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Abstract The Shanks transformation is a powerful nonlinear extrapolation method
that is used to accelerate the convergence of slowly converging, and even diverging,
sequences {An}. It generates a two-dimensional array of approximations A( j)

n to the
limit or anti-limit of {An} defined as solutions of the linear systems

Al = A( j)
n +

n∑

k=1

β̄k(�Al+k−1), j ≤ l ≤ j + n,

where β̄k are additional unknowns. In this work, we study the convergence and stabil-
ity properties of A( j)

n , as j → ∞ with n fixed, derived from general linear sequences
{An}, where An ∼ A + ∑m

k=1 ζ n
k

∑∞
i=0 βki nγk−i as n → ∞, where ζk �= 1 are dis-

tinct and |ζ1| = · · · = |ζm | = θ, and γk �= 0, 1, 2, . . .. Here A is the limit or the
anti-limit of {An}. Such sequences arise, for example, as partial sums of Fourier series
of functions that have finite jump discontinuities and/or algebraic branch singulari-
ties. We show that definitive results are obtained with those values of n for which the
integer programming problems

max
s1,...,sm

m∑

k=1

[
(�γk)sk − sk(sk − 1)

]
,

subject to s1 ≥ 0, . . . , sm ≥ 0 and
m∑

k=1

sk = n,
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726 A. Sidi

have unique (integer) solutions for s1, . . . , sm . A special case of our convergence
result concerns the situation in which �γ1 = · · · = �γm = α and n = mν with
ν = 1, 2, . . . , for which the integer programming problems above have unique solu-
tions, and it reads A( j)

n − A = O(θ j jα−2ν) as j → ∞. When compared with
A j − A = O(θ j jα) as j → ∞, this result shows that the Shanks transformation is a
true convergence acceleration method for the sequences considered. In addition, we
show that it is stable for the case being studied, and we also quantify its stability prop-
erties. The results of this work are the first ones pertaining to the Shanks transformation
on general linear sequences with m > 1.

Mathematics Subject Classification (2000) 40A05 · 40A25 · 41A60 · 65B05 ·
65B10

1 Introduction

The Shanks transformation [27] is a very powerful convergence acceleration (or
extrapolation) method that is used to approximate limits or so-called antilimits of
infinite sequences or to sum infinite series, whether convergent or divergent. Given
an infinite sequence {An}, this transformation produces a two-dimensional array of
quantities A( j)

n that approximate the limit of {An} in case of convergence and the an-
tilimit of {An} in case of divergence. These approximations are defined via the linear
systems

Al = A( j)
n +

n∑

k=1

β̄k(�Al+k−1), j ≤ l ≤ j + n, (1.1)

where β̄k are additional auxiliary unknowns. Here, �Ak = Ak+1 − Ak for all k.
Solving (1.1) for A( j)

n by Cramer’s rule, we obtain the following determinant rep-
resentation for A( j)

n :

A( j)
n =

∣∣∣∣∣∣∣∣∣

A j �A j �A j+1 · · · �A j+n−1
A j+1 �A j+1 �A j+2 · · · �A j+n

...
...

...
...

A j+n �A j+n �A j+n+1 · · · �A j+2n−1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 �A j �A j+1 · · · �A j+n−1
1 �A j+1 �A j+2 · · · �A j+n
...

...
...

...

1 �A j+n �A j+n+1 · · · �A j+2n−1

∣∣∣∣∣∣∣∣∣

. (1.2)

This representation of A( j)
n turns out to be extremely useful in analyzing the proper-

ties of A( j)
n . It is not meant to be a computational tool for evaluating A( j)

n , however.
Instead, the computation of the A( j)

n can be achieved, without resorting to either (1.1) or
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Acceleration of convergence of general linear sequences 727

(1.2), and in a most efficient way, via the famous epsilon algorithm due to Wynn [44].
Another algorithm, called the FS/qd algorithm, has been given recently in Sidi [34,
Chapter 21], and it turns out to be practically as efficient as the epsilon algorithm. The
FS/qd algorithm is a combination of the FS algorithm of Ford and Sidi [11] (see also
Sidi [34, Chapter 3]) and the qd algorithm of Rutishauser [25], and it implements the
higher-order G transformation of Gray et al. [15] as well.

Two types of sequences of the A( j)
n are normally considered: (i) {A( j)

n }∞j=0 with

fixed n (called column sequences), and (ii) {A( j)
n }∞n=0 with fixed j (called diagonal

sequences). Experience suggests that diagonal sequences have much better conver-
gence properties; they are extremely difficult to study rigorously, however. Column
sequences turn out to be relatively easy to study, and, in general, the conclusions drawn
from this study seem to be relevant for diagonal sequences as well.

In this work, we will treat some of the convergence and stability properties of col-
umn sequences produced by the Shanks transformation as applied to general linear
sequences {An}, whose terms behave specifically as in

An ∼ A +
m∑

k=1

ζ n
k

∞∑

i=0

βki n
γk−i as n → ∞; βk0 �= 0, k = 1, . . . , m, (1.3)

where m > 1 is arbitrary and

|ζ1| = · · · = |ζm | = θ; ζk �= 1 distinct, γk �= 0, 1, 2, . . . , arbitrary.1 (1.4)

Note that the assumption that the ζk have equal moduli is not a restriction, because
the ζk that dominate in the asymptotic expansion of An , and hence in our results in this
paper, are only the largest ones that have the same modulus, while the remaining ones
are subdominant and hence do not contribute asymptotically. (This will become obvi-
ous as we proceed with our treatment later.) Everything in (1.3) can be real or complex.
We also assume that |ζk | ≤ 1. Hence limn→∞ An exists and equals A unconditionally
when |ζk | < 1. When |ζk | = 1, limn→∞ An exists and equals A provided �γk < 0
for all k. Again, when |ζk | = 1, (i) if �γk ≤ 0, with equality for at least one value of k,

{An} diverges but remains bounded, and (ii) if �γk > 0 for at least one value of k, {An}
diverges and is unbounded. In case |ζk | = 1, we have that arg ζk ∈ (0, 2π) because
ζk �= 1. Therefore, {An}, whether convergent or divergent, is oscillatory as a function
of n since ζ n

k = exp(i n arg ζk). In case of divergence, A is the antilimit of {An}. As we
will see in the next section, such sequences arise naturally as partial sums of Fourier
series of functions with various types of singularities, for example.

Before we continue, we would like to discuss briefly the subject of stability. We
know that (see [34, p. 307, Eqs. (16.4.23), (16.4.24)]) A( j)

n can be expressed as in

A( j)
n =

n∑

i=0

γ
( j)
ni A j+i , (1.5)

1 When m = 1, we call {An} simply a linear sequence. Thus, linear sequences are the simplest special
cases of general linear sequences.
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for some scalars γ
( j)
ni that satisfy

n∑

i=0

γ
( j)
ni = 1. (1.6)

(The exact nature of the γ
( j)
ni is discussed in Lemma 4.1 of this work.) The stability of

the extrapolation process is ultimately connected with the quantity



( j)
n =

n∑

i=0

∣∣∣γ ( j)
ni

∣∣∣ , (1.7)

which determines the rate at which errors in the Al propagate into A( j)
n . Note that, in

view of (1.6), we have 

( j)
n ≥ 1 always. In order for the column and diagonal sequences

to be stable numerically, it is necessary that sup j 

( j)
n and supn 


( j)
n , respectively, be

finite. For a survey of the issue of stability in extrapolation methods, see the recent
paper by Sidi [38].

In this work, we study the convergence and stability behavior of A( j)
n as j → ∞,

when m > 1 in (1.3). Specifically, we analyze the asymptotic behavior, as j → ∞,
of the error A( j)

n − A and of the polynomial
∑n

i=0 γ
( j)
ni zi . We show that, for infinitely

many (but not all) values of n, lim j→∞
∑n

i=0 γ
( j)
ni zi exists, from which we conclude

that lim j→∞ γ
( j)
ni all exist, and hence conclude that sup j 


( j)
n is bounded, implying

that the column sequences resulting from application of the Shanks transformation to
general linear sequences are stable. We also show that convergence acceleration does
take place and we quantify it.

The plan of this paper is as follows: Following some examples of sequences {An}
that satisfy (1.3), which we give in the next section. In Sect. 3, we state the main
results for j → ∞, while n is being held fixed. In Sect. 4, we provide some technical
preliminaries, including determinant representations of A( j)

n − A and of the polyno-
mial

∑n
i=0 γ

( j)
ni zi . Using the representations of Sect. 4, in Sects. 5 and 6, we give the

proofs of the main results. In view of the main results, in Sect. 7, we address the prob-
lem of slow convergence of the Shanks transformation that is present when ζk ≈ 1
in the complex plane for some k, and we justify the use of the so-called arithmetic
progression sampling (APS) (see [34, Chapter 16, p. 316]) to make A( j)

n converge
faster. This amounts to applying the Shanks transformation to a subsequence {Aκn}
for some integer κ ≥ 2. Finally, in Sect. 8, we give a numerical example.

Our main results rely on the existence of unique solutions to an interesting integer
programming problem. Unique solutions exist only for certain values of n. Several
aspects of this problem that are relevant to our convergence study are treated in detail
in the appendix to this work, where we also construct infinitely many values of n, for
which the relevant integer programming problem has unique solutions.

The results of the present work are the first ones that pertain to the application of
the Shanks transformation to general linear sequences in (1.3)–(1.4) with m > 1, as
opposed to m = 1. As will become clear, the analysis turns out to be quite involved
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Acceleration of convergence of general linear sequences 729

and nontrivial, and the main results are interesting and nonintuitive. Our results here
are analogous to, yet different from, those of Sidi [36] that pertain to the application
of the author’s generalization of the Richardson extrapolation process GREP(m) to
general linear sequences with m > 1. For GREP(m), see [34, Chapter 4], for example.

The Shanks transformation is treated in various books. See, for example, Brezinski
[7] and Brezinski and Redivo Zaglia [9]. For an up-to-date account covering the most
recent developments as well, see Sidi [34, Chapter 16].

As shown by Shanks in [27], if An = ∑n
i=0 ci zi , n = 0, 1, . . . , then A( j)

n turns out
to be the [ j + n/n] Padé approximant from the infinite series

∑∞
i=0 ci zi . There is an

enormous amount of literature on Padé approximants. See, for example, the extensive
treatments in the books by Baker [2], Baker and Graves-Morris [3], and Gilewicz [14].
See also Sidi [34, Chapter 17] for a brief survey.

As already mentioned, the Shanks transformation has presented many difficulties as
far as rigorous and interesting convergence studies are concerned, one reason for this
being that it is extremely nonlinear. Consequently, there have been very few works deal-
ing with the subjects of convergence and stability relevant to this important sequence
transformation. Here is a brief review of these works and their relevant results:

(i) Wynn [45] has shown that convergence acceleration is achieved by column
sequences when

An ∼ A +
∞∑

k=1

αkλ
n
k as n → ∞, (1.8)

where the λk �= 1 are either all positive or all negative and |λ1| > |λ2| > · · · , and
limk→∞ λk = 0. The result of Wynn is extended in Sidi [31] to cover the more general
case in which the λk are real or complex and |λ1| ≥ |λ2| ≥ · · · , without requiring
that the λk be either all positive or all negative.

(ii) Sidi [31] has shown that convergence acceleration is achieved by column
sequences in the more general case of

An ∼ A +
∞∑

k=1

Pk(n)λn
k as n → ∞, (1.9)

where Pk(n) are polynomials in n, the λk �= 1 are arbitrary real or complex scalars,
|λ1| ≥ |λ2| ≥ · · ·, and limk→∞ λk = 0. In this case, we may not expect every column
sequence to converge; that is, lim j→∞ A( j)

n may not exist for every fixed n. A precise
classification of those values of n, for which convergence takes place, is given in [29]
and [31]. See also Kaminski and Sidi [18] for more on these values of n.

(iii) Garibotti and Grinstein [12] have shown that convergence acceleration is
achieved by column sequences when {An} is a linear sequence, that is,

An ∼ A + ζ n
∞∑

i=0

αi n
γ−i as n → ∞, (1.10)

where ζ �= 1 and γ are arbitrary. (The special case in which ζ = −1 and γ = −1 was
first treated by Wynn [45]).
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730 A. Sidi

We note that all three papers, [12,31,45], provide precise rates of convergence for
column sequences. None of the three papers considers the issue of stability, however.
This issue is treated in [34, Chapter 16]. We also note that the papers [45] and [31] are
actually closely related to the theorem of de Montessus [10] that concerns the con-
vergence of Padé approximants for meromorphic functions. For different treatments
of de Montessus’ theorem, see Saff [26], Karlsson and Wallin [19], and Sidi [29]. See
also the books [2,3,14,34].

(iv) For sequences {An} whose terms behave as in

An ∼ A +
∞∑

i=0

αi n
γ−i as n → ∞, (1.11)

where γ �= 0, 1, . . . , but is arbitrary otherwise, it is shown in [34, Theorem 16.5.4,
p. 316] that column sequences from the Shanks transformation produce no conver-
gence acceleration at all. (The special case in which γ = −1 was first treated by Wynn
[45]).

