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ABSTRACT

An important problem that arises in different areas of science and engineering is that of computing limits
of sequences of vectors {x,}, where x, e CN with N very large. Such sequences arise, for example, in the
solution of systems of linear or nonlinear equations by fixed-point iterative methods, and lim,,_, ..x, are
simply the required solutions. In most cases of interest, these sequences converge to their limits extremely
slowly, or even diverge. One practical way to make the sequences {x,} converge more quickly is to apply
to them vector extrapolation methods. In this work, we review two polynomial-type vector extrapolation
methods that have proved to be very efficient convergence accelerators; namely, the minimal polynomial
extrapolation (MPE) and the reduced rank extrapolation (RRE). We discuss their derivation, describe the
most accurate and stable algorithms for theirimplementation along with the effective modes of usage, and
present their convergence and stability theory. We also discuss their close connection with the method
of Arnoldi and GMRES, two well known Krylov subspace methods for linear systems. Finally, we discuss
some of their applications to different large-scale problems, such as solution of large-scale systems of
equations, eigenvalue problems, computation of the PageRank of the Google matrix, and summation of
vector-valued power series.

Vector-valued rational approximation

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

An important problem that arises in different areas of science
and engineering is that of computing limits of sequences of vec-
tors {x,}, where x,; € CN with N very large. Vector sequences arise,
for example, in the solution of systems of linear or nonlinear equa-
tions by fixed-point iterative methods, and lim;_,.Xn are simply
the required solutions. Such systems, in turn, arise from finite-
difference or finite-element discretization of continuum problems.

For example, if

Yx)=0; ¢:cN -V, (1.1)

is such a system of equations, then {x; } is generated by some fixed-
point iterative method as in

Xn1 =F(xp), n=0,1,...; F:cN-cV, (1.2)

where x — F(x)=01is a possibly “preconditioned” form of (1.1) hence
has the same solution s [that is, {/(s)=0and also s = F(s)], and, in case
of convergence, lim;_, .ox =S. (Here, Xg is an initial approximation
to s.) One possible form of F(x) would be F(x)=x+ C(x){/(x), where

E-mail address: asidi@cs.technion.ac.il
URL: http://[www.cs.technion.ac.il/ asidi/.

1877-7503/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j,jocs.2011.01.005

C(x) is an N x N matrix that may involve a number of relaxation
parameters, such that C(s) is nonsingular.

In most cases of interest, the sequences {x,} converge to their
limits very slowly. This happens, for example, when they arise from
the finite-difference or finite-element discretizations of continuum
problems; in such cases, their rates of convergence become smaller
as the relevant mesh-sizes become smaller, in which case their size
Nbecomes larger, in addition. In view of this, we ask whether some-
thing can be done to make the convergence of the sequences {x;}
faster without having to tamper with the fixed-point methods used
to generate them. The answer to this question is in the affirmative;
namely, we can accelerate their convergence by applying to them
vector extrapolation methods, which are especially suitable when
the dimension N is very large. It is important to mention also that
extrapolation methods can cause a divergent sequence generated
as above to converge under certain circumstances.

There are several vector extrapolation methods in the litera-
ture; for a survey of these methods covering earlier developments,
see the review article by Smith et al. [32]. See also Brezinski and
Redivo Zaglia [5, Chapter 4]. Briefly speaking, vector extrapola-
tion methods can be classified in two major groups: (i) polynomial
methods, and (ii) epsilon algorithms. Two important polynomial
methods are the minimal polynomial extrapolation (MPE) of Cabay
and Jackson [6] and the reduced rank extrapolation (RRE) of Eddy
[7]and Mesina [16]. Important methods in the epsilon class are the
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vector epsilon algorithm (VEA) of Wynn [35], which was the very first
vector extrapolation method, and the topological epsilon algorithm
(TEA) of Brezinski [4].

Theoretical results and numerical experiments tend to suggest
that MPE and RRE are, generally speaking, more efficient than the
rest of the methods as convergence accelerators. Indeed, MPE and
RRE have been used successfully as effective accelerators in diverse
areas of science and engineering, such as computational fluid
dynamics, structures, materials, semiconductor research, comput-
erized tomography, and image processing, to name a few. In this
work, we present a review of these two methods. We discuss their
derivation, describe the most accurate and stable algorithms for
their implementation along with the effective modes of usage, and
present their convergence and stability theory. We also discuss
their close connection with the method of Arnoldi [1] and GMRES
[17], two well known Krylov subspace methods for linear systems.

Finally, we discuss several applications of vector extrapolation
methods to different problems, starting with the solution of nonlin-
ear systems of equations. We next consider the computation of an
eigenvector of an arbitrary large and sparse matrix, corresponding
to its largest eigenvalue when this eigenvalue is known. This prob-
lem has attracted much attention recently because it arises in the
computation of the PageRank of the Google Web matrix. We next
discuss the summation of vector-valued power series by vector-
valued rational functions, a problem that arises, for example, when
solving differential equations with a small parameter.

Before we end this section, we would like to mention that both
MPE and RRE use the vector sequence {x,} as their only input, and
compute approximations to limy_, X, that are of the form

k
(n,k)
Sn,k = g Vi Xntis
i=0

where yi("”‘) are scalars depending nonlinearly on the x;;, also sat-
isfying

k

Lk
E ymo = 1.
i=0

Technically, the two methods differ in the way they compute the
yi("’k). Therefore, MPE and RRE (and the rest of the vector extrap-
olation methods as well) can be applied to any vector sequence
whether generated linearly or nonlinearly. This is an important
feature of these methods.

Throughout this work, we shall be using the standard Euclidean
inner product (u, v) = u*v and the vector norm induced by it ||u| =

\/(u, u). Specifically, if u=[&q, ..., éx]Tand v = [nq, ..., r]N]T, then
(u,v) = Z?’zlgni. Note, however, that any inner product, and the
norm induced by it, can be used.

