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In this work we propose an extrapolation method, which we callrth(S)-transformation for the
accurate and numerically stable computation of infinite range integfdls = j;o f(x)dx,a > 0,
wherethe f (x) are products of oscillatory functions, which are ultimately expressible (but do not have to
be given explicitly,a priori) in the form

00 = RO) exp[ ¢ f[[ 00 em|i000] + 7 0 ep[-id0]}

wheres is an arbitrary integerd(x) and d(x) are real polynomials ix, $(x) = 0 being possible,
explp(x)] is bounded at infinity andR(x) and gji(x) aresmooth functions that have asymptotic expan-
sions of the formsR(x) ~ 32 bjx¢ ™! andgji(x) > ocﬂE %~ asx — oo, with arbitrarye
anddj. We denote the class of such functions BY). These integrals may converge or diverge and
in the case of divergence are defined in some summability sensenW{&-transformatiorwe pro-
pose here is analogous to tm\-transformation ofidi (1988, A user-friendly extrapolation method for
oscillatory infinite integralsMath. Comput.51, 249—-266), which was originally developed for a class of
infinite range oscillatory integrals, whose integrands actually belong to a subfangiff)offhe mW(S)-
transformatiordetermines a two-dimensional array of approximatimﬁb) to I[ f]. We study some of

the convergence properties of tWéJ). We also provide several numerical examples that illustrate the
performance of the method.

Keywords extrapolation methodsn W-transformation\W-algorithm; infinite range oscillatory integrals;
numerical integration; Bessel functions; asymptotic expansions.

1. Introduction

Computation of infinite range integrals of oscillatory functions is an important problem that arises in
many different contexts. Several numerical methods have been developed for this purpose, extrapolation
methods being the most effective. One class of such integrals, namely, that inyiethgetsof several
oscillatory functions, is particularly interesting and challenging and has been of interest recently. For
examplelL.ucas(1995) andSidi (2003, Chapter 11, pp. 226-227) have considered integrals of products

of two Bessel functions; inLucas (1995) the two Bessel functions have different arguments, while

in Sidi (2003) they have the same argument, and these are two different problems that need different
treatments. Integrals of products of an arbitrary number of general oscillatory functions are considered in
Sidi (2003, Chapter 11, pp. 236—237), and the approach there has also been Waadaun & Cools
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(2006,2008)to develop a method for computing integrals of an arbitrary product of Bessel functions
with some special factors; this method is based on asymptotic expansions.

A very effective extrapolation method for computing the integrals above iPDtteansformation
of Levin & Sidi (1981). If theD-transformation is applied without taking into account the special na-
ture of the problem, however, its computational cost generally increases with the number of oscillatory

functions that make up the integrand. By taking into account this special nature these integrals can be

evaluated much more economically by fhe, W- andmW-transformations o8idi (1980,1982b,1988,
1997). For all these methods, and related recent developmen®ids€2003, Chapter 11).

The method of extrapolation (for computing integrals involving the product of two Bessel functions)
used successfully ihucas(1995) is themW-transformation. The effectiveness of this transformation is
a result of the two Bessel functions havidifferentarguments irLucas(1995). As defined originally
themW-transformation does not perform well when the arguments of the Bessel functions are the same.
This phenomenon is observed also in a recent worBaijey & Borwein (2011), who apply thenW-
transformation (in very high precision) to the integrals

/OO[JO(X)]S%, s=0,1,2,..., (1.1)
1 X

where Jo(X) is the Bessel function of order zero of the first kind. They report very good numerical
results for odds, and mediocre results for evenlt is a generalization of this special problem case that
we wish to address in this work. In the process we will give a rigorous explanation as to wimy/\the
transformation is effective whesis odd and ineffective whesiis even when applied to (1.1). We also
show how thenW-transformation can be modified in a simple way and made effective again foseven
We call the resulting extrapolation method V(S -transformatiorsince it depends on whethsiis
even or odd.

In the next section we review the function classes dengtéd andB(™ thatwe refer to in the
sequel, and we also introduce the function cla&&ss > 1 integers. Members @& areproducts of
s functions that oscillate an infinite number of times at infinity and resygmptotically, as x> oo, the
same phase of oscillatiospecifically, the functionsdj (x) thatmake up the product are ultimately of
the form

b} (x) exp [ié(x)] + 07 (X) exp [_ié(x)] ,

whered(x) is a real polynomial irx (it is the same for every) and thezI)Ji(x) arenonoscillatory and
smooth ax — oo.

In Section3 we give a detailed description of theW®-transformatiorfor computing infinite range
integrals of functions if8.

In Section4 we analyse the integral properties of the functionB{f. This analysis is based com-
pletely onSidi (2003, Section 5.7, pp. 117-120). The following facts transpire from this analysis.

1. If f € B®, sbeingan odd integer, theffi(x) is a sum of at most+ 1 oscillatory functions with
different phases, and tmeW-transformation oSidi (1988) can be shown to be very effective for
computingf‘,jloo f (x) dx in this case.

2. If f € B®, s beingan even integer, thefi(x) is a sum of at moss oscillatory functions with
different phases, and, in general, one nonoscillatory function, which may be absent in certain
cases. It is the presence of the nonoscillatory function that causes\Wé&ransformation of
Sidi (1988) to lose its effectiveness in computifﬁ f (X) dx sincethe mW-transformation was
designed for computing infinite range integrals of oscillatory functions only.
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3. We also note that, in the case of divergence, the integrals of the oscillatory functions are defined in
the sense of Abel summability (s&di, 1987), while the integral of the nonoscillatory function
is defined in the sense of Hadamard finite part Sielg 1999).

In view of the study in Sectiod, in Section5, we provide the detailed derivation of theW()-
transformationln Section6 we discuss some of the convergence properties of this transformation in
light of the theory presented iBidi (2003, Chapters 8 and 9). In Secti@rwe illustrate the method
with convergent and divergent integrals whose integrands afSinfor various values ok. The
appendix to the paper contains an important part of the analysis that leads to the derivation of the
mW®-transformationAs such, it is an integral part of this work.

Finally, themW® -transformatioris closely related to thd™-transformatiorof the author that is
presented irsidi (2003, Section 6.6, pp. 140-149). We do not go into the details of this relation here.

Before closing, we note that integrand<8f® arequite different from those that are products of os-
cillatory functions with not necessarily the same phase of oscillation and so are their integral properties
and their numerical treatment. The latter have a more complicated structure than the former and involve
more analysis and computing. S&ili (2003, Chapter 11, pp. 236—237) for details. See ¥tsoDeun
& Cools (2006,2008), where integrals of products of Bessel functions with not necessarily the same
argument are treated.

2. The function classe8®
We begin with the following definitions (se&idi, 2003, Chapter 5, Definitions 5.1.1 and 5.1.2).

DEFINITION 2.1 A function a(x) belongs to the seA?) if it is infinitely differentiable for all large
x > 0 and has a Poincaitype asymptotic expansion of the form

(o.¢]
a(X) ~ Zaixy T asx - oo, (2.1)
i=0
and its derivatives have Poinéatype asymptotic expansions obtained by differentiating tha.ih)
formally term by term. If, in additiongzo # 0in (2.1), thenx(x) is said to belong t&\ ) strictly. Here
y is complex in general.

Functions in the seta () have some very useful properties that are listeSidi (2003, pp. 96-98).
Among these, we note the following, for example:

aeA?) = x7a(x)eAO,

aecA?), peAD = gpecAVTI),

aeAY, peA® strictly = a/feAVT,

a e AU strictly, k>0 integer, BeA?) = a4+ peAU strictly.

We advise the reader to familiarize himself with the list giversidi (2003, pp. 96-98) as we will be
invoking the properties of functions in the clasg€®) oftenand without mentioning them.

DEFINITION 2.2 A function f (x) belongs to the clasB™ if it satisfies a linear homogeneous differ-
ential equation of the form

m
F00=> ) f®x); pe A, iginteger, ik<k, k=1,....m (2.2)
k=1
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We note that most special functions of applied mathematics that are defined via linear differential

equations belong to such classes. For example, all Bessel functionsBifé in

Functionsin the classe8™ have some very interesting and useful properties. For example, in
general, iff € B") andg € B®, thenf + g € B™ with m < r + s, while fg € B™ with m <rs.
Seel evin & Sidi (1981) andSidi (2003, Chapter 5, pp. 106-111).

