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Abstract: In an earlier paper by the author [A. Sidi, SIAM J. Math. Anal.,

16 (1985), pp. 896–906], asymptotic expansions for Mellin transforms f̂(z) =∫ ∞
0 tz−1f(t) dt as z → ∞, with z real and positive, were derived. In particular,

it was shown there that, for certain classes of functions uk(t), k = 0, 1, . . . ,
that form asymptotic scales as t → ∞, if f(t) ∼

∑∞
k=0 Akuk(t) as t → ∞, then

f̂(z) ∼
∑∞

k=0 Akûk(z) as z → ∞. In this note, we show that, for two of the

cases considered there, f̂(z) ∼
∑∞

k=0 Akûk(z) as z → ∞, also when z is complex
and |ℑz| ≤ η(ℜz)c, for some c ∈ (0, 1) and some fixed, but otherwise arbitrary,
η > 0.
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1. Introduction

Let f(t) be locally integrable for 0 < t < ∞, such that for some real constant
σ, tσf(t) is absolutely integrable in every interval of the form [0, a], and that
the Mellin transform of f(t), namely,

f̂(z) =

∫ ∞

0
tz−1f(t) dt, (1.1)

exists for all large z, with ℜz > 0.
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Let the sequence of functions {uk(t)}
∞
k=0 be an asymptotic scale as t → ∞,

t being real, and let the sequence {ûk(z)}∞k=0 of the Mellin transforms of the
uk(t) be also an asymptotic scale as z → ∞ in some fashion.1 In an earlier
paper Sidi [6], we showed that, for certain such sequences {uk(t)}

∞
k=0, if

f(t) ∼
∞∑

k=0

Akuk(t) as t → ∞, (1.2)

then f̂(z) has the asymptotic expansion

f̂(z) ∼

∞∑

k=0

Akûk(z) as z → ∞, (1.3)

for z real and positive. Clearly, this result is analogous to Watson’s lemma for
Laplace transforms. For Watson’s lemma, see Olver [4], for example.

In a subsequent paper, Frenzen [1] showed that some of the asymptotic
expansions in (1.3) are valid in the complex z-plane provided z is restricted in
a suitable manner.

In the present work, we follow [1] partly, and improve the proofs of some of
the results of [6] and show that (1.3) is valid for complex z as well, provided z
is restricted to a certain part of the complex plane.

Throughout this paper, we let

z = x + iy, x, y real. (1.4)

Two special and commonly occurring cases are considered in [6]. We recon-
sider these in the present work. Descriptions of these cases follow:

1. The first case is that with

uk(t) = exp(−αkt
β), k = 0, 1, . . . , (1.5)

where αk are in general complex and β is real and positive, and

0 < ℜα0 < ℜα1 < · · · , lim
k→∞

ℜαk = ∞; |α0| < |α1| < · · · . (1.6)

1A sequence of functions {hk(t)}∞k=0 is an asymptotic scale as t → t0 if

lim
t→t0

hk+1(t)

hk(t)
= 0, k = 0, 1, . . . .

See Olver [4], for example.
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The sequence {uk(t)}
∞
k=0 is an asymptotic scale as t → +∞, since for each

k = 0, 1, . . . ,
uk+1(t)

uk(t)
= exp[−(αk+1 − αk)t

β]. (1.7)

For this case,

ûk(z) =

∫ ∞

0
tz−1uk(t) dt =

1

β
α
−z/β
k Γ

(
z

β

)
. (1.8)

Clearly, the integral in (1.8) exists for all complex z with x > 0. That
{ûk(z)}∞k=0 is an asymptotic scale as z → ∞ along any path in the z-
plane, such that x > 0 and y = o(x) as x → ∞, can be seen as follows:
For each k = 0, 1, . . . , we first have

ûk+1(z)

ûk(z)
=

(
αk+1

αk

)−z/β

. (1.9)

Next, by (1.6), we can write

αk+1

αk
= µk exp(i θk), µk > 1, θk ∈ (−π, π).

Then, we have

∣∣∣∣

(
αk+1

αk

)−z/β∣∣∣∣ = exp

(
−

log µk

β
x +

θk

β
y

)

≤ exp

(
−

log µk

β
x +

|θk|

β
|y|

)
,

and, since y = o(x) as x → ∞,

∣∣∣∣

(
αk+1

αk

)−z/β∣∣∣∣ ≤ exp

(
−

log µk

β
x[1 + o(1)]

)
as z → ∞

= o(1) as z → ∞.