(1.3)

(1.4)

2. Preliminaries and motivation

In order to motivate the derivation of vector extrapolation meth-
ods, we first look at the problems for which they were designed.
Thus, we start by discussing the nature of the vectors x, that arise
from (1.2). Assuming that lim,_, X, exists, hence that x, ~s for
all large n [recall that s is the solution to the system 1/(x)=0 and
hence to the system x = F(x)], we expand F(x,) in (1.2) about s, thus
obtaining

Xni1 = F(8) + F/(s)(Xn — S) + O(| %y — s|I*) asn — oo. (2.1)

Here, F(s) is the Jacobian matrix of the vector-valued function F(x)
evaluated at x =s. It is known that convergence will take place from
any xq sufficiently close to s provided p(F(s)) < 1, where p(A) stands

for the spectral radius of the (square) matrix A. See Atkinson [2], for
example. The result in (2.1) can be expressed also as in

Xne1 = Txn + b+ O(|xn —s[?) asn — oo;

T=F(s), b=[-F(s)ls, (2.2)

T being a constant matrix and b being a constant vector. In other
words, we have

Xne1 ~ Txy + b forall largen.

We have thus shown that the system x=F(x) “behaves” linearly
when x is close to the solution s. This then suggests that we should
look at linear systems for deriving vector extrapolation methods.

3. Derivation of MPE and RRE

The treatment we give in this section follows in part that of
Smith et al. [32]. Consider the linear system

x=Tx+b, b,xeCN, TeCN*N, (3.1)

Assume that (I-T) is nonsingular, which means that 1 is not an
eigenvalue of T. As a result, the system in (3.1) has a unique solution
that we denote by s. Let us choose an initial vector xo € CN and
generate the sequence {x,} via

Xni1=Txn+b, n=0,1,.... (3.2)
Let us also define

€n =Xn —S, Un=2Xpi1 —Xn,

Wp=1Upy —Un, n=0,1,.... (33)
It is easy to see that

en=T"eg, un=T"up,

wp=T"'wg, n=0,1,.... (3:4)
In addition,

up=(T-De,, n=0,1,.... (3.5)

3.1. Construction of solution to x=Tx +b via {xn}

The solution s to the linear system x=Tx+b can be constructed
using a finite number of the vectors x, as we show next. This will
be the starting point for the development of MPE and RRE.

Denote by R(A) the characteristic polynomial of T; namely,
R(A)=det(Al - T) and is monic. Then, by the Cayley—-Hamilton the-
orem, R(T)=0. See Horn and Johnson [13, p. 86], for example.
Similarly, denote by Q(A) the minimal polynomial of T; namely,
Q(X) is the unique monic polynomial of smallest degree with the
property Q(T)=0.See[13, p. 142], for example. In addition, we know
that Q(A) divides R(A). We next need the concept of the so-called
minimal polynomial of a matrix with respect to a vector, which is less
well known:

Definition3.1. Lety # 0be avector in CN. The monic polynomial
P()) is said to be the minimal polynomial of T with respect to y if
P(T)y=0 and P(1) has smallest degree.

Concerning P(1), we have the following result (see Householder
[14, p. 18], for example):

Theorem 3.2. (i) The minimal polynomial of T with respect to the
vector y exists and is unique. (ii) If M()) is another monic polynomial
forwhich M(T)y =0, then degM > degP and P(\.) divides M(A). In partic-
ular, P(1) divides the minimal polynomial of T, which, in turn, divides
the characteristic polynomial of T.

Proof. Let Q(XA) be the minimal polynomial of T. Then Q(T)=0.
Consequently, Q(T)y =0 too, and this implies that that P(1) exists.
Let P(A) be another minimal polynomial of T with respect to
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y, and P(A)#P(A). Of course, degP = degP must hold. Then
S(A) = P(A) — P(A) also satisfies S(T)y =0 but degS <degP, which is
impossible. Therefore, P(A) is unique. Let now M(A) be a monic
polynomial with the properties that M(T)y=0 and degM >degP.
Then there exist polynomials G(A) and H(A), such that M=GP+H,
degG=degM — degP, and degH < degP. With these, we have

0=M(T)y =G(T)P(T)y +H(T)y = H(T)y.

Since degH <degP, H(T)y =0 is possible only if H(A)=0. Thus, P(A)
divides M(A). The rest of the proof can be carried out similarly. O

LetP(1) = ZJI.;OCJ»)J, ¢, = 1,be the minimal polynomial of Twith
respect to the vector ey. (Of course, k=degP <N by Theorem 3.2.)
Thus, P(T)eg =0, which, by (3.3) and (3.4), also means that

k k
chTj(xo —5)= ch(xj —s)=0. (3.6)
=0 =0

Solving for s, we have
k

E Ci¥Xj
im0 TN

S= —x (37)

C;
2o

Note that division by ZJI.;OC]- in (3.7) is allowed, because Z}‘:Ocj =
P(1) # 0 since P(1) divides the characteristic polynomial of T and 1
is not an eigenvalue of T.

We have thus shown that the solution s can be constructed from
the k+1 vectors of iteration xg, X1, ..., X, provided P(A) is known.
Now, being the minimal polynomial of T with respect to eg =xg — S5,
P(A) depends on s, as well as on xy. This may lead us to conclude
that, in order to know P(1), we must know s. Fortunately, this is not
the case, as we show in the next theorem.

Theorem 3.3. P(A), the minimal polynomial of T with respect to
ep=Xp—S , is also the minimal polynomial of T with respect to
Upg =X1 — Xp-

Proof. Denote the minimal polynomial of T with respect to
Ug=Xx1 —Xo by P(L). Multiplying P(T)eg =0 on the left by T—I and
invoking (3.5), we obtain P(T)ug =0, which, by part (ii) of Theorem
3.2, means that P(1) divides P(1). Next, multiplying P(T)ug = 0 on
the left by (T—1I)~! (recall that T—1 is nonsingular) and invoking
(3.5) again, we obtain P(T)ey = 0, which, by part (ii) of Theorem
3.2, means that P(1) divides P(1). Therefore, P() = P(1). O

As is clear from Theorem 3.3, P(A) = ijocj)d can be deter-
mined because the vector ug =x; — Xg is available. Now, since P(1) is
monic, we have ¢, =1, and hence our unknowns are ¢y, cy, . . ., Cg_1-

First, by (3.4), P(T)ug =0 can be re-expressed as in

k k

ZCjTqu = chuj =0,

j=0 j=0

which, in turn, can be expressed as a system of linear equations in
the form

U a€ = - ¢ =[co,cr,..., ] eCk, (3.8)
where
Uj=[uglug |-~ uy]ecN<U+j=0,1,.... (3.9)

Note that the matrix U,_; has full rank, that is, rank(U,_1)=k,
because its columns, namely, the vectors ugp, uy, ..., Ug_1, are

linearly independent by the fact that P(A) = Zjlfzocj)\f is the min-
imal polynomial of T with respect to ug. Hence, the linear system

Uk_1¢ = —uy has a unique solution for ¢y, ¢4, . . ., ck_1. Invoking also
¢y =1, we complete the determination of s as in (3.7).
Let

Cj .

