n generated by applying the Levin u transformation to a sequence {Am}∞m=1 are defined via the

linear systems of equations

Al = A( j)
n + (l + 1)al+1

n−1∑
i=0

βi

(l + 1)i
, j � l � j + n; j = 0,1, . . . , n = 1,2, . . . , (13)

with the am defined as in

a1 = A1; am = Am − Am−1, m = 2,3, . . . . (14)

Note, conversely, that

A0 = 0; Am =
m∑

i=1

ai, m = 1,2, . . . . (15)

Practical experience, and some theoretical results by the author [20,22,25], suggest strongly that the diagonal sequences
obtained by applying the u transformation to certain logarithmically convergent sequences and linearly convergent se-
quences have superior convergence properties. In their numerical survey of convergence acceleration methods, Smith and
Ford [35,36] and Weniger [38] conclude that the u transformation and the θ algorithm of Brezinski [3] are two of the
best sequence transformations for accelerating logarithmic convergence, and these two transformations along with that of
Shanks [19] are the best transformations for accelerating linear convergence. Both types of convergence will be described in
the next paragraph.

Observe that the equations in (13) that define the u transformation are exactly of the form shown in (1). Exploiting the
special nature of the matrix M of these equations, Levin has derived the following simple closed-form expression for the
approximation A( j)

n :

A( j)
n = n[( j + 1)n−2 A j/a j+1]

n[( j + 1)n−2/a j+1] =
∑n

i=0(−1)i
(n

i

)
( j + i + 1)n−2 A j+i/a j+i+1∑n

i=0(−1)i
(n

i

)
( j + i + 1)n−2/a j+i+1

. (16)

From this expression, we can also extract the γ
( j)

ni :

γ
( j)

ni = (−1)i
(n

i

)
( j + i + 1)n−2/a j+i+1∑n

s=0(−1)s
(n

s

)
( j + s + 1)n−2/a j+s+1

, i = 0,1, . . . ,n. (17)

Consequently, we also have the following simple expression for Γ
( j)

n :
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Γ
( j)

n =
∑n

i=0

(n
i

)
( j + i + 1)n−2/|a j+i+1|

|∑n
i=0(−1)i

(n
i

)
( j + i + 1)n−2/a j+i+1| . (18)

It is thus clear that the ideal situation Γ
( j)

n = 1 for all j and n will occur when amam+1 < 0, m = 1,2, . . . , that is, when the
series

∑∞
i=1 ai is alternating. The following results follow from [20,22] and [33, Chapters 8, 9]:

1. When am ∼ ∑∞
i=0 αimγ −i as m → ∞, γ �= −1,0,1,2, . . . , we have that limm→∞ am+1/am = 1 (in this case, we say that

{Am} ∈ b(1)/LOG, and that it converges logarithmically), and the partial sums and the column sequences behave as in

Am − A ∼
∞∑

i=0

β̃im
γ +1−i as m → ∞;

A( j)
n − A ∼

∞∑
i=0

δi jγ +1−n−i and Γ
( j)

n ∼ (2 j)n

|(−γ − 1)n| as j → ∞. (19)

2. When am ∼ ζm ∑∞
i=0 αimγ −i as m → ∞, |ζ | � 1, ζ �= 1, we have that limm→∞ am+1/am = ζ �= 1 (in this case, we say

that {Am} ∈ b(1)/LIN, and that it converges linearly), and the partial sums and the column sequences behave as in

Am − A ∼ ζm
∞∑

i=0

β̃im
γ −i as m → ∞;

A( j)
n − A ∼ ζ j

∞∑
i=0

δi jγ −2n−i as j → ∞ and lim
j→∞

Γ
( j)

n =
(

1 + |ζ |
|1 − ζ |

)n

. (20)

Thus, we see that column sequences converge faster than the sequence of partial sums and their convergence improves
with increasing n. The treatment of the diagonal sequences turns out to be extremely difficult. Some convergence results of
interest with specific examples can be found in [22]. See also [33, Chapter 19]. We now consider the numerical stability of
the u transformation with two examples, that have also been treated for their convergence in [22].

Example 3.1. Let us apply the u transformation to the series
∑∞

i=1 1/i2 = π2/6. The partial sums of this series form a
logarithmically convergent sequence. In addition, by invoking am = m−2 and the fact that

n∑
i=0

(−1)n−i
(

n

i

)
( j + i + 1)n = n[( j + 1)n] = n!,

we can first show that

Γ
( j)

n =
∑n

i=0

(n
i

)
( j + i + 1)n

|∑n
i=0(−1)i

(n
i

)
( j + i + 1)n| = 1

n!
n∑

i=0

(
n

i

)
( j + i + 1)n.

Next, using the binomial theorem and Stirling’s formula, we can make the following definitive statements about Γ
( j)

n :

Γ
( j)

n ∼ (2 j)n

n! as j → ∞; Γ
( j)

n >
( j + n + 1)n

n! ∼ e j+1 en

√
2πn

as n → ∞.

Thus, we see that both the column and the diagonal sequences are unstable since sup j Γ
( j)

n = ∞ and supn Γ
( j)

n = ∞.

Table 2 contains some of the numerical results obtained for the diagonal sequence {A(0)
n }∞n=0 in double-precision and

quadruple-precision arithmetic. These show clearly that, in either precision, there is no way of achieving machine accuracy,
and there is no way of retaining the best accuracy that is achieved. Also, the accuracy achieved for each A(0)

n (in both double
and quadruple precision) is consistent with our conclusion following (12).