Here we have made use of the facts that log µk > 0 since µk > 1 and that
z → ∞ implies x → ∞ when y = o(x) as x → ∞.

We would like to note that the validity of (1.3) for this case has been
shown in [6] only for real z.
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2. The second case is that with

uk(t) = t−λk exp(−αtβ), k = 0, 1, . . . , (1.10)

where α is in general complex, and β and the λk are real, such that

ℜα > 0; β > 0; λ0 < λ1 < λ2 < · · · , lim
k→∞

λk = +∞. (1.11)

That {uk(t)}
∞
k=0 is an asymptotic scale as t → ∞ follows from the fact

that, for each k = 0, 1, . . . ,

uk+1(t)

uk(t)
= t−(λk+1−λk). (1.12)

From this, it is seen immediately that {uk(t)}
∞
k=0 is an asymptotic scale

as t → ∞ with | arg t| ≤ π − δ < π in the t-plane, as well as along the
ℜt-axis. For this case,

ûk(z) =

∫ ∞

0
tz−1uk(t) dt =

1

β
α−(z−λk)/β Γ

(
z − λk

β

)
. (1.13)

Of course, the integral in (1.13) exists for all complex z with ℜz > λk.
That {ûk(z)}∞k=0 is an asymptotic scale as z → ∞ along any path in the
z-plane, such that | arg z| ≤ π− δ < π, follows from the fact that, for each
k = 0, 1, . . . ,

ûk+1(z)

ûk(z)
∼

(
αβ

z

)(λk+1−λk)/β

as z → ∞, | arg z| ≤ π − δ < π, (1.14)

which, in turn, follows from the fact that (see Olver et al. [5, Section
5.11(iii), Eq. 5.11.12]), for fixed a, b,

Γ(ζ + a)

Γ(ζ + b)
∼ ζa−b as ζ → ∞, | arg ζ| ≤ π − δ < π. (1.15)

The validity of (1.3) for this case has been shown in [6] only for real z,
(i) unconditionally when α is real, and (ii) with some additional analyticity
assumptions on f(t) when α is complex.

Before proceeding further, let us introduce some notation that we use
throughout the remainder of this paper, and also describe the course of ac-
tion we take to achieve the proofs of our results.
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First, for c ∈ (0, 1) and η > 0, we let

U(c, η) =
{
z = x + iy : x, y real, x > 0, |y| ≤ ηxc

}
. (1.16)

Note that, because 0 < c < 1, all large z in the set U(c, η) are contained between
the straight lines y = ±x in the right half of the z-plane, and that the curve
|y| = ηxc, which has the ℜz-axis as its axis of symmetry, is the boundary of
U(c, η). Also note that z → ∞ in the set U(c, η) if and only if x → ∞, and
that x and y satisfy y = o(x) as x → ∞. In the next sections, we show the
validity of (1.3) as z → ∞, z ∈ U(c, η), for some c ∈ (0, 1) and some fixed, but
otherwise arbitrary, η > 0.

Next, let us define

rn(t) = f(t) −
n−1∑

k=0

Akuk(t), n = 0, 1, . . . . (1.17)

Therefore,

r̂n(z) = f̂(z) −

n−1∑

k=0

Akûk(z), n = 0, 1, . . . . (1.18)

Now, by (1.2), for each fixed n,

rn(t) = O(un(t)) as t → ∞, (1.19)

which means equivalently that there exist positive constants K and T , which
may depend on n, such that

|rn(t)| ≤ K |un(t)|, t ≥ T. (1.20)

To prove (1.3), we only need to show that

r̂n(z) = O(ûn(z)) as z → ∞, z ∈ U(c, η), (1.21)

or, equivalently, that there exist positive constants L and X, which may depend
on n, such that

|r̂n(z)| ≤ L|ûn(z)|, z ∈ U(c, η), ℜz ≥ X. (1.22)

In the next two sections, we treat the two cases described above. In Sec-
tion 4, we go back to two examples considered in [6] and derive explicit full
asymptotic expansions for them. In Section 5, we discuss a way of extending
the domains of validity of asymptotic expansions derived in different ways.
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2. The Case uk(t) = exp(−αkt
β)

The main result of this section is an extension of a special case treated in
Theorem 2.1 in [6].