V= P j=0,1,...,k.
L
i=0

Therefore, we also have
k

ny =1.

j=0

-1
Multiplying both sides of (3.8) by (Z]l.‘zocj) , it is easy to see that
the y; satisfy the system of linear equations

k
Uy =0, Zyjzl; Y =Y, Y1, -, vl eCHHL, (3.10)
j=0

Here too U; is as defined in (3.9). With these, we can write (3.7) also
in the form

k k
=2 s D y=t
j=0 j=0

This suggests that sis some sort of “weighted” average of the vectors
X0, X1, - . ., X;. Of course, the y; do not have to be nonnegative; they
do not even have to be real.

By the developments above, it is clear that s can be constructed
from the knowledge of the k+2 vectors x;,j=0, 1, ..., k+1.

The developments above leading to the solution s given in (3.7)
or (3.11) are made possible by the fact that k is the degree of the
minimal polynomial of T with respect to ug. Normally, k would be
very close to N, and this would make the solution process pro-
hibitively expensive in the sense that its computational cost and
computer memory requirements would be extremely large. This
raises the question as to what would happen if we took k to be an
arbitrary integer (and much smaller than N). Obviously, the linear
systems Uj,_1¢' =—1u; in (3.8) and U,y =0 and Z]’f:oyj =1in(3.10)
will be inconsistent, hence will not have a solution in the ordinary
sense. We address this question next.

(3.11)

3.2. Derivation of MPE

Let us define ¢’ as the least-squares solution of the system
Ur_1¢' =—uy, leaving everything else unchanged. This results in
MPE, whose complete definition is as follows:

Definition 3.4. Given the vector sequence {x,} in CN, choose k <N
arbitrarily. Let the vectors uy be as in (3.3), and define the matrix
Ur_q via

Up_q = [uo lug |-~ | up_q] e CN*k,

Let ¢’ =][co, 1, ..., ck_1]T be the least-squares solution to the lin-
ear system Uj_;c’ = —uy; this means that ¢’ is the solution to the
problem

k-1

min E Giuj + Uy

€0,C15--2Ck1 -
j=0

Set ¢, =1, and compute yyg, y1, ..., Yk Via
G .
yj:ijPE=7; , j=0,1,...,k, (3.12)

C.
Zi:o !
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provided Z:;Ocigﬁo. Then, the MPE approximation to
s=limp_, oXn, denoted sMP%, is given by

k
SHIPE = "y MPEX;. (3.13)
j=0

3.3. Derivation of RRE

Let us define y as the least-squares solution of the system
Uy =0, subject to the constraint ZJ’;OJ/j =1, leaving everything
else unchanged. This results in RRE, whose complete definition is
as follows:

Definition 3.5. Given the vector sequence {x,}in CN, choose k <N
arbitrarily. Let the vectors u, be as in (3.3), and let the matrix Uy be
defined via

Uy = [uo [u |-~ [uy] e CN¥C+1),

Let y be the least-squares solution to the linear system Uy =0 sub-
ject to the constraint Z]’;())/j =1, this means that y is the solution
to the constrained minimization problem

k k

, subject toZyj =1.
j=0 j=0

.....

If we denote the solution to this minimization problem by ijRE,

then the RRE approximation to s =limy_, Xy, denoted sRRE, is given
by

k
RRE _2 : RRE,,.
Sk = )/] X].
j=0

Note that the way we have approached the definition of RRE here
is not the only way possible, and it differs from that of [32] and those
of the original works [7,16]. (The approaches of [7,16] differ from
each other greatly, and their equivalence is established in [32].)
Our approach here is the most direct, however. The definition of
RRE here is also that given in [16], and turns out to be very suitable
for computational purposes. For a completely different approach,
see Sidi et al. [29].

For completeness, here we reproduce the definition of [ 7], which

writes sRRE in the form

k-1

RRE

S =X0+E &iuj,
i—0

(3.14)

(3.15)

with no constraints on the &;. [Note that this is consistent with
(3.14) and ZJ’;O)/]RRE =1.] The &; are determined from the least-
squares solution of the linear system

Wi 1€ =—uo; &=[&, &1, ... & 1] eCk, (3.16)
where
W, = [wo |wy |- | wj]e CN*U+D), (3.17)

Here, the wy, just as the uy, are as defined in (3.3). Thus, sfRE can
also be expressed in the compact form

RRE
Sk

=Xo — Uk,1W,:lu0, (3.18)
where Uj_; is as before and Wk+_1 is the Moore-Penrose inverse
of W,_;. For the Moore-Penrose inverse and for other generalized

inverses of matrices, see Ben-Israel and Greville [3], for example.

3.4. Some remarks on MPE and RRE

As can easily be seen from Definitions 3.4 and 3.5, the approxi-
mations produced by MPE and RRE are defined exclusively in terms
of the vectors x;, nothing else being required as input. Even though
the derivation of the two methods was based on the solution of
linear systems x=Tx+b, their definition is totally independent of
the way in which these vectors are generated. Thus, these meth-
ods can be used for (hopefully) accelerating the convergence of
vector sequences {x,}, whether these sequences are generated by
linear systems or not. By the way they are derived, it is reason-
able to assume that MPE and RRE will be effective accelerators for
vector sequences arising from fixed-point iteration techniques on
linear systems. Since nonlinear systems behave linearly close to
their solutions, we can hope that MPE and RRE will be effective for
accelerating the convergence of vector sequences {x,} generated
by fixed-point methods on nonlinear systems as well.

Because the least-squares problem for the y; always has a solu-
tion for RRE, we conclude that sRRE exists unconditionally for all
k. In case of MPE, even though there is always a solution for the

¢j, we cannot guarantee that Zf:oci #+ 0 always. This means that
sy'"E may not always exist. A sufficient condition for the existence
of sMPE is given in Theorem 6.1.