(v) For sequences {An}, where An = ∑n
k=0 ck zk , ck �= 0 for all k, are partial sums

of Maclaurin series of entire functions f (z), the convergence of the A( j)
n follows from

the results of Lubinsky [22,23]. For example, in [23], Lubinsky has shown that both
row and diagonal Padé approximants converge on any compact set of the z-plane pro-
vided limk→∞ ck+1ck−1/c2

k = q, where q is some possibly complex constant such
that |q| < 1. See the bibliography of [23] for more references on this specific topic.

(vi) Finally, through the study of Padé approximants from Markov functions, we
know a lot about the convergence of diagonal sequences of A( j)

n in case An =∑n
k=0 ck zk , when ck = ∫ b

a xkdα(x), where α(x) is a nonnegative function with an
infinite number of points of increase on [a, b]. This subject is very well developed
and is treated in great detail in the books [2,3,14]. Actually, the Gaussian quadrature
formulas result from the (diagonal) [n − 1/n] Padé approximants from Markov func-
tions. For Gaussian quadrature, see Ralston and Rabinowitz [24], Atkinson [1], Stoer
and Bulirsch [43], and Gautschi [13], for example.

The few theoretical studies we have mentioned are of crucial importance, because
the conclusions drawn from them suggest that the Shanks transformation will produce
convergence acceleration when applied to the sequences described above in (1.8),
(1.9), (1.10), and to the partial sums of Taylor series from entire functions and from
moment series of Markov functions, but that it will fail on those sequences in (1.11).
Our purpose here is to develop this area of research further and to shed some light
on the analytic properties of the Shanks transformation as it is applied to the class of
general linear sequences. This is a very comprehensive class of sequences that arise
commonly in applications, Fourier series, generalized Fourier series, and series of
special functions being important members of this class.

The Shanks transformation, along with several other convergence acceleration
methods, has also been the subject of an extensive comparative numerical survey by
Smith and Ford [41,42]. The important methods compared in this survey are the iterated
Aitken �2 process, the u transformation of Levin [20], the θ algorithm of Brezinski
[6], and the Shanks transformation (via the epsilon algorithm). The conclusions of this
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Acceleration of convergence of general linear sequences 731

survey pertaining to these four methods are as follows: (i) all four methods accelerate
the convergence of sequences satisfying (1.10), (ii) only the u transformation and the
θ algorithm accelerate the convergence of sequences satisfying (1.11), and (iii) only
the Shanks transformation accelerates the convergence of Fourier series. (The partial
sums of the test series used in [42] form general linear sequences exactly of the form
we consider in the present work.) Another method, not included in this survey, that is
a very effective accelerator for Fourier series and their generalizations is the d trans-
formation of Levin and Sidi [21]. This method is also an effective accelerator for the
sequences satisfying (1.10), (1.11), and (1.3) in general; for its application to such
series in two different ways, see also Sidi [30]. (For an up-to-date account of all the
methods mentioned here, see [34, Chapters 6, 15, 16, 19, 20]).

2 Examples of general linear sequences

General linear sequences {An} of the form described in (1.3), even with distinct ζk

that satisfy the more general condition |ζk | ≤ 1 but do not necessarily satisfy |ζ1| =
· · · = |ζm |, have been studied rigorously in [34, Chapter 6, subsection 6.8.2]. If we
let a0 = A0 and an = �An−1 = An − An−1, n ≥ 1, then An = ∑n

i=0 ai for every n.
Now, by Theorem 6.8.8 in [34], it follows that if

an ∼
m∑

k=1

ζ n
k

∞∑

i=0

εki n
γk−i as n → ∞; εk0 �= 0, k = 1, . . . , m, (2.1)

where

|ζk | ≤ 1, ζk �= 1 distinct, γk arbitrary, k = 1, . . . , m, (2.2)

then An is precisely as in (1.3), A there being limn→∞ An = ∑∞
i=0 ai in case of con-

vergence; in case of divergence, A is the Abel sum of
∑∞

i=0 ai . (For Abel summability
of infinite series, see Hardy [17], for example).

2.1 Sums of simple linear sequences

One source of general linear sequences is the set of sequences {An} that behave as in
(1.3) with m = 1, that is,

An ∼ A + ζ n
∞∑

i=0

βi n
γ−i as n → ∞, ζ �= 1 and γ �= 0, 1, . . . , arbitrary. (2.3)

Such sequences are quite common and are said to be linearly convergent in case
limn→∞ An exists. limn→∞ An exists if either (i) |ζ | < 1 or (ii) |ζ | = 1 and �γ < 0.

In case this limit exists, it is equal to A. Such sequences arise as partial sums of infinite
series

∑∞
s=0 as , namely, An = ∑n

s=0 as , n = 1, 2, . . . , when an satisfies
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732 A. Sidi

an ∼ ζ n
∞∑

i=0

αi n
γ−i as n → ∞, ζ �= 1 and γ �= 0, 1, . . . , arbitrary. (2.4)

See [34, Theorem 6.6.6, p. 145] for a proof of this statement.
In view of the above, it is clear that if An = ∑n

i=0 ai , where

an =
m∑

k=1

a(k)
n ; a(k)

n ∼ ζ n
k

∞∑

i=0

αki n
γk−i as n → ∞,

ζk �= 1; distinct and arbitrary, γk �= 0, 1, . . . , arbitrary, (2.5)

then An has an asymptotic expansion of the form given in (1.3).

2.2 General linear sequences from Fourier series

Another source of interest is the set of Fourier series of functions that have a number
of singularities. Recall that if f (x) is a 2π -periodic function, then its Fourier series is∑∞

s=−∞ cseisx , where cs = 1
2π

∫ π

−π
f (x)e−isx dx . If f (x) is infinitely differentiable

on [−π, π), except at finitely many points in [−π, π), where it has algebraic singu-
larities of different strengths and/or finite jump discontinuities, then the partial sums∑n

s=−n cseisx of this series are precisely as described in (1.3) with |ζk | = 1 for all k,
m being twice the number of the points of singularity in [0, 2π).

Before proceeding to examples, we would like to note that the Shanks transforma-
tion was applied to Fourier series first by Wynn [46]. Also, the detection and treatment
of the Gibbs phenomenon via the Shanks transformation has been the subject of the
papers by Brezinski [8], Guilpin et al. [16], and Beckermann et al. [4]. The Gibbs
phenomenon can also be treated effectively by using arithmetic progression sampling
(APS) when applying the d transformation of Levin and Sidi [21], the Shanks transfor-
mation, and various other nonlinear acceleration methods. This subject is considered
in detail in several chapters of the author’s book [34] and in the relevant references
therein, as mentioned in the Introduction.

Example 2.1 Let us consider

f (x) =
⎧
⎨

⎩

0 −π ≤ x < a
(x − a)α(b − x)β g(x) a ≤ x ≤ b
0 b < x ≤ π

,

where g ∈ C∞[a, b]. That is, f (x) has singularities at x = a and x = b only. When α

or β is a nonnegative integer, f (x) or some of its derivatives have finite jump discon-
tinuities at the respective points. Otherwise, it has an algebraic singularity at x = a or
x = b, respectively.

It is known that

c±n ∼ e∓ina
∞∑

s=0

b±
1sn−α−1−s + e∓inb

∞∑

s=0

b±
2sn−β−1−s as n → ∞. (2.6)
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Acceleration of convergence of general linear sequences 733

For a proof of this, see, for example, Bleistein and Handelsman [5, Sect. 3.4]. For a
different and simpler proof, see Sidi [37].

For simplicity, let us first assume that f (x) is real so that twice the real part of the
series 1

2 c0 +∑∞
s=1 cseisx gives f (x). Thus, the partial sums An = 1

2 c0 +∑n
s=1 cseisx

are of the form An = ∑n
s=0 as with as = cseisx for s ≥ 1. By (2.6), an has an asymp-

totic expansion as n → ∞ that is precisely as in (2.5), with m = 2, ζ1 = ei(x−a)

and ζ2 = ei(x−b), and γ1 = −α − 1 and γ2 = −β − 1. Clearly, |ζ1| = |ζ2| = 1
and, provided x �= a, b, there holds ζ1, ζ2 �= 1 in this case, so that (1.4) is satisfied;
consequently, An satisfies (1.3) with m = 2 by [34, p. 156, Theorem 6.8.8]. (It is easy
to verify that when f (x) has a finite jump discontinuity at x = a, but is infinitely
differentiable to the right and to the left of x = a, we have α = −1 necessarily.
Similarly, for x = b).

Let us next take a look at the partial sums An = ∑n
s=−n cseisx of the whole

Fourier series
∑∞

s=−∞ cseisx . Rewriting An in the form An = ∑n
s=0 as , where as =

cseisx + c−se−isx , and invoking (2.6), it is easy to see that An , the nth partial sum
of the whole Fourier series, satisfies (1.3) with m = 4 and ζ1 = ei(x−a) = ζ−1

3 ,
ζ2 = ei(x−b) = ζ−1

4 , γ1 = −α − 1 = γ3, and γ2 = −β − 1 = γ4.

Example 2.2 In general, suppose that f (x) is in C∞[−π, π), except at the points
x1, . . . , x p, where it has discontinuities exactly of the forms described above. Then, in
general, the partial sum An = 1

2 c0 +∑n
s=1 cseisx is precisely as in (1.3) with m = p

and ζk = ei(x−xk ), k = 1, . . . , p, and with appropriate γk that are determined exactly
as in (2.6). The partial sums An = ∑n

s=−n cseisx , on the other hand, satisfy (1.3) with
m = 2p, ζk = ei(x−xk ) = ζ−1

p+k, k = 1, . . . , p, and γk = γp+k . In case f (x) has only
finite jump discontinuities at all xk , we have γk = −1 for all k.

Example 2.3 Now, γk = −1 can also occur when f (x) has a logarithmic singularity.
Consider, for example,

− log(1 − z) =
∞∑

s=1

zs

s
, |z| ≤ 1, z �= 1, −π ≤ arg z < π.

By (2.4) in the preceding subsection, it is clear that An = ∑n
s=1 zs/s satisfies (2.3)

with ζ = z and γ = −1.
Letting now z = eiθ and taking the real and imaginary parts of this series, we obtain

the Fourier series

∞∑

s=1

cos sθ

s
= − log

(
2

∣∣∣∣sin
θ

2

∣∣∣∣

)

and

∞∑

s=1

sin sθ

s
=
{− 1

2 (θ + π), −π < θ < 0,

− 1
2 (θ − π), 0 < θ < π.
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734 A. Sidi

For both series, An , the nth partial sum, is of the form given in (1.3) with m = 2,
ζ1 = eiθ = ζ−1

2 , and γ1 = γ2 = −1. Note that, the sum of the cosine series has a
logarithmic singularity at θ = 0, while the sum of the sine series has a finite jump
discontinuity at θ = 0. Either sum has no other singularity in [−π, π).

2.3 General linear sequences from generalized Fourier series

Yet another source of general linear sequences is the family of series of orthogonal
polynomials and other generalized Fourier series. This topic is discussed in detail in
[30], [34, Chapter 13]. For example, we know that if An = ∑n

s=0 cs Ps(x), where
Ps(x) is the sth Legendre polynomial and

cn ∼
∞∑

i=0

αi n
δ−i as n → ∞,

then An satisfies (1.3) with m = 2 and ζ1 = eiθ = ζ−1
2 , where θ ∈ (0, π) is deter-

mined via x = cos θ , and γ1 = γ2 = δ − 1/2. Of course, −1 ≤ x < 1 must hold.
Cases like this arise, for example, when the infinite series

∑∞
s=0 cs Ps(x) represents

a function f (x) on (−1, 1), and f (x) has one endpoint singularity at x = 1 and is
of the form f (x) = (1 − x)αg(x) with α �= 0, 1, 2, . . . , and g ∈ C∞[−1, 1]. Then
γ1 = γ2 = −2α−3/2. See the recent paper by Sidi [35] for this case and more general
cases of endpoint singularities. For yet more general cases involving arbitrarily many
algebraic interior singularities as well, see Sidi [39]. In all these cases, the partial sums
of the Legendre series form general linear sequences that are precisely of the form
described in (1.3) and (1.4).

3 Main results

We assume that the sequence {An}∞n=0 is precisely as in (1.3) with (1.4), and we order
the γk in (1.3) as in

�γ1 ≥ �γ2 ≥ · · · ≥ �γm . (3.1)

Throughout, we assume that the positive integer n in A( j)
n is such that the integer

programming problem

max
s1,...,sm

g(s1, . . . , sm); g(s1, . . . , sm) =
m∑

k=1

[
sk(�γk) − sk(sk − 1)

]

subject to s1 ≥ 0, . . . , sm ≥ 0 and
m∑

k=1

sk = n; sk integers, (3.2)

has a unique solution for integer sk , which we shall denote by (s′
1, . . . , s′

m). This

assumption is sufficient to guarantee that the A( j)
n exist for all large j ; in general,
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the convergence and stability study seems to be inconclusive without it. The problem
in (3.2) is studied in detail in the appendix to this work (with αk instead of �γk), where
it is denoted by I Pn . The value of g(s1, . . . , sm) at the (optimal) solution is denoted
by σn . The following results are proved in the appendix:

1. For the special case in which �γk are all equal, it is shown in the appendix that a
unique solution to I Pn exists only for n = mν, with ν ∈ {1, 2, . . .}, and that this
solution is given as s′

k = ν, k = 1, . . . , m.

