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Abstract: In this work, we present two sets of full asymptotic expansions for
the modified Bessel functions Iν(z) and Kν(z) and a full asymptotic expansion
for Iν(z)Kν(z) as ν → ∞ and z is fixed with | arg z| < π. In particular, we
show that

Iν(z) ∼
(1
2z)

ν

Γ(ν + 1)

∞∑

m=0

bm(z)

νm
as ν → ∞, | arg ν| ≤ π − δ,

and

Kν(z) ∼
1

2

Γ(ν)

(1
2z)

ν

∞∑

m=0

(−1)m
bm(z)

νm
as ν → ∞, | arg ν| ≤ 1

2π − δ,

where, for each m, bm(z) is a polynomial of degree m in z2, whose coefficients
alternate in sign. Actually,

b0(z) = 1; bm(z) =

m∑

k=1

(−1)m−k S(m,k)

k!
(1
4z

2)k, m = 0, 1, . . . ,

where S(m,k) are the Stirling numbers of the second kind. We also compare
the asymptotic expansions of this work with those existing in the literature.
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1. Introduction

The modified Bessel functions Iν(z) and Kν(z) arise in many scientific appli-
cations. In particular, with ν = n + 1

2 , n = 0, 1, . . . , they arise in quantum
chemistry; for such ν, they are known as the modified spherical Bessel func-

tions.
There is vast literature on asymptotic behavior of Bessel functions in gen-

eral, and on modified Bessel functions in particular. These concern the situ-
ations in which z → ∞, or z = νξ, ξ being real and ν → ∞, or ν = iη and
η → ∞, or ν = iη and z = ηξ, ξ being real and η → ∞, to name some. An
excellent source for all these expansions is Olver [6, Chapter 10, §7], where ex-
pansions that hold uniformly in unbounded z domains are given with rigorous
estimates of the remainders. See also Olver et al. [7, Sections 10.25(ii), 4.2(iv)].
The purpose of this note is to contribute to the subject of their asymptotic
expansions when ν → ∞ in the sectors | arg ν| ≤ π − δ and | arg ν| ≤ 1

2π − δ,
where δ > 0 is an arbitrarily small number, for finite fixed z, | arg z| ≤ π − δ.

Now, it is already known that, with fixed z, Iν(z) and Kν(z) satisfy the
asymptotic equalities

Iν(z) ∼
(1
2z)

ν

Γ(ν + 1)
as ν → ∞, | arg ν| ≤ π − δ, (1.1)

and

Kν(z) ∼ 1

2

Γ(ν)

(1
2z)

ν
as ν → ∞, | arg ν| ≤ 1

2π − δ. (1.2)

These show that, with z fixed, Iν(z) goes to zero practically as 1/Γ(ν + 1)
when ν → ∞, and Kν(z) grows to infinity practically as Γ(ν) when ν → ∞.
The asymptotic equality in (1.1) can be found in Olver [6, p. 374], where it is
obtained by analyzing the power series of Iν(z) about z = 0. The asymptotic
equality in (1.2) (actually, a full asymptotic expansion), with ν real positive,
can also be found in Sidi [8, Example 3], where it is derived by analyzing an
integral representation of Kν(z) that involves a Mellin transform. Following the
approach of Frenzen [2], it can be shown that the same asymptotic expansion
is valid also in every set S(η) = {ν : ℜν > 0, |ℑν| ≤ η

√
ℜν} for fixed but

arbitrary η > 0. This subject is revisited in a recent paper by Sidi [9], in which
a full explicit expansion for Kν(z) for ν ∈ S(η) is also derived.

As far as we know, the full asymptotic expansions of Iν(z) and Kν(z) for
large ν, in negative powers of ν, have not been presented elsewhere. Starting
with suitable series and integral representations, in the next section of this
work, we derive two sets of full asymptotic expansions for Iν(z) and Kν(z).



ASYMPTOTICS OF MODIFIED BESSEL... 483

These are presented in Theorems 2.1 and 2.3. In Theorem 3.1 of Section 3,
we derive an additional expansion for their product Iν(z)Kν(z), in negative
powers of ν. The coefficients of all these expansions turn out to have interesting
algebraic structures; for example, the coefficients in the expansions of Kν(z) are
related to the corresponding coefficients in the expansions of Iν(z) in a simple
way. We also derive asymptotic expansions for the ratios Γ(ν)/Γ(ν + 1

2 ) and
Γ(ν + 1

2 )/Γ(ν + 1) and show that the coefficients in these expansions are also
related in an interesting way.