Example 3.2. Let us now apply the u transformation to the series
∑∞

i=1 ζ i/i = log[(1 − ζ )−1], |ζ | � 1, ζ �= 1. The partial
sums of this series form a linearly convergent sequence. In addition, by invoking am = ζm/m, we have first

Γ
( j)

n =
∑n

i=0

(n
i

)
( j + i + 1)n−1|ζ |− j−i−1

|∑n
i=0(−1)i

(n
i

)
( j + i + 1)n−1ζ− j−i−1| .

Next, we can make the following definitive statements about Γ
( j)

n :

lim Γ
( j)

n =
(

1 + |ζ |)n

for all ζ �= 1; Γ
( j)

n = 1 for all j, n when ζ < 0.

j→∞ |1 − ζ |
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Table 2
Numerical results for Example 3.1 from the u transformation. Ē(0)

n (d): relative error in Ā(0)
n in double preci-

sion (≈ 16 decimal digits). Ē(0)
n (q): relative error in Ā(0)

n in quadruple precision (≈ 35 decimal digits).

n Ē(0)
n (d) Ē(0)

n (q) Γ
(0)

n

0 3.92D−01 3.92D−01 1.00D+00
2 1.21D−02 1.21D−02 9.00D+00
4 1.90D−05 1.90D−05 9.17D+01
6 6.80D−07 6.80D−07 1.01D+03
8 1.56D−08 1.56D−08 1.15D+04

10 1.85D−10 1.83D−10 1.35D+05
12 1.09D−11 6.38D−13 1.60D+06
14 2.11D−10 2.38D−14 1.92D+07
16 7.99D−09 6.18D−16 2.33D+08
18 6.10D−08 7.78D−18 2.85D+09
20 1.06D−07 3.05D−20 3.50D+10
22 1.24D−05 1.03D−21 4.31D+11
24 3.10D−04 1.62D−22 5.33D+12
26 3.54D−03 4.33D−21 6.62D+13
28 1.80D−02 5.44D−20 8.24D+14
30 1.15D−01 4.74D−19 1.03D+16

Table 3
Numerical results for Example 3.2 from the u transformation. Ē(0)

n (ζ = t): relative error in Ā(0)
n (with ζ = t) in quadruple precision (≈ 35 decimal digits).

n Ē(0)
n (ζ = −1) Γ

(0)
n n Ē(0)

n (ζ = 0.5) Γ
(0)

n n Ē(0)
n (ζ = 0.95) Γ

(0)
n

0 4.43D−01 1.00D+00 0 2.79D−01 1.00D+00 0 6.83D−01 1.00D+00
2 8.15D−03 1.00D+00 4 8.05D−05 8.87D+00 8 9.65D−03 1.64D+04
4 6.95D−06 1.00D+00 8 4.09D−09 4.14D+01 16 4.88D−05 3.87D+07
6 7.06D−08 1.00D+00 12 2.22D−13 1.95D+02 24 2.73D−07 9.66D+10
8 1.33D−10 1.00D+00 16 1.23D−17 9.24D+02 32 1.56D−09 2.44D+14

10 3.31D−13 1.00D+00 20 6.84D−22 4.37D+03 40 9.02D−12 6.17D+17
12 2.31D−15 1.00D+00 24 3.82D−26 2.07D+04 48 4.47D−14 1.57D+21
14 3.20D−18 1.00D+00 28 8.10D−30 9.82D+04 56 1.45D−11 3.98D+24
16 1.48D−20 1.00D+00 32 9.50D−30 4.65D+05 64 2.80D−07 1.01D+28
18 7.54D−23 1.00D+00 36 8.07D−29 2.21D+06 72 3.36D−04 2.57D+31
20 6.17D−26 1.00D+00 40 2.94D−28 1.05D+07 80 3.19D+00 4.37D+35
22 6.09D−28 1.00D+00 44 1.62D−27 4.96D+07 88 1.22D+00 6.74D+34
24 2.38D−30 1.00D+00 48 4.60D−27 2.35D+08 96 4.76D−01 1.29D +34
26 2.89D−34 1.00D+00 52 4.49D−26 1.12D+09 104 1.56D−01 3.46D +34
28 0.00D+00 1.00D+00 56 1.56D−25 5.29D+09 112 9.33D−02 1.07D +34
30 0.00D+00 1.00D+00 60 4.20D−25 2.51D+10 120 4.29D−02 9.58D +33

Thus, we see that the column sequences are always stable. When ζ is real negative, both column and diagonal sequences
are absolutely stable since we now have the ideal situation Γ

( j)
n = 1 for all j, n.

Table 3 contains some of the numerical results obtained for the diagonal sequence {A(0)
n }∞n=0 in quadruple-precision

arithmetic. The following conclusions can be drawn from this table: (i) In case ζ < 0, absolute stability prevails and machine
accuracy is achieved quickly and retained. (ii) When ζ is not negative but is sufficiently far from 1, the point of singularity
of log[(1 − ζ )−1] (that is, of the sum of

∑∞
i=1 ζ i/i), numerical instability seems to set in quite late, by which time close to

machine accuracy has been achieved. (iii) When ζ is very close to 1, numerical instability sets in very early, and this causes
the transformation to achieve much less than machine accuracy; in addition, there is no way of retaining the best accuracy
that is achieved. The situation becomes worse as ζ approaches 1. These conclusions seem to be valid for complex ζ , as well
as real ζ . Clearly, the accuracy achieved for each A(0)

n is consistent with our conclusion following (12).

3.2. The d(1) transformation

The stability problems that we have observed in Examples 3.1 and 3.2 can be overcome by applying the Levin–Sidi d(1)

transformation in suitable ways to be described soon. The approximations A( j)
n generated by applying the d(1) transformation

to a sequence {Am}∞m=1 are defined via the linear systems of equations

ARl = A( j)
n + RlaRl

n−1∑
i=0

βi

Ri
l

, j � l � j + n, (21)

where the integers Rl , 1 � R0 < R1 < R2 < · · · , are chosen by the user. As we will see later, the fact that the Rl are at
the user’s disposal makes this transformation very flexible for achieving improved stability and increased accuracy simul-
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taneously. Comparing (21) with (1), we realize that A( j)
n = ∑n

i=0 γ
( j)

ni AR j+i with appropriate γ
( j)

ni that satisfy
∑n

i=0 γ
( j)

ni = 1.

