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EULER–MACLAURIN EXPANSIONS FOR INTEGRALS WITH

ARBITRARY ALGEBRAIC ENDPOINT SINGULARITIES

AVRAM SIDI

Abstract. In this paper, we provide the Euler–Maclaurin expansions for (off-
set) trapezoidal rule approximations of the divergent finite-range integrals∫ b
a f(x) dx, where f ∈ C∞(a, b) but can have arbitrary algebraic singularities

at one or both endpoints. We assume that f(x) has asymptotic expansions of
the general forms

f(x) ∼ K (x− a)−1 +
∞∑
s=0

cs(x− a)γs as x → a+,

f(x) ∼ L (b− x)−1 +
∞∑
s=0

ds(b− x)δs as x → b−,

where K,L, and cs, ds, s = 0, 1, . . . , are some constants, |K|+ |L| �= 0, and γs
and δs are distinct, arbitrary and, in general, complex, and different from −1,
and satisfy

�γ0 ≤ �γ1 ≤ · · · , lim
s→∞

�γs = +∞; �δ0 ≤ �δ1 ≤ · · · , lim
s→∞

�δs = +∞.

Hence the integral
∫ b
a f(x) dx exists in the sense of Hadamard finite part.

The results we obtain in this work extend some of the results in [A. Sidi,
Numer. Math. 98 (2004), pp. 371–387] that pertain to the cases in which
K = L = 0. They are expressed in very simple terms based only on the
asymptotic expansions of f(x) as x → a+ and x → b−. With h = (b − a)/n,
where n is a positive integer, one of these results reads

h

n−1∑
i=1

f(a+ ih) ∼ I[f ] +K (C − log h) +

∞∑
s=0

γs �∈{2,4,...}

csζ(−γs)h
γs+1

+ L (C − log h) +
∞∑
s=0

δs �∈{2,4,...}

dsζ(−δs)h
δs+1 as h → 0,

where I[f ] is the Hadamard finite part of
∫ b
a f(x) dx, C is Euler’s constant and

ζ(z) is the Riemann Zeta function. We illustrate the results with an example.
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2160 AVRAM SIDI

1. Introduction

In this work, we provide the Euler–Maclaurin expansions for (offset) trapezoidal

rule approximations of the divergent finite-range integrals
∫ b

a
f(x) dx, where the in-

tegrands f(x) have arbitrary algebraic singularities at x = a and x = b. Specifically,
we assume that f(x) has the following properties:

(1) f ∈ C∞(a, b) and has the asymptotic expansions

f(x) ∼ K (x− a)−1 +
∞∑
s=0

cs(x− a)γs as x → a+,

f(x) ∼ L (b− x)−1 +

∞∑
s=0

ds(b− x)δs as x → b−,

(1.1)

where K,L, and cs, ds are constants, |K| + |L| �= 0, and γs and δs are
distinct, arbitrary and, in general, complex, and satisfy

(1.2)
γs �= −1; �γ0 ≤ �γ1 ≤ �γ2 ≤ · · · ; lims→∞ �γs = +∞,

δs �= −1; �δ0 ≤ �δ1 ≤ �δ2 ≤ · · · ; lims→∞ �δs = +∞.

Here, �z stands for the real part of z.1 (We state at this point that this
assumption generalizes that in Sidi [15], where K = L = 0. We will come
back to this point later.)

Note that, in case f(x) = (x−a)−pga(x) = (b−x)−qgb(x), where p and q
are positive integers, ga ∈ C∞[a, b) and gb ∈ C∞(a, b], and ga(x) and gb(x)
have full Taylor series about x = a and x = b, respectively, the γs and the
δs are, respectively,

−p,−p+ 1, . . . ,−3,−2, 0, 1, 2, . . . , and − q,−q + 1, . . . ,−3,−2, 0, 1, 2, . . . ,

and we have

K =
g
(p−1)
a (a)

(p− 1)!
and L = (−1)q−1 g

(q−1)
b (b)

(q − 1)!
.