Finally, it is important to mention that the asymptotic expansions of Iν(z)
and Kν(z) given in Theorem 2.1 are obtained by re-expanding the power series
that define these functions in negative powers of ν. Actually, these power series
are also generalized asymptotic expansions and provide excellent approxima-
tions for the functions involved. This point is discussed again in some detail in
the proof of Theorem 2.1 of this work.

In our treatment, we make use of the generalized Bernoulli polynomials

B
(a)
k (u), which are defined via

H(t, u; a) ≡
(

t

et − 1

)a

eut =

∞∑

k=0

B
(a)
k (u)

tk

k!
, |t| < 2π. (1.3)

Of course, B
(a)
k (u) is of degree k in u, and B

(a)
0 (u) = 1. These polynomials

satisfy

B
(a)
k (a− u) = (−1)kB

(a)
k (u), k = 0, 1, . . . , (1.4)

from which we also have B
(a)
2k+1(

1
2a) = 0, k = 0, 1, . . . . The constants B

(a)
k (0)

are called generalized Bernoulli numbers and they are denoted simply by B
(a)
k .

Note that (1.3) is valid also when a = u = 0, in which case B
(0)
0 (0) = 1 and

B
(0)
k (0) = 0, k = 1, 2, . . . . See [5, pp. 18–22], for example.

We also make use of the Stirling numbers of the second kind S(n, k), which
are defined via the recursion relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), n = 1, 2, . . . , k = 0, 1, . . . , (1.5)

with

S(n, 0) =

{
1 if n = 0

0 if n > 0
; S(n, 1) = 1, n ≥ 1;

S(n, k) = 0 if n < k or n < 0.

(1.6)
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In particular, we make use of the relation

1

(ζ + 1)k
=

∞∑

n=k

(−1)n−kS(n, k)ζ−n, |ζ| > k. (1.7)

See, for example, Graham, Knuth, and Patashnik [4, Sections 6.1 and 7.4].
Another tool that we use is the following lemma.

Lemma 1.1. Let D1 and D2 be two unbounded sets and let D̂ = D1 ∩D2

be also unbounded. Let f(ν) have the following asymptotic expansions:

f(ν) ∼
∞∑

k=0

A
(i)
k φk(ν) as ν → ∞, ν ∈ Di, i = 1, 2,

where {φk(ν)}∞k=0 is an asymptotic scale as ν → ∞ in both D1 and D2. Then

A
(1)
k = A

(2)
k = Ak, k = 0, 1, . . . ,

and the series
∑∞

k=0Akφk(ν) represents f(ν) asymptotically as ν → ∞ in
D1 ∪D2.

Proof. Since both series
∑∞

k=0A
(i)
k φk(ν), i = 1, 2, represent f(ν) asymptoti-

cally as ν → ∞ in D̂, they must be the same because the asymptotic expansion
of a function in terms of a fixed asymptotic scale is unique (see [6, p. 17,
Theorem 7.1]).

Before going on, we would like to emphasize that the asymptotic expansions
we derive are not valid uniformly in z; they are valid for fixed z only.

2. Theory

We start by presenting two sets of complete asymptotic expansions for Iν(z)
and Kν(z) as ν → ∞ in the sectors | arg ν| ≤ π − δ and | arg ν| ≤ 1

2π − δ,
respectively, where δ > 0 is an arbitrarily small number, which seem to be new.
In our developments, we make use of the power series representation of Iν(z),
namely,

Iν(z) =

∞∑

k=0

(1
2z)

ν+2k

k! Γ(ν + k + 1)
, (2.1)

and of the McDonald definition of Kν(z), namely,

Kν(z) =
π

2

I−ν(z) − Iν(z)

sin νπ
, (2.2)
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which is valid for noninteger ν, and is defined as a limit for integer ν. Since zν

is multivalued with a branch cut along the negative real axis in the z-plane, we
take Iν(z) and Kν(z) to be the principal values of the right-hand sides of (2.1)
and (2.2). In addition, we recall that for each fixed z, both Iν(z) and Kν(z)
are entire functions of ν.

We also make use of the integral representations (see [7, Section 10.32, Eqs.
10.32.2 and 10.32.11] or Gradshteyn and Ryzhik [3, pp. 958–959])

Iν(z) = 2
(1
2z)

ν

√
π Γ(ν + 1

2)

∫ 1

0
(1 − t2)ν−

1

2 cosh zt dt, ℜν > −1

2
, (2.3)

that is valid for all z 6= 0, and

Kν(z) =
Γ(ν + 1

2 )
√
π (1

2z)
ν

∫ ∞

0

cos zt

(1 + t2)ν+ 1

2

dt, ℜν > −1

2
, z > 0. (2.4)

Finally, we make use of Watson’s lemma (see Olver [6], for example) as one of
our analytical tools.