Again, best results are obtained from diagonal sequences {A( j)
n }∞n=0.

With general Rl , the A( j)
n and Γ

( j)
n can be computed in an efficient way via the recursive W algorithm of Sidi [23] (see

also [33, Chapter 7]), which reads as follows:

M( j)
0 = AR j

R jaR j

, N( j)
0 = 1

R jaR j

, H ( j)
0 = (−1) j

∣∣N( j)
0

∣∣, j = 0,1, . . . , (22)

M( j)
n = M( j+1)

n−1 − M( j)
n−1

R−1
j+n − R−1

j

, N( j)
n = N( j+1)

n−1 − N( j)
n−1

R−1
j+n − R−1

j

, H ( j)
n = H ( j+1)

n−1 − H ( j)
n−1

R−1
j+n − R−1

j

, j = 0,1, . . . , n = 1,2, . . . ,

(23)

A( j)
n = M( j)

n

N( j)
n

, Γ
( j)

n =
∣∣∣∣ H ( j)

n

N( j)
n

∣∣∣∣, j = 0,1, . . . , n = 0,1, . . . . (24)

Remarks.

1. By comparing (21) with (13), we realize that the d(1) transformation reduces to the u transformation when Rl = l + 1,
l = 0,1, . . . .

2. The d(1) transformation is the simplest special case of the general d(m) transformation by Levin and Sidi [14]. We will
discuss the d(m) transformation briefly in the sequel.

To improve stability it was proposed in various papers by the author and collaborators (see Levin and Sidi [14], Ford
and Sidi [10, Appendix B], and Sidi [26]; see also [33, Chapters 10, 12, 13]) to apply the d(m) transformation with specially
chosen Rl . Thus,

R0 = 1; Rl = max
{
σ Rl−1�, Rl−1 + 1

}
, l = 1,2, . . . ; with fixed σ > 1 (for logarithmic convergence), (25)

Rl = ⌊
κ(l + 1)

⌋
, l = 0,1, . . . ; with κ > 1 (for linear convergence), (26)

turn out to be very effective choices. The choice in (25) is called geometric progression sampling (GPS), while that in (26)
is called arithmetic progression sampling (APS). The use of these Rl has been justified theoretically by the author in various
places. Note that, (i) for GPS, liml→∞(Rl+1/Rl) = σ , which means that Rl increases like σ l with l, whereas (ii) for APS,
Rl ∼ κl as l → ∞. (Originally, κ was chosen to be an integer; noninteger values were suggested later in [33].) In case of
GPS, we choose σ < 2 so as to avoid a quick growth in the integers Rl with l.

The next results follow from Sidi ([26,28,31] and [33, Chapters 8, 9, 12]):

1. When am ∼ ∑∞
i=0 αimγ −i as m → ∞, γ �= −1,0,1,2, . . . , hence Am is as in (19) (therefore belongs to b(1)/LOG), if the

Rl are chosen as in (25), then

A( j)
n − A = O

(|cn+1| j) as j → ∞ and lim
j→∞

Γ
( j)

n =
n∏

k=1

1 + |ck|
|1 − ck| ; ck = σγ +2−k, k = 1,2, . . . . (27)

When σ = 2,3, . . . , in (25), we have Rl = σ l , l = 0,1, . . . . In this case, with the ck as defined in (27), we have the
following strong results concerning diagonal sequences:

A( j)
n − A = O

(
e−λn) as n → ∞, ∀λ > 0, and lim

n→∞Γ
( j)

n =
∞∏

k=1

1 + |ck|
|1 − ck| < ∞;

ck = σγ +2−k, k = 1,2, . . . . (28)

In words, diagonal sequences can be computed with very high accuracy and absolute stability. In addition, the diag-
onal sequences accelerate convergence, in the sense that they converge superlinearly, as opposed to {ARn }∞n=0, which
converges linearly.

2. When am ∼ ζm ∑∞
i=0 αimγ −i as m → ∞, |ζ | � 1, ζ �= 1, hence Am is as in (20) (therefore belongs to b(1)/LIN), if the Rl

are chosen as in (26) with integer κ , then (20) becomes

Aκm ∼ A + ζ κm
∞∑

i=0

β̂im
γ −i as m → ∞; A( j)

n − A ∼ ζ κ j
∞∑

i=0

δi jγ −2n−i as j → ∞ and

lim Γ
( j)

n =
(

1 + |ζ κ |
κ

)n

. (29)

j→∞ |1 − ζ |



A. Sidi / Applied Numerical Mathematics 60 (2010) 1395–1410 1403
Table 4
Numerical results for Example 3.1 from the d(1) transformation with GPS using σ = 1.3 in (25). Ē(0)

n (d): relative
error in Ā(0)

n in double precision (≈ 16 decimal digits). Ē(0)
n (q): relative error in Ā(0)

n in quadruple precision (≈ 35
decimal digits). Note that Rn is the approximate number of terms of the series used by A( j)

n .

n Rn Ē(0)
n (d) Ē(0)

n (q) Γ
(0)

n

0 1 3.92D−01 3.92D−01 1.00D+00
2 3 1.21D−02 1.21D−02 9.00D+00
4 5 1.90D−05 1.90D−05 9.17D+01
6 7 6.80D−07 6.80D−07 1.01D+03
8 11 1.14D−08 1.14D−08 3.04D+03