3.5. Connection with Krylov subspace methods

When applied to a sequence {x,} generated by the fixed-
point iterative technique in (3.2) for solving the linear system
in (3.1), MPE and RRE become equivalent to some well known
Krylov subspace methods for solving (3.1), namely, the method
of Arnoldi [1] and GMRES [17], respectively, when the latter
are applied with xo as the initial vector. We recall that, for
each k=1, 2, ..., both Krylov subspace methods compute a vec-
tor zj, of the form z,=xq +yy, with y, € Ki(A;19), where A=1-T,
ro=b—Axg, and K(A; o) = span{rg, Arg, A%rg, ..., Ak 1rg). Let us
define r(x)=b —Ax as the residual vector associated with x. The
approximation zf™!di to s is then determined by requiring that r(z;)
be such that (y, r(z;))=0 for all vectors y € Ki(A; ro9). The approxi-
mation zZMRES to s is determined by requiring that r(z;) be such
that (Ay, r(z,))=0 for all vectors y € Ki(A; 1g), or equivalently, by
requiring that |Ir(z;)Il = miny ¢ g, (a:r)I7(Xo + ¥)Il. We then have the
following theorem proved in Sidi [20]:

Theorem 3.6. With sMPE, sRRE zAmoldi qnd 7GMRES g5 i the preced-
ing paragraph, there hold

MPE

RRE
Sk

Arnoldi
. and s,

_ GMRES
=2z K .

:Z,

4. Algorithms for MPE and RRE

The definitions of MPE and RRE given above can also be used to
design algorithms (computational procedures) for implementing
MPE and RRE. The most immediate, and computationally inexpen-
sive, algorithms would be those that use the normal equations (i)
Ui_qUk_1c = —U;_,uy in Definition 3.4 to determine the ¢; for MPE,
and (ii) W} Wy_1& = -W}_ up in (3.16) to determine the &; for
RRE. Since matrices U,_; and W;_; become very ill-conditioned
with increasing k, these algorithms are not stable numerically, and
they produce s, with reduced accuracy in floating-point arithmetic.
Concerning the solution of least-squares problems via normal equa-
tions, see Golub and Van Loan [11].

Numerically fast and stable and storagewise economical algo-
rithms have been given in Sidi [21], where a fully documented
FORTRAN 77 code can also be found. We now turn to a summary of
these algorithms. One important feature of these algorithms is that
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they both proceed through the solution of least-squares problems
by QR factorization.

For reasons to become clear later, it is more beneficial to apply
MPE and RRE to the vectors Xp, Xn+1, - - -, Xp+k+1 With n> 0, instead of
X0, X1, - . ., Xk+1. Let us denote the resulting approximations by sn"’ng
and sRRE. (Then, the s defined in the preceding section are the s in
our new notation.) Thus, given a sequence {x,}, MPE and RRE gen-
erate two-dimensional tables of approximations to s =limy_, .o Xp. In
the remainder of this work, we will be dealing with s, .

To discuss our algorithms conveniently, we introduce the nota-
tion

Uj=[un|un+1|"‘|un+j]a j=0,1,....

Let us assume that U; has full rank, namely, rank(U;)=j + 1. Then, it
has a QR factorization U; = Q;R;, where Q; e CN*U+1) js unitary [in the
sense that its columns form an orthonormal basis for the column
space of Uj, hence Q*Q; = Ijji1)«(j+1)]. and R; e cU+DxG+1) js upper
triangular with positive diagonal entries,

Q =Id01qi1---1g1eCVU; QrQ; = Ijp1)(isn),

Too To1 To2z -+ Toj
i Tz - Ty
_ Tpp -+ Ty . i
R = J | 1 >0 Vi
Tjj
Table 1

Unified algorithm for implementing MPE and RRE.

Also, Q; is obtained from Q;_; by appending one column (namely,
the vector g;) to the end of the latter. Similarly, R; is obtained
from R;_; by appending one row of zeros and one column (namely,
[roj» Tjr - - o rjj]T) to the end of the latter. This factorization can be
carried out accurately and inexpensively by applying the modified
Gram-Schmidt process (MGS) to the vectors up, Up+1, - . ., Unsj. Here
are the steps of MGS.

MGS algorithm
Step 1. Compute roo = |[un| and set qo = Un/To0-
Step2. Fork=1,2,...,do
Setul” = upy
Forj=0,1,..., k—1do
Compute rj x = (g;, ug)) and
(+1) U)

Compute u," " = u,” — rjxg;.
end for(j)
Compute ry, = Huﬁ(k)u and qi = uf!‘)/rkk.
end for(k)
(Note that if we replace the statement ug”) = u,(j) — Ijxq; in Step

2 of the MGS algorithm by its mathematically equivalent u%’“) =
Upnik — Tjkqj, we obtain the classical Gram-Schmidt process (GS) for
orthogonalizing the set of vectors {up, Up+1, - - -, Un+k }, Which is very
inaccurate numerically. For GS, MGS, and other orthogonalization
processes, see Golub and Van Loan [11].)

The details of our algorithms for MPE and RRE are summarized in
Table 1 in a unified fashion. For the mathematical details, see [21].
Note that, in these algorithms, we need to store only the vector
xp and the matrix Qy, namely, the vectors qq, ¢q1, ..., qk. The rest

Step 0. Input: The vectors Xu, Xp+1, - - <, Xp+i+1-

Step 1. Compute u;=Ax;=Xj+1 —X;, i=n,n+1,...,n+k.
Set Uj = [un | tns1 |-+ Upy]eCVN<UHD j=0,1,...
Compute the QR factorization of U, namely, Uy, = QxRy;
Qr=Iq01q1| --- | qk] unitary and R, = [rg]0§i7j5k upper triangular.

(Uk_1=Qk_1Ri_1 is contained in U = QxRy.)

Step 2. Computation of the y;:
For MPE:

Solve the (upper triangular) linear system

Ri_1¢' =~ py;

(Note that p, = Q; | Upy.)
Set ¢, =1 and compute o = Zk
Setyi=cila, i=0,1,..., k.

For RRE:
Solve the linear system
R;ZdeZE; d:[do,d],...

Pi=1Tok Tker -+ o T 1 41T

i=0

Ld 1T,

c=[co, €1y vvur Gl

e=[1,1,...,1]Teck.

[This amounts to solving two triangular (lower and upper) systems.]