Our first set of asymptotic expansions provides completions of the asymp-
totic equalities for Iν(z) and Kν(z) given in (1.1) and (1.2). The resulting
expansions involve the S(m,k), Stirling numbers of the second kind.

Theorem 2.1. Define the sets T±(ǫ) via

T±(ǫ) =
{
ν : |ν ± n| ≥ ǫ; n ∈ N, ǫ ∈ (0, 1

2 )
}
. (2.5)

Then, for fixed z 6= 0, and | arg z| < π, the principal values of the modified
Bessel functions Iν(z) and Kν(z) have the asymptotic expansions

Iν(z) ∼
(1
2z)

ν

Γ(ν + 1)

∞∑

m=0

bm(z)

νm
as ν → ∞, ν ∈ T+(ǫ), (2.6)

and

Kν(z) ∼
1

2

Γ(ν)

(1
2z)

ν

∞∑

m=0

(−1)m
bm(z)

νm
as ν → ∞, | arg ν| ≤ 1

2π − δ, (2.7)

where ǫ is arbitrarily small, and for each m = 0, 1, . . . , bm(z) is a polynomial of
degree m in z2, given as in

b0(z) = 1; bm(z) =

m∑

k=1

(−1)m−k S(m,k)

k!

(
1
4z

2
)k
, m = 1, 2, . . . . (2.8)

(Note that the bm(z) in (2.6) and (2.7) are identical. For each m, the coefficients
of bm(z) have alternating signs.)
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Proof. We begin by showing that, for every fixed z 6= 0, the (everywhere
convergent) power series of Iν(z) in (2.1), is already an excellent asymptotic
expansion as ν → ∞, in the set T+(ǫ). For this, let us first write (2.1) in the
form

Iν(z) =
(1
2z)

ν

Γ(ν + 1)

∞∑

k=0

wk

k! (ν + 1)k
; w = 1

4z
2, (2.9)

and rewrite it as in

Iν(z) =
(1
2z)

ν

Γ(ν + 1)

[ p−1∑

k=0

wk

k! (ν + 1)k
+

wp

(ν + 1)p
Wν(z; p)

]
; w = 1

4z
2, (2.10)

where p is a positive integer and

Wν(z; p) =
∞∑

k=0

wk

(p+ k)! (ν + p+ 1)k
.

We now need to show that Wν(z; p) can be bounded independently of ν. When
ℜν ≥ 0, we can easily show that |Wν(z; p)| ≤ exp(|w|) independently of ν, and
we are done. When ℜν < 0, we proceed as follows: Let n be the (unique)
positive integer for which

−n− 1
2 < ℜν ≤ −n+ 1

2 .

Thus, letting also µ = ν+n, we have that |ℜµ| ≤ 1
2 . In addition, for any integer

m,

|ν +m| = |(m− n) + µ| ≥
∣∣|m− n| − |ℜµ|

∣∣ ≥ |m− n| − 1
2 ≥ 1

2 , if m 6= n.

Therefore, taking into account also the fact that |ν + n| = |µ|,

|(ν + p+ 1)k| ≥
{

(1
2 )k, 0 ≤ k ≤ n− p− 1,

|µ|(1
2 )k−1, k ≥ n− p.

Making use of these in

Wν(z; p) =

( n−p−1∑

k=0

+
∞∑

k=n−p

)
wk

(p + k)! (ν + p+ 1)k
,

we obtain

|Wν(z; p)| ≤
n−p−1∑

k=0

|w|k
(p + k)! (1

2 )k
+

∞∑

k=n−p

|w|k
(p+ k)! |µ| (1

2 )k−1
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≤ 1

p!

n−p−1∑

k=0

|2w|k
k!

+
|2w|n−p

2|µ|(n!)

∞∑

k=0

|2w|k
k!

≤
(

1

p!
+

|2w|n−p

2|µ|(n!)

)
exp(|2w|),

≤ A(z; p) exp(|2w|),

A(z; p) =
1

p!
+

|2w|−p

2ǫ

(
sup
m≥0

|2w|m
m!

)
<∞,

the right-hand side of the last inequality being independent of n and µ, hence in-
dependent of ν as well, since |µ| ≥ ǫ when ν ∈ T+(ǫ) and limm→∞(|2w|m/m!) =
0 for fixed z. We have thus shown that the right-hand side of (2.9) is an asymp-
totic expansion for Iν(z) as ν → ∞, ν ∈ T+(ǫ).