2. For the general case in which the �γk are not all equal, it is also shown that there
exists a smallest integer τ ≥ 1 such that the problem I Pn , with n = τ + mν, ν ∈
{0, 1, 2, . . .}, has a unique solution (s′

1, . . . , s′
m) of the form

s′
k = ŝk + ν, k = 1, . . . , m, (3.3)

where ( ŝ1, . . . , ŝm) is the (unique) solution to I Pτ .

Thus, in any case, there are infinitely many values of n for which I Pn has a unique
solution (s′

1, . . . , s′
m).2

Our first result concerns the stability of the sequence {A( j)
n }∞j=0. It says that the

sequence {A( j)
n }∞j=0 can be computed stably since 


( j)
n is bounded for all large j .

Theorem 3.1 1. Let n be a fixed integer for which the integer programming problem
I Pn has a unique solution (s′

1, . . . , s′
m). Then the polynomials

∑n
i=0 γ

( j)
ni zi exist

for all large j , and satisfy

lim
j→∞

n∑

i=0

γ
( j)
ni zi =

m∏

k=1

(
z − ζk

1 − ζk

)s′
k

. (3.4)

Consequently,

lim
j→∞ 


( j)
n = lim

j→∞

n∑

i=0

∣∣∣γ ( j)
ni

∣∣∣ ≤
m∏

k=1

(
1 + |ζk |
|1 − ζk |

)s′
k

. (3.5)

2. In case �γ1 = · · · = �γm, for n = mν with ν = 1, 2, . . . , there hold

lim
j→∞

n∑

i=0

γ
( j)
ni zi =

m∏

k=1

(
z − ζk

1 − ζk

)ν

(3.6)

and

lim
j→∞ 


( j)
n = lim

j→∞

n∑

i=0

∣∣∣γ ( j)
ni

∣∣∣ ≤
m∏

k=1

(
1 + |ζk |
|1 − ζk |

)ν

. (3.7)

2 The fact that unique solutions for I Pn exist for infinitely many n is important. Without it, we would
be dealing with the convergence of only a finite number of column sequences, and this diminishes the
relevance of the present work.
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Note that (3.4) implies that lim j→∞ γ
( j)
ni , i = 0, 1, . . . , n, all exist and are finite.

In fact, they are the corresponding coefficients of the polynomial
∏m

k=1

(
z−ζk
1−ζk

)s′
k
.

Consequently, lim j→∞ 

( j)
n exists and is finite. This is part of (3.5), which also gives

a very simple upper bound on lim j→∞ 

( j)
n in terms the ζk and the s′

k .
The next theorem says that the Shanks transformation accelerates the convergence

of the sequence {As}, in the sense that the sequence {A( j)
n }∞j=0, with fixed n, converges

faster than {As}, providing at the same time the exact asymptotic behavior of the error
in A( j)

n as j → ∞.

Theorem 3.2 Let θ be as defined in (1.4).

1. Let n be a fixed integer for which the integer programming problem I Pn in (3.2)
has a unique solution (s′

1, . . . , s′
m). Then A( j)

n exist for all large j , and satisfy

A( j)
n − A = O

(
θ j jσn+1−σn

)
as j → ∞, (3.8)

where σp is the value of the function g(s1, . . . , sm) in (3.2) at the (optimal) solution
to I P p.

2. If n = τ + mν, where τ ≥ 1 and ν ∈ {0, 1, 2, . . .}, precisely as described in
the first paragraph of this section, so that I Pn has a unique solution, then A( j)

n
satisfies

A( j)
n − A= O

(
θ j jω−2ν

)
as j → ∞, ω=�γq −2̂sq ≤�γ1−2̂s1+1. (3.9)

Here, the index q is as determined in Lemma A.4, and (̂s1, . . . , ŝm) is the (unique)
solution to I Pτ .

3. In case �γ1 = · · · = �γm = α, for n = mν with ν ∈ {1, 2, . . .}, (3.9) simplifies
to read

A( j)
n − A = O

(
θ j jα−2ν

)
as j → ∞. (3.10)

Remarks 1. As already mentioned, the uniqueness of the solution to I Pn is nec-
essary for the results of Theorems 3.1 and 3.2 to be true. In case I Pn does not
have a unique solution, we are not able to make definitive statements about either
convergence or stability of the A( j)

n .
2. The results of Theorems 3.1 and 3.2 are the best that can be obtained asymptot-

ically under the given conditions. Given the complex structure of the sequence
{An} and the extreme nonlinearity of the Shanks transformation, the simplicity of
these results is also quite surprising.

3. The result in (3.9) suggests that, when n is sufficiently large (so that ν is suffi-
ciently large as well), the sequence {A( j)

n }∞j=0 converges to A faster than {A j }∞j=0.
To make this statement more precise, let us compare (3.9) with

A j − A = O(θ j jγ1) as j → ∞, (3.11)
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which follows from (1.3) and (3.1). We have convergence acceleration if ω−2ν <

�γ1, which is satisfied when 2ν > 1−2 ŝ1, and hence when n > τ −mŝ1+m/2. In
particular, when �γ1 = · · · = �γm , for n = mν with ν = 1, 2, . . . , convergence
acceleration takes place for every such n, by (3.10).

4. For m = 1, Theorem 3.2 reduces to Theorem 16.5.1 in [34, Chapter 16], which
was proved originally in [12], while Theorem 3.1 reduces to Theorem 16.5.2 in
[34, Chapter 16], which is new.

4 Technical preliminaries

The results in the following lemma follow from Sidi [28, Theorem 2.4]. See also [34,
Sect. 3.2].

Lemma 4.1 Define

a(r)
i = ai+r with ai+1 = �Ai = Ai+1 − Ai . (4.1)

Let {xs} be an arbitrary sequence, and define the (n + 1) × (n + 1) determinant
e( j)

n ({xs}) via

e( j)
n ({xs}) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x j a(1)
j a(2)

j · · · a(n)
j

x j+1 a(1)
j+1 a(2)

j+1 · · · a(n)
j+1

x j+2 a(1)
j+2 a(2)

j+2 · · · a(n)
j+2

...
...

...
...

x j+n a(1)
j+n a(2)

j+n · · · a(n)
j+n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.2)

Then, with Is = 1 for all s, we have

A( j)
n = e( j)

n ({As})
e( j)

n ({Is})
(4.3)

and

n∑

i=0

γ
( j)
ni zi = e( j)

n ({zs})
e( j)

n ({Is})
z− j . (4.4)

Note that e( j)
n ({As}) and e( j)

n ({Is}) in (4.3) are, respectively, the numerator and
denominator determinants in (1.2). Thus, (4.3) is simply (1.2). The validity of the
result in (4.4), and also of those in (1.5) and (1.6), can be shown by expand-
ing the determinant e( j)

n ({As}) with respect to its first column and identifying γ
( j)
ni

as the cofactor of A j+i divided by e( j)
n ({Is}).
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The next lemma relates the asymptotic expansions of An, an , and the a(r)
n , r =

1, 2, . . . , defined in (4.1).

Lemma 4.2 Let an = An − An−1 and a(r)
n = an+r . Let also ζ1, . . . , ζm be distinct

scalars different from 1, and let γ1, . . . , γk be arbitrary scalars. Then the following
asymptotic expansions are valid simultaneously:

An ∼ A +
m∑

k=1

ζ n
k

∞∑

i=0

βki n
γk−i as n → ∞; βk0 �= 0, k = 1, . . . , m, (4.5)

an ∼
m∑

k=1

ζ n
k

∞∑

i=0

εki n
γk−i as n → ∞; εk0 �= 0, k = 1, . . . , m, (4.6)

a(r)
n ∼

m∑

k=1

ζ n
k

∞∑

i=0

ε
(r)
ki nγk−i as n → ∞; ε

(r)
k0 �= 0, k = 1, . . . , m. (4.7)

The βki , εki , and ε
(r)
ki are related to each other via

εki =
i∑

s=0

βkscks,i−s, ε
(r)
ki = ζ r

k

i∑

s=0

εksd(r)
ks,i−s, i = 0, 1, . . . , (4.8)

where

cks0 = 1 − ζ−1
k ; cksp = (−1)p−1

(
γk − s

p

)
ζ−1

k , p = 1, 2, . . . , (4.9)

and

d(r)
ksp =

(
γk − s

p

)
r p, p = 0, 1, . . . . (4.10)

Therefore,

εk0 = βk0(1 − ζ−1
k ), ε

(r)
k0 = ζ r

k εk0. (4.11)

We next order the index pairs (k, i) ≡ ki in the summations of (4.5)–(4.7). Recalling
that 1 ≤ k ≤ m and i ≥ 0, we achieve this as follows:

10, 20, . . . , m0; 11, 21, . . . , m1; 12, 22, . . . , m2; . . . . (4.12)

With this ordering, we can write

ki < k′i ′ if either (1)i < i ′or (2)i = i ′ and k < k′. (4.13)

In our proofs, we will also be using the next four lemmas:
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Lemma 4.3 Let i0, i1, . . . , ik be positive integers, and assume that the scalars
vi0,i1,...,ik are odd under an interchange of any two of the indices i0, i1, . . . , ik . Let
ti, j , i, j ≥ 1, be scalars and let σi , i ≥ 1 be all scalars or vectors. Define

Ik,N =
N∑

i0=1

N∑

i1=1

· · ·
N∑

ik=1

σi0

⎛

⎝
k∏

p=1

ti p,p

⎞

⎠ vi0,i1,...,ik

and

Jk,N =
∑

1≤i0<i1<···<ik≤N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σi0 σi1 · · · σik

ti0,1 ti1,1 · · · tik ,1

ti0,2 ti1,2 · · · tik ,2

...
...

...

ti0,k ti1,k · · · tik ,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vi0,i1,...,ik .

Then

Ik,N = Jk,N .

This lemma was first stated and proved in Sidi et al. [40, Lemma A.1]; see also [34,
p. 303, Lemma 16.4.1]. It has been used by the author in the treatment of different
problems in extrapolation methods, including the Shanks transformation and the Padé
table.

Lemma 4.4 Let the (p + 1) × (p + 1) matrix H be given as in

H = [ H1 | H2 | · · · | Ht ] , (4.14)

where

Hi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

ci ci 11 ci 12 · · · ci 1si −1

c2
i c2

i 21 c2
i 22 · · · c2

i 2si −1

...
...

...
...

cp
i cp

i p1 cp
i p2 · · · cp

i psi −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, . . . , t, (4.15)

and
∑t

i=1 si = p + 1. Then

det H =
[

t∏

i=1

(si −1∏

k=0

k!
)

csi (si −1)/2
i

]⎡

⎣
∏

1≤i<k≤t

(ck − ci )
si sk

⎤

⎦

≡ W (c1, s1; c2, s2; . . . ; ct , st ). (4.16)
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Consequently, with 1 +∑t
i=1 si = p + 1, for the (p + 1) × (p + 1) matrix

H̃ = [ Z | H1 |H2 | · · · |Ht ] , Z = [1, z, z2, . . . , z p]T, (4.17)

we have

det H̃ = W (z, 1; c1, s1; c2, s2; . . . ; ct , st )

= W (c1, s1; c2, s2; . . . ; ct , st )

[
t∏

i=1

(ci − z)si

]
. (4.18)

Note that W (c1, s1; c2, s2; . . . ; ct , st ) is actually a multiple of a confluent
Vandermonde determinant. For a proof of Lemma 4.4, see Sidi [32, Eq. (3.15) and
Appendix].

The following lemma follows from Lemma 4.4 and is new.

Lemma 4.5 Let the p × p matrix H be given as in

H = [
H1 | H2 | · · · | Ht

]
, (4.19)

where

Hi =

⎡

⎢⎢⎢⎢⎢⎣

ci ci 11 ci 12 · · · ci 1si −1

c2
i c2

i 21 c2
i 22 · · · c2

i 2si −1

...
...

...
...

cp
i cp

i p1 cp
i p2 · · · cp

i psi −1

⎤

⎥⎥⎥⎥⎥⎦
, i = 1, . . . , t, (4.20)

and
∑t

i=1 si = p. Then

det H = W (c1, s1; c2, s2; . . . ; ct , st )

[
t∏

i=1

csi
i

]
. (4.21)

Proof Below, we refer to the column [ci 1k, c2
i 2k, . . . , cp

i pk]T as “column k” of Hi .

Let us now add
[∑k−1

μ=0(−1)k−μ
(k
μ

)× (column μ of Hi )
]

to column k and overwrite
column k, in the order k = si − 1, si − 2, . . . , 1, and invoke the binomial theorem
(r − 1)k = ∑k

μ=0(−1)k−μ
(k
μ

)
rμ. As a result, Hi becomes

Ȟi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci 0 0 · · · 0

c2
i c2

i 11 c2
i 12 · · · c2

i 1si −1

c3
i c3

i 21 c3
i 22 · · · c3

i 2si −1

...
...

