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a b s t r a c t

An important problem that arises in different areas of science and engineering is that of computing limits
of sequences of vectors {xn}, where xn ∈CN with N very large. Such sequences arise, for example, in the
solution of systems of linear or nonlinear equations by fixed-point iterative methods, and limn→∞xn are
simply the required solutions. In most cases of interest, these sequences converge to their limits extremely
slowly, or even diverge. One practical way to make the sequences {xn} converge more quickly is to apply
to them vector extrapolation methods. In this work, we review two polynomial-type vector extrapolation
methods that have proved to be very efficient convergence accelerators; namely, the minimal polynomial
extrapolation (MPE) and the reduced rank extrapolation (RRE). We discuss their derivation, describe the
most accurate and stable algorithms for their implementation along with the effective modes of usage, and
educed rank extrapolation
rnoldi method
MRES
arge-scale sparse systems
igenvector computation
ageRank computation

present their convergence and stability theory. We also discuss their close connection with the method
of Arnoldi and GMRES, two well known Krylov subspace methods for linear systems. Finally, we discuss
some of their applications to different large-scale problems, such as solution of large-scale systems of
equations, eigenvalue problems, computation of the PageRank of the Google matrix, and summation of
vector-valued power series.
ector-valued rational approximation

. Introduction

An important problem that arises in different areas of science
nd engineering is that of computing limits of sequences of vec-
ors {xn}, where xn ∈CN with N very large. Vector sequences arise,
or example, in the solution of systems of linear or nonlinear equa-
ions by fixed-point iterative methods, and limn→∞xn are simply
he required solutions. Such systems, in turn, arise from finite-
ifference or finite-element discretization of continuum problems.

For example, if

(x) = 0;  : CN → C
N, (1.1)

s such a system of equations, then {xn} is generated by some fixed-
oint iterative method as in

n+1 = F(xn), n = 0,1, . . . ; F : CN → C
N, (1.2)

here x − F(x) = 0 is a possibly “preconditioned” form of (1.1) hence

as the same solution s [that is, (s) = 0 and also s = F(s)], and, in case
f convergence, limn→∞xn = s. (Here, x0 is an initial approximation
o s.) One possible form of F(x) would be F(x) = x + C(x) (x), where
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C(x) is an N × N matrix that may involve a number of relaxation
parameters, such that C(s) is nonsingular.

In most cases of interest, the sequences {xn} converge to their
limits very slowly. This happens, for example, when they arise from
the finite-difference or finite-element discretizations of continuum
problems; in such cases, their rates of convergence become smaller
as the relevant mesh-sizes become smaller, in which case their size
N becomes larger, in addition. In view of this, we ask whether some-
thing can be done to make the convergence of the sequences {xn}
faster without having to tamper with the fixed-point methods used
to generate them. The answer to this question is in the affirmative;
namely, we can accelerate their convergence by applying to them
vector extrapolation methods, which are especially suitable when
the dimension N is very large. It is important to mention also that
extrapolation methods can cause a divergent sequence generated
as above to converge under certain circumstances.

There are several vector extrapolation methods in the litera-
ture; for a survey of these methods covering earlier developments,
see the review article by Smith et al. [32]. See also Brezinski and
Redivo Zaglia [5, Chapter 4]. Briefly speaking, vector extrapola-
tion methods can be classified in two major groups: (i) polynomial

methods, and (ii) epsilon algorithms. Two important polynomial
methods are the minimal polynomial extrapolation (MPE) of Cabay
and Jackson [6] and the reduced rank extrapolation (RRE) of Eddy
[7] and Mes̆ina [16]. Important methods in the epsilon class are the

dx.doi.org/10.1016/j.jocs.2011.01.005
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ector epsilon algorithm (VEA) of Wynn [35], which was the very first
ector extrapolation method, and the topological epsilon algorithm
TEA) of Brezinski [4].

Theoretical results and numerical experiments tend to suggest
hat MPE and RRE are, generally speaking, more efficient than the
est of the methods as convergence accelerators. Indeed, MPE and
RE have been used successfully as effective accelerators in diverse
reas of science and engineering, such as computational fluid
ynamics, structures, materials, semiconductor research, comput-
rized tomography, and image processing, to name a few. In this
ork, we present a review of these two methods. We discuss their
erivation, describe the most accurate and stable algorithms for
heir implementation along with the effective modes of usage, and
resent their convergence and stability theory. We also discuss
heir close connection with the method of Arnoldi [1] and GMRES
17], two well known Krylov subspace methods for linear systems.

Finally, we discuss several applications of vector extrapolation
ethods to different problems, starting with the solution of nonlin-

ar systems of equations. We next consider the computation of an
igenvector of an arbitrary large and sparse matrix, corresponding
o its largest eigenvalue when this eigenvalue is known. This prob-
em has attracted much attention recently because it arises in the
omputation of the PageRank of the Google Web matrix. We next
iscuss the summation of vector-valued power series by vector-
alued rational functions, a problem that arises, for example, when
olving differential equations with a small parameter.

Before we end this section, we would like to mention that both
PE and RRE use the vector sequence {xn} as their only input, and

ompute approximations to limn→∞xn that are of the form

n,k =
k∑
i=0

� (n,k)
i

xn+i, (1.3)

here � (n,k)
i

are scalars depending nonlinearly on the xm, also sat-
sfying

k

i=0

� (n,k)
i

= 1. (1.4)

echnically, the two methods differ in the way they compute the
(n,k)
i

. Therefore, MPE and RRE (and the rest of the vector extrap-
lation methods as well) can be applied to any vector sequence
hether generated linearly or nonlinearly. This is an important

eature of these methods.
Throughout this work, we shall be using the standard Euclidean

nner product (u, v) = u∗v and the vector norm induced by it ‖u‖ =
(u, u). Specifically, if u = [�1, . . ., �N]T and v = [�1, . . . , �N]T, then

u, v) =
∑N

i=1�i�i. Note, however, that any inner product, and the
orm induced by it, can be used.

. Preliminaries and motivation

In order to motivate the derivation of vector extrapolation meth-
ds, we first look at the problems for which they were designed.
hus, we start by discussing the nature of the vectors xn that arise
rom (1.2). Assuming that limn→∞xn exists, hence that xn ≈ s for
ll large n [recall that s is the solution to the system  (x) = 0 and
ence to the system x = F(x)], we expand F(xn) in (1.2) about s, thus
btaining

= F(s) + F ′(s)(x − s) + O(‖x − s‖2) asn→ ∞. (2.1)
n+1 n n

ere, F′(s) is the Jacobian matrix of the vector-valued function F(x)
valuated at x = s. It is known that convergence will take place from
ny x0 sufficiently close to s provided �(F′(s)) < 1, where �(A) stands
l Science 3 (2012) 92–101 93

for the spectral radius of the (square) matrix A. See Atkinson [2], for
example. The result in (2.1) can be expressed also as in

xn+1 = Txn + b+ O(‖xn − s‖2) asn→ ∞;
T = F ′(s), b = [I − F ′(s)]s,

(2.2)

T being a constant matrix and b being a constant vector. In other
words, we have

xn+1 ≈ Txn + b for all largen.