Now, by (1.7), we have the expansion

1

(ν + 1)k
=

∞∑

m=k

(−1)m−kS(m,k)ν−m, |ν| > k. (2.11)

Note that the right-hand side of (2.11) is also an asymptotic expansion for
1/(ν + 1)k as ν → ∞, ν ∈ T+(ǫ). Substituting this expansion in the series∑∞

k=0
wk

k! (ν+1)k

, changing the order of the summations, and invoking S(0, 0) = 1,

S(m, 0) = 0 for m ≥ 1, and (2.8), we obtain

∞∑

k=0

wk

k! (ν + 1)k
∼

∞∑

m=0

bm(z)

νm
as ν → ∞, ν ∈ T+(ǫ). (2.12)

Upon substituting this in (2.9), we obtain (2.6).

To prove (2.7), we proceed via (2.6) and (2.2). First, replacing ν in (2.6)
by −ν, we obtain

I−ν(z) =
(1
2z)

−ν

Γ(−ν + 1)

∞∑

k=0

wk

k! (−ν + 1)k
; w = 1

4z
2. (2.13)

It is now easy to see that, re-expanding the series
∑∞

k=0
wk

k! (−ν+1)k

in negative

powers of ν amounts to replacing ν in (2.12) by −ν. Consequently, (2.13) gives

I−ν(z) ∼
(1
2z)

−ν

Γ(−ν + 1)

∞∑

m=0

(−1)m
bm(z)

νm
as ν → ∞, ν ∈ T−(ǫ). (2.14)
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Making use of the reflection formula for the Gamma function, namely,

Γ(ν)Γ(1 − ν) =
π

sin νπ
, ν 6= 0,±1,±2, . . . ,

(2.14) becomes

I−ν(z) ∼
sin νπ

π

Γ(ν)

(1
2z)

ν

∞∑

m=0

(−1)m
bm(z)

νm
as ν → ∞, ν ∈ T−(ǫ). (2.15)

From (2.6) and (2.15), it is clear that

Iν(z)

I−ν(z)
∼ π

sin νπ

(1
2z)

2ν

ν[Γ(ν)]2
as ν → ∞, ν ∈ T+(ǫ) ∩ T−(ǫ), (2.16)

and hence Iν(z)/I−ν(z) tends to zero as ν → ∞ faster than e−λ|ν| for all λ > 0,
provided | arg ν| ≤ 1

2π − δ, which, by (2.2), implies that

Kν(z) ∼
π

2 sin νπ
I−ν(z) as ν → ∞,

ν ∈ T−(ǫ), | arg ν| ≤ 1
2π − δ.1 (2.17)

Upon substituting (2.15) in (2.17), we obtain (2.7), with the restriction that
ν ∈ T−(ǫ) with ǫ > 0 and arbitrarily small. To complete the proof of (2.7),
we now have to somehow remove this restriction and show that the asymptotic
expansion given in (2.7) holds for all ν with | arg ν| ≤ 1

2π − δ. By expressing
Kν(z) as a Mellin transform of a suitable function with ℜz > 0, the first author
has shown in [9] that the exact same asymptotic expansion of Kν(z) as ν → ∞
given in (2.7) with (2.8) is valid for ν in the set U(η) = {ν : ℜν > 0, |ℑν| ≤
η
√
ℜν} for fixed but arbitrary η > 0.2 Now the intersection of the sets T−(ǫ)

1When | arg ν| = 1

2
π, so that ν = iη, η real, we have (see [7, Section 5.4(i), equation

(5.4.3)]) |Γ(ν)|2 =
π

|η| sinh π|η|
, and hence |Iν(z)/I−ν(z)| ∼ |( 1

2
z)2ν | as |η| → ∞. Thus,

Kν(z) ∼ π

2 sin νπ
I−ν(z) as ν → ∞, in (2.17) does not always hold in this case; in particular, it

does not hold when z is real and positive. See also Remark 4 following the proof of Theorem
2.1.

2In [8, Section 3, Example 3], the first author derived an asymptotic expansion of the form

Kν(z) ∼
1

2

Γ(ν)

( 1

2
z)ν

∞
X

k=0

Ak(z)

νk
as ν → ∞, ν real positive,

Ak(z) being polynomials in z, by expressing an integral representation of Kν(z) as a Mellin
transform of some other function f(t). Due to the complexity of the function f(t), however,
we were not able to give a simple explicit representation for the Ak(z).
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and U(η) contains the unbounded set {ν : ℜν ≥ C, ǫ ≤ |ℑν| ≤ η
√
ℜν} for

some sufficiently large C > 0. Therefore, by Lemma 1.1, (2.7) is valid as is,
with the restriction | arg z| ≤ 1

2π − δ. [Recall that we need to show that (2.7)
is valid for | arg z| ≤ π − δ.] This last restriction on z can also be removed by
recalling that (see [7, Section 10.34, equation (10.34.2)])

Kν(eimπz) = e−imνπKν(z) − iπ sin(mνπ) csc(νπ)Iν(z), m integer. (2.18)

By (2.17) and (2.16), the asymptotic expansion of the term involving Iν(z) in
(2.18) is negligible compared to that involving Kν(z), and hence

Kν(e
imπz) ∼ e−imνπKν(z) as ν → ∞.