10 18 6.58D−11 6.59D−11 3.75D+03
12 29 1.58D−13 1.20D−13 3.36D+03
14 48 1.55D−15 4.05D−17 3.24D+03
16 80 7.11D−15 2.35D−19 2.76D+03
18 135 5.46D−14 1.43D−22 2.32D+03
20 227 8.22D−14 2.80D−26 2.09D+03
22 383 1.91D−13 2.02D−30 1.97D+03
24 646 1.00D−13 4.43D−32 1.90D+03
26 1090 4.21D−14 7.24D−32 1.86D+03
28 1842 6.07D−14 3.27D−31 1.82D+03
30 3112 1.24D−13 2.52D−31 1.79D+03

Table 5
Numerical results for Example 3.2 from the d(1) transformation with APS, comparing κ = 10 with κ = 1. Ē(0)

n :
relative error in Ā(0)

n for ζ = 0.95 in quadruple precision (≈ 35 decimal digits). Note that Rn = κ(n + 1), and this is
the approximate number of terms of the series used by A( j)

n . (Note also that the d(1) transformation with κ = 1 is
simply the u transformation.)

n Ē(0)
n (κ = 1) Γ

(0)
n (κ = 1) Ē(0)

n (κ = 10) Γ
(0)

n (κ = 10)

0 6.83D−01 1.00D+00 1.72D−01 1.00D+00
4 1.70D−01 3.92D+02 1.09D−04 1.49D+01
8 9.65D−03 1.64D+04 2.36D−08 9.92D+01

12 6.69D−04 7.86D+05 5.45D−12 6.71D+02
16 4.88D−05 3.87D+07 1.28D−15 4.55D+03
20 3.63D−06 1.93D+09 3.04D−19 3.09D+04
24 2.73D−07 9.66D+10 7.24D−23 2.10D+05
28 2.06D−08 4.85D+12 1.73D−26 1.43D+06
32 1.56D−09 2.44D+14 1.92D−28 9.73D+06
36 1.19D−10 1.23D+16 3.97D−27 6.62D+07
40 9.02D−12 6.17D+17 1.34D−26 4.51D+08
44 6.87D−13 3.11D+19 3.30D−26 3.07D+09
48 4.47D−14 1.57D+21 3.05D−25 2.09D+10
52 1.45D−12 7.89D+22 5.19D−25 1.42D+11
56 1.45D−11 3.98D+24 2.43D−23 9.67D+11
60 1.75D−09 2.01D+26 1.39D−22 6.58D+12

It is clear that, in case ζ is very close to 1, Γ
( j)

n has a smaller value with increasing κ since ζ κ is farther from 1 than ζ

is.

In Table 4, we present the results obtained from the d(1) transformation as applied to Example 3.1 (logarithmically con-
verging {Am}) using GPS. These results suggest clearly that diagonal sequences are absolutely stable and achieve and retain
almost machine accuracy. We note that the accuracy achieved for each A(0)

n is consistent with our conclusion following (12).
In Table 5, we present the results obtained from the d(1) transformation as applied to Example 3.2 (linearly converging

{Am}) using APS. These results suggest that APS improves stability when ζ ≈ 1. Increased stability allows the accuracy of
A( j)

n to improve dramatically, much before Γ
(0)

n has increased appreciably. We note again that the accuracy achieved for
each A(0)

n is consistent with our conclusion following (12).
In Table 6, the third column shows the best quadruple-precision results that can be achieved by the diagonal sequence

{A(0)
n }∞n=0 from the u transformation on the series of Example 3.2, as ζ tends to 1, the point of singularity of the sum

log[(1 − ζ )−1]. The fourth column shows the deterioration of the accuracy of Ā(0)
n , for a fixed n (here, n = 28), as ζ → 1.

The last column of the table is obtained by applying the d(1) transformation with APS. Only, in this case, we vary κ
simultaneously with ζ so as to fix the value of ζ κ at 0.5. The results of this column suggest that, as a function of ζ ,
an almost uniform error in A(0)

n with fixed n (here, n = 28) could be maintained by this strategy with APS. This seems to
be an effective way of maintaining uniform error treating the Gibbs phenomenon as well. More generally, this strategy also
seems to be an effective way of maintaining a uniform error near points of singularity of the sum of the series in question.



1404 A. Sidi / Applied Numerical Mathematics 60 (2010) 1395–1410
Table 6
Absolute errors Ẽ(0)

n = | Ā(0)
n (ζ ) − log[(1 − ζ )−1]|, with ζ approaching 1, obtained from the d(1) transformation with APS on

Example 3.2 in quadruple-precision arithmetic (≈ 35 decimal digits). Results in last column obtained by choosing κ = s when
ζ = 0.51/s , s = 1, . . . ,7. Note that Rn = κ(n + 1), and this is the approximate number of terms of the series used by A( j)

n .

s ζ Ẽ(0)
n (κ = 1) “smallest” error Ẽ(0)

28 (κ = 1) Ẽ(0)
28 (κ = s)

1 0.5 4.97D−30 (n = 28) 4.97D−30 4.97D−30
2 0.51/2 ≈ 0.707 1.39D−25 (n = 35) 5.11D−21 3.26D−31
3 0.51/3 ≈ 0.794 5.42D−23 (n = 38) 4.70D−17 4.79D−31
4 0.51/4 ≈ 0.841 1.41D−21 (n = 41) 1.02D−14 5.74D−30
5 0.51/5 ≈ 0.871 1.31D−19 (n = 43) 3.91D−13 1.59D−30
6 0.51/6 ≈ 0.891 1.69D−18 (n = 43) 5.72D−12 2.60D−30
7 0.51/7 ≈ 0.906 1.94D−17 (n = 44) 4.58D−11 4.72D−30

4. The d(m) transformation and its application to general linear sequences using APS

In this section, we treat very briefly the Levin–Sidi [14] d(m) transformation (see also [33, Chapter 6]) and discuss the
types of sequences whose convergence it accelerates effectively. In particular, we concentrate on general linear sequences.
We also discuss its use in conjunction with APS, and show, with an application to a Fourier series, how its stability can be
enhanced.