We have thus shown that the system x = F(x) “behaves” linearly
when x is close to the solution s. This then suggests that we should
look at linear systems for deriving vector extrapolation methods.

3. Derivation of MPE and RRE

The treatment we give in this section follows in part that of
Smith et al. [32]. Consider the linear system

x = Tx + b, b, x∈CN, T ∈CN×N. (3.1)

Assume that (I − T) is nonsingular, which means that 1 is not an
eigenvalue of T. As a result, the system in (3.1) has a unique solution
that we denote by s. Let us choose an initial vector x0 ∈CN and
generate the sequence {xn} via

xn+1 = Txn + b, n = 0,1, . . . . (3.2)

Let us also define

en = xn − s, un = xn+1 − xn,
wn = un+1 − un, n = 0,1, . . . .

(3.3)

It is easy to see that

en = Tne0, un = Tnu0,
wn = Tnw0, n = 0,1, . . . .

(3.4)

In addition,

un = (T − I)en, n = 0,1, . . . . (3.5)

3.1. Construction of solution to x = Tx + b via {xn}

The solution s to the linear system x = Tx + b can be constructed
using a finite number of the vectors xn as we show next. This will
be the starting point for the development of MPE and RRE.

Denote by R(�) the characteristic polynomial of T; namely,
R(�) = det(�I − T) and is monic. Then, by the Cayley–Hamilton the-
orem, R(T) = 0. See Horn and Johnson [13, p. 86], for example.
Similarly, denote by Q(�) the minimal polynomial of T; namely,
Q(�) is the unique monic polynomial of smallest degree with the
property Q(T) = 0. See [13, p. 142], for example. In addition, we know
that Q(�) divides R(�). We next need the concept of the so-called
minimal polynomial of a matrix with respect to a vector, which is less
well known:

Definition 3.1. Let y /= 0 be a vector inCN . The monic polynomial
P(�) is said to be the minimal polynomial of T with respect to y if
P(T)y = 0 and P(�) has smallest degree.

Concerning P(�), we have the following result (see Householder
[14, p. 18], for example):

Theorem 3.2. (i) The minimal polynomial of T with respect to the
vector y exists and is unique. (ii) If M(�) is another monic polynomial
for which M(T)y = 0, then degM > degP and P(�) divides M(�). In partic-
ular, P(�) divides the minimal polynomial of T, which, in turn, divides

the characteristic polynomial of T.

Proof. Let Q(�) be the minimal polynomial of T. Then Q(T) = 0.
Consequently, Q(T)y = 0 too, and this implies that that P(�) exists.
Let P̂(�) be another minimal polynomial of T with respect to
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, and P̂(�) /≡ P(�). Of course, degP = degP̂ must hold. Then
(�) = P(�) − P̂(�) also satisfies S(T)y = 0 but degS < degP, which is
mpossible. Therefore, P(�) is unique. Let now M(�) be a monic
olynomial with the properties that M(T)y = 0 and degM > degP.
hen there exist polynomials G(�) and H(�), such that M = GP + H,
egG = degM − degP, and degH < degP. With these, we have

=M(T)y = G(T)P(T)y+H(T)y = H(T)y.

ince degH < degP, H(T)y = 0 is possible only if H(�) ≡ 0. Thus, P(�)
ivides M(�). The rest of the proof can be carried out similarly. �

LetP(�) = ∑k
j=0cj�

j, ck = 1, be the minimal polynomial of T with
espect to the vector e0. (Of course, k = degP ≤ N by Theorem 3.2.)
hus, P(T)e0 = 0, which, by (3.3) and (3.4), also means that

k

j=0

cjT
j(x0 − s) =

k∑
j=0

cj(xj − s) = 0. (3.6)

olving for s, we have

=

∑k

j=0
cjxj∑k

j=0
cj

. (3.7)

ote that division by
∑k

j=0cj in (3.7) is allowed, because
∑k

j=0cj =
(1) /= 0 since P(�) divides the characteristic polynomial of T and 1

s not an eigenvalue of T.
We have thus shown that the solution s can be constructed from

he k + 1 vectors of iteration x0, x1, . . ., xk, provided P(�) is known.
ow, being the minimal polynomial of T with respect to e0 = x0 − s,
(�) depends on s, as well as on x0. This may lead us to conclude
hat, in order to know P(�), we must know s. Fortunately, this is not
he case, as we show in the next theorem.

heorem 3.3. P(�), the minimal polynomial of T with respect to
0 = x0 − s , is also the minimal polynomial of T with respect to
0 = x1 − x0.

roof. Denote the minimal polynomial of T with respect to
0 = x1 − x0 by P̂(�). Multiplying P(T)e0 = 0 on the left by T − I and

nvoking (3.5), we obtain P(T)u0 = 0, which, by part (ii) of Theorem
.2, means that P̂(�) divides P(�). Next, multiplying P̂(T)u0 = 0 on
he left by (T − I)−1 (recall that T − I is nonsingular) and invoking
3.5) again, we obtain P̂(T)e0 = 0, which, by part (ii) of Theorem
.2, means that P(�) divides P̂(�). Therefore, P(�) ≡ P̂(�). �

As is clear from Theorem 3.3, P(�) = ∑k
j=0cj�

j can be deter-
ined because the vector u0 = x1 − x0 is available. Now, since P(�) is
onic, we have ck = 1, and hence our unknowns are c0, c1, . . ., ck−1.

irst, by (3.4), P(T)u0 = 0 can be re-expressed as in

k

j=0

cjT
ju0 =

k∑
j=0

cjuj = 0,

hich, in turn, can be expressed as a system of linear equations in
he form

k−1c
′ = −uk; c′ = [c0, c1, . . . , ck−1]T ∈Ck, (3.8)

here

j = [u0 |u1 | · · · |uj] ∈CN×(j+1), j = 0,1, . . . . (3.9)
Note that the matrix Uk−1 has full rank, that is, rank(Uk−1) = k,
ecause its columns, namely, the vectors u0, u1, . . ., uk−1, are

inearly independent by the fact that P(�) =
∑k

j=0cj�
j is the min-

mal polynomial of T with respect to u0. Hence, the linear system
l Science 3 (2012) 92–101

Uk−1c′ = − uk has a unique solution for c0, c1, . . ., ck−1. Invoking also
ck = 1, we complete the determination of s as in (3.7).

Let

�j = cj
k∑
i=0

ci

, j = 0,1, . . . , k.

Therefore, we also have

k∑
j=0

�j = 1.