Now we take m = ±1 and use the already computed asymptotic expansion of
Kν(z) to conclude that (2.7) indeed holds for | arg z| ≤ π − δ.

Remarks.

1. (2.6) applies to the sequence {Iµ−n(z)}∞n=0, when µ is real but not an in-
teger. In particular, it applies to the sequence {I−n− 1

2

(z)}∞n=0 of modified

spherical Bessel functions.

2. “ν ∈ T+(ǫ)” in (2.6) can be replaced by the weaker “| arg ν| ≤ π−δ” since
all sufficiently large ν with | arg ν| ≤ π − δ are in T+(ǫ). The opposite is
not true, however.

3. (2.6) is valid also when | arg z| = π since Iν(e
imπz) = eimνπIν(z) when m

is an integer. See [7, Section 10.34, equation (10.34.1)].

4. By (2.2), K−ν(z) = Kν(z). This implies that we can restrict our atten-
tion to Kν(z) for ν in the right half of the complex ν-plane. As already
mentioned, the ℑν-axis cannot be part of this half, and this is the reason
for the restriction | arg ν| ≤ 1

2π − δ in (2.7).

Before we continue to the next set of asymptotic expansions for Iν(z) and
Kν(z), we present a simple lemma concerning the asymptotic expansions of
ratios of two Gamma functions. These asymptotic expansions seem to be of
interest by themselves.

Lemma 2.2. The ratios Γ(ν)/Γ(ν + 1
2) and Γ(ν + 1

2)/Γ(ν + 1) satisfy

Γ(ν)

Γ(ν + 1
2)

∼
∞∑

k=0

ck

νk+ 1

2

as ν → ∞, | arg ν| ≤ π − δ, (2.19)
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and

Γ(ν + 1
2 )

Γ(ν + 1)
∼

∞∑

k=0

(−1)k
ck

νk+ 1

2

as ν → ∞, | arg ν| ≤ π − δ, (2.20)

where δ > 0 is arbitrarily small, and

ck = (−1)k (1
2)k

B
( 1

2
)

k

k!
, k = 0, 1, . . . . (2.21)

Proof. We start with the following result that is due to Tricomi and Erdélyi
[10] (see also Luke [5, p. 33] and Andrews, Askey, and Roy [1, p. 615]):

Γ(ν + α)

Γ(ν + β)
∼

∞∑

k=0

(−1)k
B

(σ)
k (α)

k!

(β − α)k
νβ−α+k

as ν → ∞,

| arg ν| ≤ π − δ; σ = α− β + 1.

Setting first α = 0 and β = 1
2 , and next α = 1

2 and β = 1, and also recalling

that B
( 1

2
)

k (1
2 ) = (−1)kB

( 1

2
)

k (0) = (−1)kB
( 1

2
)

k , the results follow.
The asymptotic expansions in our second set are “symmetric” versions of

those in Theorem 2.3 and involve the generalized Bernoulli numbers and poly-
nomials.

Theorem 2.3. For fixed z 6= 0, the modified Bessel functions Iν(z) and
Kν(z) have the following asymptotic expansions:

Iν(z) ∼ (1
2z)

ν

Γ(ν + 1
2)

∞∑

s=0

as(z; c)

(ν + c)s+
1

2

as ν → ∞, | arg ν| ≤ π − δ, (2.22)

and

Kν(z) ∼
1

2

Γ(ν + 1
2)

(1
2z)

ν

∞∑

s=0

(−1)s
as(z; c)

(ν − c)s+
1

2

as ν → ∞,

| arg ν| ≤ 1
2π − δ, (2.23)

where δ > 0 is arbitrarily small, c is an arbitrary constant and, for each s =
0, 1, . . . , as(z; c) is a polynomial of degree s in z2, given by

as(z; c) = (1
2)s

s∑

k=0

(−1)s−k
B

(−k+ 1

2
)

s−k (1
2 − c)

(s− k)!

z2k

(2k)!
. (2.24)

Clearly, a0(z; c) = 1. [Note that the as(z; c) in (2.22) and (2.23) are identical.]
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Proof. That there exist asymptotic expansions of the forms given in (2.22)
and (2.23) can be shown as follows: Let us rewrite (2.6) and (2.7) as in