1
Set A — (Zf: Odi) (Note that A is real and positive.)
Set y=Ad, thatis, y;=Ad;, i=0,1,..., k.

Step 3. Compute £=[&q, &1, ..., E_1]T by

So=1-vo; §=§1-vp Jj=l... k-1

Compute sMPE and sRRE vig
n,k n,k
Spk=Xn*t Qx—1(Ri-18).

[For this, first compute n=R;_1&, 1n=[no, 71, .

k-1
Next, set s, ;= Xo + Y .o Nidi-]

o M I
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can be overwritten as soon as they have been used. Thus, fori>1,
Xn+i 1S overwritten by u,.; once the latter is computed, and u,; is
overwritten by g; once the latter is computed.

The description of MGS given here and Table 1 should enable
the reader to produce his own code easily, without having to use
other software. Note also that the two algorithms differ only in their
Step 2, where the y; are determined. This enables us to unify their
presentation and programming in a simple way.

The error s, — s can be ascertained by looking at ||U,y||, which
is available at no additional cost through the algorithms in Table 1,
without having to compute s, ;. Actually, we have

,
Uiyl = {jkx"”‘

Here ryy is the (k+1, k+1) element of the matrix Ry, and A is the
scalar computed in Step 2 of the RRE algorithm in Table 1. The justi-
fication of thisis as follows: (i) When the sequence {x, } is generated
linearly as in (3.2), we have Uy y =1(s;, ), where r(x) =Tx+b — x is the
residual vector associated with x, hence U,y is indeed the residual
vector 1(s, ); consequently, |[r(s, )|l = ||Uy||. (ii) When {x;, } is gen-
erated nonlinearly as in (1.2), and s, is close to the solution s, we
have Upy ~1(sp ), where now r(x)=F(x)—x is the residual vector
associated with x; consequently, |[r(s, i )l| = [|Uk |l

for MPE,
for RRE.

5. Determinant representations for MPE and RRE

We next give determinant representations for the approxima-
tions sMPE and sRRE, derived originally in Sidi [19].

RRE

Theorem 5.1.  The approximations sMPE and sRR

determinant representations:

have the following

D(xn, Xni1s -« Xnik)
_ 5.1
Sn.k D, 1,...,1) G-

where D(go, g1, - . ., &) is a (k+1) x (k+1) determinant defined as in

&o &1 e &k
Up,0 Up,1 -+ Ugk
D(go.g1.....&)=| "ot e (5.2)

Ug-1,0 Uk-1,1 Ug—1,k

with u;j being scalars defined as in

. _ ) (unyi, unyy) for MPE,
= {(wnﬂ-,unﬂ-) for RRE. (53)

Here u, and wy, are as in (3.3).

Note that, in case the g; in D(go, g1, . . ., &) are vectors, this deter-

minant is vector-valued and is defined to be ZJI.(ZOMjgj, where M;
is the cofactor of g;.

The determinant representations above have been used in the
convergence and stability analyses of S%EE and sﬁﬁf. They were
used, in particular, to prove the convergence acceleration results
of Theorem 6.1. They have also been used by Ford and Sidi [10] to
obtain recursion relations among the different s, ;. We skip these
recursions here and refer the reader to [10].

Our next result pertains to the y;, and has been used in the
stability analysis of Theorem 6.2.

Theorem 5.2. Denote y; by yj("’k) to emphasize their dependence on

n and k. The polynomials Q, (1) = Z]l;oyj("’k)kf,for both MPE and

RRE, have the following determinant representations:

D(1,A, ..., A0

Qn,k()\) = ms (5-4)

where D(gy, g1, . - ., 8) is precisely as in Theorem 5.1.

Before we end this section, we would like to point out to a nice
feature of vector extrapolation methods in general, and MPE and
RRE in particular: These methods can be defined as in Definitions
3.4 and 3.5, and can be expressed as in Theorems 5.1 and 5.2, in
the setting of general infinite-dimensional inner product spaces,
as well as CN with finite N. The algorithms and the convergence
theory remain the same for all practical purposes. The treatments
given in [19,23,28,29] cover vector sequences in infinite dimen-
sional spaces.

6. Convergence acceleration and stability properties

The following theorem by Sidi [19] explains why MPE and RRE
are true convergence acceleration methods.

Theorem 6.1. Let the vector sequence {x,} be such that

p

Xn =s+Zv,~A?, (6.1)
i=1

where vy, v2, ..., vp are linearly independent vectors, and A; are dis-

tinct nonzero scalars satisfying

Ai#1 for all i, (6.2)
and are ordered such that

A1l > |A2] = - = [Apl. (6.3)
Let us assume further that, for some integer k <p, there holds

Akl > [Agil (6.4)
Then the following hold:

MPE

o Existence: sRRE exists for all n and sMP

n,k
e Convergence acceleration:

Spk—S =[Cui+o(1)]A} asn — oo,

k+1 (6.5)
= O(A;ZH) asn — oo,

exists for all large n.

where s, stands for both sMPE and sRXE, and the vector Cy is uni-

formly bounded in n, that is, supn||Cy|| <oo. In addition, CMPE =
CRRE, 50 that

MPE
n,k

RRE

S n,k

—S§~S —S asn— oo.

e Finite termination property when k=p:

Sn,p =S. (6.6)

Concerning the result (6.5) of Theorem 6.1, we can offer the
following interpretation: Starting from (6.1), we first see that the
contribution of the small ; is being diminished relative to the large
ones by letting n grow. The extrapolation procedure then takes
care of the contribution from the k largest A;. What remains is
the contribution from the intermediate A; starting with Aj.;. Note
also that, even if {x,} is divergent, which happens when |1 |>1,
limy—, oSy i =S if | Ag+7 |<1; thatis, MPE and RRE can make a divergent
sequence converge.