Multiplying both sides of (3.8) by (
∑k

j=0cj)
−1

, it is easy to see that
the � j satisfy the system of linear equations

Uk� = 0,
k∑
j=0

�j = 1; � = [�0, �1, . . . , �k]
T ∈Ck+1. (3.10)

Here too Uj is as defined in (3.9). With these, we can write (3.7) also
in the form

s =
k∑
j=0

�jxj ;
k∑
j=0

�j = 1. (3.11)

This suggests that s is some sort of “weighted” average of the vectors
x0, x1, . . ., xk. Of course, the � j do not have to be nonnegative; they
do not even have to be real.

By the developments above, it is clear that s can be constructed
from the knowledge of the k + 2 vectors xj, j = 0, 1, . . ., k + 1.

The developments above leading to the solution s given in (3.7)
or (3.11) are made possible by the fact that k is the degree of the
minimal polynomial of T with respect to u0. Normally, k would be
very close to N, and this would make the solution process pro-
hibitively expensive in the sense that its computational cost and
computer memory requirements would be extremely large. This
raises the question as to what would happen if we took k to be an
arbitrary integer (and much smaller than N). Obviously, the linear
systems Uk−1c′ = − uk in (3.8) and Uk� = 0 and

∑k
j=0�j = 1 in (3.10)

will be inconsistent, hence will not have a solution in the ordinary
sense. We address this question next.

3.2. Derivation of MPE

Let us define c′ as the least-squares solution of the system
Uk−1c′ = − uk, leaving everything else unchanged. This results in
MPE, whose complete definition is as follows:

Definition 3.4. Given the vector sequence {xn} in CN, choose k ≤ N
arbitrarily. Let the vectors un be as in (3.3), and define the matrix
Uk−1 via

Uk−1 = [u0 |u1 | · · · |uk−1] ∈CN×k.

Let c′ = [c0, c1, . . ., ck−1]T be the least-squares solution to the lin-
ear system Uk−1c′ = − uk; this means that c′ is the solution to the
problem

min
c0,c1,...,ck−1

∥∥∥∥∥∥
k−1∑
j=0

cjuj + uk

∥∥∥∥∥∥ .

Set ck = 1, and compute �0, �1, . . ., �k via

�j = �MPE
j = cj∑k

i=0
ci

, j = 0,1, . . . , k, (3.12)
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rovided
∑k

i=0ci /= 0. Then, the MPE approximation to
= limn→∞xn, denoted sMPE

k
, is given by

MPE
k =

k∑
j=0

�MPE
j xj. (3.13)

.3. Derivation of RRE

Let us define � as the least-squares solution of the system

k� = 0, subject to the constraint
∑k

j=0�j = 1, leaving everything
lse unchanged. This results in RRE, whose complete definition is
s follows:

efinition 3.5. Given the vector sequence {xn} in CN, choose k ≤ N
rbitrarily. Let the vectors un be as in (3.3), and let the matrix Uk be
efined via

k = [u0 |u1 | · · · |uk] ∈CN×(k+1).

et � be the least-squares solution to the linear system Uk� = 0 sub-

ect to the constraint
∑k

j=0�j = 1; this means that � is the solution
o the constrained minimization problem

min
0,�1,...,�k

∥∥∥∥∥∥
k∑
j=0

�juj

∥∥∥∥∥∥ , subject to
k∑
j=0

�j = 1.

f we denote the solution to this minimization problem by �RRE
j

,

hen the RRE approximation to s = limn→∞xn, denoted sRRE
k

, is given
y

RRE
k =

k∑
j=0

�RRE
j xj. (3.14)

Note that the way we have approached the definition of RRE here
s not the only way possible, and it differs from that of [32] and those
f the original works [7,16]. (The approaches of [7,16] differ from
ach other greatly, and their equivalence is established in [32].)
ur approach here is the most direct, however. The definition of
RE here is also that given in [16], and turns out to be very suitable

or computational purposes. For a completely different approach,
ee Sidi et al. [29].

For completeness, here we reproduce the definition of [7], which
rites sRRE

k
in the form

RRE
k = x0 +

k−1∑
i=0

�iui, (3.15)

ith no constraints on the �i. [Note that this is consistent with
3.14) and

∑k
j=0�

RRE
j

= 1.] The �i are determined from the least-
quares solution of the linear system

k−1� = −u0; � = [�0, �1, . . . �k−1]T ∈Ck, (3.16)

here

j = [w0 |w1 | · · · |wj] ∈CN×(j+1). (3.17)

ere, the wn, just as the un, are as defined in (3.3). Thus, sRRE
k

can
lso be expressed in the compact form

RRE = x0 − Uk−1W
+ u0, (3.18)
k k−1

here Uk−1 is as before and W+
k−1 is the Moore–Penrose inverse

f Wk−1. For the Moore–Penrose inverse and for other generalized
nverses of matrices, see Ben-Israel and Greville [3], for example.
l Science 3 (2012) 92–101 95

3.4. Some remarks on MPE and RRE

As can easily be seen from Definitions 3.4 and 3.5, the approxi-
mations produced by MPE and RRE are defined exclusively in terms
of the vectors xj, nothing else being required as input. Even though
the derivation of the two methods was based on the solution of
linear systems x = Tx + b, their definition is totally independent of
the way in which these vectors are generated. Thus, these meth-
ods can be used for (hopefully) accelerating the convergence of
vector sequences {xn}, whether these sequences are generated by
linear systems or not. By the way they are derived, it is reason-
able to assume that MPE and RRE will be effective accelerators for
vector sequences arising from fixed-point iteration techniques on
linear systems. Since nonlinear systems behave linearly close to
their solutions, we can hope that MPE and RRE will be effective for
accelerating the convergence of vector sequences {xn} generated
by fixed-point methods on nonlinear systems as well.

Because the least-squares problem for the � j always has a solu-
tion for RRE, we conclude that sRRE

k
exists unconditionally for all

k. In case of MPE, even though there is always a solution for the
cj, we cannot guarantee that

∑k
i=0ci /= 0 always. This means that

sMPE
k

may not always exist. A sufficient condition for the existence
of sMPE

k
is given in Theorem 6.1.

3.5. Connection with Krylov subspace methods

When applied to a sequence {xn} generated by the fixed-
point iterative technique in (3.2) for solving the linear system
in (3.1), MPE and RRE become equivalent to some well known
Krylov subspace methods for solving (3.1), namely, the method
of Arnoldi [1] and GMRES [17], respectively, when the latter
are applied with x0 as the initial vector. We recall that, for
each k = 1, 2, . . ., both Krylov subspace methods compute a vec-
tor zk of the form zk = x0 + yk, with yk ∈Kk(A; r0), where A = I − T,
r0 = b − Ax0, and Kk(A; r0) = span{r0, Ar0, A2r0, . . . , Ak−1r0}. Let us
define r(x) = b − Ax as the residual vector associated with x. The
approximation zArnoldi

k
to s is then determined by requiring that r(zk)

be such that (y, r(zk)) = 0 for all vectors y∈Kk(A; r0). The approxi-
mation zGMRES

k
to s is determined by requiring that r(zk) be such

that (Ay, r(zk)) = 0 for all vectors y∈Kk(A; r0), or equivalently, by
requiring that ‖r(zk)‖ = miny∈Kk(A;r0)‖r(x0 + y)‖. We then have the
following theorem proved in Sidi [20]:

Theorem 3.6. With sMPE
k
, sRRE
k
, zArnoldi
k

, and zGMRES
k

as in the preced-
ing paragraph, there hold

sMPE
k = zArnoldi

k and sRRE
k = zGMRES

k .