4.1. The d(m) transformation

To facilitate this discussion, we will introduce two definitions (see [33, Chapter 6]):

Definition 4.1. We say a function α(n) is in A(γ )

0 if it has an asymptotic expansion of the form

α(n) ∼
∞∑

i=0

αin
γ −i as n → ∞.

Definition 4.2. We say a sequence {an} is in b(m) if its terms an satisfy a linear homogeneous difference equation of the
form

an =
m∑

k=1

pk(n)
(
kan

); pk(n) ∈ A(ik)

0 , ik integer � k, k = 1, . . . ,m.

When {an} ∈ b(m) and the series
∑∞

i=1 ai converges, and the an satisfy some additional mild conditions, Levin and
Sidi [14] (see also [33, Chapter 6, Theorem 6.1.12]) prove that

An−1 ∼ A +
m−1∑
k=0

nρk
(
kan

) ∞∑
i=0

βkin
−i as n → ∞, (30)

where An = ∑n
i=1 ai , n = 1,2, . . . , and ρk are integers satisfying

ρk � ρ̄k = max{ik+1, ik+2 − 1, . . . , im − m + k + 1} � k + 1, k = 0,1, . . . ,m − 1. (31)

Those sequences {am} mentioned just before Example 3.1 in relation to the logarithmically and linearly converging se-
quences Am = ∑m

i=1 ai , are all in b(1) and have served as test cases for convergence acceleration methods in almost all
surveys. Actually, they make up part of the class b(1) (see [33, Chapter 6, Theorems 6.7.1 and 6.7.2]) and also serve as
building blocks for many sequences in b(m) with m � 2. Fourier series and generalized Fourier series, such as orthogonal
polynomial expansions (and expansions in other special functions) of functions with algebraic and/or logarithmic singulari-
ties and/or with finite jump discontinuities have terms that are in the classes b(m) with m � 2. This subject is discussed in
detail, and with many examples, in [33, Chapter 6], where simple rules of thumb for determining what to take for m are
also provided. It is thus clear that, when taken together, the classes b(m) , m = 1,2, . . . , form a very comprehensive set of
sequences.

The d(m) transformation for approximating the sum of the infinite series
∑∞

i=1 ai , where {an} ∈ b(m) , is based on the

asymptotic expansion in (30). The approximations A(m, j)
n generated by it are defined via the linear systems

ARl = A(m, j)
n +

m∑
Rk

l

(
k−1aRl

) nk−1∑ βki

Ri
, j � l � j + N; N =

m∑
nk, n ≡ (n1, . . . ,nm), (32)
k=1 i=0 l k=1
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where the integers n1, . . . ,nm and 1 � R0 < R1 < R2 < · · · , are chosen by the user. (The default is Rl = l + 1, l = 0,1, . . . .)
Note that, in this definition, the ρk of (30) have been replaced by their respective largest upper bounds, namely, k + 1. Of

course, when the ρ̄k are known, they can be used in the definition of (32); namely, Rk
l in (32) can be replaced by R

ρ̄k−1
l .

The way we have defined A(m, j)
n in (32) covers all possible sets of ρk , hence is robust. Comparing (32) with (1), we realize

that A( j)
n = ∑N

i=0 γ
( j)

ni AR j+i with appropriate γ
( j)

ni that satisfy
∑N

i=0 γ
( j)

ni = 1.

Even though the definition of A(m, j)
n is rather complicated, a whole sequence of approximations that includes sequences

of “diagonal” approximations {A(m, j)
(ν,...,ν)}∞ν=0 as subsequences can be computed in a most efficient way by using the W(m)

algorithm of Ford and Sidi [10] that is recursive in nature. FORTRAN 77 codes for this algorithm, with examples of applica-
tions of the d(m) transformation, can be found in [10, Appendix B] and [33, Appendix I]. “Diagonal” sequences {A(m, j)

(ν,...,ν)
}∞ν=0

have been observed to have the best convergence properties. The FORTRAN 77 code just mentioned provides the sequence
{A(m,0)

(ν,...,ν)}∞ν=0.

4.2. Application to general linear sequences and Fourier series

The class b(m) turns out to be rather rich, as mentioned earlier. It contains, among others, sequences {an} whose as-
sociated partial sums An = ∑n

i=1 ai form what we will call general linear sequences. These sequences are characterized by
asymptotic expansions of the form (see [33, Chapter 6, Theorem 6.8.8])

an ∼
m∑

k=1

ζn
k

∞∑
i=0

αkin
γk−i as n → ∞ ⇒ An ∼ A +

m∑
k=1

ζn
k

∞∑
i=0

βkin
γk−i as n → ∞, (33)

where

ζk �= 1, k = 1, . . . ,m; ζ1, . . . , ζm distinct but arbitrary; γ1, . . . , γm arbitrary. (34)

Such sequences arise from power series of functions that are analytic at the origin but have algebraic branch singularities
in the complex plane. Stability problems arise in convergence acceleration when one or more of the ζk are near 1 in
the complex plane. When used with APS, the d(m) transformation turns out to be very effective in achieving improved
stability and accuracy. (See [33, Chapter 12, Section 12.9], for example.) Sequences as in (33) arise also from Fourier series
of functions that have algebraic singularities and/or finite jump discontinuities. In this case, we have |ζ1| = · · · = |ζm| = 1, in
addition to (34). When used with APS, the d(m) transformation is very effective on these sequences as well. (See [26] and
[33, Chapter 13], for example.) This can be guessed at by realizing that Aκn has an asymptotic expansion of the form

Aκn ∼ A +
m∑

k=1

ζ κn
k

∞∑
i=0

β̂kin
γk−i as n → ∞, (35)

which is of the same form as (33), with each ζk replaced by ζ κ
k .