...
...

cp
i cp

i (p − 1)1 cp
i (p − 1)2 · · · cp

i (p − 1)si −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

123



Acceleration of convergence of general linear sequences 741

and we have det H = det[Ȟ1|Ȟ2| · · · |Ȟt ]. Upon factoring out ci from each of its
columns, Ȟi becomes Hi in (4.15), with p there replaced by p − 1. The proof can
now be completed by invoking Lemma 4.4. ��

Lemma 4.6 Let Qi (x) = ∑i
j=0 ai j x j , with aii �= 0, i = 0, 1, . . . , n, and let xi , i =

0, 1, . . . , n, be arbitrary points. Then

∣∣∣∣∣∣∣∣∣∣

Q0(x0) Q0(x1) · · · Q0(xn)

Q1(x0) Q1(x1) · · · Q1(xn)
...

...
...

Qn(x0) Qn(x1) · · · Qn(xn)

∣∣∣∣∣∣∣∣∣∣

=
(

n∏

i=0

aii

)
V (x0, x1, . . . , xn), (4.22)

where V (x0, x1, . . . , xn) = ∏
0≤i< j≤n(x j − xi ) is a Vandermonde determinant.

For a proof of this lemma, see [33, Lemma 1.2]. See also [34, p. 153, Lemma 6.8.1].

5 Proof of Theorem 3.1

5.1 Asymptotic expansion for z− j e( j)
n ({zs})

We start with the analysis of the determinant

z− j e( j)
n ({zs}) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z0 a(1)
j a(2)

j · · · a(n)
j

z1 a(1)
j+1 a(2)

j+1 · · · a(n)
j+1

z2 a(1)
j+2 a(2)

j+2 · · · a(n)
j+2

...
...

...
...

zn a(1)
j+n a(2)

j+n · · · a(n)
j+n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.1)

At this point, we would like to state that it is important to understand the details of
the technique that we develop here, because this technique is used again in the proof of
Theorem 3.2. In this technique, we perform only elementary column transformations
on z− j e( j)

n ({zs}).
Throughout,

∑
ki stands for

∑m
k=1

∑∞
i=0 and “u j ∼ v j ” stands for “u j ∼ v j as

j → ∞.” In the sequel, we also adopt the short-hand notation

ki(r : s) = kr ir , kr+1ir+1, . . . , ksis . (5.2)

Let us replace the a(r)
j+s in (5.1) by their asymptotic expansions in Lemma 4.2. This

results in
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z− j e( j)
n ({zs}) ∼∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
∑

k1i1

ε
(1)
k1i1

ζ
j

k1
j
γk1

−i1
∑

k2i2

ε
(2)
k2i2

ζ
j

k2
j
γk2

−i2 · · ·
∑

kn in

ε
(n)
kn in

ζ
j

kn
jγkn −in

z
∑

k1i1

ε
(1)
k1i1

ζ
j+1

k1
( j + 1)

γk1
−i1

∑

k2i2

ε
(2)
k2i2

ζ
j+1

k2
( j + 1)

γk2
−i2 · · ·

∑

kn in

ε
(n)
kn in

ζ
j+1

kn
( j + 1)

γkn −in

z2
∑

k1i1

ε
(1)
k1i1

ζ
j+2

k1
( j + 2)

γk1
−i1

∑

k2i2

ε
(2)
k2i2

ζ
j+2

k2
( j + 2)

γk2
−i2 · · ·

∑

kn in

ε
(n)
kn in

ζ
j+2

kn
( j + 2)

γkn −in

.

.

.

.

.

.

.

.

.

.

.

.

zn
∑

k1i1

ε
(1)
k1i1

ζ
j+n

k1
( j + n)

γk1
−i1

∑

k2i2

ε
(2)
k2i2

ζ
j+n

k2
( j + n)

γk2
−i2 · · ·

∑

kn in

ε
(n)
kn in

ζ
j+n

kn
( j + n)

γkn −in

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.3)

Recalling that determinants are multilinear in their rows and columns, we first take
out the summation over k1i1, . . . , knin . Following that, we take out the common factors
from each column of the remaining determinant. This results in

z− j e( j)
n ({zs}) ∼

∑

k1i1

∑

k2i2

· · ·
∑

knin

[
n∏

s=1

ε
(s)
ks is

][
n∏

s=1

ζks

] j

M ( j)
ki(1:n)(z), (5.4)

where

M( j)
ki(1:n)

(z)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ζ 0
k1

jγk1−i1 ζ 0
k2

jγk2 −i2 · · · ζ 0
kn

jγkn −in

z ζ 1
k1

( j + 1)
γk1 −i1 ζ 1

k2
( j + 1)

γk2 −i2 · · · ζ 1
kn

( j + 1)γkn −in

z2 ζ 2
k1

( j + 2)
γk1−i1 ζ 2

k2
( j + 2)

γk2 −i2 · · · ζ 2
kn

( j + 2)γkn −in

...
...

...
...

zn ζ n
k1

( j + n)
γk1−i1 ζ n

k2
( j + n)

γk2 −i2 · · · ζ n
kn

( j + n)γkn −in

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.5)

Note that, being a sum of products of a finite number of Poincaré-type asymptotic
expansions, the right-hand side of (5.4) is a genuine Poincaré-type asymptotic expan-
sion once its terms are ordered according to their sizes.

Now, the product M ( j)
ki(1:n)(z)

[∏n
s=1 ζks

] j is odd under an interchange of any
two of the index pairs k1i1, . . . , knin , since this amounts to interchanging two col-
umns in the determinant representation of M ( j)

ki(1:n)(z), while the term
[∏n

s=1 ζks

] j

does not change. Consequently, Lemma 4.3 applies, and we obtain the asymptotic
expansion

z− j e( j)
n ({zs}) ∼

∑

k1i1<k2i2<···<knin

Eki(1:n)M ( j)
ki(1:n)(z)

[
n∏

s=1

ζks

] j

, (5.6)
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where

Eki(1:n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ε
(1)
k1i1

ε
(1)
k2i2

· · · ε
(1)
knin

ε
(2)
k1i1

ε
(2)
k2i2

· · · ε
(2)
knin

...
...

...

ε
(n)
k1i1

ε
(n)
k2i2

· · · ε
(n)
knin

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.7)

Note that the dependence on j in (5.6) comes into play only through the products
M ( j)

ki(1:n)(z)
[∏n

s=1 ζks

] j . Now, by (1.4), the terms
[∏n

s=1 ζks

] j all have the same mod-

ulus, namely, θnj . Consequently, the dominant terms in the asymptotic expansion of
(5.6) are those with the largest |M ( j)

ki(1:n)(z)| as j → ∞. Therefore, we need to analyze

the asymptotic behavior of the determinants M ( j)
ki(1:n)(z) carefully.

5.2 Asymptotic expansion of M ( j)
ki(1:n)(z)

First, we note that the n index pairs k1i1, . . . , knin consist of s1 pairs of the form 1i1r , s2
pairs of the form 2i2r ,…, sm pairs of the form mimr . Here 0 ≤ it1 < it2 < · · · < itst

when st �= 0, and
∑m

t=1 st = n. Of course, in case st = 0, there are no pairs of the
form t itr among k1i1, . . . , knin . For simplicity of notation, assume that s1, . . . , sp are
nonzero (p ≤ m) and that the rest of the st are zero. Thus, after a permutation of
columns, the determinant M ( j)

ki(1:n)(z) becomes

M ( j)
ki(1:n)(z)

= ± det
[
Zn | D(ζ1, s1, {i1r }) | D(ζ2, s2, {i2r }) | · · · | D(ζp, sp, {i pr })

]
, (5.8)

where

Zn = [z0, z1, . . . , zn]T, (5.9)

and D(ζt , st , {itr }) is an (n + 1) × st matrix given as in

D(ζt , st , {itr }) =

⎡

⎢⎢⎢⎢⎢⎣

ζ 0
t jγt −it1 ζ 0

t jγt −it2 · · · ζ 0
t jγt −itst

ζ 1
t ( j + 1)γt −it1 ζ 1

t ( j + 1)γt −it2 · · · ζ 1
t ( j + 1)γt −itst

ζ 2
t ( j + 2)γt −it1 ζ 2

t ( j + 2)γt −it2 · · · ζ 2
t ( j + 2)γt −itst

...
...

...

ζ n
t ( j + n)γt −it1 ζ n

t ( j + n)γt −it2 · · · ζ n
t ( j + n)γt −itst

⎤

⎥⎥⎥⎥⎥⎦
.

(5.10)
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Now, to determine the asymptotic behavior of M ( j)
ki(1:n)(z) in (5.8), it is sufficient to

look at the contribution of each of the blocks D(ζt , st , {itr }), t = 1, . . . , p. We will
see that each one of these blocks contributes independently of others.

An intermediate asymptotic result

For this, we start by analyzing the contribution of the (n + 1) × s matrix

G =

⎡

⎢⎢⎢⎢⎢⎣

ζ 0 jδ1 ζ 0 jδ2 · · · ζ 0 jδs

ζ 1( j + 1)δ1 ζ 1( j + 1)δ2 · · · ζ 1( j + 1)δs

ζ 2( j + 2)δ1 ζ 2( j + 2)δ2 · · · ζ 2( j + 2)δs

...
...

...

ζ n( j + n)δ1 ζ n( j + n)δ2 · · · ζ n( j + n)δs

⎤

⎥⎥⎥⎥⎥⎦
(5.11)

to the asymptotic behavior, as j → ∞, of a determinant U that has the form

U = det [G | W ] , W ∈ C
(n+1)×(n+1−s). (5.12)

Factoring out jδq from the qth column of G, q = 1, . . . , s, we first have

U =
⎡

⎣
s∏

q=1

jδq

⎤

⎦ det
[
G ′ | W

]
, (5.13)

where

G ′ =

⎡

⎢⎢⎢⎢⎢⎣

ζ 0(1 + 0/j)δ1 ζ 0(1 + 0/j)δ2 · · · ζ 0(1 + 0/j)δs

ζ 1(1 + 1/j)δ1 ζ 1(1 + 1/j)δ2 · · · ζ 1(1 + 1/j)δs

ζ 2(1 + 2/j)δ1 ζ 2(1 + 2/j)δ2 · · · ζ 2(1 + 2/j)δs

...
...

...

ζ n(1 + n/j)δ1 ζ n(1 + n/j)δ2 · · · ζ n(1 + n/j)δs

⎤

⎥⎥⎥⎥⎥⎦
. (5.14)

Expanding each of the terms (1 + r/j)δq in negative powers of j , we obtain

G′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ 0
∑

i1

(
δ1

i1

)
(0/j)i1 ζ 0

∑

i2

(
δ2

i2

)
(0/j)i2 · · · ζ 0

∑

is

(
δs

is

)
(0/j)is

ζ 1
∑

i1

(
δ1

i1

)
(1/j)i1 ζ 1

∑

i2

(
δ2

i2

)
(1/j)i2 · · · ζ 1

∑

is

(
δs

is

)
(1/j)is

ζ 2
∑

i1

(
δ1

i1

)
(2/j)i1 ζ 2

∑

i2

(
δ2

i2

)
(2/j)i2 · · · ζ 2

∑

is

(
δs

is

)
(2/j)is

...
...

...

ζ n
∑

i1

(
δ1

i1

)
(n/j)i1 ζ n

∑

i2

(
δ2

i2

)
(n/j)i2 · · · ζ n

∑

is

(
δs

is

)
(n/j)is

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.15)
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Here
∑

i stands for
∑∞

i=0, and 00 = 1 while 0i = 0 for i ≥ 1. Let us substitute this
in (5.13), and take out the summations and the common factors from each of the first
s columns. We obtain the convergent expansion

U =
⎡

⎣
s∏

q=1

jδq

⎤

⎦
∑

i1

∑

i2

· · ·
∑

is

⎡

⎣
s∏

q=1

(
δq

iq

)⎤

⎦

×
⎡

⎣
s∏

q=1

j−iq

⎤

⎦ det
[
Hi1,...,is (ζ ) | W

]
, (5.16)

where

Hi1,...,is (ζ ) =

⎡

⎢⎢⎢⎢⎢⎣

ζ 00i1 ζ 00i2 · · · ζ 00is

ζ 11i1 ζ 11i2 · · · ζ 11is

ζ 22i1 ζ 22i2 · · · ζ 22is

...
...

...

ζ nni1 ζ nni2 · · · ζ nnis

⎤

⎥⎥⎥⎥⎥⎦
. (5.17)

Since
[∏s

q=1 j−iq
]

det
[
Hi1,...,is (ζ ) | W

]
is odd under an interchange of any two of

the indices i1, . . . , is, Lemma 4.3 applies to the multiple summation in (5.16), and we
have

U =
⎡

⎣
s∏

q=1

jδq

⎤

⎦
∑

i1<i2<···<is

Ki1,...,is

⎡

⎣
s∏

q=1

j−iq

⎤

⎦ det
[
Hi1,...,is (ζ ) | W

]
, (5.18)

where

Ki1,...,is =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
δ1

i1

) (
δ1

i2

)
· · ·

(
δ1

is

)

(
δ2

i1

) (
δ2

i2

)
· · ·

(
δ2

is

)

...
...