4. Algorithms for MPE and RRE

The definitions of MPE and RRE given above can also be used to
design algorithms (computational procedures) for implementing
MPE and RRE. The most immediate, and computationally inexpen-
sive, algorithms would be those that use the normal equations (i)
U∗
k−1Uk−1c = −U∗

k−1uk in Definition 3.4 to determine the ci for MPE,
and (ii) W∗

k−1Wk−1� = −W∗
k−1u0 in (3.16) to determine the �i for

RRE. Since matrices Uk−1 and Wk−1 become very ill-conditioned
with increasing k, these algorithms are not stable numerically, and
they produce sk with reduced accuracy in floating-point arithmetic.
Concerning the solution of least-squares problems via normal equa-
tions, see Golub and Van Loan [11].
Numerically fast and stable and storagewise economical algo-
rithms have been given in Sidi [21], where a fully documented
FORTRAN 77 code can also be found. We now turn to a summary of
these algorithms. One important feature of these algorithms is that
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hey both proceed through the solution of least-squares problems
y QR factorization.

For reasons to become clear later, it is more beneficial to apply
PE and RRE to the vectors xn, xn+1, . . ., xn+k+1 with n ≥ 0, instead of

0, x1, . . ., xk+1. Let us denote the resulting approximations by sMPE
n,k

nd sRRE
n,k

. (Then, the sk defined in the preceding section are the s0,k in
ur new notation.) Thus, given a sequence {xn}, MPE and RRE gen-
rate two-dimensional tables of approximations to s = limn→∞xn. In
he remainder of this work, we will be dealing with sn,k.

To discuss our algorithms conveniently, we introduce the nota-
ion

j = [un |un+1 | · · · |un+j], j = 0,1, . . . .

et us assume that Uj has full rank, namely, rank(Uj) = j + 1. Then, it
as a QR factorization Uj = QjRj, whereQj ∈CN×(j+1) is unitary [in the
ense that its columns form an orthonormal basis for the column
pace of Uj, hence Q ∗

j
Qj = I(j+1)×(j+1)], and Rj ∈C(j+1)×(j+1) is upper

riangular with positive diagonal entries,

j = [q0 |q1 | · · · |qj] ∈CN×(j+1); Q ∗
j Qj = I(j+1)×(j+1),

⎡
⎢ r00 r01 r02 · · · r0j

r11 r12 · · · r1j

⎤
⎥

j =
⎢⎢⎢⎣

r22 · · · r2j
. . .

...
rjj

⎥⎥⎥⎦ ; rii > 0 ∀i.

Table 1
Unified algorithm for implementing MPE and RRE.

Step 0. Input: The vectors xn, xn+1, . . ., xn+k+1.

Step 1. Compute ui =�xi = xi+1 − xi, i = n, n + 1, . .

Set Uj = [un |un+1 | · · · |un+j] ∈CN×(j+1), j

Compute the QR factorization of Uk, nam

Qk = [q0 | q1 | · · · | qk] unitary and Rk = [rij
(Uk−1 = Qk−1Rk−1 is contained in Uk = QkR

Step 2. Computation of the � i:

For MPE:

Solve the (upper triangular) linear sy

Rk−1c′ = −�k; �k = [r0k, r1k, . . ., rk−

(Note that �k = Q ∗
k−1un+k.)

Set ck = 1 and compute ˛ =
∑k

i=0ci.

Set � i = ci/˛, i = 0, 1, . . ., k.

For RRE:
Solve the linear system

R∗
k
Rkd = e ; d = [d0, d1, . . . , dk]

T,

[This amounts to solving two triangu

Set � =
(∑k

i=0di

)−1
. (Note that � is

Set � =�d, that is, � i =�di, i = 0, 1, . . .

Step 3. Compute � = [�0, �1, . . ., �k−1]T by

�0 = 1 −�0; �j = �j−1 −� j, j = 1, .

Compute sMPE
n,k

and sRRE
n,k

via

sn,k = xn + Qk−1(Rk−1�).

[For this, first compute �= Rk−1�, �= [�

Next, set sn,k = x0 +
∑k−1

i=0 �iqi.]
l Science 3 (2012) 92–101

Also, Qj is obtained from Qj−1 by appending one column (namely,
the vector qj) to the end of the latter. Similarly, Rj is obtained
from Rj−1 by appending one row of zeros and one column (namely,
[r0j, r1j, . . ., rjj]T) to the end of the latter. This factorization can be
carried out accurately and inexpensively by applying the modified
Gram–Schmidt process (MGS) to the vectors un, un+1, . . ., un+j. Here
are the steps of MGS.

MGS algorithm
Step 1. Compute r00 = ‖un‖ and set q0 = un/r00.
Step 2. For k = 1,2, . . . , do

Set u(0)
k

= un+k
For j = 0,1, . . . , k − 1 do

Compute rj,k = (qj, u
(j)
k

) and
Compute u(j+1)

k
= u(j)

k
− rjkqj .

end for(j)
Compute rkk = ‖u(k)

k
‖ and qk = u(k)

k
/rkk.

end for(k)

(Note that if we replace the statement u(j+1)
k

= u(j)
k

− rjkqj in Step

2 of the MGS algorithm by its mathematically equivalent u(j+1)
k

=
un+k − rjkqj , we obtain the classical Gram–Schmidt process (GS) for
orthogonalizing the set of vectors {un, un+1, . . ., un+k}, which is very
inaccurate numerically. For GS, MGS, and other orthogonalization
processes, see Golub and Van Loan [11].)
The details of our algorithms for MPE and RRE are summarized in
Table 1 in a unified fashion. For the mathematical details, see [21].
Note that, in these algorithms, we need to store only the vector
xn and the matrix Qk, namely, the vectors q0, q1, . . ., qk. The rest

., n + k.

= 0,1, . . . .

ely, Uk = QkRk;

]0≤i,j≤k upper triangular.

k.)

stem

1,k]T, c′ = [c0, c1, . . ., ck−1]T.

e = [1,1, . . . ,1]T ∈Ck+1.

lar (lower and upper) systems.]

real and positive.)

, k.

. ., k − 1.