(2) By (1.1), we mean that, for every r, such that �γr ≥ −1,

f(x)−
[
K (x− a)−1 +

r−1∑
s=0

cs(x− a)γs

]
= O

(
(x− a)γr

)
as x → a+,

f(x)−
[
L (b− x)−1 +

r−1∑
s=0

ds (b− x)δs
]
= O

(
(b− x)δr

)
as x → b− .

(1.3)

This is consistent with (1.2).
(3) For each k = 1, 2, . . . , the kth derivative of f(x) also has asymptotic ex-

pansions as x → a+ and x → b− that are obtained by differentiating those
in (1.1) term by term.

1We can write the expansions in (1.1) in the “simpler” form

f(x) ∼
∞∑
s=0

cs (x− a)γs as x → a+, f(x) ∼
∞∑
s=0

ds (b− x)δs as x → b−,

ordering the γs and the δs as in (1.2), and allowing now one of the γs and/or one of the δs to be
equal to −1. However, this complicates the statements of our results. Therefore, we have chosen
to separate these two exponents as in (1.1).
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EULER–MACLAURIN EXPANSIONS FOR SINGULAR INTEGRALS 2161

The following are consequences of (1.2):

(i) There are only finitely many γs and only finitely many δs having the same
real parts; consequently, �γs < �γs+1 and �δs′ < �δs′+1 for infinitely
many values of the indices s and s′.

(ii) The sequences {(x−a)γs}∞s=0 along with (x−a)−1 and {(b−x)δs}∞s=0 along
with (b− x)−1 are asymptotic scales as x → a+ and x → b−, respectively,
in the following sense: For each s = 0, 1, . . . ,

lim
x→a+

∣∣∣∣ (x− a)γs+1

(x− a)γs

∣∣∣∣ =
{
1 if �γs = �γs+1,

0 if �γs < �γs+1,

lim
x→b−

∣∣∣∣ (b− x)δs+1

(b− x)δs

∣∣∣∣ =
{
1 if �δs = �δs+1,

0 if �δs < �δs+1.

(iii) The integral
∫ b

a
f(x) dx does not exist in the ordinary sense, because f(x)

is not integrable through either x = a or x = b or both, since either K �= 0
or L �= 0 or both. It does exist in the sense of the Hadamard finite part,

however.2 [When K = L = 0,
∫ b

a
f(x) dx exists in the ordinary sense if

�γ0 > −1 and �δ0 > −1. Otherwise, it exists in the sense of the Hadamard

finite part.] The Hadamard finite part of
∫ b

a
f(x) dx is defined as follows:

Let the integers μ and ν be such that

�γμ−1 ≤ −1 < �γμ, �δν−1 ≤ −1 < �δν .
Define also

φμ(x) := f(x)−
[
K(x− a)−1 +

μ−1∑
s=0

cs (x− a)γs

]
,

ψν(x) := f(x)−
[
L(b− x)−1 +

ν−1∑
s=0

ds (b− x)δs
]
.

(1.4)

Then, for arbitrary t ∈ (a, b),∫ b

a

f(x) dx =K log(t− a) +

μ−1∑
s=0

cs
(t− a)γs+1

γs + 1
+

∫ t

a

φμ(x) dx(1.5)

+L log(b− t) +
ν−1∑
s=0

ds
(b− t)δs+1

δs + 1
+

∫ b

t

ψν(x) dx,

Here the integrals of φμ(x) and ψν(x) exist in the ordinary sense, as is clear
from the way we have chosen μ and ν.