We now define the classes of functions we wish to treat in this work.

DEFINITION 2.3 We say that a functiorf (x) belongs to the cla®® if it can be expressed in the form

f(X) = W(x) f[l Hj (x), (2.3)
=
where
W(X) = expl¢ (X)]Q(X); ¢ e A®, Kinteger, Q e A© strictly,
H(X) = dX) + L(X);  H(X) = kizixk—i realwith 1o <0 if k>0; LeA® (2.4
i=0
and

Hj (x) = h' (x) exp[i6j ()] + h (x) exp[—i6; ()],
hJ?—L e AL g e A™  m> Ointeger,
m-1 )
0;(x) =0(x) + Mj(x); () =D ux™" realwith uo>0; M;eA®. (2.5)
i=0

Notethat, wherk < 0, we havep(x) = 0; in this case exp{(x)] € A© andhenceW e A©). When
k > 0, limy_, o exp[¢(X)] = 0 sincelp < 0.

Remarks.

1. It should be emphasized th&{x) does not have to be given explicitly in the form described in
(2.3-2.5). It only has to bexpressiblén that form.

2. Note tha#)(x) is the polynomial part of the asymptotic expansiorfpix) andis thesamefor

~

all j. Similarly, ¢(x) is the polynomial part of the asymptotic expansiorp@k). The functions
H; (x) determinethe oscillatory behaviour of (x).

3. (a) Wherk > 0, we have li_,+ ¢(x) = —oo; thus, the amplitude of (x) is modulated by
the exponentially decaying fact@v(x); I [ f] is always convergent in this case. (Note that,
if lim y— 00 #(X) = +o00, then f(x) is not integrable in any sense; hence, it is irrelevant
from the computational point of view.)

ITheseresults are stated as ‘heuristics'$idli (2003) since they are stated for a relaxed version of the 8E85in which the
functionspg(x) in (2.2) are in the classas(k), where theii areintegers but are not required to satigfy< k. The conclusions
from these heuristics do seem to hold also when the &88kis exactly as in Definitior2.2, however. Nevertheless, to be precise,
the statements made in this work concerning the sum and the product of functions in theR{Eseemeant to be in the relaxed
sense.
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(b) If k <0, then|f(x)] = Ox¢*7) asx — oo, for somes to be determined later. Depending
on the value ofit(e + o), in this casef (x) is integrable at infinity either in the regular sense
or in some summability sense, as we describe next.

(i) Whensis odd f (x) is integrable in the sense Abel summability.
(i) Whensis evenf (x) is the sum of two functions, one of which is integrable in the sense

of Abel summability, the other (if it is not identically zero) being integrable in the sense

of Hadamard finite parprovidede + ¢ # —1,0,1,2,....

We will discuss the issue of divergent integrals in Section

4. Finally, the clas8® is precisely the class of functions treatedSiui (1988), for which the
mW-transformation was developed.

A general example of integrandsﬁﬁs), involving Bessel functions, is given next.
EXAMPLE 2.4 Let
S
FO0 =W [ ¢ (%),
j=1
wherethec;j arearbitrary constants and
Cvj (x) = Aj ij )+ Bj ij (x),

J, (x) andY,, (x) beingBessel functions of order, of the first kind and second kind, respectively, and
W(x) is as in @.4). HereA; andB; areconstants. Since (s&veret. al,2010, Chapter 10)

3000 = .c(X) COSK + o s(X) SiNX,  ucs s € ALTE),

andcosx = (€% + e™) andsinx = (€% — ™) it follows that f € B® with §; = —3 forall j,
whenc; = - -+ = Cs.

Fromwhat we stated following DefinitioR.2, being a product of Bessel functions and oV €
BW, then f(x) € BM with m < 25. Furthermorem = 25 is possible when the; are distinct;
otherwisem < 25. As we show later, when all thgy arethe samem < s+ 1, and this is the case we
consider in this work.

3. ThemW®)-transformation
3.1 Description of the mW-transformation

We now describe thenWS)-transformatiorfor computing the integral
I[f] :/ f(x)dx, a=0, (3.1)
a

wheref e B®, as in Definition2.3, with the notation therein. Here are the steps of this method.

1. Choose to be the smallest real zero of €l0x) that is greater thaa. Thus,xo is a real solution
of the polynomial equatiofi(x) = gz, whereq is the smallest integer possible. Following this,
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definex to be the largest real root of the polynomial equatii®) = (q + Dz, | = 1,2, ....
We can also choose theto be zeros of cod(x). Specifically, we choose to be a real solution

of the polynomial equatiol(x) = (q + %)n thatis greater tham, where the integeq is the
smallest possible. Then we take to be the largest real solution of the polynomial equation
0x)=@+1+dHz,1=1,2,....

As we will see later, whether it is a zero of €itx) or of cosd(x), x; hasa convergenexpansion

of the form

o0
X = Zcil(l‘i)/m, co> 0, foralllargel, (3.2)
i—0

that is also arasymptotic expansiofor x; asl — oo. However, the method remains just as
effective also wherm; hasa suitable but not necessarily convergent asymptotic expansion of the
form

o0

X~ > ¢IED/M as| — o0, ¢ > 0. (3.3)
i—0

For example, iff (xX) = W(X)[J, (X)]®, whereJ, (x) is the Bessel function of the first kind of real
orderv > 0, then we can take the to be the consecutive real zeros or points of extremum of
J, (X) with xg > a. These zeros have asymptotic expansions of the form

i~z 4+ +l 42+ asl - oo

Choosing theq thisway may be more beneficial wheris large.

2. Define
F(x) = /X f(t)dt. (3.4)
a
Computethe finite range integrals (x)) and
1yx)=FMx4+1)—F(X), 1=01,..72 (3.5)
3. e Whensisodd set
y () = x(X). (3.6)

e Whens is even withk andm as in @.4) and 2.5), respectively, set
X"x(x) ifk<0,
p() = 1" ) ifL<k<m, (3.7)
x (X)) if K> m.
Notethat a more user-friendly choice for eveis

w(x) =X"x(x), (3.8)

2Actua||y, we first setx_; = a and, preferably using a low-order Gaussian quadrature formula, comptg) =
f):'*l ftdtl =-1,0,1,..., to machine accuracy, and then fofix ) = Z! —ox(Xi-1,1=0,1,....
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andit will work for all three cases in (3.7). With this choice we only have to kdgw),
without having to bother with the rest df(x).
Note that the choice ofs(x) in (3.6) will not work whens is even anck < m. The choice
of w(x) in (3.8), however, will work also when is odd, although takings(x) asin (3.6) is
generally more economical for this case in the following senséjf1 is the approximation
(O) obtainedby usingy (x)) = x(x)) and An, 2 is the approxmatlom(o) obtainedby using
1//(X|) X" x (%), and they have the same accuracy, theris slightly less tham;, hence,
slightly fewerF (x))’s are needed to compu#g, 1 thanAn, ».

4. Choose an increasing sequence of non-negative int@&eds< Ry < Ry < ..., and set
Vi=xr, 1=0,1,.... (3.9

5. Finally, define the approximatiomé,j) to I[ f] via the linear systems of equations

n-1 5

F(yl)zA,&”w(w)zﬂ l=j,j+1,...,j+n (3.10)
Y

Here thef; areadditional unknowns that are not of much interest.

Note that, in the casé[ f] converges in the regular sense we hayé] = > 72, x (xi—1). Since
the only input to themW®-transformationis the sequencéy (X1)}2_4 this transformation can be

viewed as aonvergence acceleration methfad the sequence of partial surigx) = Z'i _ox(Xi—1),
| =0,1,..., of the infinite serie> 724 x (Xi—1).

Thereader may be wondering about the relation ot/ -transformatiorto the originalmW-
transformation. Concerning this issue, we note thatrth&-transformation ofSidi (1988) is noth-
ing but themW®-transformationof this work. This is so because the cld&8$) is ultimately that
for which the mW-transformation was designed, as mentioned also in Remark 4 following
Definition 2.3.