The next theorem pertains to the polynomial Qp (1) =

Zjlf=0)/}"’k))nj, where yj("’k) =Y and implies that MPE and RRE are
stable methods under the conditions of Theorem 6.1.
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Theorem 6.2. Under the conditions of Theorem 6.1, the following
hold:

o Existence of limp_,ocQp ¢(A) = llmnﬂwz 07/,n Ky

k

asn — oo, (6.7)
:1
hence
A Ai
llm Qn KA) = . (6.8)
i=1 i
Therefore, limn_,ooyj(”’k) all exist too. Here,
2n if(v;,v;)=0 fori#]j,
_ if (vi, v}) fori#j 69)
n otherwise.
e Stability: MPE and RRE are stable in the sense that
k k 14 A k
; (n,k) i (n,k)
,}LHSOZWJ’ | < = = s%pZ\yj | <oco. (6.10)
j=0 i=1 j=0

e Zeros of Qu x(A): For all large n, Q, x(A) has exactly k zeros )\E"’k), i=
., k, that tend to A;,i=1, ..., k, respectively. In addition,

MmO = O(hg 1 /MI™) asn — oo (6.11)
Her m is as defined in (6.9).
e Finite termination property when k=p:
P P
)y _ TTA =M
R = ©12
j=0 i=1

Note that the numerical stability of MPE and RRE depends on
the size of the quantity 'K = Z'f |y.(”’k)|, which is always >1

because Z 07/1(" k) — 1, When the x; are given with errors €;, the
computed s, ,, which we shall denote §, ;,, roughly speaking, satisfy

s k
Bk = Snell £ T (MaxXp<icnkl€il) -

Thus, the smaller ['™K), the more stable the extrapolation.
Because xp —s=0(A]) and s, —s = O()\” 1) as n— oo, and
[ A1 =] Ak > ] Ager | it is clear that {s, k)72, tends to s faster than
does {x;} when {x,} converges. In case {xn} does not converge
(which happens when |41 |>1), {s,1)5, will converge if | Aj+q [<1,
and it will diverge (but less slowly than {x,}) if | A1 [>1. (In case
of divergence, s is the antilimit of {x,}.)
When |A|=|Ak+1 |, the case not covered by Theorem 6.1, the
convergence result pertaining to s, x, namely, s, | — ()\EH ) as
n — oo, remains the same when {x;, } is generated linearly asin(3.2).
We have

Snk—S=0(A ) asn— oo,

(i) for RRE always and (ii) for MPE when «(I — T) has a positive def-
inite hermitian part for some scalar o # 0. We refer the reader to
Sidi [22] for details.

Note that vector sequences {x,} satisfying the conditions of
Theorem 6.1 arise from the iterative technique of (3.2) when the
matrix T is diagonalizable; in this case, A1, ..., A, are some or all of
the distinct nonzero eigenvalues of the matrix T, and the vectors v,
are corresponding eigenvectors, thatis, Tv; = Av;,i=1, ..., p,and,
of course, p < N. When T is not diagonalizable, the structure of x;, is
similar to that in (6.1)-(6.3), but more complicated. Consequently,

the corresponding convergence and stability results are also simi-
lar to, but more complicated than, those of Theorems 6.1 and 6.2.
This general case has been treated completely in Sidi and Bridger
[28] and in [22].

The techniques used in proving Theorems 6.1 and 6.2 are rather
universal. They have been applied by the author with success in the
analysis of several other scalar and vector extrapolation methods,
the Richardson extrapolation and the Shanks [18] transformation
or the equivalent epsilon algorithm of Wynn [34] being some of
them; see Sidi [25].

7. Efficient use of MPE and RRE
7.1. Applying extrapolation to a subsequence {X;}

As mentioned already in the preceding section, to determine
Snk» We need to store x, and the columns of the unitary matrix Q.
Using the same storage, we can obtain more accurate approxima-
tions to s by applying MPE or RRE to the sequence {xm};° , with
some integer r> 1, instead of {x, }. To see that this is possible, let us
analyze the structure of the vectors x;,. By (6.1) of Theorem 6.1, we
have

Xm:S-i-E viol', n=1,2,...; oy=A], i=1,2,....

Applying MPE or RRE to {x;,}, instead of (6.5) for convergence and
(6.8) and (6.10) for stability, we now have

Snk—S=0(Ars1I™) asn— oo, (7.1)
k
. (n k) o 0‘1
,}LH;ZV =17 (7.2
i=1
and
: (n,k) _ (n,k) 1+ |0l
nlerJOF llmZW] | < |1—a\' (7.3)

These results are better since their upper bounds on s, —s and
on limy,_ o, [™k) are smaller because |A!| < |A;| when |};[<1, and
11— A7l > |1 - A;l when A; is close to 1 as a complex number. (Note
that, in most cases of interest, the largest A; are indeed very close
to1.)

It is clear from (7.1) that, when storage is a problem, we can
reduce the storage requirements by reducing k, and maintain a
given level of accuracy at the same time, by applying MPE or RRE
to the sequence {xm}3° , with increasing r> 1.

7.2. Applying extrapolation in cycling mode

Now, Theorem 6.1 suggests that, as n— oo, s, becomes bet-
ter as an approximation to s. Thus, there is a beneficial effect
to increasing k. On the other hand, this requires an increas-
ing amount of storage, which becomes prohibitive at some
point. In case the x,; are produced by the iterative procedure
Xn+1 = F(xn) for solving x=F(x), we can apply MPE and RRE in a
strategy called cycling (or restarting). Here are the steps of this
strategy:

CO. Choose integers n, k, and r, and an initial vector xq.
C1. Compute the vectors Xq, Xa, ..., Xyn+k+1) [Vid Xpe1 =F(xpn), cf.
(1.2)], and save

J/n».VHHv-~-’Yn+ka)’n+k+13 Yi =Xy 1207172!
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C2. Apply MPE or RRE to the sequence {y;} precisely as in Table 1,
with end result sy .
C3. If s, satisfies accuracy test, stop.
Otherwise, set xg =s;,, and go to Step C1.

For an analysis of the error in this mode of usage—in case of
linear F(x), i.e.,, when F(x)=Tx+b as in (3.1)—we refer the reader
to [30,31]. Note that, in this mode, both k and n are kept fixed (in
Theorem 6.1, we let n tend to infinity), and the analyses of [30,31]
take this into account and derive upper bounds on the error of s,
in terms of Jacobi polynomials for certain types of spectra of the
matrix T. To give the reader an idea as to the nature of these bounds,
we consider those s, , produced by RRE only. We also consider the
case r=1 for simplicity. The next theorem is from [20]; it follows
directly from Eisenstat et al. [8], where it is proved for the real case.

Theorem 7.1. Let s be the solution to (3.1) and let {x,} be generated
linearly via (3.2). Define the residual vector associated with arbitrary
X by r(x)=b— Ax, where A=1—T. Assume that the hermitian part of
A=aA, a # 0 scalar, namely, the matrix Ay = 2(A+A*) is positive
definite. Then s, from RRE satisfies

IF(Sn Ol < LKIrGa)ll; L= /1= 0v2/pu2 <1, (7.4)
where v is the smallest eigenvalue of Ay and w is the largest singular

value of A.