In Sidi [15], we derived, among other results, the Euler–Maclaurin expansions for

(offset) trapezoidal rule approximations of finite-range integrals
∫ b

a
= f(x) dx, where

2The usual notation for Hadamard finite part integrals is
∫ b
a= f(x) dx. For simplicity, in this

work, we use
∫ b
a f(x) dx to denote both ordinary and Hadamard finite part integrals. For the

definition and properties of Hadamard finite part integrals, see Davis and Rabinowitz [3, pp. 11–
14] or Evans [4] or Kythe and Schäferkotter [5], for example. These integrals have most of the
properties of regular integrals and some properties that are quite unusual. For example, they are
invariant with respect to translation, but they are not invariant under a scaling of the variable of
integration.
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2162 AVRAM SIDI

f(x) is as described above, except that K = L = 0 in (1.1).3 Thus, in a sense,
the present work completes the treatment of [15] with respect to such f(x). In
connection with these generalized Euler–Maclaurin expansions, we mention that the
results of [15] were later used in Sidi [16], [18], and [17], in conjunction with some
singular variable transformations, to “optimize” the accuracy of the trapezoidal
rule approximations for finite-range integrals with algebraic endpoint singularities.

In the next section, we state the main results of this work. In Section 3, we pro-
vide the proofs of these results. In Section 4, we illustrate them with an interesting
example treated recently by Brauchart, Hardin, and Saff [2].

Special cases of the problem we treat here have been considered by various
authors. The case f(x) = (x− a)γg(x), g ∈ C∞[a, b] was first treated in the paper
by Navot [10]. Later Navot [11] extended his treatment to the more general case
of f(x) = (x − a)γ log(x − a)g(x). [This is achieved by differentiating the Euler–

Maclaurin expansion for the integral
∫ b

a
(x− a)γg(x) dx with respect to γ.] Navot’s

results were rederived later by Lyness and Ninham [8] using a different method
involving generalized functions. The treatment of [8] covers the more general cases
of f(x) = (x−a)γ(b−x)δg(x) and f(x) = (x−a)γ log(x−a)(b−x)δ log(b−x)g(x),
g ∈ C∞[a, b]. (Actually, these cases can be treated by using Navot’s results as
well.) For a brief survey of the relevant results, see also Sidi [14, Appendix D].
Subsequently, in a paper by Ninham [12], Navot’s expansions were shown to hold
also for the case in which �γ ≤ −1 and/or �δ ≤ −1, such that γ and δ are

different from −1,−2, . . . ; in this case,
∫ b

a
f(x) dx is defined as a Hadamard finite

part integral. Finally, the remaining case in which γ or δ or both are negative
integers has been dealt with by Lyness [7] and by Monegato and Lyness [9].

We would like to emphasize that our present results and those in [15] do not
follow from the previous works on extensions of Euler–Maclaurin expansions in the
presence of endpoint singularities.

Before closing this section, we note that we have assumed that f ∈ C∞(a, b)
only for the sake of simplifying the presentation. We can assume that f ∈ Ck(a, b)
for some finite k just as well. The method of proof provided in [15] applies to this
case with minor changes.

2. Main Results

Throughout the remainder of the paper, we use the notation

(2.1) I[f ] :=

∫ b

a

f(x) dx,

whether
∫ b

a
f(x) dx exists as an ordinary integral or as a Hadamard finite part

integral, and

(2.2) T̃n[f ; θ] := h

n−1∑
i=0

f(a+ ih+ θh); h =
b− a

n
, n = 1, 2, . . . .

Here T̃n[f ; θ] is the offset trapezoidal rule approximation to I[f ], and θ ∈ (0, 1).

Because f ∈ C∞(a, b), T̃n[f ; θ] with θ ∈ (0, 1) is well defined. Note that T̃n[f ;
1
2 ] is

3Even though the results of [15] are correct for γs, δs �= −1, they were stated under the
condition that γs, δs �= −1,−2,−3, . . . , due to an unfortunate oversight. In this work, we correct
this blunder.
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EULER–MACLAURIN EXPANSIONS FOR SINGULAR INTEGRALS 2163

simply the midpoint rule approximation to I[f ]. For θ = 1, we modify T̃n[f ; θ] and
define

(2.3) Ťn[f ] := h
n−1∑
i=1

f(a+ ih), h =
b− a

n
, n = 1, 2, . . . .