3.2 Aclosed-form expression for, A

The following lemma gives a simple closed-form expressionﬂéjr) thatis useful in the convergence
and stability study of thenW)-transformation.

LEMMA 3.1 The approximatiorAf]j) resultingfrom (3.10) is given by

DI [(x"1F () /p (%)}

Al _
no- (J) n-1
Dn {X /‘//(X)}

(3.11)

whereD, J){w(x)} is thenth order divided difference ab(x) over the set of pointgyj, Yj+1, ..., Yj+n},
thatis,

. -1
D,(H){w(x)} ZC(J)U)(yJ-H ; CJ) [H(YJ+| —YJ+r):| , 1=0,1,...,n. (3.12)
r=0
r#i
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Proof. We start by rewriting the equations if.(0) in the form

-1 n—1 n-1
Y FOD _ YT o o : 5 n-im1
= Ai’+Py), I=j,j+1,...,j+n PX = Bix )
28] pyn Z; |
Multiplying the equation with the inddx= j +i by cﬁ!), and summing over= 0,1, ...,n, we obtain

DY (XL 00w 0} = D X070} AP + D (PO,

Since P(x) is a polynomial of degree at most — 1 we haveD,ﬁj){P(x)} = 0. The result now
follows. O

3.3 Recursive computation via the W-algorithm

The solution to the system i8.(10) can be achieved recursively by iealgorithm ofSidi (1982a) (see
alsoSidi, 2003, Chapter 7) as follows.

1. Forj =0,1,...,set

M — i) NG = '
w(Yj) w(Yj)

2.Forj=0,1,...,andn=1,2, ..., compute

(j+1) () (j+1) (1)
(j) Mn—l Mn—l () _ Nn—l B Nn—l
My’ =——F—7=— N’ =—7F—7—
Yitn =Y Yitn 7 Y]
3. For all j andn set
(J)
() _ Mn

n

TN

Notethat this algorithm creates two different two-dimensional tables foMl&@ andthe Nr(]j) that
areactually divided difference tables.

3.4 Stable implementations

When applying extrapolation methods in finite precision arithmetic, we are sometimes confronted with
the problem of numerical instability. This problem exhibits itself as followsﬁféf bethe numerically
computedA,(H) forall j andn, and suppose that we are computing the sequ{aﬁﬁeé}ﬁio, for example.

If numerical instability is present, then tlﬁé,o) seento converge td [ f] up to somen, sayN, and from

that point on, their accuracy deteriorates and eventually is lost completely, even thé%g#hould

be tending tol [ f] theoretically. In addition, the accuracy @9 which is the best in the sequence
{Aﬁo)}ﬁio, is, generally speaking, significantly lower than the machine accuracy (that is, the maximum
accuracy allowed by the finite precision arithmetic being used).

The problem of numerical instability can be treated effectively by suitable choices of the sequence
{R}124, Which we introduced prior to3.9). Recall that we used tif& to define they;, which we used

in the definition of thenW®-transformatiorvia (3.10). Two such choices f¢R, } follow.
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1. (i) For allk whens is odd, and (ii) fork > m whens is even choose
R=I, 1=0,1,.... (3.13)
2. Whens is even andk < m choose
Ro=0; R=max{lcR_-1],1}, 1=1,2,..., forsome fixedw > 1. (3.14)

This choice has been denoted tigometric progression samplif@PS) inSidi (2003, Chap-
ter 10). (If we choos&, asin (3.13), themW(®-transformatiorsuffers from numerical instabil-
ity and does not achieve high accuracy wiseéa even ank < m. We will give a more detailed
explanation of this point in Sectionh)

Note thatR =1 forO< | < L,andR = |[cR_1] forl > L + 1, whereL = [2/(c — 1)].
Therefore,

cR_.1—-1<R<oR_1 VI>L = im R/R_-1=o0.
|— o0
This means thalR grows practically likes' asl increasesThus, to determine&ﬁo), for example,
we need to compute the integratgxi), —1 < i < Ry, a total of Ry + 2 integrals, and this
number increasesxponentiallylike o" with n. Therefore, we propose to takee (1, 2) to keep

the computational cost in check. (In our computations we have preferred to take3 mostly.)
The expression fok we have given above can be found as follows: first, we have

RL=max{loc(L-1),L}=L = [o(L-1)]<L,

which, recalling thak — 1 < [x] < X, gives

1 2
sl—1)—1<L = L<ZF2_ 41
c—1 o0-1
Next by
L+2<Rj1=|06R]=|oL]
we have
2
L+2<oL = L> .
c—1

Combiningthese two inequalities fot. and recalling thak < N < x + 1 for an integer
N implies thatN = [x], we obtain our expression fdr.

4. Properties of functions inB®
4.1 Algebraic properties

Let f € B® asin Definition 2.3, with the notation therein, and Ieff] be as in 8.1). In order to
be able to design effective extrapolation methods for computjrig we need to study the asymptotic
behaviour off (x) asx — oo.
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We begin by noting that the functiorirqt(x) exp[£id;j (x)] are all in the clas8® by Sidi (2003,

Theoren5.7.2, p. 118). Thereforéy; € B@ for all j, and hencg[_; Hj(x) € B(P, p < 2%, by Sidi
(2003, Heuristic 5.4.1, p. 107). As a matter of fact s + 1, as we show next.
First, by .4) and 2.5),

explg ()] = v(X) exp[g@(x)] , v=e"eAQ strictly,
exp[£i6; ()] = uj (x) exp [iié(x)] . ur=e"™ e AO strictly. (4.1)
Consequentlywe have
Hj (x) = hf (0 exp [ié(x)] +h, () exp [—ié(x)] . By =hjuf e AV (4.2)
Substituting(4.2) in the producf[?:1 Hj (x), expanding and rearranging we have
S
[THico =3 Firem[iti —nde].
i=1 j.,r=0
J4+r=s

Actually, T is a sum of products of hi™’s andr h’s, and, as a result, eith& (x) = 0 or

m
Tjr e A€) strictly, oj=> &—pj. pj =0 integer. (4.3)
k=1

(Thus, for anyj andj’, ¢j — gj is an integer.) Sincév'j,r = 'Iv'j,s_j we will denote it by T; for short.
Consequently,
S S
[THi 0 =" Tjx) exp [i(—s+ 2j)9(x)] , T, eA€) or T =0.
j=1 j=0

Thus,the functionf (x) can be re-expressed as in
S
F0 =2 fj(, 00 =U;0ep[$00] explit=s+2)dx)],
j=0
Uj(x) = o()Q(X)Tj(x), Uj e A€t9) strictly, j=0,1,...,s. (4.4)
The next two examples illustrate the different situations that can occur in a simple way.
EXAMPLE 4.1 Consider the case
Hj (x) = h™(x) exp[if (x)] + h™ (x) exp[—i@(x)] V j.
Assume thah™ #£ 0andh™ # 0. Expandingﬂ?z1 Hj (x) we obtain

[T 00 =3 (3 ) it 001> explic=s-+ 270001 (45)
j=1

S
j=0
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We thus identify
T, = (?)[hﬂj[h‘]g‘j £0, j=0,1,...,s
EXAMPLE 4.2 Consider the case
H1(x) = h* (x) exp[if (x)] + h~ (x) exp[—if (x)],
Ha(x) = h* (x) expli (x)] — h™ (x) exp[—if (x)].

Assume thah™ % 0andh™ # 0. ExpandingHJZ:1 H;j (x) we obtain

2
[T Hi 00 =[h*(0]?exp[2i60 ()] — [h~ ()] exp[-2i6 (X)]. (4.6)
=1

We identify
To=[h"]%, T1=0, T,=-[h"]2

An example of this is given by (x) = J,(x) andHz(x) =Y, (x). Since

1 1
_ = 1) (2) - = Dy - H@
300 =7 [Hv (x) + H! (x)] L Y00 =3 [HU (x) — H (x)] ,
whereHv(l)(x) and H,,(Z)(x) areHankel functions of order (not to be confused witl1(x) andHz(x))
we have

ﬁww=$“%ﬂf—h9wﬂ.
j=1

Now, H‘fl)(x) and HU(Z)(X) areprecisely of the forn‘nf(x) exp(ix) andh™ (x) exp(—ix), respectively.
Thus,HJZ:1 Hj (x) is precisely of the form4.6), withd(x) = x.