Iν(z) ∼
(1
2z)

ν

Γ(ν + 1
2)

[
Γ(ν + 1

2)

Γ(ν + 1)

∞∑

m=0

bm(z)

νm

]
as ν → ∞, (2.25)

and

Kν(z) ∼ 1

2

Γ(ν + 1
2 )

(1
2z)

ν

[
Γ(ν)

Γ(ν + 1
2)

∞∑

m=0

(−1)m
bm(z)

νm

]
as ν → ∞. (2.26)

Now invoke Lemma 2.2, and re-expand the terms inside the square brackets
in negative powers of ν ± c; this produces the required asymptotic expansions.
As for the conditions on arg ν, it is easy to see that these must be the same
as those in (2.6) and (2.7) since the corresponding conditions in Lemma 2.2
contain | arg ν| ≤ π − δ both in (2.19) and in (2.20).

We now want to obtain the explicit expressions given in (2.24) for the co-
efficients as(z; c). Because these are polynomials in z, and because asymptotic
expansions are unique, it suffices to obtain these by working with real ν and z.

1. Proof of (2.22). Making the substitution 1 − t2 = e−τ in the integral of
(2.3), we obtain

Dν(z) = 2

∫ 1

0
(1 − t2)ν−

1

2 cosh zt dt =

∫ ∞

0
e−ντΦ(τ ; z) dτ, (2.27)

where

Φ(τ ; z) =
e−τ/2 cosh

(
z
√

1 − e−τ
)

√
1 − e−τ

. (2.28)

Now, Φ(τ ; z) can be expanded in an infinite series as in

Φ(τ ; z) =
e−τ/2

√
1 − e−τ

∞∑

k=0

z2k(1 − e−τ )k

(2k)!
, (2.29)

which, for arbitrary constant c, can be rewritten as

Φ(τ ; z) =

∞∑

k=0

z2k

(2k)!
τk− 1

2H(τ,−k + c;−k + 1
2)e−cτ , (2.30)
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withH(t, u; a) as in (1.3). Hence, by (1.3), Φ(τ ; z) has the convergent Maclaurin
series

Φ(τ ; z) =
∞∑

k=0

∞∑

i=0

z2k

(2k)!

B
(−k+ 1

2
)

i (−k + c)

i!
τ i+k− 1

2 e−cτ .

Rearranging this series, and invoking (1.4), we have

Φ(τ ; z) =

∞∑

s=0

[ s∑

k=0

(−1)s−k z2k

(2k)!

B
(−k+ 1

2
)

s−k (1
2 − c)

(s− k)!

]
τ s− 1

2 e−cτ .

On account of this series, we can now apply Watson’s lemma to the integral
representation of Dν(z) given in (2.27), and obtain the asymptotic expansion

Dν(z) ∼
∞∑

s=0

[ s∑

k=0

(−1)s−k z2k

(2k)!

B
(−k+ 1

2
)

s−k (1
2 − c)

(s− k)!

]
Γ(s+ 1

2)

(ν + c)s+
1

2

, as ν → ∞,

that is valid for | arg ν| ≤ 1
2π − δ. Substituting this expansion in (2.3), and

recalling that
Γ(1

2) =
√
π and Γ(ζ + n)/Γ(ζ) = (ζ)n,

the result in (2.22) and (2.24) follows.

2. Proof of (2.23). Making the substitution 1 + t2 = eτ in the integral of
(2.4), we obtain

Eν(z) = 2

∫ ∞

0

cos zt

(1 + t2)ν+ 1

2

dt =

∫ ∞

0
e−ντΨ(τ ; z) dτ, (2.31)

where

Ψ(τ ; z) =
eτ/2 cos

(
z
√
eτ − 1

)
√
eτ − 1

. (2.32)

Now, Ψ(τ ; z) can be expanded in an infinite series as in

Ψ(τ ; z) =
eτ/2

√
eτ − 1

∞∑

k=0

(−1)k
z2k(eτ − 1)k

(2k)!
, (2.33)

which can be rewritten as

Ψ(τ ; z) =

∞∑

k=0

(−1)k
z2k

(2k)!
τk−

1
2 H(τ, 1

2 − c;−k + 1
2)ecτ .
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Hence, by (1.3), Ψ(τ ; z) has the convergent Maclaurin series

Ψ(τ ; z) =

∞∑

k=0

∞∑

i=0

(−1)k
z2k

(2k)!

B
(−k+ 1

2
)

i (1
2 − c)

i!
τ i+k− 1

2 ecτ .