So far, there is no convergence or stability theory for this transformation, as it is applied to Fourier series, for example.
Nevertheless, what we have learned from the theory of the d(1) transformation concerning linearly convergent sequences
(such as Example 3.2) seems to be just as relevant for the d(m) transformation on Fourier and generalized Fourier series.
The next example illustrates this.

Example 4.3. Consider the application of the d(m) transformation to the slowly converging Fourier series

2

π

∞∑
k=1

sin kh

k
cos kx = f (x) = H

(
h − |x|) − h

π
, −π < x < π ; 0 < h < π, H(y) =

{
1 for y > 0,
0 for y < 0.

Now, H(h − |x|) has two points of jump discontinuity in [−π,π ], and these are x = ±h. In fact, at these points, the Gibbs
phenomenon takes place. By applying the d(m) transformation with APS, we are able to overcome this problem effectively.
When using APS, we are careful to make sure that all ζ κ

k remain away from 1.
Using the results of [33, Chapter 6, Section 6.4], we are able to conclude that the sequence of the series coefficients

{ 2
π

sin kh
k cos kx} is in the class b(4) and hence that the right transformation for this series is d(4) . (As a rule, for such series,

m is twice the number of points of singularity.) In addition, ρ̄k � 0 for all k, which can be used in the definition of (32).
Actually, An , the nth partial sum of the Fourier series, has an asymptotic expansion of the form given in (33) and (34), with
ζ1 = ei(x−h) = ζ−1

2 and ζ3 = ei(x+h) = ζ−1
4 and γ1 = · · · = γ4 = −1.

In Table 7, we present the results obtained for the “diagonal” sequence {A(m,0)
(ν,...,ν)}∞ν=0. We take h = 1 and probe the sum

f (x) at the point x = 0.9 that is close to the location of the jump at x = 1. Then ζ1 and ζ2 are close to 1. This explains
the poorness of the results obtained with κ = 1, that is for Rl = l + 1, l = 0,1, . . . . Of course, by choosing Rl = 
κ(l + 1)�,
l = 0,1, . . . , with κ > 1, we can cause ζ κ and ζ κ , to be away from 1. At the same time, we want ζ κ and ζ κ to remain
1 2 3 4
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Table 7
Numerical results for Example 4.3, with h = 1 and x = 0.9, from the d(4) transformation with APS. Ē(0)

s : relative error in Ā(4,0)
n with n = (s/4, s/4, s/4, s/4)

in quadruple precision (≈ 35 decimal digits). The number of terms of the series used for each entry in the table is approximately Rs = 
κ(s + 1)�.

s Rs Ẽ(0)
s (κ = 1) Rs Ẽ(0)

s (κ = 4.95) Rs Ẽ(0)
s (κ = 8.27) Rs Ẽ(0)

s (κ = 11.55)

0 1 0.51D+00 4 0.49D+00 8 0.32D+00 11 0.21D+00
8 9 0.68D+00 44 0.46D−01 74 0.38D−01 103 0.59D−02

16 17 0.32D+00 84 0.11D−01 140 0.12D−02 196 0.16D−01
24 25 0.32D+00 123 0.71D−04 206 0.53D−06 288 0.53D−05
32 33 0.23D+00 163 0.34D−05 272 0.51D−09 381 0.65D−07
40 41 0.32D+00 202 0.16D−07 339 0.24D−11 473 0.15D−11
48 49 0.24D−01 242 0.74D−09 405 0.96D−14 565 0.23D−14
56 57 0.31D−02 282 0.16D−09 471 0.10D−16 658 0.91D−17
64 65 0.43D−03 321 0.10D−12 537 0.60D−19 750 0.67D−20
72 73 0.34D−02 361 0.16D−15 603 0.48D−21 843 0.31D−22
80 81 0.82D−04 400 0.25D−16 669 0.23D−24 935 0.11D−24
88 89 0.19D−04 440 0.80D−18 736 0.14D−24 1027 0.14D−28
96 97 0.21D−02 480 0.17D−20 802 0.50D−30 1120 0.14D−30

104 105 0.17D−03 519 0.43D−21 868 0.34D−30 1212 0.49D−32
112 113 0.12D−03 559 0.49D−20 934 0.21D−32 1305 0.22D−31
120 121 0.15D−01 598 0.34D−21 1000 0.35D−32 1397 0.17D−31

away from 1. For this, we have taken κ such that ζ κ
k ≈ −1, k = 3,4, which means κ(x + h) ≈ (2r + 1)π for integer r. We

have taken r = 1,2,3, in our computations, for which we have set κ = 4.95, 8.27, 11.55, respectively. With these increasing
κ values, ζ1 and ζ2 get further away from 1, while ζ3 and ζ4 are approximately −1, and this is an appropriate situation that
helps to increase stability and to achieve almost machine accuracy. Table 7 shows that this aim is achieved very effectively
with the APS strategy by choosing κ as described.

5. Partial review of literature on stability in extrapolation

In Section 3, we summarized the convergence and stability properties of the u and d(1) transformations that are available
so far. In this section, we will present a brief and partial review of the convergence and stability properties of other sequence
transformations for summation of infinite series that have been published so far. For additional results, we refer the reader
to [33] and the references therein.

5.1. Classical Richardson extrapolation process

Our first example concerns sequences {An} that are related to a function A(y) that has an asymptotic expansion of the
form

A(y) ∼ A +
∞∑

k=1

αk yσk as y → 0; �σ1 < �σ2 < · · · , lim
m→k∞

�σk = ∞.