Going back to 4.4), we note that, iff; # 0,then f; € B by Sidi (2003, Theorem 5.7.2, p. 118).
If fj # Oforall j, then, being the sum of the+ 1 functions f; (x) that have different exponential
factors, the functiorf (x) € BG+D. (Before we expressefl(x) as in @.4) all we were able to say was
that f e B(P) for somep < 25; even for moderats this is very pessimistic.)

We now analyse the nature 6{x) for all values ofs. In the sequel we treat the functiofig(x) asif
fj # Ofor all j, but we understand that tho$g(x) thatare identically zero are absent from the general
picture.

Throughout, we differentiate between two cases.

1. Odd s:whensis odd the integers-s + 2j in (4.4) assume the values
-s,—-s+2,...,-3,-1,1,3,...,s—2,s.

Thus, the functiond (x) areall oscillatory since-s 4 2j # 0 for any j in this case.
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2. Evens: whens s even the integerss + 2j in (4.4) assume the values
—-S,—S+2,...,—4,-2,0,2,4,...,s—2,s.

Note that—s + 2j = 0 for j = s/2. Thus,

fo/2(x) = Us200 @xp [$(0)]. (4.7

Clearly, fs/2(x) is not oscillatory. The rest of thé; (x) areall oscillatory. As we will see later
the case of eveahas some surprising aspects and is more difficult to analyse.

4.2 Integral properties

Having discovered the algebraic naturefgik) we now analyse its integral properties. For this we need

the integral properties of thé;j(x). Integral properties of the;(x) canbe studied with the help of
Theorem 5.7.3 irBidi (2003, Chapter 5, p. 119), which we state as TheofeBmext. See als&idi
(2003,(Chapter 5, Remarks, p. 120). This theorem concerns the integral properties of functions in the
classBW.

THEOREMA4.3 Define

I[g]:/ g(x)dx and G(x):/ g(t) dt.

1. 1f g e A®) forsomey # —1,0,1,2, ..., then
G(x) = I[g] + xgx)u(x), ueA© strictly.

When%y < —1, I[g] exists in the regular sense, otherwise, it exists in the sense of Hadamard
finite part.

2. If g(x) = explp (x)Ju(x), whereu € A?) for arbitraryy andp € A® for some positive integer
K, with limy_, o Rp (X) = —oo or limx_, oo Rp (X) finite, then

G(x) = I[g] + x}* *gx)u(x), ueA® strictly.

When limy_, o Rip(X) = —oo, 1[g] exists in the regular sense for all When limk_; oc Rp (X)
is finite but limy_, o [Sp (X)| = oo, the integrall [g] exists in the regular senseXy < 0, and it
exists in the sense of Abel summability whn > 0.
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Let us now define
o0 X
|[f,-]=/ £ () dx, Fj(x)z/ £ (t) dt. 4.8)
a a
Thenby Theorem4.3the following hold.
e Forallj whensis odd, and for allj # s/2 whensis even, there holds

Fi) = I[fj] 4+ x” fj(x)gj(x), gj € A strictly, p =1— maxim,k}. (4.9)
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Invoking (4.4) this can be rewritten as

Fj 00 = 1]+ X771 e[ 0] explit=s + 21)0(01; (),
9; € A9 strictly, p =1— maxim,k}. (4.10)
Note thatp can assume one of the valuesd,, -2, .. ..

e Whensis even, forfg,, we have

Fs/2(x) = 1[ fs/2] + X*" fs/2(X)gs/2(X),
1-k ifk>0,

e AO  strictly, p' = 4.11
Os/2 y, p [1 k<o, (4.11)

Invoking (4.4) this can be rewritten as

Fora() = 1 fe/2] +X7++752 ep [ | G200,

1-k ifk>0,
0s2 € AQ  strictly, ' = _ (4.12)
1 if k<O.

Thus,p’ canassume either the value 1 or one of the values),—2, . ...
Important points to realize in connection with the above are as follows.

e Whensis odd the integep is the same for alf. Whens is evenp is the same for alj # s/2, and
it may be different fronp’ for j = s/2.

¢ Recallthat theg; differ from each other by integers. In this respect, we recall the property of the
setsA(?) thatif « € A7 Y strictly, k being a positive integer, antle A?), thena + g € A0 +K)
strictly.

e Recall also the following facts.

(a) For everyj whensis odd, and for every # s/2 whens is even, if the integraf(,;><> fi(x)dxis
notdefined in the regular sense, which can happen only whgr®, then @.9) holds withl [ f;]
therebeing defined as tha&bel sunmof fg’o fj (X) dx, which exists; se&idi (1987).

(b) Whens is even, if the integray(,;>O fs/2(x) dx is not defined in the regular sense, which can
happen only whelk < 0, then (4.11) holds with[ fs/>] there being defined as thtadamard
finite partof f:o fs/2(x) dx, which exists wher 4 052 # —1,0,1,2, ...; seeSidi (1999).

These observations have useful consequences, as we will see in the next section.

5. Development of themW®-transformation

We now want to develop the W -transformatiorfor | [ f]with f € B® alongthe lines of the original
mW-transformation that was developedSidi (1988). We start with the determination of the sequence
{x }|Oio

Let us recall thaixg < X1 < --- are consecutive zeros of sé(lx) or of gos@(x) in (a, o). Thus,
foreach =0,1,2,..., x isthe largest real root of the polynomial equatitx) = (q + 1)z or of the
polynomial equatio(x) = (q + 1 + %)7[ whereq is some integer.
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As shown inSidi (1988) andSidi (2003, Theorem 11.8.4, p. 230), whether it is a zero of &k or
of cosf(x), x, hasa convergent expansion of the form

o0
X = Zcil(l_i)/m, co > 0, foralllargel, (5.1)
i—0

that is also an asymptotic expansion fpasl — oo.

In what follows we take the; to be consecutive zeros of siiix), without loss of generality. Since

X satisfieghe equatiorzf?(x|) =(@+ 1)z forl =0,1,..., we have
exp|i(=s+2))0(x)| = expli(—s+2))(@ + 7] = (~1 ",
from which it is clear that
. A (=19t if sodd,
exp[|(—s+ 29 (% )] - (5.2)

+1 if seven

This fact has important consequences for the integrals

X X 41
Foo= [ fod x00= [ f0dt=Fou) - Fox, (5:3)
a X
to the analysis of which we now turn.

5.1 Properties of Kx))

We now expres§ (x|) in a simple way that will enable us to continue our study conveniently.
5.1.1 Forodds. Letusinvoke§.2)in @.10). We then have, for evely
Fj00) = 1]+ (D exp [ d0a) | 65 00),
0; € AQ strictly, p =1—maxm,k}. (5.4)
Therefore, by (5.3) andi(4),

F(x|)=I[f]+(—1)q+'xf‘)exp[g$(x|)]G(x|), GeA© strictly,

S
X°G(x) = > x/Herig;(x),
j=0

o=maxp+e+oj}—p, p=0 aninteger (5.5)
]
5.1.2 Forevens. Letusinvoke 5.2)in 4.10). We then have, for eveliy# s/2,

Fi o0 = 1111+ exp [ $04) | 6 0,

9; € A9 strictly, p =1 - maxim,k}. (5.6)
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For j =s/2, from (4.12), we have