...

(
δs

i1

) (
δs

i2

)
· · ·

(
δs

is

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.19)

It is clear that, provided it does not vanish, the dominant term as j → ∞ in the
summation of (5.18) is that with the indices i1 = 0, i2 = 1, . . . , is = s − 1, and it
is of order j−s(s−1)/2. (The rest of the terms are subdominant.) Now, H0,1,...,s−1(ζ )

has full rank on account of Lemma 4.4, which means that det
[
H0,1,...,s−1(ζ ) | W

]

cannot vanish on account of H0,1,...,s−1(ζ ). We should then check whether K0,1,...,s−1
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vanishes or not. By the fact that
(
δ
i

) = 1
i !
∏i

k=1(δ − k + 1) is a polynomial of degree
i in δ with leading coefficient 1/ i !, Lemma 4.6 applies to K0,1,...,s−1, and we have

K0,1,...,s−1 =
[

s−1∏

k=0

k!
]−1

V (δ1, δ2, . . . , δs), (5.20)

which is nonzero since the δk are distinct. Thus,

U ∼ V (δ1, δ2, . . . , δs)∏s−1
k=0 k! det

[
Ĥ(ζ, s) | W

]
jω, ω =

s∑

q=1

δq − s(s − 1)/2, (5.21)

where we have defined

Ĥ(ζ, s) = H0,1,...,s−1(ζ ) =

⎡

⎢⎢⎢⎢⎢⎣

ζ 000 ζ 001 · · · ζ 00s−1

ζ 110 ζ 111 · · · ζ 11s−1

ζ 220 ζ 221 · · · ζ 22s−1

...
...

...

ζ nn0 ζ nn1 · · · ζ nns−1

⎤

⎥⎥⎥⎥⎥⎦
, (5.22)

provided det
[
Ĥ(ζ, s) | W

] �= 0.

An asymptotic equality for M ( j)
ki(1:n)(z)

Going back to (5.10), we realize that the matrix D(ζt , st , {itq}) has the same structure
as the matrix G in (5.11), with ζ = ζt , s = st , δq = γt − itq . Therefore, (5.8) gives

M ( j)
ki(1:n)(z) ∼ ±C Q(z) jφ, (5.23)

where

C =
p∏

t=1

V (γt − it1, γt − it2, . . . , γt − itst )∏st −1
k=0 k! �= 0, (5.24)

Q(z) = det
[
Zn | Ĥ(ζ1, s1) | Ĥ(ζ2, s2) | · · · | Ĥ(ζp, sp)

]
, (5.25)

and

φ =
p∑

t=1

[ st∑

r=1

(γt − itr ) − st (st − 1)/2

]
. (5.26)
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We now observe that, by (5.22) and (5.25), Lemma 4.4 applies to Q(z), and gives

Q(z) = L
p∏

t=1

(ζt − z)st ,

L =
⎡

⎣
p∏

t=1

(st −1∏

k=0

k!
)

ζ
st (st −1)/2
t

⎤

⎦

⎡

⎣
∏

1≤k<t≤p

(ζt − ζk)
sk st

⎤

⎦ �= 0. (5.27)

Substituting (5.27) in (5.23), we finally have

M ( j)
ki(1:n)(z) ∼ ±Nki(1:n)

[ p∏

t=1

(z − ζt )
st

]
jφ, Nki(1:n) = (−1)nC L �= 0, (5.28)

the constant Nki(1:n) being independent of z and j , provided, of course, that z �= ζt , t =
1, . . . , m.

5.3 The dominant M ( j)
ki(1:n)(z)

With the precise asymptotic behavior of M ( j)
ki(1:n)(z) available, we now return to (5.6),

and look for the dominant term in the asymptotic expansion there. As already men-
tioned, since the products

[∏n
s=1 ζks

] j all have the same modulus by (1.4), the domi-

nant term is that for which |M ( j)
ki(1:n)(z)| is largest. Hence, by (5.28), we need to look

for that term in the summation of (5.6) for which φ in (5.26) and (5.28) has largest
real part.

At this point, we note that, by replacing the summation
∑p

t=1 by the summation∑m
t=1, the expression for φ given in (5.26) can be rewritten as

φ ≡ φ(s, i) =
m∑

t=1

[ st∑

r=1

(γt − itr ) − st (st − 1)/2

]
, with

m∑

r=1

st = n, (5.29)

to accommodate the zero st , as well as the nonzero ones. Clearly, if st = 0 for some t ,
then there is no contribution to φ(s, i) either from this st or from its associated itr .
Here, we have adopted the notation

s = (s1, . . . , sm) and i = ({i1r }s1
r=1, . . . , {imr }sm

r=1).

Going back, we want to find the nonnegative integers s1, . . . , sm , and it1 < · · ·< itst ,

t = 1, . . . , m, that maximize �φ(s, i). We first realize that (5.29) can be rewritten
also in the form

φ(s, i) =
m∑

t=1

stγt −
m∑

t=1

[ st∑

r=1

itr + st (st − 1)/2

]
. (5.30)
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Therefore,

�φ(s, i) =
m∑

t=1

st (�γt ) −
m∑

t=1

[ st∑

r=1

itr + st (st − 1)/2

]
, (5.31)

and we need to maximize �φ(s, i) subject to the constraints that

st ≥ 0, 0 ≤ it1 < · · · < itst , t = 1, . . . , m, and
m∑

t=1

st = n. (5.32)

It is easy to see that, at the maximum of �φ(s, i), the itr must assume their small-
est possible values consistent with the constraints in (5.32). Clearly, these are itr =
r − 1, r = 1, . . . , st , so that

∑st
r=1 itr = st (st − 1)/2, t = 1, . . . , m. For these opti-

mal values of the itr , we thus have maxi �φ(s, i) = g(s) = g(s1, . . . , sm), where
g(s1, . . . , sm) is as defined in (3.2). Consequently, the optimal s, which we now denote
by s′ = (s′

1, . . . , s′
m) must be the solution to the problem I Pn in (3.2), and we also

have maxs,i �φ(s, i) = maxs g(s) = σn at the solution to I Pn .

Summarizing, we have shown that the dominant M ( j)
ki(1:n)(z) is that for which

(k1i1, . . . , knin) is a permutation of ({1i}s′
1−1

i=0 , . . . , {mi}s′
m−1

i=0 ), where (s′
1, . . . , s′

m)

(with
∑m

t=1 s′
t = n) is the (unique) solution of the problem I Pn .

Now, the problem I Pn does not necessarily have a unique solution for every n.
Lemma A.1 and Lemma A.2 discuss the issue of those values of n for which unique
solutions to I Pn exist, and discuss their precise form.

We note here that the issue of uniqueness of the solution to I Pn is crucial to our
treatment. It enables us to show that A( j)

n exist for all large j and that convergence
acceleration does take place as j → ∞.

5.4 Study of Eki(1:n)

Let n be such that I Pn has a unique solution (s′
1, . . . , s′

m). As already mentioned,

itr = r − 1, r = 1, . . . , s′
t for this solution. Then the corresponding M ( j)

ki(1:n)(z) is the
dominant term in the summation of (5.6), the rest of the terms being subdominant,
provided the corresponding Eki(1:n) is nonzero.

Let us go back to the first paragraph of Sect. 5.2, where we noted that the n index
pairs k1i1, . . . , knin consist of s1 pairs of the form 1i1r , s2 pairs of the form 2i2r ,…,
sm pairs of the form mimr . Here 0 ≤ it1 < it2 < · · · < itst when st �= 0, and∑m

t=1 st = n. Again, for simplicity of notation, let us assume that s1, . . . , sp are non-
zero (p ≤ m) and that the rest of the sk are zero. Thus, performing on Eki(1:n) exactly

the same column permutations that were performed on M ( j)
ki(1:n)(z), we obtain

Eki(1:n) = ± det
[
E(1, s1) | E(2, s2) | · · · | E(p, sp)

]
, (5.33)
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where E(t, s) is an n × s matrix of the form

E(t, s) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ε
(1)
t0 ε

(1)
t1 · · · ε

(1)
t,s−1

ε
(2)
t0 ε

(2)
t1 · · · ε

(2)
t,s−1

...
...

...

ε
(n)
t0 ε

(n)
t1 · · · ε

(n)
t,s−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (5.34)

In the sequel, we will refer to the 1st column of E(t, s) as “column 0,” to its 2nd column
as “column 1,” and so on. We now invoke (4.8) and (4.10) in (5.34). By the fact that
εt0 �= 0, all the terms in the first column of E(t, s) are nonzero. By adding a suitable
multiple of column 0 to column r , we eliminate εtr , from column r , r = 1, . . . , s − 1.
We then add a multiple of (the new) column 1 to column r to eliminate εt,r−1 from
column r , r = 2, . . . , s −1. We next add a multiple of (the new) column 2 to column r
to eliminate εt,r−2 from column r , r = 3, . . . , s−1. Continuing this way, we eliminate
all of the εtr with r �= 0 from E(t, s), the resulting matrix being

E ′(t, s) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ 1
t εt0

(
γt

0

)
10 ζ 1

t εt0

(
γt

1

)
11 · · · ζ 1

t εt0

(
γt

s − 1

)
1s−1

ζ 2
t εt0

(
γt

0

)
20 ζ 2

t εt0

(
γt

1

)
21 · · · ζ 2

t εt0

(
γt

s − 1

)
2s−1

...
...

...

ζ n
t εt0

(
γt

0

)
n0 ζ n

t εt0

(
γt

1

)
n1 · · · ζ n

t εt0

(
γt

s − 1

)
ns−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.35)

Performing these operations on each of the matrices E(t, st ) separately, we then obtain

det
[
E(1, s1) | E(2, s2) | · · · | E(p, sp)

]

= det
[
E ′(1, s1) | E ′(2, s2) | · · · | E ′(p, sp)

]
. (5.36)

Factoring out the binomial coefficients from every column of the matrices E ′(t, st ),
we obtain

det
[
E(1, s1) | E(2, s2) | · · · | E(p, sp)

] =
p∏

t=1

[
ε

st
t0

st −1∏

r=0

(
γt

r

)]

× det
[
E ′′(1, s1) | E ′′(2, s2) | · · · | E ′′(p, sp)

]
, (5.37)

where

E ′′(t, s) =

⎡

⎢⎢⎢⎣

ζ 1
t 10 ζ 1

t 11 · · · ζ 1
t 1s−1

ζ 2
t 20 ζ 2

t 21 · · · ζ 2
t 2s−1

...
...

...

ζ n
t n0 ζ n

t n1 · · · ζ n
t ns−1.

⎤

⎥⎥⎥⎦ . (5.38)
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We now note that Lemma 4.5 applies, giving

det
[
E ′′(1, s1) | E ′′(2, s2) | · · · | E ′′(p, sp)

] = W (ζ1, s1; . . . ; ζp, sp)

[ p∏

t=1

ζ
st
t

]
�= 0.

From this and from (5.33) and (5.37), we conclude that Eki(1:n) �= 0 for the case being
considered. This is also the case when st = s′

t , t = 1, . . . , m.

Remark We would like to draw attention to the fact that if, for some t , γt = 0, 1, 2, . . . ,

then
(
γt
r

) = 0 for r > γt , and this forces the particular Eki(1:n) we have just analyzed
to vanish, by (5.35)–(5.37). By our assumptions in (1.4), γt �= 0, 1, 2, . . . , hence
such a problematic situation cannot occur. Recall also that in the practical examples
discussed in Sect. 2, we have γt �= 0, 1, 2, . . . , necessarily.

5.5 Completion of proof of Theorem 3.1

Combining everything, we see that in case the solution (s′
1, . . . , s′

m) to I Pn is unique,

the determinant z− j e( j)
n ({zs}) satisfies the asymptotic equality

z− j e( j)
n ({zs}) ∼ Eki(1:n)M ( j)

ki(1:n)(z)

[
n∏

s=1

ζks

] j

where k1i1, . . . , knin is a permutation of the n index pairs {1i}s′
1−1

i=0 , . . . , {mi}s′
m−1

i=0 . We
have also seen that Eki(1:n) �= 0 and that

M ( j)
ki(1:n)(z) ∼ S1

[
m∏

t=1

(z − ζt )
s′
t

]
jσn ,

for some constant S1 �= 0. As a result, we have

z− j e( j)
n ({zs}) ∼ S2

[
m∏

t=1

(z − ζt )
s′
t

] [
m∏

t=1

ζ
s′
t

t

] j

jσn , (5.39)

for some constant S2 �= 0. Letting z = 1 and recalling that ζk �= 1 for all k, we also
have

e( j)
n ({Is}) ∼ S2

[
m∏

t=1

(1 − ζt )
s′
t

] [
m∏

t=1

ζ
s′
t

t

] j

jσn . (5.40)

Because (5.39) and (5.40) are asymptotic equalities, we can divide the former by
the latter, invoke (4.4), and obtain the result in (3.4). The result in (3.5) is obtained by
invoking [34, p. 31, Lemma 1.4.4].

123



Acceleration of convergence of general linear sequences 751

The result in (3.6) is obtained from (3.4) by recalling that s′
t = ν for all t when

�γ1 = · · · = �γm and n = mν, ν = 1, 2, . . . . Similarly, the result in (3.7) follows
by letting s′

t = ν in (3.5).