Theorem 2.1. Let f(t) be as in the preceding section, and assume that

f(t) satisfies (1.2) with uk(t) as in (1.5) and (1.6). Then f̂(z) satisfies

f̂(z) ∼

∞∑

k=0

Akûk(z) as z → ∞, z ∈ U(c, η), (2.1)

where c ∈ (0, 1) and η > 0 are fixed, but arbitrary otherwise.

Proof.We start by observing that, by (1.6), for every integer n, there exists
an integer N , N > n, such that ℜαN > |αn|. Then

r̂n(z) =

N−1∑

k=n

Akûk(z) + r̂N (z). (2.2)

Clearly,
N−1∑

k=n

Akûk(z) = O(ûn(z)) as z → ∞, z ∈ U(c, η). (2.3)

Thus, we only need to show that

r̂N (z) = O(ûn(z)) as z → ∞, z ∈ U(c, η). (2.4)

By (1.20), we have

∣∣r̂N (z)
∣∣ =

∣∣∣∣

∫ T

0
tz−1 rN (t) dt +

∫ ∞

T
tz−1 rN (t) dt

∣∣∣∣

≤

∫ T

0
tx−1 |rN (t)| dt +

∫ ∞

T
tx−1 |rN (t)| dt

≤

∫ T

0
tx−1 |rN (t)| dt + K

∫ ∞

T
tx−1 |uN (t)| dt. (2.5)

By the integrability conditions imposed on f(t) and by the nature of the uk(t),
it is obvious that rN (t) is locally integrable for 0 < t < ∞, and, for some real
constant σ, tσrN (t) is absolutely integrable in every interval of the form [0, a].
Consequently, first

∫ T

0
tx−1 |rN (t)| dt = O(T x) as z → ∞, z ∈ U(c, η), (2.6)
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since x → ∞ when z → ∞ and z ∈ U(c, η). Next, for all large z ∈ U(c, η),

∫ ∞

T
tx−1 |uN (t)| dt =

∫ ∞

T
tx−1 exp[−(ℜαN )tβ ] dt ≤ v̂N (x), (2.7)

where

v̂N (x) =

∫ ∞

0
tx−1 exp[−(ℜαN )tβ] dt =

1

β
(ℜαN )−x/βΓ

(
x

β

)
. (2.8)

In addition, by (2.5) and the Stirling formula for the Gamma function Γ(x/β),
v̂N (x) dominates T x as x → ∞. As a result, (2.5) reduces to

|r̂N (z)| ≤ K̂|v̂N (x)|, z ∈ U(c, η), x ≥ X, (2.9)

where K̂ and X are some positive constants and K̂ > K. By (2.8) and (1.8),
and letting σn = arg αn, we have

∣∣∣∣
v̂N (x)

ûn(z)

∣∣∣∣ =

∣∣∣∣
Γ(x/β)

Γ(z/β)

∣∣∣∣
|α

z/β
n |

(ℜαN )x/β
=

∣∣∣∣
Γ(x/β)

Γ(z/β)

∣∣∣∣

(
|αn|

ℜαN

)x/β

e−σny/β. (2.10)

Now, the Gamma function satisfies (see [5, Section 5.8, Eq. 5.8.3])

Q(ρ, τ) :=

∣∣∣∣
Γ(ρ)

Γ(ρ + iτ)

∣∣∣∣
2

=

∞∏

k=0

[
1 +

τ2

(ρ + k)2

]
,

ρ, τ real, ρ 6= 0,−1,−2, . . . . (2.11)

By the fact that 0 < log(1 + w) ≤ w for w > 0,

log Q(ρ, τ) =

∞∑

k=0

log

[
1 +

τ2

(ρ + k)2

]
≤

∞∑

k=0

τ2

(ρ + k)2
= τ2ζ(2, ρ), (2.12)

where
∑∞

k=0(k+a)−s = ζ(s, a), ℜs > 1, is the generalized Zeta function (or the
Hurwitz function), which also satisfies (see [5, Section 25.11(xii), Eq. 25.11.43])

ζ(s, a) ∼
1

s − 1
a1−s as a → ∞.