Fo200) = 11 fss2l + "7 exp[$(x) | 65720,
1-k ifk>0
9s/2 € AQ  strictl = ’ 5.7
0s/2 € strictly, p {1 k<0, (5.7)
Therefore, by (5.3) andi(4), and recalling thas andp’ areboth integers,
F(x) = I[f]+ x” exp [¢3(x|)] G(x), GeAQ® strictly,
S
XUG(X) = X! FH02G(x) + D )T (x),
j=0
j#s/2
o= max{ .r;rza/é{p +e+oj}, (p+e+ as/z)] —p, p=0 integer. (5.8)
1#S
5.2 Properties ofy (x)
5.2.1 Forodds. Whensis odd, by 6.3) and 5.5), for all j, we have
§04) = (=) exp [ B(x41) | G440 + X7 e [0 ] G (5.9)
whichwe rewrite in the form
706) = (=1 exp [ $0x) | GOS0 + 11, (5.10)
where
S04) = ROx) e[ 46(x)] (5.12)
with
X1+1\“[ G(Xi+1) 5 . .
R =— —_— A = - . 5.12
() ( X ) [ ) } P(X) = d(Xi+1) — H(X) (5.12)
By partA.1 of the appendix, $(x) + 1] € A strictly for all m andk.
Therefore, we can rewrite (5.10) in the form
x(x) = (=1 x? exp [q@(m)] bx), beA® strictly. (5.13)

Of coursep(x) = —G(X)[S(x) + 1].
Two interesting conclusions that can be drawn from this analysis areyib@) is nonzero for
all large | and that the sequence of the(x) is ultimately an alternating sequence. That is,

lim| s 00 @M (X 12)/x D] = 7.
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5.2.2 Forevens. Whensis even, by $.3) and 5.8), we have

706) = X% & [ $(x41)| GOu+1) = X7 ep[$00) | G0,
whichwe can rewrite in the form
£ 06) = X7 exp [$04) | SO0)IS04) — 1], (5.14)

whereS(x), R(x) and 4¢(x) areexactly as in (5.11) ancs(12).
Now, by partA.2 of the appendix, $(x) — 1] has different properties depending on the values of
m andk, and this causeg(x|) to have different properties, as follows.

1. Whenk < 0,
2(x0) = x"""exp [&(xﬂ] b(x) = x""™b(x), beA® strictly. (5.15)
2. When 1< k < m,
2 () = X" Mexp [ngﬁ(X|)] b(x), beA©® strictly. (5.16)

3. Whenk > m,
2(x) = X? exp [qé(xn] bx), beA® strictly. (5.17)

Of course, in all three casd®x) = G(X)[S(x) — 1].
Two interesting conclusions that can be drawn from this analysis areytxa)t is nonzero for
all largel and that the sequence of th€x|) is ultimately monotonic. That is, lim, o arg[x (Xi+1)/

x(x)] =0.

5.3 F(x) andy(x) combined

5.3.1 Forodds. Letus solve%.13) forthe product—1)3+ X exp[¢(x)] and substitute ing.5). We
obtain

FOO) = 1]+ w00B00, 00 = =X ¢ p®

b(X) strictly, (5.18)

where
w(x) = x(X). (5.19)
Thisis true because boi®(x) andb(x) are inA© strictly.

5.3.2 For even s. Let us solve each of5(15-5.17) for the product” exp[#(x)] and substitute in
(5.8). We obtain

FOO) = 1]+ w00B00), 00 = 2% ¢ p©

b(X) strictly, (5.20)
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where
xMy(q)  ifk<0,
wx) = 1" ) if1<k<m, (5.21)
x (X)) if k> m.

Again, this is true because boB(x) andb(x) are inA© strictly.

5.4 Derivation of the mW{P)-transformation

Now that we have obtained the relations (5.18) em@(@), withy (x) asin (5.19) and §.21), respec-
tively, we can use these to derive i\ -transformatioras follows: sincgs € A© strictly, #(x) has
an asymptotic expansion of the form

o
BO) ~ D Bix™ asx — oo. (5.22)
i=0
Sincex; — oo asl — oo the relations in (5.18) and(20) can be written also as
FOO) ~ 11+ y(x) D 5 asl - oo. (5.23)
i—o X

We now apply the formalism of the generalized Richardson extrapolation to this expansion: (i) we
truncate the infinite summation in (5.23)iat n — 1, (ii) replace the asymptotic equality signby =,

(iii) replacegi by i, 0 <i <n—1,andl[f] by Aﬁ” andfinally (iv) choose an increasing sequence of
non-negative integel®, 0 < Ry < Ry < - - - and collocate the resulting equality at the powts= xgr,,
l=1j,j+1,...,]+n. Asaresult, we end up with the linear system

)
v

n—-1
Fo=AY+yn D 5. I=jj+1l....j+n, (5.24)
i=0

the unknowns being thA,ﬂj) andthe /3. (For a formal treatment of generalizations of the Richardson

extrapolation, se8idi, 2003, Chapters 3 and 4, for example.)
As explained irSidi (2003, Chapter 5, p. 103), for example, we can take

w(x) =x"x(x) (5.25)

for all caseswith evens. This is more user-friendly than that iB.21), as it requires us to study the
asymptotic behaviour dfj (x) only, without worrying about the rest df(x). This choice will work also
whens is odd, although taking/ (x) asin (5.19) is, in general, more economical wteeis odd.

As already mentioned in Secti@the Aﬁ,” canbe computed in an efficient way via thié-algorithm
whose steps are given following (3.10). They can be arranged in a two-dimensional array as shown in
Figurel. In general, theolumn sequence{sﬂ\ﬁ” Tio (n fixed) accelerate convergence, each column
being at least as good as the one preceding it. Alsmonal sequence{skﬁj)}g";o (j fixed) converge
much faster than column sequences.

Recall that we have described two appropriate choices for the intBgahseadyin (3.13) and 8.14)
in Section3. We will not repeat them here.
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6. Convergence theory

Judging from the structure of the integrdigx) in (5.18) and $.20) and from %.24) that define the
mW®-transformatiorwe realize that this transformation is simplyganeralized Richardson extrapo-
lation processf the GREKD type. (SeeSidi, 1979,2003, Chapter 4.) The convergence and stability
properties of GRE®) have been studied by the author in different places. A detailed treatment of these
is given inSidi (2003, Chapters 8 and 9). Now,(x) and w (X), as functions of theliscretevariable

X, are exactly of the form discussed 8idi (2003, Chapters 8 and 9). Consequently, the theory of
the latter applies to thenW()-transformationand we are able to make definitive statements about the
convergence of thenW(®-transformation.

Notethat, in this sectiony (x) is exactly as in$.19) for odds, and as in (5.21) for even As will
become clear there is a substantial difference between the convergence results pertainirgandddd
those pertaining to eves

We begin with the following simple lemma, which follows from Lem&d and (5.18) ands.20).

LEMMA 6.1 The error inAﬁj) is given by
D {x"~14(x)}
D {x1=1/y (%))

wheref (x) € A© is the function introduced in5(18) and §.20).

Ar(1j)_|[f]: (6.1)

TheoremB.2 concerns the convergence of &\ -transformatiorwhens is odd.

THEOREM 6.2 Let f € B® asin Definition 2.3, with odds. Let Aﬁj) be defined as in3.10), with
R =1 asin (3.13). Then the following hold.

1. The column sequenceA,gj) ‘1?10 (with fixed n) satisfy
AD _[f]=0 (W(xj)xj—m“—") asj — oo, ifk<m, (6.2)
AV —[f1=0 (w(an)xj—m"—”) asj — oo, ifk>m. (6.3)
2. The diagonal sequenc{aﬁﬁ,j)}ﬁo:o (with fixed j), for all m andk, satisfy

A,(1j) —1[f]=0("P) asn— oo, Vp>0. (6.4)
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Note that 6.2), (6.3) and §.4) follow from Theorems 9.3.1, 9.3.2 and 9.4.3, respectivelyidh
(2003, Chapter 9). Note also th#.2) and 6.3) are different from each other. Whien> m, v (Xj1n)
and y (xj) have entirely different asymptotic behaviour as — oo; in fact, limj_ o w(Xj4n)/
w(Xj) = 0. All of these results can be proved by invoking Lem#a and the asymptotic behaviour of
w(X) asl — ooin (6.1) and recalling3.12).

Clearly, Theorem6.2 shows that thenW®-transformationaccelerates the convergence of the
sequencéF(xj)}‘j)io to I[f].

Thenext theorem concerns the convergence ofthw(®-transformatiorwhens is even.

THEOREM6.3 Let f e B® asin Definition 2.3, with evers. Let Aﬁ,j) be defined as in3.10), where

lim - Yie1/Yi = k for some constant > 0. Then the following hold.