6 Proof of Theorem 3.2

We start with the observation that the error in A( j)
n has a determinant representation

given as in

A( j)
n − A = e( j)

n ({As − A})
e( j)

n ({Is})
, (6.1)

which is easily obtained from (4.3). Note that, by (5.1), the determinant e( j)
n ({As − A})

has the vector [A j − A, A j+1 − A, . . . , A j+n − A]T as its first column. Proceeding

as in (5.3), we replace the a(r)
j+s and A j+s − A by their asymptotic expansions. The

asymptotic expansions of the a(r)
j+s are exactly as in (5.3). Now, by (1.3) [or by (4.5)],

we have

An − A ∼
m∑

k=1

ζ n
k

∞∑

i=0

βki n
γk−i as n → ∞. (6.2)

Therefore, the asymptotic expansion of A j+s − A in the first column of the determinant

e( j)
n ({As − A}) is as in

A j+s − A ∼
m∑

k0=1

ζ
j+s

k0

∞∑

i0=0

βk0i0( j + s)γk0 −i0 as j → ∞.

Proceeding exactly as before, we obtain

e( j)
n ({As − A}) ∼

∑

k0i0

∑

k1i1

· · ·
∑

knin

βk0i0

[
n∏

s=1

ε
(s)
ks is

][
n∏

s=0

ζks

] j

M̂ ( j)
ki(0:n), (6.3)

where

M̂ ( j)
ki(0:n) =

∣∣∣∣∣∣∣∣∣∣∣∣

ζ 0
k0

jγk0 −i0 ζ 0
k1

jγk1 −i1 · · · ζ 0
kn

jγkn −in

ζ 1
k0

( j + 1)γk0 −i0 ζ 1
k1

( j + 1)γk1 −i1 · · · ζ 1
kn

( j + 1)γkn −in

ζ 2
k0

( j + 2)γk0 −i0 ζ 2
k1

( j + 2)γk1 −i1 · · · ζ 2
kn

( j + 2)γkn −in

...
...

...

ζ n
k0

( j + n)γk0 −i0 ζ n
k1

( j + n)γk1 −i1 · · · ζ n
kn

( j + n)γkn −in

∣∣∣∣∣∣∣∣∣∣∣∣

. (6.4)

123



752 A. Sidi

Note again that, being a sum of products of a finite number of Poincaré-type asymp-
totic expansions, the right-hand side of (6.3) is a genuine asymptotic expansion once
its terms are ordered according to their sizes.

Now, the product M̂ ( j)
ki(0:n)

[∏n
s=0 ζks

] j is odd under an interchange of any two of
the index pairs k0i0, k1i1, . . . , knin , since this amounts to interchanging two columns
in the determinant representation of M̂ ( j)

ki(0:n), while the term
[∏n

s=0 ζks

] j does not
change. Consequently, Lemma 4.3 applies, and we obtain the asymptotic expansion

e( j)
n ({As − A}) ∼

∑

k0i0<k1i1<···<knin

Êki(0:n)M̂ ( j)
ki(0:n)

[
n∏

s=0

ζks

] j

, (6.5)

where

Êki(0:n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βk0i0 βk1i1 · · · βknin

ε
(1)
k0i0

ε
(1)
k1i1

· · · ε
(1)
knin

ε
(2)
k0i0

ε
(2)
k1i1

· · · ε
(2)
knin

...
...

...

ε
(n)
k0i0

ε
(n)
k1i1

· · · ε
(n)
knin

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.6)

Note that the dependence on j in (6.5) comes into play only through the products
M̂ ( j)

ki(0:n)

[∏n
s=0 ζks

] j . Now, by (1.4), the terms
[∏n

s=0 ζks

] j all have the same modu-

lus, namely, θ(n+1) j . Consequently, the dominant terms in the asymptotic expansion
of (6.5) are those with the largest |M̂ ( j)

ki(0:n)| as j → ∞. Comparing M̂ ( j)
ki(0:n) with

M ( j)
ki(1:n)(z), we realize that the analysis we applied to the latter (with n) applies to the

former (with n + 1) without any change, and we have that the dominant M̂ ( j)
ki(0:n) are

those for which (k0i0, k1i1, . . . , knin) are permutations of ({1i}s′′
1 −1

i=0 , . . . , {mi}s′′
m−1

i=0 ),
where (s′′

1 , . . . , s′′
m) (with

∑m
t=1 s′′

t = n + 1) are solutions of the problem I Pn+1. For

these dominant M̂ ( j)
ki(0:n), we thus have

M̂ ( j)
ki(0:n) = O( jσn+1) as j → ∞, (6.7)

the coefficient of jσn+1 being of the form C L , where C and L are as in (5.23) and
(5.27), with

∏p
t=1 replaced by

∏m
t=1 and with the st replaced by the s′′

t . Here, σn+1 is
the (maximum) value of �φ(s, i), with φ(s, i) defined as in

φ(s, i) =
m∑

t=1

[ st∑

r=1

(γt − itr ) − st (st − 1)/2

]
, with

m∑

r=1

st = n + 1, (6.8)

cf. (5.29). The result in (6.7) holds even when the problem I Pn+1 does not have a
unique solution. [In case of nonuniqueness, every solution to I Pn+1 contributes a
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M̂ ( j)
ki(0:n) that is O( jσn+1) asymptotically as j → ∞.] As a result of (6.7), we also have

that

e( j)
n ({As − A}) = O(θ(n+1) j jσn+1) as j → ∞. (6.9)

As for Êki(0:n) that corresponds to optimal M̂ ( j)
ki(0:n), we have

Êki(0:n) = ± det
[
Ê(1, s′′

1 ) | Ê(2, s′′
2 ) | · · · | Ê(m, s′′

m)
]
, (6.10)

where Ê(t, s) is an (n + 1) × s matrix of the form

Ê(t, s) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βt0 βt1 · · · βt,s−1

ε
(1)
t0 ε

(1)
t1 · · · ε

(1)
t,s−1

ε
(2)
t0 ε

(2)
t1 · · · ε

(2)
t,s−1

...
...

...

ε
(n)
t0 ε

(n)
t1 · · · ε

(n)
t,s−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.11)

[When s′′
t = 0, the matrix Ê(t, s′′

t ) in (6.10) simply does not exist.] Invoking
Lemma 4.2, we can show that βki = ∑i

l=0 hkilεkl with hki0 ∝ (1 − ζk)
−i−1. As

a result, by expanding the determinant in (6.11) with respect to its first row, we obtain

Êki(0:n) ∝
m∏

t=1

(1 − ζt )
−s′′

t . (6.12)

To complete the proof of Theorem 3.2, we divide (6.9) by the asymptotic equality
in (5.40), and obtain (3.8). It is also clear from (6.12), that the coefficient that mul-
tiplies θ j jσn+1−σn in (3.8) is proportional to the term

[∏m
t=1(1 − ζt )

s′
t +s′′

t
]−1

, where
(s′′

1 , . . . , s′′
m) is the unique solution to the problem I Pn+1 when the latter has a unique

solution, or it is a sum of such terms when I Pn+1 has more than one solution.
The rest of the proof can now be achieved by invoking Lemma A.4 from the

appendix. We leave the details to the reader.

7 Implications of Theorems 3.1 and 3.2

Comparing Theorems 3.1 and 3.2 of this paper with Theorems 4.1 and 4.2 in [36], we
see that they are very similar. Consequently, the implications of both sets of results
are the same. These implications are already discussed in [36]. For completeness, we
discuss briefly these implications as they are related to the Shanks transformation.

In accelerating the convergence of general linear sequences such as those treated
in this work, one is confronted with slow convergence when ζt ≈ 1 for some t ,
irrespective of which method of acceleration is used. The presence of this problem
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when using the Shanks transformation can be deduced from our main results in this
paper.

First, by Theorem 3.1, lim j→∞ γ
( j)
ni exist and are all proportional to

∏m
k=1(1 −

ζk)
−s′

k . This suggests that when ζt ≈ 1 for some t , 

( j)
n will be large, even though it

remains bounded as j → ∞. Next, as j → ∞, the (theoretical) error A( j)
n − A is

proportional to
[∏m

t=1(1 − ζt )
s′
t +s′′

t
]−1, or to a sum of such terms, as discussed in the

proof of Theorem 3.2 at the end of Sect. 6. This also suggests that when ζt ≈ 1 for
some t , this error will be large, hence the sequence {A( j)

n }∞j=0 will converge slowly,
mathematically speaking. Numerical experience suggests that these conclusions are
valid also for diagonal sequences {A( j)

n }∞n=0 with fixed j , which seem to have the best
convergence properties, even though Theorems 3.1 and 3.2 do not apply to diagonal
sequences.

Both problems can be remedied by applying the Shanks transformation to a subse-
quence {Aκn}∞n=0 with some suitable fixed integer κ > 1, as proposed in [34, Chapter
16, pp. 315–316]. This choice of the subsequence has been called arithmetic progres-
sion sampling (APS for short) in [34]. That this will result in improvement can be
deduced from the fact that

Aκn ∼ A +
m∑

k=1

ζ κn
k

∞∑

i=0

βki (κn)γk−i as n → ∞,

which, defining

Ãn = Aκn, ζ̃k = ζ κ
k , β̃ki = βkiκ

γk−i ,

can be rewritten as

Ãn ∼ A +
m∑

k=1

ζ̃ n
k

∞∑

i=0

β̃ki n
γk−i as n → ∞.

Note that { Ãn} is also a general linear sequence, with ζ̃k instead of ζk . Thus, when
the Shanks transformation is applied to this sequence, Theorems 3.1 and 3.2 now hold
with ζ̃k instead of ζk . Whether |ζt | ≤ 1 or |ζt | ≥ 1, when ζt is close to 1, we have that
ζ̃t is farther from 1 than ζt is, even for κ = 2. Therefore, by choosing κ appropriately,
we can cause ζ̃t to be away from 1 sufficiently to improve the convergence and stabil-
ity of the column sequences. Numerical examples show that the performance of the
diagonal sequences also improves under APS.

APS can be applied to power series
∑∞

n=0 cnzn , where

cn ∼
m∑

k=1

σ n
k

∞∑

i=0

εki n
γk−i as n → ∞, σk �= 1 distinct.
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This series converges to a function A(z) that is analytic for |z| < mink(1/|σk |) = ρ.
In addition, letting An(z) = ∑n

s=0 cs zs, n = 0, 1, . . . , we also have

An(z) ∼ A(z) +
m∑

k=1

(σk z)n
∞∑

i=0

βki (z)n
γk−i as n → ∞,

as mentioned in Sect. 2. Clearly, ζk = σk z, k = 1, . . . , m, in the notation of the
preceding sections. In general, the function A(z) can be continued analytically to
|z| ≥ ρ, zk = 1/σk being its branch points, with the branch cuts directed appropri-
ately. [As an example, think of A(z) to be the sum of m functions that have branch points
at m distinct points z1, . . . , zm in the z-plane.] Then ζt ≈ 1 means z ≈ zt = 1/σt ,
which in turn means that z is near a point of singularity. Thus, we conclude that the
Shanks transformation will converge slowly when z is close to a point of singularity
of A(z). Thus, close to points of singularity, applying the Shanks transformation with
APS is likely to be beneficial.

Our numerical experiments with Fourier series do show that the Shanks transforma-
tion with APS does improve the convergence rate of diagonal approximations greatly;
that is, the convergence of A( j)

n as n → ∞ improves with increasing κ . However,
the number of series elements used to obtain a given level of accuracy does not seem
to change much with increasing κ in using APS, however. There is a small advan-
tage to using APS for Fourier series: Given that the terms of the series are already
available, the overhead of computing the A( j)

n via the epsilon algorithm, for exam-
ple, decreases by a factor of κ2. We will observe all this in the example of the next
section.

The topic of APS, initiated within the context of the Levin–Sidi d(m) transformation
in [21], is discussed and analyzed in Sidi [30] and [34, Chapters 10, 12, and 13]. For
applications of APS with the d(m) transformation for arbitrary m ≥ 1, to power series,
Fourier series, and generalized Fourier series, see [21,30], and [34, Chapter 6, Sect. 6.5
and Chapter 12, Sect. 12.9]. Its use in conjunction with the Shanks transformation is
proposed in [34, Chapter 16, pp. 315–316]. The results of the present work provide
further theoretical justification for the use of APS within the context of the Shanks
transformation applied to general linear sequences.

8 A numerical example

Consider the application of the Shanks transformation to the slowly convergent series

h

π
+

∞∑

s=1

2

π

sin sh

s
cos sx = H(h − |x |), H(x) =

{
0 if x < 0,

1 if x > 0.