The trapezoidal rule of Example 2.1 is an example of such sequences. Choosing y0 > y1 > · · · > 0, the classical Richardson
extrapolation then is defined via the linear systems

A(yl) = A( j)
n +

n∑
k=1

ᾱk yσk
l , j � l � j + n. (36)

Comparing (36) with (1), we see that φk(yl) = yσk
l in (1).

1. In case yl = y0ω
l (that is, yl+1/yl = ω) for some fixed ω ∈ (0,1),

n∑
i=0

γ
( j)

ni zi =
n∏

k=1

z − ck

1 − ck
, Γ

( j)
n �

n∏
k=1

1 + |ck|
|1 − ck| , ∀ j,n; ck = ωσk .

Thus, Γ
( j)

n is independent of, and hence bounded, in j. Provided �σk+1 − �σk � d > 0 for all k, we have that Γ
( j)

n is
bounded in n; indeed, Γ

( j)
n satisfies

lim
n→∞Γ

( j)
n �

∞∏
k=1

1 + |ck|
|1 − ck| < ∞.

The relevant convergence results are as follows:
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A( j)
n − A = O

(|cn+1| j) as j → ∞; A( j)
n − A = O

(
e−λn) as n → ∞, ∀λ > 0.

2. In case liml→∞(yl+1/yl) = ω ∈ (0,1), but yl+1/yl �= ω, l = 0,1, . . . , we have that Γ
( j)

n is bounded in j. Actually,

A( j)
n − A = O

(|cn+1| j) as j → ∞; lim
j→∞

n∑
i=0

γ
( j)

ni zi =
n∏

k=1

z − ck

1 − ck
, lim

j→∞
Γ

( j)
n �

n∏
k=1

1 + |ck|
|1 − ck| < ∞;

ck = ωσk .

3. In case yl = c/(l + η)q , c, η,q > 0, we have

A( j)
n − A = O

(
j−qσn+1

)
as j → ∞; Γ

( j)
n ∼

(
n∏

i=1

|σi|
)−1(

2 j

q

)n

as j → ∞.

That is, lim j→∞ Γ
( j)

n = ∞. In addition, when σk = k, we have limn→∞ Γ
( j)

n = ∞. Actually, in this case, there holds

Γ
( j)

n = O
(
nμ

)
as n → ∞, ∀μ > 0.

For the above, see Bulirsch and Stoer [6–8], and Sidi [29,30], [33, Chapters 1, 2]. See also Albrecht [2] for a matrix approach
to the issue of stability for the Richardson extrapolation that is essentially the same as that described in Section 2.

5.2. Iterated Aitken 2 process and the Shanks transformation

The iterated Aitken 2 process (see Stoer and Bulirsch [37, Chapter 5] or [33, Chapter 15], for example) is defined via
the recursion

B( j)
0 = A j, j � 0; B( j)

n+1 = φ j
({

B(s)
n

})
, j,n � 0; φ j

({Cs}
) ≡ (C j/C j)

(1/C j)
. (37)

The 2 process of Aitken [1] transforms the sequence {Am} to { Âm}, where

Âm = φm
({As}

) = (Am/Am)

(1/Am)
.

The Shanks [19] transformation is defined via the linear equations

Al = ek(An) +
n∑

k=1

β̄k(Al+k−1), j � l � j + n. (38)

Here B( j)
n and ek(An) are the approximations to A; we will denote both of them by A( j)

n for simplicity of notation. The
Shanks transformation can be implemented in a most efficient way via the epsilon algorithm of Wynn [39]. It can also be
implemented, practically at the same cost, via the FS/qd algorithm of the author [33, Chapter 21]. Comparing (38) with (1),
we realize that A( j)

n = ∑n
i=0 γ

( j)
ni A j+i with appropriate γ

( j)
ni that satisfy

∑n
i=0 γ

( j)
ni = 1. Using (37), it can be shown that such

a relation holds for the iterated 2 process as well.
As shown in [33, Chapter 15, Theorem 15.3.4 and Chapter 16, Theorem 16.5.4], neither the iterated 2 process nor the

Shanks transformation accelerate logarithmic convergence, in the sense that, if {Am} ∈ b(1)/LOG, then {A( j)
n }∞j=0 converges at

the same rate as {Am}.

1. Assuming Am is as in (20) with the notation therein, provided γ �= 0,1, . . . , for both transformations, we have (see [33,
Chapter 15, Theorem 15.3.4] and Garibotti and Grinstein [11])

A( j)
n − A = O

(
ζ j jγ −2n) as j → ∞ and lim

j→∞

n∑
i=0

γ
( j)

ni zi =
(

z − ζ

1 − ζ

)n

, lim
j→∞

Γ
( j)

n =
(

1 + |ζ |
|1 − ζ |

)n

.

2. In case Am ∼ A + ∑∞
k=1 αkλ

m
k as m → ∞, where λk �= 1 are distinct, |λ1| � |λ2| � · · · , and limk→∞ λk = 0, provided

|λn| > |λn+1|, for the Shanks transformation, we have (see Wynn [40] and Sidi [33, Chapter 15, Theorems 16.4.3, 16.4.5])

A( j)
n − A = O

(|λn+1| j) as j → ∞ and lim
j→∞

n∑
i=0

γ
( j)

ni zi =
n∏

i=1

z − λi

1 − λi
, lim

j→∞
Γ

( j)
n �

n∏
i=1

1 + |λi|
|1 − λi| .