1. The column sequenceAEj)}T"zo (with fixed n) satisfy
AV —i[f]=0 (V/(yj)yj—") asj — oo, ifk<0, (6.5)

AV Zi[fl=0 (V/(yj)yj—k”—”) asj — oo, ifk>1. (6.6)
The results in§.5) and 6.6) hold, in particular, when thB; areas in 3.13) (withx = 1) and
in (3.14) (withx = o). In the case that th® areas in 3.13), hencey, = x for all I, (6.6) for
k > m can be improved to read

AP = 1111 =0 (v (xjX]™ ") asj - oo, ifk>m. (67)

2. Wh_enk < 0, if e + ¢ arereal and theR arechosen as in3.14), then the diagonal sequences
{AD)e2 (with fixed j) satisfy

AI(]J) _ |[f] =0 (e_pn) asn — oo, \4 P> 0. (68)

Proof. We proceed through Lemn@al. For simplicity, assume that everything is real. (The proof of the
complex case can be achieved in the same way, although with some extra effort.) First, by the fact that
S(x) satisfies §.22) we have

n-1
X0 = NOO + 400, N =S gix"™, 4 eACD,
i=0

SinceN(x) is a polynomial of degrea — 1 there hold@ﬁj){N(x)} = 0. Therefore,
P {4000} = DP1A00) = = 4®(Ej) for somesin (v, Vi)
Here 4 (x) is thenth derivative of4(x). But 4™ e A-1-" Therefore,
DY) [x”_lﬁ(x)] - o( jj,';—l) —0 (yj_”_l) asj — oo, (6.9)

since limj o (Yj+i/Yj) exists for all finitei .
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We now turn to the proof ofd.5). Whenk < 0, y(x) = x?b(x), b € A© strictly, by (5.15) and
(5.21). Hencex" 1/ (x) = x"17%/b(x) = w(x), w € A"~1~) strictly. Therefore,

DY [}y 00} = D (w00} = Z0® (i) for somerjn € (1. yin).
By the fact thato™ e A-1®) strictly, we have
D,ﬁj) {x”_l/y/(x)} ~ Kn;ﬁ_a’ ~ Kyj_l_“’ asj — oo, K > 0some constant. (6.10)

Substituting (6.9) ands(10) in ©.1) we obtain §.5).
To prove 6.6) we need to analygéﬁ”{x”—l/z//(x)} for k > 1. Now, by 6.16) and 5.17),

X"/ (x) = u(x) expl-d(x)], u(x) e AN strictly.

Therefore,
() [ n-1 1d ,
Dn {X /W(X)} = o {U(X) EXIO[—¢(X)]} x=n;, forsomenjn € (Yj, Yj+n)-
It is easy to show, by induction am that
d" A A
- _ _ _ (—=1—w+kn) :
G {u(x) exp[ ¢>(x)]} = w(X) exp[ ¢(x)], weA strictly.

Therefore,
D [x"Y/p (0} = DY {wx) exp[ -]}
~ Lni%_m’kn exp [—q@(m,n)] asj —» oo
~ Ly exp I:—(Z)(ﬂj,n):l asj » oo, L >0 some constant (6.11)

Substituting (6.9) andg(11) in 6.1) we obtain
AV —i[fl=0 (yj‘"k”‘” exp [q@(m,n)]) asj — oo.

Realizing that expﬁ(nj,n)] < exp[q?(yj )] and invoking 6.16) and %.21) again we finally obtair6(6).
The resultin (6.7) follows from Theorem 9.4.3%idi (2003, Chapter 9), just as that i6.4) does.
Finally, the result in (6.8) follows from Theorem 8.6.73idi (2003, Chapter 8). (In this case, it is

enough to verify with the help of Lemn#a 1l thatxl‘l areprecisely as needed Bidi, 2003.) O

We have kept the stability results out, as we do not wish to go into the precise description of the

issue of stability here. We encourage the reader to consult the relevant theorems and ler8idas in
(2003, Chapters 8 and 9). We only state thatrth&'® -transformatioris stable whers is odd in every
part of Theoren®.2, and this can be proved rigorously. Whern< 0, in part 1 of Theoren®.3 the
mW®)-transformatioris unstable withR asin (3.13) and it is stable witlR asin (3.14). Wherk > m,

in part 2 of Theoren®.3themW® -transformatioris stable.
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7. Numerical examples

We have applied thenW®)-transformatiorto many convergent or divergent integrals with integrands
in the classeB®. We have done this with different valuesoénd with every possible type of function
in B®. In the case of convergent integrals, in each such application we are able to reach practically
machine accuracy. Less than machine accuracy is achieved for divergent integrals, the achievable accu-
racy depending on the rate at whildh(x)| grows withx. (Note that, wher.)g’o f (x) dx is divergent the
floating-point errors incurred when computing théx|) tendto infinity asl — oo, even if theF (x)
arecomputed to machine accuracy, and this prevents the computed approxin%éfi)ofnsm achieving
machine accuracy.)

All of the integrals considered here are of the forfif] = f0°° f (x) dx. We have considered two
classes of functions.

1. The first class contains functions that can be evaluated in quadruple precision (approximately
35 decimal digits). These are combinations of elementary functions, which are already included
in the Fortran language. Such functions enable us to teshiv®-transformatiorand the two
implementations given in Sectidhto a very high accuracy and draw reliable conclusions from
the relevant numerical results.

2. The second class involves functions, such as Bessel functions of different orders, which are pro-
vided in double precision (approximately 16 decimal digits), by the IMSL library, for example.
Infinite range integrals of such functions have become of some interest lately, as also explained
in Section 1.

In all of our examples below, we have implementedné/® -transformatiorby letting

x(X) if sodd,
X"x(x) if seven.

W(X|)=[

We have takerR in (3.9) as in 8.13) whens is odd. Whens is even we have takeR, both as in
(3.13) and as in3.14) (GPS) to illustrate the fact that the former gives convergence but is not very
stable numerically whek < m, while the second gives convergence and is stable numerically. When
using GPS we have taken = 1.3 throughout; with this choice of in (3.14) we haveR = | for

l =0,1,...,7,andRg = 9, Ri2 = 23, Rig = 62, Ryo = 175, Rp4 = 497 and so on. In our examples

we have compute@\ﬁo), n=0,1,..., where theAﬁ,” arethe approximations produced by tha\()-
transformationas in (3.10). Note thaR, + 2 is the number of finite range integrals(x) usedto

obtain Aﬁo). Finally, in the tables below, we have defined

En[f] = ‘A,@— Ifll, n=0,1,2,....

EXAMPLE 7.1 [k = 0] We have applied thenW(®-transformationsvith integrandsf (x) that are of
the form

sinPx cosix
f(x)= Y

wherep andq arenon-negative integers. Clearly= p + q andd(x) = x for these integrands. Here
we present the numerical results we have obtained for two such integrands:

simX 5
f11(x) = 2 [[fia] = E(3|093— log5); s=5,
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sinfx

f12(x) = ~z ! [f12] = s=6.

—7:
16’
In Table1 we give the numerical results obtained for the integtdlf 1] and [ f1 2]. We have used
X = (l + %)7[

ExXAMPLE 7.2 [1 < k < m] Here we consider functions of the form

f(x;s) = _dix [e‘x(cosxz)s] =¥ (cosxz)s_1 [cosx2 + 2sx sinxz] , I[f]l=1.

Of coursem = 2 andk = 1 for f(x; s), and f (x; s) € B®. In addition,d(x) = x2. We have computed
[[f21] andI[ f2 2], with
fo1x) = f(x;5), f22(x) = f(x;6).

Thenumerical results fof[ f2 1] andl [ f2 2] are given in Tabl€. We have uses = /(I + 1)x.