Therefore, there exist positive constants M and R, such that, for ρ ≥ R,

log Q(ρ, τ) ≤ M
τ2

ρ
⇒ Q(ρ, τ) ≤ exp

(
M

τ2

ρ

)
. (2.13)
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As a result, with ρ = x/β and τ = y/β in (2.13), and with

ℜαN

|αn|
= ωn > 1, M =

M

2β
,

(2.10) gives the inequality

∣∣∣∣
v̂N (x)

ûn(z)

∣∣∣∣ ≤ exp

([
−

log ωn

β
+

|σn|

β

|y|

x
+ M

(
|y|

x

)2]
x

)
. (2.14)

Now, with z ∈ U(c, η) and 0 < c < 1, we have limz→∞(|y|/x) = 0. Conse-
quently, (2.14) becomes

∣∣∣∣
v̂N (x)

ûn(z)

∣∣∣∣ ≤ exp

(
−

log ωn

β
x [1 + o(1)]

)

= o(1) as z → ∞, z ∈ U(c, η).

Combining this with (2.9), we obtain (2.4). This completes the proof.

3. The Case uk(t) = t
−λk exp(−αt

β)

Our first result of this section is an extension of Theorem 2.2 in [6].

Theorem 3.1. Let f(t) be as in the preceding section, and assume that

f(t) satisfies (1.2) with uk(t) as in (1.10) and (1.11), but with real α. Then

f̂(z) satisfies

f̂(z) ∼

∞∑

k=0

Akûk(z) as z → ∞, z ∈ U(1
2 , η), (3.1)

where η > 0 is fixed, but arbitrary otherwise.

Proof. By (1.20), we have

∣∣r̂n(z)
∣∣ =

∣∣∣∣
∫ T

0
tz−1 rn(t) dt +

∫ ∞

T
tz−1 rn(t) dt

∣∣∣∣

≤

∫ T

0
tx−1 |rn(t)| dt +

∫ ∞

T
tx−1 |rn(t)| dt

≤

∫ T

0
tx−1 |rn(t)| dt + K

∫ ∞

T
tx−1 |un(t)| dt. (3.2)
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By the integrability conditions imposed on f(t) and by the nature of the uk(t),
it is obvious that rn(t) is locally integrable for 0 < t < ∞, and, for some real
constant σ, tσrn(t) is absolutely integrable in every interval of the form [0, a].
Consequently, first

∫ T

0
tx−1 |rn(t)| dt = O(T x) as z → ∞, z ∈ U(1

2 , η), (3.3)

since x → ∞ when z → ∞ and z ∈ U(1
2 , η). Next, for all large z ∈ U(1

2 , η),

∫ ∞

T
tx−1 |un(t)| dt =

∫ ∞

T
tx−1 un(t) dt ≤

∫ ∞

0
tx−1 un(t) dt = ûn(x), (3.4)

since uk(t) are all real and positive for 0 < t < ∞ when α, β, and the λk

in (1.10) are all real. In addition, by (1.13) and the Stirling formula for the
Gamma function, ûk(x) dominates T x as x → ∞. As a result, (3.2) reduces to

|r̂n(z)| ≤ K̂|ûn(x)|, z ∈ U(1
2 , η), x ≥ X, (3.5)

where K̂ and X are some positive constants and K̂ > K. Now, by (1.13) and
(2.13), for some constant M > 0, there holds

∣∣∣∣
ûn(x)

ûn(z)

∣∣∣∣ =

∣∣∣∣
Γ
(

x−λn

β

)

Γ
(

z−λn

β

)
∣∣∣∣ =

[
Q

(
x − λn

β
,
y

β

)] 1

2

≤ exp

(
M

y2

x

)
≤ exp

(
Mη2

)
, z ∈ U(1

2 , η). (3.6)

From (3.5) and (3.6), we have

|r̂n(z)| ≤ L|ûn(z)|, z ∈ U(1
2 , η), x ≥ X, (3.7)

where L > 0 is some constant. This completes the proof.

We now turn to the general case in which α is complex with ℜα > 0. This
case is covered in Theorem 3.2, which is an extension of Theorem 2.3 in [6].
Theorem 3.2 is obtained by applying Theorem 3.1 to a function derived from
f(t) when f(t) is analytic in some sector of the t-plane. For completeness, we
provide the proof of this theorem here.