0, �1, . . ., �k−1]T.
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an be overwritten as soon as they have been used. Thus, for i ≥ 1,
n+i is overwritten by un+i once the latter is computed, and un+i is
verwritten by qi once the latter is computed.

The description of MGS given here and Table 1 should enable
he reader to produce his own code easily, without having to use
ther software. Note also that the two algorithms differ only in their
tep 2, where the � j are determined. This enables us to unify their
resentation and programming in a simple way.

The error sn,k − s can be ascertained by looking at ||Uk� ||, which
s available at no additional cost through the algorithms in Table 1,

ithout having to compute sn,k. Actually, we have

Uk�‖ =
{
rkk|�k| for MPE,√
� for RRE.

ere rkk is the (k + 1, k + 1) element of the matrix Rk, and � is the
calar computed in Step 2 of the RRE algorithm in Table 1. The justi-
cation of this is as follows: (i) When the sequence {xn} is generated

inearly as in (3.2), we have Uk� = r(sn,k), where r(x) = Tx + b − x is the
esidual vector associated with x, hence Uk� is indeed the residual
ector r(sn,k); consequently, ||r(sn,k)|| = ||Uk� ||. (ii) When {xn} is gen-
rated nonlinearly as in (1.2), and sn,k is close to the solution s, we
ave Uk� ≈ r(sn,k), where now r(x) = F(x) − x is the residual vector
ssociated with x; consequently, ||r(sn,k)|| ≈ ||Uk� ||.

. Determinant representations for MPE and RRE

We next give determinant representations for the approxima-
ions sMPE

n,k
and sRRE

n,k
, derived originally in Sidi [19].

heorem 5.1. The approximations sMPE
n,k

and sRRE
n,k

have the following
eterminant representations:

n,k = D(xn, xn+1, . . . , xn+k)
D(1,1, . . . ,1)

, (5.1)

here D(g0, g1, . . ., gk) is a (k + 1) × (k + 1) determinant defined as in

(g0, g1, . . . , gk) =

∣∣∣∣∣∣∣∣∣∣

g0 g1 · · · gk
u0,0 u0,1 · · · u0,k
u1,0 u1,1 · · · u1,k

...
...

...
uk−1,0 uk−1,1 · · · uk−1,k

∣∣∣∣∣∣∣∣∣∣
, (5.2)

ith ui,j being scalars defined as in

i,j =
{

(un+i, un+j) for MPE,
(wn+i, un+j) for RRE.

(5.3)

ere un and wn are as in (3.3).

Note that, in case the gj in D(g0, g1, . . ., gk) are vectors, this deter-

inant is vector-valued and is defined to be
∑k

j=0Mjgj , where Mj

s the cofactor of gj.
The determinant representations above have been used in the

onvergence and stability analyses of sMPE
n,k

and sRRE
n,k

. They were
sed, in particular, to prove the convergence acceleration results
f Theorem 6.1. They have also been used by Ford and Sidi [10] to
btain recursion relations among the different sn,k. We skip these
ecursions here and refer the reader to [10].
Our next result pertains to the � j, and has been used in the
tability analysis of Theorem 6.2.

heorem 5.2. Denote � j by � (n,k)
j

to emphasize their dependence on

and k. The polynomials Qn,k(�) =
∑k

j=0�
(n,k)
j

�j , for both MPE and
RE, have the following determinant representations:
l Science 3 (2012) 92–101 97

Qn,k(�) = D(1, �, . . . , �k)
D(1,1, . . . ,1)

, (5.4)

where D(g0, g1, . . ., gk) is precisely as in Theorem 5.1.

Before we end this section, we would like to point out to a nice
feature of vector extrapolation methods in general, and MPE and
RRE in particular: These methods can be defined as in Definitions
3.4 and 3.5, and can be expressed as in Theorems 5.1 and 5.2, in
the setting of general infinite-dimensional inner product spaces,
as well as CN with finite N. The algorithms and the convergence
theory remain the same for all practical purposes. The treatments
given in [19,23,28,29] cover vector sequences in infinite dimen-
sional spaces.

6. Convergence acceleration and stability properties

The following theorem by Sidi [19] explains why MPE and RRE
are true convergence acceleration methods.

Theorem 6.1. Let the vector sequence {xn} be such that

xn = s+
p∑
i=1

vi�ni , (6.1)

where v1, v2, . . . , vp are linearly independent vectors, and �i are dis-
tinct nonzero scalars satisfying

�i /= 1 for all i, (6.2)

and are ordered such that

|�1| ≥ |�2| ≥ · · · ≥ |�p|. (6.3)

Let us assume further that, for some integer k < p, there holds

|�k|> |�k+1|. (6.4)

Then the following hold:

• Existence: sRRE
n,k

exists for all n and sMPE
n,k

exists for all large n.
• Convergence acceleration:

sn,k − s = [Cn,k + o(1)]�n
k+1 as n→ ∞,

= O(�n
k+1) as n→ ∞,

(6.5)

where sn,k stands for both sMPE
n,k

and sRRE
n,k

, and the vector Cn,k is uni-

formly bounded in n, that is, supn||Cn,k|| < ∞. In addition, CMPE
n,k

=
CRRE
n,k

, so that

sMPE
n,k − s∼sRRE

n,k − s as n→ ∞.

• Finite termination property when k = p:

sn,p = s. (6.6)

Concerning the result (6.5) of Theorem 6.1, we can offer the
following interpretation: Starting from (6.1), we first see that the
contribution of the small�i is being diminished relative to the large
ones by letting n grow. The extrapolation procedure then takes
care of the contribution from the k largest �i. What remains is
the contribution from the intermediate �i starting with �k+1. Note
also that, even if {xn} is divergent, which happens when |�1 |>1,
limn→∞sn,k = s if |�k+1 |<1; that is, MPE and RRE can make a divergent

sequence converge.

The next theorem pertains to the polynomial Qn,k(�) =∑k
j=0�

(n,k)
j

�j , where � (n,k)
j

≡ �j , and implies that MPE and RRE are
stable methods under the conditions of Theorem 6.1.



9 ationa

T
h

•

•

•

•

t

b

c

‖

T

|
d
(
a
o

c
n
W

s

(
i
S

T
m
t
a
o
s

8 A. Sidi / Journal of Comput

heorem 6.2. Under the conditions of Theorem 6.1, the following
old:

Existence of limn→∞Qn,k(�) = limn→∞
∑k

j=0�
(n,k)
j

�j:

Qn,k(�) =
k∏
i=1

�− �i
1 − �i

+ O(|�k+1/�k|m) as n→ ∞, (6.7)

hence

lim
n→∞

Qn,k(�) =
k∏
i=1

�− �i
1 − �i

. (6.8)

Therefore, limn→∞�
(n,k)
j

all exist too. Here,

m =
{

2n if (vi, vj) = 0 for i /= j,
n otherwise.