ExamPLE 7.3 [k = m] For this case we consider the functions

_ oo SimX _1 —1[1]_2 —1{&]. _
fa1(x) =¢€ I [[f31] = 5 tan D 1 tan 213 =3,

TABLE 1 Errors Ep[ f1,1] and Ep[ f1 2] for the integrals of Examplé.1
n Rn Enl f1.1] Rn Enl f1.2] Rn Enl f1.2]

4 4 2.38D — 07 4 7.35D — 05 4 7.35D — 05

8 8 801D — 13 8 133D - 08 9 119D — 08
12 12 200D — 17 12 338D — 13 23 105D — 13
16 16 428D — 22 16 229D — 16 62 572D — 19
20 20 401D — 27 20 418D — 21 175 122D — 25
24 24 155D — 31 24 637D — 23 497 914D — 32
28 28 147D — 31 28 244D — 21
32 32 32 132D — 19
36 36 36 433D — 17
40 40 40 179D — 14
TABLE 2 Errors Eq[ f2,1] and Eq[ f2 2] for the integrals of Exampl@é.2
n Rn En[ f21] Rn En[ f2,2] Rn En[ f2,2]

4 4 190D — 07 4 274D — 06 4 274D — 06

8 8 274D — 13 8 606D — 10 9 538D — 10
12 12 755D — 19 12 240D — 15 23 113D - 15
16 16 274D — 25 16 395D — 18 62 218D — 21
20 20 593D - 31 20 264D — 22 175 943D — 30
24 24 872D — 31 24 340D — 24 497 601D — 31
28 28 872D — 31 28 477D — 22
32 32 32 148D — 20
36 36 36 301D — 18

40 40 40 855D — 16
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oy SiMX 1 p? + 4 1 (p? + 4)?
f LS T . ey Zlogl ST
3,2(X) € > [ 3,2] ) Ogl p2 ] + Og[ pz(pz + 16)

; Ss=4.
X 16

In addition,d (x) = x. We have chosep = 0.1 for our computations. The numerical results fpf3.1]
andl[ f3 2] are given in Tabl&®. We have useg = (I + 1)x.

Thenext examples involve products of Bessel functions.

ExAMPLE 7.4 We now consider the functions
s—1 1
f(x;8) =[] "h(x), I[f]= s

This can be verified by invoking the fact tha§(x) = —J1(x). Of course, for these integrals, = 1 and
k =0andf(x;s) e BO. In addition,d(x) = x. We have computet]] f41] and|[ f4 2], with

f2100 = F(6:9),  fa2(x) = f(x; 10),

Thenumerical results for [ f4 1] andl [ f4 2] are given in Tablel. We have useg| = (I + %) .

TABLE 3 Errors Eq[ f31] and Eq[ f3 2] for the integrals of Exampl@.3

n Rn En[ f31] Rn En[ f3,2] Rn En[ f3,2]
4 4 1.68D — 07 4 947D — 04 4 947D — 04
8 8 101D - 13 8 155D — 06 9 131D - 06
12 12 179D — 18 12 244D — 09 23 117D - 10
16 16 119D — 23 16 384D — 12 62 315D — 18
20 20 457D — 29 20 603D — 15 175 193D — 34
24 24 385D — 34 24 949D — 18 497 578D — 34
28 28 000D + 00 28 149D — 20
32 32 32 235D — 23
36 36 36 6.35D — 25
40 40 40 438D — 24

TABLE 4 Errors Eq[ f4,1] and Eq[ f4 2] for the integrals of Examplé.4

n Rn En[ fa.1] Rn En[ fa2] Rn En[ f4.2]
4 4 441D - 12 4 148D — 12 4 148D — 12
8 8 555D — 17 8 139D — 17 9 236D — 16
12 12 833D — 17 12 195D — 14 23 139D - 17
16 16 111D - 16 16 434D — 13 62 971D — 17
20 20 971D - 17 20 415D - 12 175 416D — 17
24 24 971D — 17 24 485D — 09 497 555D — 17

28 28 139D — 16 28 270D — 07
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EXAMPLE 7.5 We now consider
2

fs.1(x) = X[ Jo(X)]3, |[f5,1]=m; s=3,
f5.200 = X[ (0121 (%), |[f5,2]=3;:/:_3; s=3.

Herem = 1,k = 0 andd(x) = x. Of these integral$| f5.1] is convergent, whild [ fs o] is divergent
but defined in the sense of Abel summability. Actualllyfs »] can be obtained usind fs 1] as follows.
Integrating by parts we obtain

szl = [ x2[00123100 dx = — X[ J00IIE + 2 | x[3001% dx
0 3 3Jo

2 (™ 2
= §/O X[Jo(X)]ng = él [ f5,1]

sincex?[Jo(x)]® vanishes ak = 0 and it behaves like/2(Ae* + Be ¥)3 4+ o(1) asx — oo, and
thus makes no contribution to the Abel suml §fs 2]. The numerical results far| fs 1] and| [ fs 2] are
given in Table5. We have uses| = (I + 3)x.

EXAMPLE 7.6 Next we consider

royr (%)

) = x— 2 =7
fOGA) =x" o] 1[f]= 2/”“(%)

, O0<Ri<1l, s=2

Again,m = 1 andk = 0 andd(x) = x. The constraint§iA < 1 and®4 > 0 guarantee thaf (x)

is integrable ak = 0 andx = oo, respectively. Foii4 < 0, f(X) is integrable partly in the sense of
Abel summability and partly in the sense of Hadamard finite part, as explained at the end of 8ection
In fact, I[ f] can be continued analytically to the whaoleplane excepti = —2i and1 = 2i + 1,

i = 0,1,..., where it has simple poles. Since, in our method, we need to compute the finite range
integralsF(x) = fox f (x) dx, we cannot work with those values affor which %4 > 1. We can,
however, work with those for whichi1 < 0. In this example, we consider

o100 = f (s —3). foat0 = f (x:—3).

TABLE 5 Errors Eq[ 5 1] and Ep[ 5 2] for the integrals of Examplé.5

n Rn En[ f5.1] En[ fs.2]
4 4 3.97D — 06 201D - 05
8 8 257D — 11 1.11D - 10
12 12 3.89D — 16 749D — 16
16 16 7.22D — 16 2.75D — 15
20 20 6.11D — 16 791D — 15
24 24 8.33D — 16 1.12D — 14
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We have used| = (I + %) = . The numerical results far fg 1] and | [ fe 2] are given in Tablé. This
example shows that thra WS -transformatioris an effective tool for analytic continuation as well.

The only case not tested by example so far is that with m. The next example does this testing
with an integrand iB@ involving Bessel functions.

EXAMPLE 7.7 [k > m] We apply them WS -transformatiorto the integral
1
1) = xe P00, 117 = < ep(-1/p)lo(L/p); 5=2

Here lo(x) is the modified Bessel function of order zero of the first kind. Note thatR > m =1
for f7(x). For our computations we have choser= 0.02. We have applied th@W® -transformation
with R asin both 3.13) and 8.14). We have also used = (I + %)n The numerical results far| f7]
aregiven in Table7. Note that, in this case, both choices of Rearevery effective. This should be
contrasted with the cases in whislis even ank < m.

ExamPLE 7.8 Before ending this section we would like to study the case given in Exafnplas this

case is somewhat unusual. Clearly, the integral ©f) can be computed by thraW(?-transformation
preciselyas described earlier. It can also be computed at much smaller cost by taking into account the
special structure of (x), however. Recall thaf (x) has the form

f(x) = UT(x) exp[2i0(x)] + U~ (x) exp[-2i0(x)] ,

whereU* have the same structure as tde in (4.4). Thus,f (x) is purely oscillatory. Actuallyf (x) €
B, with the functiond(x) in (4.4) replaced by @x), and its integral can be computed with high
precision and stably by using tmeWM-transformationdespite the fact that = 2 (even) in this case
to begin with. For this we choose tlxe asthe roots of the polynomial equation§(2) =+ )z or
2§(x) =+ + %)n, | =0,1,...,whereq is an integer for whiclxg is the smallest zero greater than

TABLE 6 Errors By fe,1] and Eq[ fs 2] for the integrals of Exampl@.6

n Rn En[ fe.1] Rn En[ fe.1] Rn En[ fe.2] Rn En[ f6.2]
4 4 1.86D — 03 4 186D — 03 4 110D - 01 4 110D — 01
8 8 141D — 08 9 151D — 08 8 399D - 04 9 379D — 04
12 12 274D — 07 23 150D — 09 12 763D — 06 23 104D — 07
16 16 682D — 05 62 390D — 09 16 483D — 03 62 533D — 07
20 20 162D — 02 175 311D - 10 20 166D + 00 175 351D — 07
24 24 602D — 01 497 146D — 08 24 498D + 01 497 159D — 05