The function H(h − |x |) has finite jumps at the two points x = h and x = −h. We
can actually conclude that the sum of this Fourier series is singular at these two points
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Table 1 Errors
E(0)

n = |A(0)
n − f (x)| obtained

from the Shanks transformation
with APS for the example of
Sect. 8 with h = 1 and x = 0.9
and κ = 1, 5, 10

k E(0)
40k (κ = 1) E(0)

8k (κ = 5) E(0)
4k (κ = 10)

0 6.817D − 01 6.817D − 01 6.817D − 01
1 8.941D − 02 8.022D − 02 2.001D − 02
2 8.901D − 03 8.091D − 03 1.177D − 01
3 6.615D − 04 8.429D − 04 3.425D − 05
4 7.316D − 05 4.290D − 05 4.268D − 06
5 9.444D − 05 1.705D − 05 5.536D − 07
6 1.806D − 05 8.717D − 07 3.881D − 08
7 2.429D − 07 3.400D − 07 1.722D − 08
8 5.904D − 08 2.799D − 09 4.498D − 11
9 1.059D − 09 2.860D − 09 1.525D − 11

10 6.171D − 10 9.039D − 11 2.620D − 11
11 1.995D − 11 7.901D − 11 8.193D − 13
12 4.561D − 11 5.531D − 12 3.661D − 15
13 7.601D − 13 6.868D − 13 1.218D − 14
14 2.870D − 12 1.663D − 13 1.438D − 15
15 1.534D − 14 6.744D − 15 6.636D − 17
16 8.339D − 14 9.473D − 14 3.956D − 18
17 5.223D − 16 1.881D − 16 5.180D − 18
18 1.543D − 17 1.272D − 17 1.438D − 20
19 4.072D − 17 3.987D − 18 1.825D − 20
20 2.341D − 17 4.958D − 19 8.844D − 21
21 2.515D − 19 3.746D − 20 6.474D − 21
22 9.175D − 20 2.173D − 21 2.650D − 24
23 4.071D − 21 2.151D − 22 4.046D − 24
24 1.714D − 22 2.724D − 22 9.598D − 25
25 1.473D − 22 1.422D − 23 1.037D − 25

by analyzing its coefficients, namely, an = 2
π
(sin nh cos nx)/n. It is easy to see that

an = 1

2iπn

[
ein(h+x) + ein(h−x) − e−in(h+x) − e−in(h−x)

]
,

which is exactly of the form (2.1) with m = 4, ζ1 = ei(h+x) = ζ−1
3 , ζ2 = ei(h−x) =

ζ−1
4 , and γk = −1, k = 1, . . . , 4. Clearly, ζ1 = 1 = ζ3 when x = −h and ζ2 = 1 = ζ4

when x = h.
We have applied the Shanks transformation with h = 1 and x = 0.9 for which the

sum of the series is 1. Clearly, we are very near a point of singularity, and hence will
have slow convergence if we work with the whole sequence of the partial sums. In
Table 1, we give the errors for the diagonal sequences {A(0)

n }∞n=0, obtained with APS
taking κ = 1, 5, 10. Note that the convergence of the diagonal sequences improves
with increasing κ . It must be also noted that the number of terms of the Fourier series
used in computing the approximations A(0)

40k with κ = 1, A(0)
8k with κ = 5, and A(0)

4k with
κ = 10 is 80k; in other words, we are comparing diagonal approximations obtained
from the same number of terms. From this, it is clear that all three approximations
have very similar accuracies; the accuracy seems to be improving only marginally
with increasing κ . However, the number of the entries in the epsilon table of Wynn
that need to be computed decreases as κ−2 with increasing κ .
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Appendix

Let s = (s1, . . . , sm), where st are nonnegative integers, and let {αt }m
t=1 be arbitrary

real numbers. Define the function g(s) via

g(s) =
m∑

t=1

αt st −
m∑

t=1

st (st − 1). (A.1)

We are interested in the solution to the integer programming problem

max
s

g(s)

subject to s1 ≥ 0, . . . , sm ≥ 0 and
m∑

t=1

st = n. (A.2)

where n is a given positive integer. We will denote this problem by I Pn , and we will
denote by σn the value of g(s) at the solution to I Pn .

A closed-form solution to I Pn does not seem to be possible when the αt are arbi-
trary. Such a solution is possible, however, when the αt are all the same. This solution
is given in the next lemma.

Lemma A.1 Let

α1 = · · · = αm ≡ α. (A.3)

Let also s = (s1, . . . , sm) be a solution to I Pn. Then the following are true:

1. If n = mν, where ν = 1, 2, . . . , then s1 = · · · = sm = ν and this solution is
unique.

2. If n = mν + τ , where ν = 0, 1, . . . , and 1 ≤ τ ≤ m − 1, then m − τ of the st

are equal to ν while the remaining τ are equal to ν + 1, and there are
(m
τ

)
such

solutions.

Proof Letting μ = n/m, for arbitrary n, we have

g(s) = n(α + 1) −
m∑

t=1

s2
t

= n(α + 1) −
m∑

t=1

[
(st − μ)2 + 2μ(st − μ) + μ2

]

= n (α + 1 − μ) −
m∑

t=1

(st − μ)2, (A.4)
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where we have invoked the constraint
∑m

t=1 st = n several times. Clearly, the largest
value of g(s), for not necessarily integer st , is achieved only when st = μ for all t .

Part 1 of the lemma (with n = mν, ν = 1, 2, . . . , and hence μ = ν) follows from
(A.4).

For part 2 (with n = mν + τ, 1 ≤ τ ≤ m − 1), assume that the optimal solution
s = (s1, . . . , sm) is not of the form described in the statement of the lemma. Then
we can find si and s j such that si − s j ≥ 2. For simplicity of notation, let i = 1 and
j = 2; therefore, s1 − s2 = k ≥ 2. Let us now decrease s1 by 1 and increase s2 by 1,
keeping s3, . . . , sm unchanged. With s̄ = (s1 − 1, s2 + 1, s3, . . . , sm), we have

g(s̄) = g(s) + 2(k − 1) > g(s),

since k ≥ 2. This contradicts the fact that g(s) ≥ g(s̄). [Note that g(s̄) = g(s) with
k = 1.] Actually, by continuing this process with all the st , we increase g(s) until we
finally reach the situation in which m − τ of the st are equal to ν while the remaining
τ are equal to ν + 1. ��

As is clear from the preceding lemma, and as can be verified by working out some
simple examples with general αt , a unique solution s to I Pn may not exist for all
values of n. The next lemma shows that there are infinitely many values of n for which
a unique solution to I Pn exists, whether the αt are all equal or not. In addition, the
proof of this lemma also gives a simple procedure by which one can construct the
solutions to I Pn with these special values of n.

Lemma A.2 There is an infinite sequence of positive integers n1 < n2 < · · · , such
that I Pni has a unique solution s(i) = (s(i)

1 , . . . , s(i)
m ) for each i . If we order the αt

as in

α1 = · · · = αμ > αμ+1 ≥ · · · ≥ αm, (A.5)

then μ ≤ n1 ≤ m. In addition, there exists a positive integer κ , for which

μ ≤ ni+1 − ni < m when i < κ and ni+1 − ni = m when i ≥ κ. (A.6)

The solution to I Pni satisfies

s(i)
1 = · · · = s(i)

μ ≥ s(i)
μ+1 ≥ · · · ≥ s(i)

m for every i. (A.7)

In addition, the solutions to I Pni and I Pni+1 are related via

s(i+1)
t = s(i)

t + 1, t = 1, . . . , m, for i ≥ κ. (A.8)

Proof Let us consider the problem I Pn in (A.2), with n undetermined as yet. Let us
choose a real number c and set αt + c = 2βt , t = 1, . . . , m. Then we can express g(s)
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in (A.1) as in

g(s) =
[

n(1 − c) +
m∑

t=1

β2
t

]
−

m∑

t=1

(st − βt )
2, (A.9)

and we have

σn =
[

n(1 − c) +
m∑

t=1

β2
t

]
− min

s

m∑

t=1

(st − βt )
2,

subject to s1 ≥ 0, . . . , sm ≥ 0 and
m∑

t=1

st = n. (A.10)

We now construct the ni alluded to above by assigning certain suitable values to c
and then by solving the problem mins

∑m
t=1(st − βt )

2 for nonnegative integers st . It
is easy to see that the vector s, for which st is the smallest nonnegative integer closest
to βt , t = 1, . . . , m, is a solution to this problem.

Choosing c = 2 − α1 so that β1 = 1, with the αt ordered as in (A.5), we have

1 = β1 = · · · = βμ > βμ+1 ≥ · · · ≥ βm .

Let us now construct a solution s(1) = (s(1)
1 , . . . , s(1)

m ) to the problem mins
∑m

t=1(st

− βt )
2, subject to the constraints st ≥ 0, t = 1, . . . , m : We let s(1)

1 = · · · = s(1)
μ = 1.

For μ + 1 ≤ t ≤ m, we proceed as follows: (i) when βt ≤ 1/2, we let s(1)
t = 0.

(ii) when βt > 1/2, we let s(1)
t = 1. Finally, with all the s(1)

t determined, we set
n = ∑m

t=1 s(1)
t ≡ n1. Clearly, μ ≤ n1 ≤ m. It is easy to see that

∑m
t=1(s

(1)
t − βt )

2 =
mins

∑m
t=1(st − βt )

2 subject to st ≥ 0, t = 1, . . . , m, and
∑m

t=1 st = n1. Conse-
quently, s(1) is the unique vector that maximizes g(s) subject to

∑m
t=1 st = n1, hence

is the unique solution to the problem I Pn1 .
To construct s(2), we increase c by 2. This causes all the βt to increase by 1. Thus,

we have β1 = · · · = βμ = 2. We let s(2)
1 = · · · = s(2)

μ = 2. For μ + 1 ≤ t ≤ m,

we proceed as follows: (i) when βt �= p + 1/2, where p is an integer, we let s(2)
t be

the nonnegative integer that is closest to βt . (ii) when βt = p + 1/2, where p is an
integer, we let s(2)

t = 0 if βt < 0 and s(2)
t = βt − 1/2 otherwise; thus, we have either

s(2)
t = s(1)

t or s(2)
t = s(1)

t + 1. With all the s(2)
t determined, set n = ∑m

t=1 s(2)
t ≡ n2.

It is clear that s(2) is the unique vector that maximizes g(s) subject to
∑m

t=1 st = n2,
hence is the unique solution to the problem I Pn2 . Clearly, n1 + μ ≤ n2 ≤ n1 + m.

By increasing c by 2 continually, we generate the vectors s(i) and determine the
integers ni , s(i) being the unique solutions to the corresponding problems I Pni . As
mentioned earlier, these solutions are obtained by choosing the st to be the small-
est nonnegative integers closest to the respective βt . First, we choose c such that
α1 + c = 2i , and let αt + c = 2βt for all t , as before. Of course, β1 = · · · = βμ = i .
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Next, we determine s(i):

if βt < 0, s(i)
t = 0,

if p ≤ βt ≤ p + 1/2, p ≥ 0 integer, s(i)
t = p,

if p + 1/2 < βt < p + 1, p ≥ 0 integer, s(i)
t = p + 1.

Clearly, s(i)
1 = · · · = s(i)

μ = i . After a number of such steps, say κ+1 steps, we reach a

situation in which βt > 1/2 for all t so that s(κ+1)
t > 0 for all t . Thus, s(i+1)

t = s(i)
t +1

for all t , and ni+1 = ni + m, for i ≥ κ . This completes the proof of the lemma. ��

The next lemma shows how to construct a solution to I Pn+1 when I Pn has a
unique solution as constructed in Lemma A.2.

Lemma A.3 Let s′ = (s′
1, . . . , s′

m) be the unique solution to I Pn when n is one of
the integers ni in Lemma A.2. Let c = 2s′

1 − α1 and βt = (αt + c)/2 for all t . Next,
let s′′ = (s′′

1 , . . . , s′′
m) be given as follows: s′′

t = s′
t if t �= q, and s′′

q = s′
q + 1, where

q is determined via

|s′
q + 1 − βq | = min

1≤t≤m
|s′

t + 1 − βt |. (A.11)

Then s′′ is a (not necessarily unique) solution to I Pn+1.

Remarks 1. Let us define Z
+ = {0, 1, 2, . . .} and define the sets Ti , 1 ≤ i ≤ 4, as

follows:

T1 = {βt : βt < 0},
T2 = {βt : βt = p, p ∈ Z

+},
T3 = {βt : p < βt ≤ p + 1/2, p ∈ Z

+},
T4 = {βt : p + 1/2 < βt < p + 1, p ∈ Z

+}.

Let us set Xt = |s′
t + 1 − βt | and observe that

Xt > 1 if βt ∈ T1 or βt ∈ T4,

Xt = 1 if βt ∈ T2,

1/2 ≤ Xt < 1 if βt ∈ T3.

From this, it is clear that either (i) T3 = ∅ and βq is any member of T2, in which
case, s′

q − βq = 0 and s′′
q − βq = 1, or (ii) T3 �= ∅ and βq ∈ T3, in which case,

−1/2 ≤ s′
q − βq < 0 and 1/2 ≤ s′′

q − βq < 1, and βq − �βq� = maxβt ∈T3(βt −
�βt�). Note that T2 is never empty since it contains β1, . . . , βμ, which are positive
integers. Note also that βq ∈ T1 and βq ∈ T4 are impossible. These facts are
obvious from the construction in the proof of Lemma A.2.
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2. By (A.9), the function g(s) for the problem I Pn+1 is

g(s) =
[
(n + 1)(1 − c) +

m∑

t=1

β2
t

]
−

m∑

t=1

(st − βt )
2;

m∑

t=1

st = n + 1. (A.12)

Proof Define h(s) = ∑m
t=1(st −βt )

2. We need to show that for any s �= s′′ satisfying∑m
t=1 st = n + 1, we will have h(s) ≥ h(s′′), and hence that g(s) ≤ g(s′′). There are

two cases to consider: (i) sq = s′′
q and (ii) sq �= s′′

q .