(6.9)

Stability: MPE and RRE are stable in the sense that

lim
n→∞

k∑
j=0

|� (n,k)
j

| ≤
k∏
i=1

1 + |�i|
|1 − �i|

⇒ sup
n

k∑
j=0

|� (n,k)
j

|<∞. (6.10)

Zeros of Qn,k(�): For all large n, Qn,k(�) has exactly k zeros �(n,k)
i

, i =
1, . . . , k, that tend to �i, i = 1, . . ., k, respectively. In addition,

�(n,k)
i

− �i = O(|�k+1/�i|m) as n→ ∞. (6.11)

Her m is as defined in (6.9).
Finite termination property when k = p:

p∑
j=0

� (n,p)
j

�j =
p∏
i=1

�− �i
1 − �i

. (6.12)

Note that the numerical stability of MPE and RRE depends on
he size of the quantity �(n,k) =

∑k
j=0|� (n,k)

j
|, which is always ≥1

ecause
∑k

j=0�
(n,k)
j

= 1. When the xi are given with errors 	i, the

omputed sn,k, which we shall denote ŝn,k, roughly speaking, satisfy

ŝn,k − sn,k‖ � �(n,k)
(

maxn≤i≤n+k‖	i‖
)
.

hus, the smaller �(n,k), the more stable the extrapolation.
Because xn − s = O(�n1) and sn,k − s = O(�n

k+1) as n → ∞, and
�1 |≥|�k | > |�k+1 |, it is clear that {sn,k}∞n=0 tends to s faster than
oes {xn} when {xn} converges. In case {xn} does not converge
which happens when |�1 |≥1), {sn,k}∞n=0 will converge if |�k+1 |<1,
nd it will diverge (but less slowly than {xn}) if |�k+1 |≥1. (In case
f divergence, s is the antilimit of {xn}.)

When |�k | = |�k+1 |, the case not covered by Theorem 6.1, the
onvergence result pertaining to sn,k, namely, sn,k − s = O(�n

k+1) as
→ ∞, remains the same when {xn} is generated linearly as in (3.2).
e have

n,k − s = O(�nk+1) asn→ ∞,
i) for RRE always and (ii) for MPE when ˛(I − T) has a positive def-
nite hermitian part for some scalar ˛ /= 0. We refer the reader to
idi [22] for details.

Note that vector sequences {xn} satisfying the conditions of
heorem 6.1 arise from the iterative technique of (3.2) when the
atrix T is diagonalizable; in this case, �1, . . ., �p are some or all of
he distinct nonzero eigenvalues of the matrix T, and the vectors vp
re corresponding eigenvectors, that is, Tvi = �ivi, i = 1, . . . , p, and,
f course, p ≤ N. When T is not diagonalizable, the structure of xn is
imilar to that in (6.1)–(6.3), but more complicated. Consequently,
l Science 3 (2012) 92–101

the corresponding convergence and stability results are also simi-
lar to, but more complicated than, those of Theorems 6.1 and 6.2.
This general case has been treated completely in Sidi and Bridger
[28] and in [22].

The techniques used in proving Theorems 6.1 and 6.2 are rather
universal. They have been applied by the author with success in the
analysis of several other scalar and vector extrapolation methods,
the Richardson extrapolation and the Shanks [18] transformation
or the equivalent epsilon algorithm of Wynn [34] being some of
them; see Sidi [25].

7. Efficient use of MPE and RRE

7.1. Applying extrapolation to a subsequence {xrn}

As mentioned already in the preceding section, to determine
sn,k, we need to store xn and the columns of the unitary matrix Qk.
Using the same storage, we can obtain more accurate approxima-
tions to s by applying MPE or RRE to the sequence {xrn}∞n=0 with
some integer r > 1, instead of {xn}. To see that this is possible, let us
analyze the structure of the vectors xrn. By (6.1) of Theorem 6.1, we
have

xrn = s+
p∑
i=1

vi 
ni , n = 1,2, . . . ; 
i = �ri , i = 1,2, . . . .

Applying MPE or RRE to {xrn}, instead of (6.5) for convergence and
(6.8) and (6.10) for stability, we now have

sn,k − s = O(|�k+1|rn) asn→ ∞, (7.1)

lim
n→∞

k∑
j=0

� (n,k)
j


j =
k∏
i=1


 − 
i
1 − 
i

, (7.2)

and

lim
n→∞

�(n,k) = lim
n→∞

k∑
j=0

|� (n,k)
j

| ≤
k∏
i=1

1 + |
i|
|1 − 
i|

. (7.3)

These results are better since their upper bounds on sn,k − s and
on limn→∞�(n,k) are smaller because |�r

i
|< |�i| when |�i |<1, and

|1 − �r
i
|> |1 − �i| when �i is close to 1 as a complex number. (Note

that, in most cases of interest, the largest �i are indeed very close
to 1.)

It is clear from (7.1) that, when storage is a problem, we can
reduce the storage requirements by reducing k, and maintain a
given level of accuracy at the same time, by applying MPE or RRE
to the sequence {xrn}∞n=0 with increasing r > 1.

7.2. Applying extrapolation in cycling mode

Now, Theorem 6.1 suggests that, as n → ∞ , sn,k becomes bet-
ter as an approximation to s. Thus, there is a beneficial effect
to increasing k. On the other hand, this requires an increas-
ing amount of storage, which becomes prohibitive at some
point. In case the xn are produced by the iterative procedure
xn+1 = F(xn) for solving x = F(x), we can apply MPE and RRE in a
strategy called cycling (or restarting). Here are the steps of this
strategy:

C0. Choose integers n, k, and r, and an initial vector x0.

C1. Compute the vectors x1, x2, . . ., xr(n+k+1) [via xn+1 = F(xn), cf.

(1.2)], and save

yn, yn+1, . . . , yn+k, yn+k+1; yi = xri, i = 0,1,2, . . . .
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2. Apply MPE or RRE to the sequence {yi} precisely as in Table 1,
with end result sn,k.

3. If sn,k satisfies accuracy test, stop.
Otherwise, set x0 = sn,k, and go to Step C1.

For an analysis of the error in this mode of usage—in case of
inear F(x), i.e., when F(x) = Tx + b as in (3.1)—we refer the reader
o [30,31]. Note that, in this mode, both k and n are kept fixed (in
heorem 6.1, we let n tend to infinity), and the analyses of [30,31]
ake this into account and derive upper bounds on the error of sn,k
n terms of Jacobi polynomials for certain types of spectra of the

atrix T. To give the reader an idea as to the nature of these bounds,
e consider those sn,k produced by RRE only. We also consider the

ase r = 1 for simplicity. The next theorem is from [20]; it follows
irectly from Eisenstat et al. [8], where it is proved for the real case.

heorem 7.1. Let s be the solution to (3.1) and let {xn} be generated
inearly via (3.2). Define the residual vector associated with arbitrary

by r(x) = b − Ax, where A = I − T. Assume that the hermitian part of
=˛A, ˛ /= 0 scalar, namely, the matrix ÃH = 1

2 (Ã+ Ã∗), is positive
efinite. Then sn,k from RRE satisfies

r(sn,k)‖ ≤ Lk‖r(xn)‖; L =
√

1 − �2/�2 < 1, (7.4)

here � is the smallest eigenvalue of ÃH and � is the largest singular
alue of A.