Theorem 3.2. Let f(t) be as in the preceding section, and assume that

f(t) satisfies (1.2) with uk(t) as in (1.10) and (1.11), with complex α, such

that ℜα > 0. Denote ω = arg α, and assume that |ω|/β < π. Denote also
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θ1 = min{0,−ω/β} and θ2 = max{0,−ω/β}, and let W = (θ1 − δ, θ2 + δ) for

some small δ > 0. Assume that, for some T0 ≥ 0, the function f(t) is analytic

in the set D = {t : |t| ≥ T0, arg t ∈ W}, and that

f(t) ∼

∞∑

k=0

Akuk(t) as t → ∞, t ∈ D. (3.8)

If, in addition,

lim
R→∞

∫

L(R)
tz−1 f(t) dt = 0 for all large z ∈ U(1

2 , η), (3.9)

where

L(w) = {t : t = weiθ, θ goes from 0 to −ω/β}, w > 0,

then f̂(z) satisfies

f̂(z) ∼
∞∑

k=0

Akûk(z) as z → ∞, z ∈ U(1
2 , η), (3.10)

where η > 0 is fixed, but arbitrary otherwise.

If (3.8) holds uniformly in D, then (3.9) is automatically satisfied.

Proof. By the assumption that f(t) is analytic in the set D, and because

e−αtβ → 0 as t → ∞, arg t ∈ W , and on account of the assumption in (3.9), we
can deform the contour 0 < t < ∞ in (1.1) and write

f̂(z) =

(∫ T0

0
+

∫

L(T0)
+

∫

C

)
tz−1 f(t) dt, (3.11)

where C = {t : t = ρe−iω/β, ρ goes from 0 to ∞}. Next, as we have already
seen, by the integrability conditions imposed on f(t) along the ℜt axis,

I1(z) =

∫ T0

0
tz−1 f(t) dt = O(T x

0 ) as z → ∞, z ∈ U(1
2 , η). (3.12)

Similarly,

I2(z) =

∫

L(T0)
tz−1 f(t) dt = O(T x

0 ) as z → ∞, z ∈ U(1
2 , η), (3.13)

since
∣∣∣∣
∫

L(T0)
tz−1 f(t) dt

∣∣∣∣ ≤
|ω|

β

(
max

θ1≤θ≤θ2

∣∣f
(
T0e

iθ
)∣∣

)
e|ω||y|/βT x

0 (3.14)
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and y = o(x) as x → ∞, as implied by z ∈ U(1
2 , η). Next,

I3(z) =

∫

C
tz−1 f(t) dt

= e−iωz/β

∫ ∞

T0

ρz−1F (ρ) dρ, F (ρ) = f
(
ρe−iω/β

)
, (3.15)

and, by (3.8), F (ρ) has the asymptotic expansion

F (ρ) ∼

∞∑

k=0

A′
kvk(ρ) as ρ → ∞, (3.16)

where

vk(ρ) = ρ−λk exp
(
− |α|ρβ

)
, A′

k = Ak exp

(
iωλk

β

)
. (3.17)

Clearly, the integral
∫ ∞
T0

ρz−1F (ρ) dρ is the Mellin transform of H(ρ − T0) F (ρ),

where H(u) is the Heaviside unit step function.2 It is easy to see that Theorem
3.1 applies to this Mellin transform, and we have

∫ ∞

T0

ρz−1F (ρ) dρ ∼

∞∑

k=0

A′
kv̂k(z) as z → ∞, z ∈ U(1

2 , η), (3.18)

where, analogously to (1.13),

v̂k(z) =
1

β
|α|−(z−λk)/β Γ

(
z − λk

β

)
, k = 0, 1, . . . . (3.19)

Substituting (3.18) in (3.15), and invoking (3.17) and (3.19), we obtain

I3(z) ∼

∞∑

k=0

Akûk(z) as z → ∞, z ∈ U(1
2 , η). (3.20)

Combining (3.12), (3.13), and (3.20) in (3.11), and noting that I3(z) dominates
both I1(z) and I2(z), we obtain (3.10).