Rearranging this series, and invoking (1.4), we have

Ψ(τ ; z) =

∞∑

s=0

[ s∑

k=0

(−1)k
z2k

(2k)!

B
(−k+ 1

2
)

s−k (1
2 − c)

(s− k)!

]
τ s− 1

2 ecτ .

The proof of (2.23) and (2.24) can now be achieved exactly as that of (2.22)
and (2.24).

Remarks.

1. The cases c = 0 and c = 1
2 seem to be interesting. Letting c = 0, we have

the asymptotic expansions

Iν(z) ∼
(1
2z)

ν

Γ(ν + 1
2)

∞∑

s=0

âs(z)

νs+ 1

2

as ν → ∞, | arg ν| ≤ π − δ, (2.34)

and

Kν(z) ∼
1

2

Γ(ν + 1
2)

(1
2z)

ν

∞∑

s=0

(−1)s
âs(z)

νs+ 1

2

as ν → ∞,

| arg ν| ≤ 1
2π − δ, (2.35)

where

âs(z) = (1
2)s

s∑

k=0

(−1)s−k
B

(−k+ 1

2
)

s−k (1
2 )

(s− k)!

z2k

(2k)!
. (2.36)

With c = 1
2 in (2.22) and (2.23), we have B

(−k+ 1

2
)

s−k (1
2 − c) = B

(−k+ 1

2
)

s−k in
(2.24).

2. In addition, the âs(z) = as(z; 0) and the bm(z) of Theorem 2.1 are related
through

âs(z) =
s∑

m=0

(−1)s−mcs−mbm(z), s = 0, 1, . . . , (2.37)
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and

bm(z) =

m∑

s=0

cm−s âs(z), m = 0, 1, . . . . (2.38)

Here, the ck are those introduced in Lemma 2.2.

To prove (2.37), we substitute (2.20) in (2.25), expand in negative powers
of ν via the Cauchy product, and equate with (2.34). To prove (2.38), we
proceed analogously. We leave the details to the reader.

3. Interestingly, from Theorems 2.1 and 2.3, we can also derive a relation
between Stirling numbers of the second kind and generalized Bernoulli
polynomials and numbers. Substituting (2.24) and (2.21) in (2.38), and
rearranging and then invoking (2.8), we obtain

S(m,k) =
m∑

s=k

(1
2)m−s(

1
2)s

(1
2)k

B
( 1

2
)

m−s

(m− s)!

B
(−k+ 1

2
)

s−k (1
2 )

(s− k)!
. (2.39)

This identity seems to be new.

3. Asymptotic expansion of Iν(z)Kν(z)

Finally, we give a full asymptotic expansion for the product of the functions
Iν(z) and Kν(z) as ν → ∞.

Theorem 3.1. For fixed z 6= 0, the product Iν(z)Kν(z) has the asymptotic
expansion

Iν(z)Kν(z) ∼ 1

2ν

∞∑

s=0

ps(z)

ν2s
as ν → ∞, | arg ν| ≤ 1

2π − δ, (3.1)

where ps(z) is a polynomial of degree s in z2, given by

p0(z) = 1; ps(z) =
s∑

k=1

γs,k w
k, s = 1, 2, . . . , ; w = 1

4z
2, (3.2)

where

γs,k = (−1)k
(

2s

2k

)(
2k

k

)
B

(−2k)
2s−2k(−k), k = 1, . . . , s. (3.3)

Moreover, (−1)kγs,k > 0, k = 1, . . . , s.
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Remark. Note that, multiplying the two asymptotic expansions given in
Theorem 2.1, we obtain

Iν(z)Kν(z) ∼ 1

2ν

[ ∞∑

m=0

bm(z)

νm

] [ ∞∑

m=0

(−1)m
bm(z)

νm

]
as ν → ∞,

| arg ν| ≤ 1
2π − δ. (3.4)

The result in (3.1) can be obtained by realizing that the Cauchy product of
the two summations in (3.4) contains only even powers of ν−1. Clearly, the
polynomials ps(z) in (3.1) are given as in

ps(z) =

2s∑

m=0

(−1)mb2s−m(z)bm(z). (3.5)

¿From this discussion, it is also clear that (3.1) is valid for all ν such that
| arg ν| ≤ 1

2π− δ and for z 6= 0 since the asymptotic expansions of Theorem 2.1
are. Now, all we can say about ps(z) in (3.5) is that it is a polynomial in z2 of
degree at most 2s. Thus, our result that the degree of ps(z), as a polynomial
in z2, is exactly s comes as a surprise.