Let us consider cycling with n = 0. Since the factor Lk in (7.4) is
ndependent of the xi, this theorem says that at the end of the m th
ycle the l2 norm of the residual vector will be bounded by Lmk times
he l2 norm of the initial residual, which means that the cycling
trategy converges as m → ∞ under the conditions of Theorem 7.1.

The next theorem from [30,31] is concerned with the effect of
aking n > 0 when cycling.

heorem 7.2. Let s be the solution to (3.1) and let {xn} be gener-
ted linearly via (3.2). Assume also that the matrix T is diagonalizable
o that T = V
V−1, where 
= diag(�1, . . ., �N), �i being the eigen-
alues of T. Define the residual vector associated with arbitrary x
y r(x) = b − Ax, where A = I − T. Let also P̃k = {p∈�k : p(1) = 1} and

n,k = minp∈ P̃kmaxi|�ni p(�i)|. Then sn,k from RRE satisfies

r(sn,k)‖ = min
p∈ P̃k

‖Tnp(T)r(x0)‖ ≤ �2(V)�n,k ‖r(x0)‖.

ere �2(V) = ||V|| ||V−1|| is the l2 condition number of V.

The important quantity here is �n,k, which, when specialized
o certain types of spectra for T, can be bounded in terms of Jacobi
olynomials, and hence in closed form. Two cases follow:

. When the spectrum of T is real and in the interval [ −ˇ, ˇ] for
some ˇ∈ (0, 1), then
�n,k ≤ ˇn+k
�∑
j=0

(
�
j

)(
n+�
j

)
(1 − ˇ2)j

; � =
⌊
k

2

⌋
,

� =
⌊
k + 1

2

⌋
.

. When the spectrum of T is purely imaginary and in the interval
[ − iˇ, iˇ] for some real ˇ > 0, then
l Science 3 (2012) 92–101 99

�n,k ≤ ˇn+k
�∑
j=0

(
�
j

)(
n+�
j

)
(1 + ˇ2)j

; � =
⌊
k

2

⌋
,

� =
⌊
k + 1

2

⌋
.

Analyzing and/or computing the upper bounds on�n,k, we see
that, with even moderate values of n,�n,k decreases very fast with
increasing k. This explains the success of applying cycling with
even moderate n > 0. In view of this, by taking a moderate n > 0, it
becomes possible to apply MPE and RRE with small k, hence small
storage, and still obtain good convergence rates in the cycling mode
when solving x = F(x).

Another advantage of applying MPE and RRE in the cycling mode
with n > 0 is that, in some cases, it prevents stagnation that results
when applying them with n = 0. Stagnation takes place also when
applying GMRES in the restarting (cycling) mode in some cases;
here recall Theorem 3.6 on the equivalence of GMRES and RRE. (See
the numerical examples in [30,31].)

7.3. Applying cycling with frozen � j

When storage is a problem and the unitary matrix Qk−1 in Step
2 of the MPE and RRE algorithms given in Table 1 needs to be
saved in secondary storage, the cost of cycling as described here
may increase timewise on account of input-output when working
with the secondary storage. We can reduce this cost of cycling sub-
stantially as follows: Save the � i that are computed in Step 2 of the
MPE and RRE algorithms in Table 1 after the first few cycles (some-
times one cycle may be enough). In subsequent cycles, use these
last (frozen) � i and the yi saved in Step 1, and set sn,k =

∑k
i=0�iyn+i

in Step 2, instead of computing sn,k by MPE and RRE as described
in Table 1. (Of course, these sn,k are not the same as those com-
puted by MPE and RRE, but are likely to be good approximations to
s, nevertheless.)

This strategy has two favorable features: (i) It enables the intro-
duction of the vectors yj one by one without having to save them.
This also means that, because the yj need not be stored in secondary
storage, we save the time needed for performing input-output
operations that would be needed otherwise. (ii) It also avoids the
computational (timewise) overhead of MPE and RRE on account of
the QR-factorization of the matrix Uk. These savings may be signifi-
cant when computation of the vectors xn in Step C1 is inexpensive.

The idea behind this strategy is that, from one application of
Steps C1 and C2 to the next, the � i do not change very much. This
is also suggested by (7.2), which says that the � (n,k)

i
≡ �i associated

with sn,k obtained by MPE and RRE are such that limn→∞�
(n,k)
i

all
exist.

8. Computation of dominant eigenvectors of matrices

One problem that can be treated efficiently by MPE and RRE
is that of computing an eigenvector corresponding to the largest
eigenvalue of an arbitrary large sparse matrix A∈CN×N when this
eigenvalue is known. This problem has become of interest recently
in connection with the computation of the PageRank of the Google
Web matrix. It can be solved by applying vector extrapolation
methods to a sequence of vectors obtained as power iterations

essentially with the matrix A. See Sidi [26,27] for a detailed treat-
ment.

The idea is as follows: Assume for simplicity that A is diag-
onalizable, and let � be its largest eigenvalue, which we do
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ot assume to be simple necessarily. Assume also that � is
nown, and that we are interested in determining a corresponding
igenvector.

Choosing an arbitrary initial vector x0 ∈CN , we compute the
ectors x1, x2, . . ., as power iterations with the matrix T =�−1A
ia

n+1 = Txn, n = 0,1, . . . . (8.1)

f course, xn = Tnx0, n = 0, 1, . . .. Since T has 1 as its only largest
igenvalue, in general, xn has the spectral decomposition

n = s+
p∑
i=1

vi�ni , n = 1,2, . . . . (8.2)

ere, (i) s is an eigenvector corresponding to the eigenvalue 1, that
s, Ts = s, (ii) �i are some or all of the distinct nonzero eigenvalues
f T that are different from 1 (in fact, |�i |<1), (iii) for each i, vi is
n eigenvector corresponding to �i, whether �i is simple or mul-
iple; that is, Ts = s, and Tvi = �ivi, i = 1, . . ., p, and, of course, (iv)
≤ N − 1. (This is the same reasoning as that which is given in the

ast paragraph of Section 6.) Thus, the vi in the summation in (8.2)
re linearly independent vectors, and each of the vectors vi�ni in
8.2) is nonzero. A nonzero eigenvalue of T (in particular, the eigen-
alue 1) appears in the spectral decomposition of xn in (8.2) if it is
resent in the spectral decomposition of the initial vector x0. Let us
rder the �i in (8.2) as in

> |�1| ≥ |�2| ≥ · · · ≥ |�p|. (8.3)

Thus, the vectors xn are exactly of the form described in Theorem
.1. This immediately suggests that MPE and RRE can be applied to
he sequence {xn} to accelerate its convergence. Clearly, the per-
ormance of MPE and RRE on the present problem can be improved
y using the cycling strategy described in Section 7.