Let us consider cycling with n=0. Since the factor L¥ in (7.4) is
independent of the x;, this theorem says that at the end of the m th
cycle the I, norm of the residual vector will be bounded by L™* times
the I, norm of the initial residual, which means that the cycling
strategy converges as m — oo under the conditions of Theorem 7.1.

The next theorem from [30,31] is concerned with the effect of
taking n>0 when cycling.

Theorem 7.2. Let s be the solution to (3.1) and let {x,} be gener-
ated linearly via (3.2). Assume also that the matrix T is diagonalizable
so that T=VAV-1, where A =diag(u1, ..., in), |4i being the eigen-
values of T. Define the residual vector associated with arbitrary x
by r(x)=b — Ax, where A=I—T. Let also P, = {pem; : p(1) =1} and
Qpy= minpepk max;|ul'p(fe;)l. Then sy from RRE satisfies

I (Sn,i)ll = FIHI\T“p(T)r(xO)II < ka(V)Qp i IIT(x0)Il-
€Py

Here i»(V)=||V||||V~-1]| is the I, condition number of V.

The important quantity here is €2, which, when specialized
to certain types of spectra for T, can be bounded in terms of Jacobi
polynomials, and hence in closed form. Two cases follow:

1. When the spectrum of T is real and in the interval [ — 8, 8] for
some B¢(0, 1), then

n-+k
Qg =< b pov= EJ ,

(1) (7)o

2. When the spectrum of T is purely imaginary and in the interval
[ —iB, iB] for some real >0, then

-5

Analyzing and/or computing the upper bounds on €2, ;, we see
that, with even moderate values of n, £2,,, decreases very fast with
increasing k. This explains the success of applying cycling with
even moderate n>0. In view of this, by taking a moderate n>0, it
becomes possible to apply MPE and RRE with small k, hence small
storage, and still obtain good convergence rates in the cycling mode
when solving x = F(x).

Another advantage of applying MPE and RRE in the cycling mode
with n>0 is that, in some cases, it prevents stagnation that results
when applying them with n=0. Stagnation takes place also when
applying GMRES in the restarting (cycling) mode in some cases;
here recall Theorem 3.6 on the equivalence of GMRES and RRE. (See
the numerical examples in [30,31].)

7.3. Applying cycling with frozen y;

When storage is a problem and the unitary matrix Q,_; in Step
2 of the MPE and RRE algorithms given in Table 1 needs to be
saved in secondary storage, the cost of cycling as described here
may increase timewise on account of input-output when working
with the secondary storage. We can reduce this cost of cycling sub-
stantially as follows: Save the y; that are computed in Step 2 of the
MPE and RRE algorithms in Table 1 after the first few cycles (some-
times one cycle may be enough). In subsequent cycles, use these
last (frozen) y; and the y; saved in Step 1, and set s, = ELO ViVnii
in Step 2, instead of computing s, by MPE and RRE as described
in Table 1. (Of course, these s, are not the same as those com-
puted by MPE and RRE, but are likely to be good approximations to
s, nevertheless.)

This strategy has two favorable features: (i) It enables the intro-
duction of the vectors y; one by one without having to save them.
This also means that, because the y; need not be stored in secondary
storage, we save the time needed for performing input-output
operations that would be needed otherwise. (ii) It also avoids the
computational (timewise) overhead of MPE and RRE on account of
the QR-factorization of the matrix U,. These savings may be signifi-
cant when computation of the vectors x; in Step C1 is inexpensive.

The idea behind this strategy is that, from one application of
Steps C1 and C2 to the next, the y; do not change very much. This

is also suggested by (7.2), which says that the )/(” K= = y; associated

with s, ; obtained by MPE and RRE are such that llmn%myi(”’k) all
exist.

8. Computation of dominant eigenvectors of matrices

One problem that can be treated efficiently by MPE and RRE
is that of computing an eigenvector corresponding to the largest
eigenvalue of an arbitrary large sparse matrix A< CN*N when this
eigenvalue is known. This problem has become of interest recently
in connection with the computation of the PageRank of the Google
Web matrix. It can be solved by applying vector extrapolation
methods to a sequence of vectors obtained as power iterations
essentially with the matrix A. See Sidi [26,27] for a detailed treat-
ment.

The idea is as follows: Assume for simplicity that A is diag-
onalizable, and let p be its largest eigenvalue, which we do
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not assume to be simple necessarily. Assume also that u is
known, and that we are interested in determining a corresponding
eigenvector.

Choosing an arbitrary initial vector xq e CN, we compute the
vectors Xq, Xz, ..., as power iterations with the matrix T=p 1A

via
Xpp1=Txp, n=0,1,.... (8.1)
Of course, x,=T"xg, n=0, 1, .... Since T has 1 as its only largest

eigenvalue, in general, x, has the spectral decomposition
P

Xn=S+ZU,')»?, n=1,2,.... (8.2)
i=1

Here, (i) s is an eigenvector corresponding to the eigenvalue 1, that
is, Ts=s, (ii) A; are some or all of the distinct nonzero eigenvalues
of T that are different from 1 (in fact, | A; |<1), (iii) for each i, v; is
an eigenvector corresponding to A;, whether A; is simple or mul-
tiple; that is, Ts=s, and Tv; = Ajv;, i=1, ..., p, and, of course, (iv)
p <N -—1.(This is the same reasoning as that which is given in the
last paragraph of Section 6.) Thus, the v; in the summation in (8.2)
are linearly independent vectors, and each of the vectors ;A in
(8.2) is nonzero. A nonzero eigenvalue of T (in particular, the eigen-
value 1) appears in the spectral decomposition of x, in (8.2) if it is
present in the spectral decomposition of the initial vector xg. Let us
order the A; in (8.2) as in

1> (A1l = A2l = - = [Apl. (8.3)

Thus, the vectors x, are exactly of the form described in Theorem
6.1. This immediately suggests that MPE and RRE can be applied to
the sequence {x,} to accelerate its convergence. Clearly, the per-
formance of MPE and RRE on the present problem can be improved
by using the cycling strategy described in Section 7.