Proof. We start with the integral representation (see [7, Section 10.32(iii),
equation (10.32.16)])

Iν(z)Kν(z) =

∫ ∞

0
Jµ±ν(2z sinh t)e(−µ±ν)t dt;

ℜ(µ∓ ν) > 1
2 , ℜ(µ± ν) > −1, z > 0,

which, upon letting µ = ν and choosing the lower sign in ± and ∓, becomes

Iν(z)Kν(z) =

∫ ∞

0
J0(2z sinh t)e−2νt dt; ℜν > 1

4 , z > 0. (3.6)

Here, J0(ξ) is the Bessel function of the first kind of order zero. Letting τ = 2t
in (3.6), we obtain

Iν(z)Kν(z) =
1

2

∫ ∞

0
J0

(
2z sinh

τ

2

)
e−ντ dτ ; ℜν > 1

4 , z > 0. (3.7)

We can apply Watson’s lemma to this integral and obtain the asymptotic ex-
pansion of Iν(z)Kν(z) as ν → ∞, | arg ν| ≤ 1

2π − δ. For this, we need the
asymptotic expansion of J0(2z sinh τ

2 ) as τ → 0. By the fact that

J0(ξ) =

∞∑

k=0

(−1)k
(1
2ξ)

2k

(k!)2
,
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which is also an asymptotic expansion for J0(ξ) as ξ → 0, we first have

J0

(
2z sinh

τ

2

)
=

∞∑

k=0

(−1)k
z2k

(k!)2

(
sinh

τ

2

)2k

. (3.8)

Next, using the fact that sinh t = 1
2(et − e−t), after some simple algebra, we

obtain (
sinh

τ

2

)2k

=

(
τ

2

)2k( τ

eτ − 1

)−2k

e−kτ ,

which, by invoking (1.3) and (1.4), can be expressed in the form

(
sinh

τ

2

)2k

=
∞∑

j=0

B
(−2k)
2j (−k)
4k (2j)!

τ2(j+k). (3.9)

Note that, B
(−2k)
2j (−k) > 0 for all j ≥ 0 and k ≥ 1, since 2k is a positive integer

and since the Maclaurin expansion of sinh τ
2 contains only odd powers of τ with

positive coefficents. Substituting (3.9) in (3.8), and re-expanding , we finally
obtain the (convergent) asymptotic expansion (as τ → 0)

J0

(
2z sinh

τ

2

)
=

∞∑

s=0

[ s∑

k=0

(−1)k
wk

(k!)2
B

(−2k)
2s−2k(−k)

(2s− 2k)!

]
τ2s. (3.10)

Applying now Watson’s lemma to the integral in (3.7), and observing from (1.3)

that B
(0)
k (u) = uk, so that B

(0)
0 (0) = 1 and B

(0)
k (0) = 0 for k = 1, 2, . . . , we

obtain the result in (3.1)–(3.3).
Even though we have obtained the result in (3.1) under the restriction that

z is real and positive, this result is nevertheless true for all z 6= 0, as concluded
in the remark preceding this proof.

4. Concluding Remarks

As already mentioned in the proof of Theorem 2.1, the infinite series represen-
tation of Iν(z) in (2.1) is already an excellent generalized asymptotic expansion
as ν → ∞ in the sense described in (2.10). This series can be used to compute
Iν(z) for finite z and large ν, within the limitations of finite-precision arithmetic
on a computer.

A similar argument applies to Kν(z). For example, when ν = n is a nonneg-
ative integer, the convergent series (see [7, Section 10.31, equation (10.31.1)])
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Kn(z) =
1

2
(1
2z)

−n
n−1∑

k=0

(n− k − 1)!

k!
(−1

4z
2)k + (−1)n+1 log(1

2z) In(z)

+ (−1)n
1

2
(1
2z)

n
∞∑

k=0

[ψ(k + 1) + ψ(n+ k + 1)]
(1
2z)

2k

k!(n + k)!
. (4.1)

serves as a good (generalized) asymptotic expansion forKn(z) as n→ ∞. It can
be used to compute Kn(z) for finite z and large n, again within the limitations
of finite-precision arithmetic on a computer.

In contrast, the expansions given in this work are asymptotic but diver-
gent, and they are not meant to be used for computational purposes. They are
useful in theoretical work, however. For example, all three expansions given
in Theorems 2.3 and 3.1, in addition to being new and of interest by them-
selves, enable us to provide a precise and refined asymptotic analysis of certain
important functions, called Barnett–Coulson–Löwdin functions, that arise in
quantum chemistry and that are expressed in terms of the modified spherical
Bessel functions In+ 1

2

(z) and Kn+ 1

2

(z), n = 0, 1, . . . . It is precisely this topic

that has motivated the study we present in this note.
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