(i) When sq = s′′
q , we have

∑m
t=1
t �=q

st = n − s′
q and

∑m
t=1
t �=q

(st −βt )
2 ≥ ∑m

t=1
t �=q

(s′′
t −

βt )
2, because, being the smallest nonnegative integers closest to the respective

βt , s′′
t = s′

t with t �= q are optimal for the problem min st
t �=q

∑m
t=1
t �=q

(st − βt )
2

subject to
∑m

t=1
t �=q

st = n − s′
q . Hence h(s) ≥ h(s′′).

(ii) When sq �= s′′
q . We distinguish between two cases:

1. The case sq ≥ s′′
q + 1 = s′

q + 2 or sq ≤ s′′
q − 2 = s′

q − 1: We have |sq − βq | ≥
|s′′

q − βq | = |s′
q + 1 − βq |. In addition, |st − βt | ≥ |s′

t − βt | = |s′′
t − βt | for all

t �= q. Therefore, h(s) ≥ h(s′′).
2. The case sq = s′′

q − 1 = s′
q : First, we note that si ≥ s′′

i + 1 = s′
i + 1 for some

i �= q at least once in this case, since
∑m

t=1
t �=q

st = ∑m
t=1
t �=q

s′
t + 1. Then, because

|st − βt | ≥ |s′
t − βt | for all t �= i, q, it is sufficient to show that

A ≡ (si − βi )
2 + (sq − βq)2 ≥ (s′′

i − βi )
2 + (s′′

q − βq)2 ≡ B. (A.13)

Let si = s′
i + k for some integer k ≥ 1. Then, recalling that sq = s′

q and s′′
i = s′

i ,
we have

A − B = 2k(s′
i + 1 − βi ) − 2(s′

q + 1 − βq) + (k − 1)2

= 2k|s′
i + 1 − βi | − 2|s′

q + 1 − βq | + (k − 1)2.

By (A.11) and by the assumption that k ≥ 1, we realize that A− B ≥ 0. Therefore,
h(s) ≥ h(s′′).

This completes the proof. ��
The next lemma provides an explicit and simple expression for σn+1 − σn for the

case in which I Pn has a unique solution, as in Lemma A.1 or as in Lemma A.2.

Lemma A.4 The optimal values σn and σn+1 of g(s) for I Pn and I Pn+1, respec-
tively, satisfy the following:

1. If α1 = · · · = αm ≡ α, and n = mν, where ν is a nonnegative integer, then

σn+1 − σn = α − 2ν. (A.14)
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2. When the αt are not necessarily equal to each other, and are ordered as in (A.5),
let n be one of the integers constructed in Lemma A.2. Let c = 2β1 − α1, and set
βt = (αt + c)/2, 1 ≤ t ≤ m. Let s′ = (s′

1, . . . , s′
m) be the (unique) solution to the

problem I Pn, and determine the index q such that |s′
q+1−βq | = mint |s′

t +1−βt |.
Then

σn+1 − σn = αq − 2s′
q and σn+1 − σn ≤ α1 − 2s′

1 + 1. (A.15)

If n = nκ+ν , where κ is as in Lemma A.2 and ν ≥ 0, we have

σn+1−σn =(
αq −2 ŝq

)−2ν, and σn+1−σn ≤(α1−2 ŝ1+1)−2ν, (A.16)

(̂s1, . . . , ŝm) being the (unique) solution to the problem I Pnκ .

Proof Part 1 follows directly from Lemma A.1. For the proof of part 2, we define
h(s) = ∑m

t=1(st − βt )
2, as before. Then, by (A.10) in the proof of Lemma A.3, we

have

σn =
[

n(1 − c) +
m∑

t=1

β2
t

]
− h(s′)

and, by Lemma A.3, we also have

σn+1 =
[
(n + 1)(1 − c) +

m∑

t=1

β2
t

]
− h(s′′),

where s′′ = (s′′
1 , . . . , s′′

m) is a (not necessarily unique) solution to the problem I Pn+1
that is described in Lemma A.3. [Note that σn+1 is the (unique) optimal value of the
function g(s) at any one of the solutions to I Pn+1.] Consequently,

σn+1 − σn = 1 − c + h(s′) − h(s′′).

Now, by Lemma A.3, we also have

h(s′′)=h(s′)+[(s′
q +1 − βq)2 − (s′

q − βq)2]=h(s′) + 2(s′
q − βq) + 1. (A.17)

As a result,

σn+1 − σn = 2(βq − s′
q) − c = αq − 2s′

q ,

where we have invoked the relation αt + c = 2βt . Next, by (A.17) and by the fact that
−1/2 ≤ s′

q − βq ≤ 0,

h(s′) ≤ h(s′′) ≤ h(s′) + 1,
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from which

σn+1 − σn ≤ 1 − c = α1 − 2s′
1 + 1.

Here we have also invoked the fact that α1 + c = 2β1 = 2s′
1. We have thus shown the

validity of (A.15). For (A.16), we make use of (A.6) and (A.8) to conclude that when
n = nκ+ν , we have n = nκ + mν and s′

t = ŝt + ν for all t . We leave the details to the
reader. ��

References

1. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York (1978)
2. Baker, G.A. Jr..: Essentials of Padé Approximants. Academic Press, New York (1975)
3. Baker, G.A. Jr.., Graves-Morris, P.R.: Padé Approximants, 2nd edn. Cambridge University Press,

Cambridge (1996)
4. Beckermann, B., Matos, A.C., Wielonsky, F.: Reduction of the Gibbs phenomenon for smooth functions

with jumps by the ε-algorithm. J. Comput. Appl. Math. 219, 329–349 (2008)
5. Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Holt, Rinehart and Winston,

New York (1975)
6. Brezinski, C.: Accélération de suites à convergence logarithmique. C. R. Acad. Sci. Paris 273A,

727–730 (1971)
7. Brezinski C.: Accélération de la Convergence en Analyse Numérique. In: Lecture Notes in

Mathematics, vol. 584. Springer, Berlin (1977)
8. Brezinski, C.: Extrapolation algorithms for filtering series of functions, and treating the Gibbs phe-

nomenon. Numer. Algorithms 36, 309–329 (2004)
9. Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods: Theory and Practice. North-

Holland, Amsterdam (1991)
10. de Montessus de Ballore, R.: Sur les fractions continue algébriques. Bull. Soc. Math. France 30,

28–36 (1902)
11. Ford, W.F., Sidi, A.: An algorithm for a generalization of the Richardson extrapolation process. SIAM

J. Numer. Anal. 24, 1212–1232 (1987)
12. Garibotti, C.R., Grinstein, F.F.: Recent results relevant to the evaluation of infinite series. J. Comput.

Appl. Math. 9, 193–200 (1983)
13. Gautschi, W.: Orthogonal Poynomials: Computation and Approximation. Numerical Mathematics and

Scientific Computation. Oxford University Press, Oxford (2004)
14. Gilewicz, J.: Approximants de Padé. In: Lecture Notes in Mathematics, vol. 667. Springer, New York

(1978)
15. Gray, H.L., Atchison, T.A., McWilliams, G.V.: Higher order G-transformations. SIAM J. Numer.

Anal. 8, 365–381 (1971)
16. Guilpin, C., Gacougnolle, J., Simon, Y.: The ε-algorithm allows to detect Dirac delta functions. Appl.

Numer. Math. 48, 27–40 (2004)
17. Hardy, G.H.: Divergent Series. Clarendon Press, Oxford (1949)
18. Kaminski, M., Sidi, A.: Solution of an integer programming problem related to convergence of rows

of Padé approximants. Appl. Numer. Math. 8, 217–223 (1991)
19. Karlsson, J., Wallin, H.: Rational approximation by an interpolation procedure in several vari-

ables. In: Saff, E.B., Varga, R.S. Padé and Rational Approximation, pp. 83–100. Academic Press,
New York (1977)

20. Levin, D.: Development of non-linear transformations for improving convergence of sequences. Int.
J. Comput. Math. B 3, 371–388 (1973)

21. Levin, D., Sidi, A.: Two new classes of nonlinear transformations for accelerating the convergence of
infinite integrals and series. Appl. Math. Comp. 9, 175–215 (1981). Originally appeared as a Tel Aviv
University preprint in 1975

22. Lubinsky, D.S.: Padé tables of entire functions of very slow and smooth growth. Constr. Approx. 1,
349–358 (1985)

123



764 A. Sidi

23. Lubinsky, D.S.: Padé tables of entire functions of very slow and smooth growth II. Constr.
Approx. 4, 321–339 (1988)

24. Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis, 2nd edn. McGraw-Hill,
New York (1978)

25. Rutishauser, H.: Der Quotienten-Differenzen-Algorithmus. Z. Angew. Math. Phys. 5, 233–251 (1954)
26. Saff, E.B.: An extension of Montessus de Ballore theorem on the convergence of interpolating rational

functions. J. Approx. Theory, 6, 63–67 (1972)
27. Shanks, D.: Nonlinear transformations of divergent and slowly convergent sequences. J. Math.

Phys. 34, 1–42 (1955)
28. Sidi, A.: On a generalization of the Richardson extrapolation process. Numer. Math. 57, 365–377 (1990)
29. Sidi, A.: Quantitative and constructive aspects of the generalized Koenig’s and de Montessus’s theorems

for Padé approximants. J. Comput. Appl. Math. 29, 257–291 (1990)
30. Sidi, A.: Acceleration of convergence of (generalized) Fourier series by the d-transformation. Ann.

Numer. Math. 2, 381–406 (1995)
31. Sidi, A.: Extension and completion of Wynn’s theory on convergence of columns of the epsilon table.

J. Approx. Theory 86, 21–40 (1996)
32. Sidi, A.: Further results on convergence and stability of a generalization of the Richardson extrapolation

process. BIT Numer. Math. 36, 143–157 (1996)
33. Sidi, A.: The Richardson extrapolation process with a harmonic sequence of collocation points. SIAM

J. Numer. Anal. 37, 1729–1746 (2000)
34. Sidi, A.: Practical Extrapolation Methods: Theory and Applications. In: Cambridge Monographs on

Applied and Computational Mathematics, vol. 10. Cambridge University Press, Cambridge (2003)
35. Sidi, A.: Asymptotic expansions of Legendre series coefficients for functions with endpoint singular-

ities. Asymptot. Anal. 65, 175–190 (2009)
36. Sidi, A.: Asymptotic analysis of a generalized Richardson extrapolation process on linear

sequences. Math. Comput. 79, 1681–1695 (2010)
37. Sidi, A.: A simple approach to asymptotic expansions for Fourier integrals of singular functions. Appl.

Math. Comput. 216, 3378–3385 (2010)
38. Sidi, A.: Survey of numerical stability issues in convergence acceleration. Appl. Numer.

Math. 60, 1395–1410 (2010)
39. Sidi, A.: Asymptotic expansions of Legendre series coefficients for functions with interior and endpoint

singularities. Math. Comput. 80, 1663–1684 (2011)
40. Sidi, A., Ford, W.F., Smith D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer.

Anal. 23, 178–196 (1986). Originally appeared as NASA TP-2193 (1983)
41. Smith, D.A., Ford, W.F.: Acceleration of linear and logarithmic convergence. SIAM J. Numer.

Anal. 16, 223–240 (1979)
42. Smith, D.A., Ford, W.F.: Numerical comparisons of nonlinear convergence accelerators. Math. Com-

put. 38, 481–499 (1982)
43. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002)
44. Wynn, P.: On a device for computing the em (Sn) transformation. Math. Tables Aids Comput. 10,

91–96 (1956)
45. Wynn, P.: On the convergence and stability of the epsilon algorithm. SIAM J. Numer. Anal. 3,

91–122 (1966)
46. Wynn, P.: Transformations to accelerate the convergence of Fourier series. In: Gertrude Blanche Anni-

versary Volume, pp. 339–379. Wright Patterson Air Force Base (1967)

123


	Acceleration of convergence of general linear sequences by the Shanks transformation
	Abstract
	1 Introduction
	2 Examples of general linear sequences
	2.1 Sums of simple linear sequences
	2.2 General linear sequences from Fourier series
	2.3 General linear sequences from generalized Fourier series

	3 Main results
	4 Technical preliminaries
	5 Proof of Theorem 3.1
	5.1 Asymptotic expansion for z-je(j)n({zs})
	5.2 Asymptotic expansion of M(j)ki(1:n)(z)
	5.3 The dominant M(j)ki(1:n)(z)
	5.4 Study of Eki(1:n)
	5.5 Completion of proof of Theorem 3.1

	6 Proof of Theorem 3.2
	7 Implications of Theorems 3.1 and 3.2
	8 A numerical example
	Acknowledgments
	Appendix
	References