Let us now assume that (3.8) holds uniformly for θ = arg t ∈ W . We want to
show that (3.9) is automatically satisfied in this case. To see this, observe that,

2Recall that the Heaviside unit step function is defined via

H(u) =

(

0 if u < 0,

1 if u ≥ 0.
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under this condition, there exist positive constants K and T > T0, independent
of t, such that

|f(t)| ≤ K|u0(t)|, |t| ≥ T, θ = arg t ∈ W. (3.21)

Thus, for R ≥ T ,
∣∣∣∣
∫

L(R)
tz−1 f(t) dt

∣∣∣∣ ≤ K

∫

L(R)

∣∣tz−1
∣∣ |u0(t)| |dt|

≤ KRx−λ0e|ω||y|/β

×

∫ θ2

θ1

exp[−|α|Rβ cos(ω + βθ)] dθ. (3.22)

Now, for θ ∈ [θ1, θ2], we have |ω + βθ| ≤ |ω| < 1
2π; therefore, cos(ω + βθ) ≥

cos ω > 0. Consequently,
∣∣∣∣
∫

L(R)
tz−1 f(t) dt

∣∣∣∣ ≤ K
|ω|

β
Rx−λ0e|ω||y|/β exp(−|α|Rβ cos ω), (3.23)

and (3.9) follows by letting R → ∞.
This completes the proof.

4. Examples

We now demonstrate the application of the results of the preceding sections to
two special functions.

Example 4.1. In [6], we derived an asymptotic expansion as ν → ∞ for
Kν(z), the modified Bessel function of the second kind of order ν. We did this
by using an integral representation that enabled us to express Kν(z) as a Mellin
transform of some function f(t). Unfortunately, due to the complex nature of
f(t), we were not able to get a closed-form expression for the coefficients in the
asymptotic expansion of f(t) as t → ∞. We now revisit Kν(z), and derive its
full asymptotic expansion as ν → ∞, by using the integral representation

Kν(z) = f̂(ν), f(t) =
1

2
exp

(
−

zt

2
−

z

2t

)
, ℜz > 0. (4.1)

This representation is obtained by letting γ = δ = 1
2z in the integral (see

Gradshteyn and Ryzhik [2, p. 340, Eq. 9])

∫ ∞

0
tν−1 exp

(
− γt −

δ

t

)
dt = 2

(
δ

γ

)ν/2

Kν

(
2
√

γδ
)
, ℜγ,ℜδ > 0. (4.2)
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As t → ∞, f(t) has the (convergent) asymptotic expansion

f(t) =
1

2
e−zt/2

∞∑

k=0

(−1)k
(1
2z)k

k!
t−k. (4.3)

It is easy to see that f(t) satisfies all the conditions of Theorem 3.2, with β = 1
and λk = k there. Therefore,

Kν(z) ∼
1

2

∞∑

k=0

(−1)k
(1
2z)k

k!

Γ(ν − k)

(1
2z)ν−k

as ν → ∞, ν ∈ U(1
2 , η), (4.4)

for fixed but arbitrary η > 0. Invoking

Γ(ν − k)

Γ(ν)
=

1
∏k

i=1(ν − i)
, (4.5)

(4.4) becomes

Kν(z) ∼
1

2

Γ(ν)

(1
2z)ν

∞∑

k=0

(−1)k
(1
2z)2k

k!

1
∏k

i=1(ν − i)

as ν → ∞, ν ∈ U(1
2 , η). (4.6)

Now
1

∏k
i=1(ν − i)

=

∞∑

m=k

S(m,k)ν−m, |ν| > k, (4.7)

where S(m,k) are the Stirling numbers of the second kind (see [3, Sections 6.1
and 7.4]). Substituting (4.7) in (4.6), and rearranging, we obtain

Kν(z) ∼
1

2

Γ(ν)

(1
2z)ν

∞∑

m=0

hm(z)

νm
as ν → ∞, ν ∈ U(1

2 , η), (4.8)

where

hm(z) =

m∑

k=0

(−1)k
S(m,k)

k!

(
1
2z

)2k
, m = 0, 1, . . . . (4.9)

Since
S(0, 0) = 1; S(m, 0) = 0, m = 1, 2, . . . , (4.10)

the hm(z) of (4.9) are actually as in

h0(z) = 1; hm(z) =
m∑

k=1

(−1)k
S(m,k)

k!