1408 A. Sidi / Applied Numerical Mathematics 60 (2010) 1395–1410
3. More generally, let Am ∼ A +∑∞
k=1 Pk(m)λm

k as m → ∞, where λk �= 1 are distinct, |λ1| � |λ2| � · · · , and Pk ∈ πωk−1 for
all k. Let ω̂ = max{ωk: |λk| = |λt+1|}. Provided |λt | > |λt+1| and n = ∑t

k=1 ωk , for the Shanks transformation, we have
(see Sidi [27], [33, Chapter 16, Theorems 16.4.6, 16.4.8])

A( j)
n − A = O

(
jω̂−1|λt+1| j) as j → ∞ and

lim
j→∞

n∑
i=0

γ
( j)

ni zi =
t∏

i=1

(
z − λi

1 − λi

)ωi

, lim
j→∞

Γ
( j)

n �
t∏

i=1

(
1 + |λi|
|1 − λi|

)ωi

.

For additional results that concern the interesting case of n �= ∑t
i=1 ωi , see [27] and [33, Chapter 16, Theorem, 16.4.9].

Convergence takes place only for certain values of n in this case.

For additional results concerning the application of the Shanks transformation to totally monotonic and totally oscillating
sequences {Am}, see [18].

5.3. Iterated Lubkin transformation and the theta algorithm

The iterated Lubkin transformation is defined via the recursion

B( j)
0 = A j, j � 0; B( j)

n+1 = W j
({

B(s)
n

})
, j,n � 0; W j

({Cs}
) ≡ 2(C j/C j)

2(1/C j)
.

The method of Lubkin [15] transforms the sequence {Am} to { Âm}, where

Âm = Wm
({As}

) = 2(Am/Am)

2(1/Am)
.

The theta algorithm is defined via the recursions

θ
( j)
−1 = 0, θ

( j)
0 = A j, j � 0; θ

( j)
2n+1 = θ

( j+1)
2n−1 + D( j)

2n , θ
( j)
2n+2 = θ

( j+1)
2n − θ

( j+1)
2n

D( j)
2n+1

D( j)
2n+1, j,n � 0;

D( j)
k = 1/θ

( j)
k .

Note that θ
( j)
2 = W j({As}). For both transformations, the forward difference operator  operates on the index j only. Also,

B( j)
n and θ

( j)
2n are the approximations to A; we will denote both of them by A( j)

n for simplicity of notation. Using the

recursions for both methods, we can show that A( j)
n = ∑n

i=0 γ
( j)

ni A j+n+i with appropriate γ
( j)

ni that satisfy
∑n

i=0 γ
( j)

ni = 1.
The following results are known (see Sidi [32] and [33, Chapters 15, 20]) for the column sequences obtained from {Am} in
b(m)/LOG and b(m)/LIN:

1. Assuming Am is as in (19) with the notation therein, we have

A( j)
n − A = O

(
jγn

)
and

n∑
i=0

γ
( j)

ni zi ∼
(

n∏
k=1

γk

)−1

(1 − z)n jn, Γ
( j)

n ∼
∣∣∣∣∣

n∏
k=1

γk

∣∣∣∣∣
−1

(2 j)n as j → ∞,

where γ0 = γ and γk are such that γk+1 − γk � −2, k = 0,1, . . . . The γk for the two methods considered are not
necessarily the same. In any case, we have γn � γ − 2n for all n.

2. Assuming Am is as in (20) with the notation therein, we have

A( j)
n − A = O

(
ζ j jγn

)
as j → ∞ and lim

j→∞

n∑
i=0

γ
( j)

ni zi =
(

z − ζ

1 − ζ

)n

, lim
j→∞

Γ
( j)

n =
(

1 + |ζ |
|1 − ζ |

)n

,

where γ0 = γ and γk are such that γk+1 − γk � −3, k = 0,1, . . . . The γk for the two methods considered are not
necessarily the same. In any case, we have γn � γ − 3n for all n. By the form of the asymptotic expansion of Aκm in
(29), it is clear that APS can be applied in conjunction with these methods, in the sense that the methods are applied
to the subsequence {Aκm}. This is likely to improve the stability of the A( j)

n substantially when ζ is very close to 1.
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5.4. General linear sequences and GREP(m)

When {An} is a general linear sequence precisely as described in (33) and (34), with the notation therein, if we know the
ζk and γk , we can use the generalized Richardson extrapolation process GREP(m) by the author (see [21] and [33, Chapter 4])
on {An} by defining the approximation A(m, j)

n to A as in

Al = A( j)
n +

m∑
k=1

ζ l
k

nk−1∑
i=0

β̄ki(l + 1)γk−i, j � l � j + N; N =
m∑

k=1

nk, n ≡ (n1, . . . ,nm). (39)

Comparing (39) with (1), we realize that A( j)
n = ∑N

i=0 γ
( j)

ni A j+i with appropriate γ
( j)

ni that satisfy
∑N

i=0 γ
( j)

ni = 1. As shown
recently in Sidi [34],

A( j)
n − A =

m∑
k=1

O
(
ζ

j
k jγk−2nk

)
as j → ∞ and

lim
j→∞

n∑
i=0

γ
( j)

ni zi =
m∏

k=1

(
z − ζk

1 − ζk

)nk

, lim
j→∞

Γ
( j)

n �
m∏

i=1

(
1 + |ζk|
|1 − ζk|

)nk

.

This means that if ζk ≈ 1 for some k, then we can apply GREP(m) to {Aκn} with some κ > 1 integer, making sure that all ζ κ
k

stay away from 1. Because the d(m) transformation is a GREP(m) , we have used this APS strategy successfully in conjunction
with the d(m) transformation in Section 4.

In case the ζk and γk are not known, it has been observed that the only known nonlinear sequence transformations that
accelerate the convergence of general linear sequences are the Shanks transformation and the d(m) transformation. So far,
there are no theoretical results to explain the success of these methods, however.
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