TABLE 7 Errors Ej[ f7] for the integrals of Exampl@.7

n Rn En[ 7] Rn En[ f7]
4 4 4.46D — 03 4 4.46D — 03
8 8 2.38D — 08 9 9.72D — 09
12 12 542D — 14 23 0.00D + 00
16 16 1.33D — 15 62 1.78D — 15
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a of sin[29(x)] and of cos[Z(x)], respectively. Now we proceed by choosiRg= |, instead ofR =
max{max|ocR _1], |} with Ry = 0. This applies to functions of the forrh(x) = W(x)J, (X)Y,)(x), as
discussed in Examph.2.
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Appendix A

In this appendix we give the complete asymptotic analysidgof) and 44(x) asl — oo, and
deduce the asymptotic behaviour $fx|) thatis required in Sectiom. Since everything depends on
the asymptotic behaviour of asl — oo we review this topic and its consequences first. Before
doing that we recall that, is the largest real solution of the polynomial equatiéis) = (q + 1)z or
0(x) = (q+1+ )z, whered(x) = S wix™, o > 0.

In the sequelT (I) will denotegenericallyany function ofl that has a convergent expansion for all
largel or an asymptotic expansion s> oo, of the form> 2, 7l —1/m with 79 = 1. Let us denote the
class of such functions by. It is easy to show that if1(I) andT2(l) aretwo such functions ify", then
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T3() = [Ta(DH]P[T2()]9 is also inT, for any p andq, whether integer or not. In the sequel, we express

this generically in the formT ()]P[T(1)]9 = T ().
Thefollowing lemma is Lemma 3.4 i®idi (1988).

LEMMA A.1 As afunction ofl, and for sufficiently largé, x; hasthe convergent expansion

o ) - 1/m
x = > gld /M =a/MT(), a= (—) > 0. (A1)
i—0 #o
Thus,we also have
xp1= > al/M g =g, 0<i<m-1, aj,=amn+—, (A2)
i=0 m
xP . —xP = aP-Lremy gy 5P Pry (A.3)
17X =9 > Gy = mao P, .
1 w
My 21y o (E) 1+ 2717 Vo (A.4)
X m X m

First, note that the convergent series M) represents; asymptoticallyasl — oo as well. As
mentioned earlier we can also choose the sequéng¢esuchthat x; hasa not necessarily convergent
asymptotic expansion of the form

o0
X| ~ Zail(l_i)/m asl > 00 = x =agT(). (A.5)
i—0

Whetherx, satisfies(A.1) or (A.5),x; ~ agl/™ asl — oo. Therefore, a functiorP(l) that has a
convergent or asymptotic expansion (as> co) of the forml</™>">° g1 ='/™ wheredy # 0 andx
is an integer, also has a convergent or asymptotic expansion asoc) of the formx/ >y & xl‘i ,
whereep = do/ag # 0. This can be seen easily in the case thatxharesolutions of the polynomial
equationsd(x) = (q + N or 4(x) = (q +1 + %)7[; in these cased, is a polynomial inx, and
substitutingthis polynomial in the serigg/™ > dil ~i/m andre-expanding in negative powers xf
(sincex; — oo asl — oo) we obtain the expansioxf > xl_i . This last point will be of help in
reaching our final conclusions abdbix ). .

Making use of LemmaA.1, we can now go on to analyse the quantifi®s;), 4¢(xx) andS(x) as
| - oo.

Asymptotics of Rq) SinceG(x) is strictly in A© it satisfiesG(x) ~ >0 X~ asx — o0, Cg # 0.
Therefore G(x) = ¢coT (1). Consequentlyif ¢, is the first nonzera; following cg, then, by A.3)

G(41) - G<x|>~2q(x.+1 x) =~ r:;ro' LMy, r s,

andhence
G+1) _ Gkit1) = GX)
G(x) G(x)

_ rc —1-r/m
1=1—-——I T(). A.6
— () (A.6)
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Combining(A.4) and (A.6) in (5.12) we obtain
R(x) = [1 + 2 —1T(|)] [1 S —1—f/mT(|)}
m MCoay,
w

=14 —I717(). AT
+ 17T (A7)

Asymptoticof exp[AqE(xn] To begin there are two cases to consider.

1. Whenk < 0 we have thap(x) = 0, and thereforedé(x) = 0 and
exp[AqE(xl)] —1 vl (A.8)

2. Whenk > 0, by (A.3), we have
k—1 _ . k=1 i _
Ap(x) =D Ji (x,";l' - xlk") =D him gy ITHHD/mT(),
i=0 i=0
Consequently
. k .
Ad(x) = CI~H/MT (), C= Ezoa('; <0 sinceig < 0. (A.9)

Thebehaviour of expfié(x)] varies depending on whetherlk < mork = mork > m.
(@) When 1< k < m, limj_, o0 4h(x) = 0. As a resullt,
exp[Aés(xl)] — 14+ CI=3HK/mT )y, (A.10)
(b) Whenk = m, (A.9) becomes
Ad(x) =CT()=C+ DI7/™T() forsomei > 1andD 0.
Since lim_ o | 7/™T (1) = 0 there holds
exp[DI~/™T ()] = 1+ DI7/™MT ().
Thereforewith C as in A.9),
exp[AqS(xl)] — e exp [Dl_i/mT(I)] — €€ [1 + Dl‘i/mT(I)]
for someD # 0 and integei > 1. (A.11)

(c) Whenk > mwe have lim_, 4¢(x) = —oc sinceC < 0 by (A.9). As a result, lim, o

exp[4¢(x)] = 0, which implies that exp[$(x)] has an empty asymptotic expansion,

meaning that it tends to zero faster than any negative poweasif — oo, that is,

exp[mﬁ(xm] =0(1"P asl > o0, Vp>O0. (A.12)
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Asymptotic®f S(x) Combiningthe above we have the following results 8(x; ).
1. Whenk < 0,

S(x) = R(x) = 1+ %I_lT(I). (A.13)
2. When 1< k <m,
S(x) = [1 + %I *T(l)} [1 +Cl —1+k/mT(|)] — 14 CI~H/mT (), (A.14)
3. Whenk = mthere exists a constaM # 0 and an integet > min{i, m} such that
S(x) = €° [1 + %I_lT(I)] [1 + Dl_i/mT(I)] — &€ 4+ MI~/™T (). (A.15)

4. Whenk > m,
S(x) =0(0"P) asl - 00, Vp>D0. (A.16)
In our treatment of the quantitieS$(x ) &+ 1] below we also recall the fact that a functiél) that

has a convergent or asymptotic expansion (as oo) of the forml*/™m >itpdil —1/m wheredp # 0 and

x is an integer, also has a convergent or asymptotic expansion {asoo) of the formx > e x™,

whereey = do/ag # 0.

Al [S(x)+ 1] whens is odd
1. Whenk < 0,

Sx)+1=2+ %I T = [SX) +1] € AQ  strictly. (A.17)

2. When 1< k < m,

SXx)+1=2+CI "1y = [SX) +1]eA@ strictly. (A.18)

3. Whenk = m,
S(x) +1= (eC + 1) FMITIMTA) = [SK) +1] € AQ  strictly. (A.19)

4. Whenk > m,

SXx)+1=1+0(1"P) asl 500, Vp>0 = [S(X) +1]eA® strictly. (A.20)

A.2 [S(x)) — 1] whens is even
1. Whenk < 0,

S(x)— 1= %I “IT(0) =  [S(X)—1] e AC™  strictly. (A.21)
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2. When 1< k < m,
S(x)—1=CI /M1y = [Sx)—1]e AX™ strictly. (A.22)
3. Whenk = m, becaus€ < 0 and hence® + 1,
S(x)—1= (eC - 1) FMITEIMTA) = [S) —1] € AO  strictly. (A.23)
4. Whenk > m,

Sx)—1=—-14+0(1"P) asl 500, Vp>0 = [Sx)—1]eA@ strictly. (A.24)
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