(
1
2z

)2k
, m = 1, 2, . . . . (4.11)
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Example 4.2. In [6], we also derived the asymptotic expansion as ν → ∞
of Yν(z), the Bessel function of the second kind of order ν. For this, we used
the integral representation (see [5, Section 10.9(i), Eq. 10.9.7])

Yν(z) =
1

π

∫ π

0
sin(z sin θ − νθ) dθ

−
1

π

∫ ∞

0
[eντ + e−ντ cos(νπ)] exp(−z sinh τ) dτ, ℜz > 0. (4.12)

However, we did not give a closed-form expression for the coefficients in the
asymptotic expansion of Yν(z), just as in the preceding example. We do this
here.

The integral over θ is O(ν−1) as ν → ∞, as can be seen by integration parts
once. Let us express the integral over τ as the sum of two integrals

I1(ν) = −
1

π

∫ ∞

0
eντ exp(−z sinh τ) dτ,

I2(ν) = −
cos(νπ)

π

∫ ∞

0
e−ντ exp(−z sinh τ) dτ. (4.13)

Using Watson’s lemma, it is easy to show that I2(ν) = O(ν−1) as ν → ∞. Let
us now make the change of variable t = eτ in I1(ν). Then

I1(ν) = f̂(ν), f(t) = −
1

π
H(t − 1) exp

(
−

zt

2
+

z

2t

)
, (4.14)

where H(u) is the Heaviside unit step function, as before. As t → ∞, f(t) has
the (convergent) asymptotic expansion

f(t) = −
1

π
e−zt/2

∞∑

k=0

(1
2z)k

k!
t−k. (4.15)

Observing the similarity of this f(t) to that in the preceding example, we realize
that we can proceed exactly as in the latter, and that the dominant contribution
to the asymptotic expansion of Yν(z) comes only from I1(ν), the rest of the
contributions being negligible. Thus, we obtain

Yν(z) ∼ −
1

π

Γ(ν)

(1
2z)ν

∞∑

m=0

gm(z)

νm
as ν → ∞, ν ∈ U(1

2 , η), (4.16)

where gm(z) = hm(iz) [hm(z) as in (4.8) and (4.11)], and hence

g0(z) = 1; gm(z) =

m∑

k=1

S(m,k)

k!

(
1
2z

)2k
, m = 1, 2, . . . . (4.17)
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5. Further Developments

As already mentioned, with the help of Theorems 2.1, 3.1, and 3.2, we can
increase the domains of validity of the asymptotic expansions derived in the
examples given in [6]. This fact can be used to increase the domains of validity
further. We explain how this can be done next via Kν(z).

So far, we know that Kν(z) has the asymptotic expansion given in (4.8)
with (4.9), and that this expansion is valid for ν ∈ U(1

2 , η). In Sidi and Hoggan
[7], we also show that the same asymptotic expansion is valid for

ν ∈ V (ǫ) = {ν : |ℑν| ≥ ǫ, | arg ν| ≤ 1
2π − δ < 1

2π}.

Since V (ǫ) ∩ U(1
2 , η) is nonempty and unbounded, and since the asymptotic

expansion of a function in terms of a fixed asymptotic scale is unique, we
conclude that the asymptotic expansion in (4.8) with (4.9) is actually valid
for

ν ∈ {ν : | arg ν| ≤ 1
2π − δ < 1

2π} ⊂ V (ǫ) ∪ U(1
2 , η).

This approach can be generalized and formalized as in the following lemma,
given in [7]:

Lemma 5.1. Let D1 and D2 be two unbounded sets and let D̂ = D1 ∩D2

be also unbounded. Let f(ν) have the following asymptotic expansions:

f(ν) ∼
∞∑

k=0

A
(i)
k φk(ν) as ν → ∞, ν ∈ Di, i = 1, 2,

where {φk(ν)}∞k=0 is an asymptotic scale as ν → ∞ in both D1 and D2. Then

A
(1)
k = A

(2)
k = Ak, k = 0, 1, . . . .

Consequently, the series
∑∞

k=0 Akφk(ν) represents f(ν) asymptotically as ν →
∞ in D1 ∪ D2.

Proof. Since both series
∑∞

k=0 A
(i)
k φk(ν), i = 1, 2, represent f(ν) asymptoti-

cally as ν → ∞ in D̂, they must be the same because the asymptotic expansion
of a function in terms of a fixed asymptotic scale is unique (see [4, p. 17,
Theorem 7.1]).
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