Remarks.

. As explained following Theorem 6.1, the convergence result per-
taining to sn,k remains virtually the same even when the matrix
A is not diagonalizable, provided the largest eigenvalue � has
only associated eigenvectors but no principal vectors. The pre-
cise convergence result for this general case that has been given
in [28] is more involved, however.

. Note that, in the problems we are treating here, limn→∞xn exists
and is equal to s since |�1 |<1, and we have stated Theorem 6.1
to suit these problems. However, Theorem 6.1 remains valid
also when limn→∞xn does not exist (which happens when �
is not the largest eigenvalue, in which case |�1 |≥1). In this
case, limn→∞sn,k exists and equals s, provided |�k |>|�k+1 | and
|�k+1 |<1.

.1. Application to PageRank computation

It is known that the Google Web matrix has 1 as its (unique)
argest eigenvalue and that the corresponding eigenvector has pos-
tive components. The PageRank, which serves as a measure of the
elative importance of Web pages, is this eigenvector, normalized
uch that the sum of its components is 1. In this case, power iter-
tions with the Google matrix converge to the PageRank. Here are
ome of the details:

We start by recalling that a matrix A is column-stochastic if it is
onnegative and the sum of the elements in each of its columns is
. Such a matrix has 1 as its largest eigenvalue.
The matrix A used in the Google PageRank computations is of
he form A = cP + (1 − c)E, where P and E are very large column-
tochastic matrices and 0 < c < 1; therefore, A is column-stochastic
oo. In addition, E is of the form E = ueT, where e = [1, 1, . . ., 1]T
l Science 3 (2012) 92–101

as before, and u is a nonnegative vector such that eTu = 1. Inter-
estingly, whether u is positive or nonnegative, the eigenvalue
1 is always simple, and the corresponding eigenvector is posi-
tive. The rest of the eigenvalues are all less than c in modulus.
(See Haveliwala [12] and Eldén [9] for more information on this
point.)

Vector extrapolation methods in this case turn out to be
very practical as the computation of the vectors xn is extremely
cheap, due to the fact that computing the matrix-vector prod-
ucts Py and Ey costs only O(N) operations. The reason for
this is that (i) P is a very sparse matrix in that each row
of the matrix P has O(1) nonzero entries and (ii) Ey = (eTy)u
despite the fact that E is a dense matrix. The numerical com-
putation of the PageRank by MPE and RRE is illustrated in
[27].

The first work applying a vector extrapolation method to the
sequence of power iterations is that of Kamwar et al. [15]. The
method developed in [15], called quadratic extrapolation, is very
closely related to MPE with k = 2. This method was subsequently
generalized to arbitrary k and analyzed in Sidi [26,27], where a very
economical algorithm for it is also given.

9. Application to summation of vector-valued power series:
vector-valued rational approximations

Given a vector-valued power series
∑∞

i=0uiz
i, where z is a com-

plex variable and ui are constant vectors in CN , representing a
vector-valued function u(z) about z = 0, we can use vector extrap-
olation methods to approximate u(z) via a vector-valued rational
approximation obtained from the power series coefficients ui.

For this, we apply the extrapolation methods to the sequence
{xm(z)}, where xm(z) =

∑m
i=0uiz

i,m = 0,1, . . .. The approxima-
tions obtained this way are rational functions, whose numerators
are vector-valued polynomials and whose denominators are scalar-
valued polynomials. This topic is dealt with in detail in the paper
Sidi [23], where three vector-valued rational approximations are
developed and discussed. Here we give a brief and informal descrip-
tion of the subject, through the SMPE approximations, which is one
of the three approximations proposed in [23]. When MPE is used
for the purpose of accelerating the convergence of the sequence of
the partial sums xm(z) of the vector-valued power series

∑∞
i=0uiz

i,
we obtain the SMPE approximations sn,k(z) that are given as in

sn,k(z) = D(zkxn(z), zk−1xn+1(z), . . . , z0xn+k(z))
D(zk, zk−1, . . . , z0)

, (9.1)

where D(g0, g1, . . ., gk) is a (k + 1) × (k + 1) determinant defined
exactly as in (5.2) with ui,j = (un+i, un+j) there. Thus, sn,k(z) is also
of the form

sn,k(z) =

∑k

i=0
ciz
k−ixn+i(z)∑k

i=0
cizk−i

, (9.2)

with appropriate scalar constants ci. Note that the numerator poly-
nomial has degree at most n + k, while the denominator polynomial
has degree k when the cofactor of g0 in D(g0, g1, . . ., gk) is nonzero.
It is easy to see that

sn,k(z) − u(z) = O(zn+k+1) as z → 0.

The sequence {sn,k(z)}∞n=0 (with fixed k) has very nice conver-
gence properties, which we discuss briefly. Suppose that u(z) is

analytic in an open disc Dr = {z ∈C : |z|< r} and meromorphic in
a larger open disc DR = {z ∈C : |z|< R}. This implies that the series∑∞

i=0uiz
i converges to u(z) only for | z |<r, and diverges for | z |≥r.

Under some additional condition that has to do with the Laurent
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xpansions of u(z) about its poles, the rational approximations
n,k(z) obtained from the series

∑∞
i=0uiz

i have the property that,
f k is equal to the number of the poles in DR, then {sn,k(z)}∞n=0 con-
erges to u(z) uniformly in every compact subset of DR excluding
he poles of u(z). In addition, the poles and residues of sn,k(z) tend
o the poles and residues of u(z) as n → ∞.

As an example, let us consider the function u(z) = (I − zA)−1b,
here A∈CN×N is a constant matrix and b∈CN is a constant vector.

his function has the series representation u(z) =
∑∞

i=0uiz
i, where

i = Aib for each i = 0, 1, . . .. This series converges for | z |<1/�(A),
here, we recall, �(A) is the spectral radius of A. In this case, u(z)

s a vector-valued meromorphic function (actually, a rational func-
ion) with poles equal to the reciprocals of the nonzero eigenvalues
f A, the residues being related to corresponding eigenvectors and
rincipal vectors. The poles and residues of sn,k(z) turn out to be the
o-called Ritz values and Ritz vectors resulting from the method of
rnoldi as eigenvalue and eigenvector approximations. For details
n precise convergence properties and rates of convergence, see
idi [24].

One of the uses of these rational approximations has been to the
ummation of a perturbation series resulting from ODEs describ-
ng some nonlinear oscillations. See, for example, Wu and Zhong
33]. In this paper, the space we are working in is infinite dimen-
ional, and the definitions of MPE and RRE remain unchanged, as
entioned at the end of Section 5.
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