Remarks.

1. As explained following Theorem 6.1, the convergence result per-
taining to s, ; remains virtually the same even when the matrix
A is not diagonalizable, provided the largest eigenvalue y has
only associated eigenvectors but no principal vectors. The pre-
cise convergence result for this general case that has been given
in [28] is more involved, however.

2. Note that, in the problems we are treating here, limy_, ,.X, exists
and is equal to s since | A1 |<1, and we have stated Theorem 6.1
to suit these problems. However, Theorem 6.1 remains valid
also when lim,_, X, does not exist (which happens when p
is not the largest eigenvalue, in which case |Aq|>1). In this
case, limp_, Sy exists and equals s, provided | Ay [>| A4+ | and
[ Aer I<1.

8.1. Application to PageRank computation

It is known that the Google Web matrix has 1 as its (unique)
largest eigenvalue and that the corresponding eigenvector has pos-
itive components. The PageRank, which serves as a measure of the
relative importance of Web pages, is this eigenvector, normalized
such that the sum of its components is 1. In this case, power iter-
ations with the Google matrix converge to the PageRank. Here are
some of the details:

We start by recalling that a matrix A is column-stochastic if it is
nonnegative and the sum of the elements in each of its columns is
1. Such a matrix has 1 as its largest eigenvalue.

The matrix A used in the Google PageRank computations is of
the form A=cP+(1-c)E, where P and E are very large column-
stochastic matrices and 0<c<1; therefore, A is column-stochastic
too. In addition, E is of the form E=ue”, where e=[1, 1, ..., 1]T

as before, and u is a nonnegative vector such that eTu=1. Inter-
estingly, whether u is positive or nonnegative, the eigenvalue
1 is always simple, and the corresponding eigenvector is posi-
tive. The rest of the eigenvalues are all less than ¢ in modulus.
(See Haveliwala [12] and Eldén [9] for more information on this
point.)

Vector extrapolation methods in this case turn out to be
very practical as the computation of the vectors x, is extremely
cheap, due to the fact that computing the matrix-vector prod-
ucts Py and Ey costs only O(N) operations. The reason for
this is that (i) P is a very sparse matrix in that each row
of the matrix P has O(1) nonzero entries and (ii) Ey=(eTy)u
despite the fact that E is a dense matrix. The numerical com-
putation of the PageRank by MPE and RRE is illustrated in
[27].

The first work applying a vector extrapolation method to the
sequence of power iterations is that of Kamwar et al. [15]. The
method developed in [15], called quadratic extrapolation, is very
closely related to MPE with k=2. This method was subsequently
generalized to arbitrary k and analyzed in Sidi [26,27], where a very
economical algorithm for it is also given.

9. Application to summation of vector-valued power series:
vector-valued rational approximations

Given a vector-valued power series Zzouiz", where z is a com-
plex variable and u; are constant vectors in CN, representing a
vector-valued function u(z) about z=0, we can use vector extrap-
olation methods to approximate u(z) via a vector-valued rational
approximation obtained from the power series coefficients u;.

For this, we apply the extrapolation methods to the sequence
{xm(z)}, where xmn(z)= Z?:‘Ouiz", m=0,1,.... The approxima-
tions obtained this way are rational functions, whose numerators
are vector-valued polynomials and whose denominators are scalar-
valued polynomials. This topic is dealt with in detail in the paper
Sidi [23], where three vector-valued rational approximations are
developed and discussed. Here we give a brief and informal descrip-
tion of the subject, through the SMPE approximations, which is one
of the three approximations proposed in [23]. When MPE is used
for the purpose of accelerating the convergence of the sequence of
the partial sums x;;(z) of the vector-valued power series Ziiouizi,
we obtain the SMPE approximations s, x(z) that are given as in

D(Z*xn(2), 2 1%n11(2), . . ., %% k(2))

D(zk, zk-1, ..., 29) ’ e

sn,k(z) =

where D(gy, g1, ..., &) is a (k+1) x(k+1) determinant defined
exactly as in (5.2) with u;jj=(up+;, Unsj) there. Thus, s,(2) is also
of the form

k

D i)
i=0

Snk(2) = ——F— (9.2)
Z cizk-i
i=0

with appropriate scalar constants c;. Note that the numerator poly-
nomial has degree at most n +k, while the denominator polynomial
has degree k when the cofactor of g in D(gg, g1, - . ., g ) iS nonzero.
It is easy to see that

Sn,k(z) —u(z)= O(ZnHH]) asz — 0.

The sequence {s, 1(2)},-, (with fixed k) has very nice conver-
gence properties, which we discuss briefly. Suppose that u(z) is
analytic in an open disc D; = {zeC : |z| < r} and meromorphic in
alarger open disc Dg = {ze C : |z| < R}. This implies that the series
Zzouizi converges to u(z) only for | z|<r, and diverges for |z|>r.
Under some additional condition that has to do with the Laurent
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expansions of u(z) about its poles, the rational approximations
Spk(z) obtained from the series Z;’iouizi have the property that,
if k is equal to the number of the poles in D, then {s, 1(2)};., con-
verges to u(z) uniformly in every compact subset of Dg excluding
the poles of u(z). In addition, the poles and residues of s ;(z) tend
to the poles and residues of u(z) as n — co.

As an example, let us consider the function u(z)=(I—zA)"1b,
where A e CN*N is a constant matrix and b e CN is a constant vector.

This function has the series representation u(z) = Ziouizi, where

u;=Aib for each i=0, 1, .... This series converges for |z|<1/p(A),
where, we recall, p(A) is the spectral radius of A. In this case, u(z)
is a vector-valued meromorphic function (actually, a rational func-
tion) with poles equal to the reciprocals of the nonzero eigenvalues
of A, the residues being related to corresponding eigenvectors and
principal vectors. The poles and residues of s, ;(z) turn out to be the
so-called Ritz values and Ritz vectors resulting from the method of
Arnoldi as eigenvalue and eigenvector approximations. For details
on precise convergence properties and rates of convergence, see
Sidi [24].

One of the uses of these rational approximations has been to the
summation of a perturbation series resulting from ODEs describ-
ing some nonlinear oscillations. See, for example, Wu and Zhong
[33]. In this paper, the space we are working in is infinite dimen-
sional, and the definitions of MPE and RRE remain unchanged, as
mentioned at the end of Section 5.
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