By the fact that f ∈ C∞(a, b), Ťn[f ] is always well defined just as T̃n[f ; θ] with
0 < θ < 1. We also set

(2.4) Tn[f ] = h

[
1

2
f(a) +

n−1∑
i=1

f(a+ ih) +
1

2
f(b)

]
= Ťn[f ] +

h

2
[f(a) + f(b)]

and

(2.5) T ′
n[f ] = h

n−1∑
i=1

f(a+ ih) +
h

2
f(b), T ∗

n [f ] = h
n−1∑
i=1

f(a+ ih) +
h

2
f(a),

when these are defined. Note that Tn[f ] is the standard trapezoidal rule for I[f ].
Note that the offset trapezoidal rule allows extensions for composite (or n-panel)

Gauss-Legendre or other rules of a higher degree of accuracy, where the n-panel rules
become linear combinations of offset type rules. This provides further motivation
for considering the offset trapezoidal rule in our developments.

In our results below, ζ(z, θ) denotes the generalized Zeta function, which is de-
fined by the convergent Dirichlet series

∑∞
k=0 1/(k + θ)z for �z > 1 and continued

analytically to the whole complex z-plane, with the exception of z = 1, where it
has a simple pole with residue 1. For θ = 1, ζ(z, 1) is simply ζ(z), the Riemann
Zeta function. At this point, we only note the following relations among the two
Zeta functions and the Bernoulli polynomials Bj(θ) and the Bernoulli numbers Bj

(see, [13, Chapters 24, 25] or [14, Appendices D, E], for example):

ζ(−j, θ) = −Bj+1(θ)

j + 1
, j = 0, 1, . . . ,

Bj(0) = Bj , j ≥ 0; B1(1) = −B1; Bj(1) = Bj , j ≥ 0, j �= 1,

B0 = 1, B1 = −1

2
; B2j+1 = 0, B2j �= 0, j = 1, 2, . . . ,(2.6)

ζ(0) = −1

2
; ζ(−2j) = 0, ζ(1− 2j) = −B2j

2j
�= 0, j = 1, 2, . . . ,

Bj(1− θ) = (−1)jBj(θ), B2j+1(
1
2
) = 0, ζ(−2j, 1

2
) = 0, j = 0, 1, . . . .

Our results also involve the Psi function, which is defined via ψ(z) = Γ′(z)/Γ(z),
where Γ(z) is the Gamma function. We note that (see Luke [6, pp. 12–13], for
example)

lim
n→∞

[ n∑
i=0

(i+ θ)−1 − log n

]
= −ψ(θ),

lim
n→∞

[ n∑
k=1

1

k
− log n

]
= C (Euler constant),(2.7)

ψ(1) = −C, ψ( 12 ) = −C − 2 log 2.

Here are the main results.
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Theorem 2.1. Let f(x) be as in (1.1)–(1.3). Then, with 0 < θ < 1, there holds

T̃n[f ; θ] ∼ I[f ] +K[−ψ(θ)− log h] +
∞∑
s=0

cs ζ(−γs, θ)h
γs+1

(2.8)

+ L[−ψ(1− θ)− log h] +

∞∑
s=0

ds ζ(−δs, 1− θ)hδs+1 as h → 0.

The following corollary is obtained by invoking in Theorem 2.1 the relations
given in (2.6).

Corollary 2.2. When θ = 1
2 , the result in (2.8) can be re-expressed as in

(2.9) T̃n[f ;
1
2
] ∼ I[f ] + (K + L)(C + 2 log 2− log h)

+

∞∑
s=0

γs �∈{0,2,4,...}

cs ζ(−γs,
1
2
)hγs+1 +

∞∑
s=0

δs �∈{0,2,4,...}

ds ζ(−δs,
1
2
)hδs+1 as h → 0.

Theorem 2.3. For Ťn[f ], we have

(2.10) Ťn[f ] ∼ I[f ] + (K + L)(C − log h)

+
∞∑
s=0

γs �∈{2,4,6,...}

cs ζ(−γs)h
γs+1 +

∞∑
s=0

δs �∈{2,4,6,...}

ds ζ(−δs)h
δs+1 as h → 0.

Remarks.

(1) From (1.2), it is obvious that the expansions in (2.8), (2.9), and (2.10) are
genuine asymptotic expansions.

(2) The results in (2.9) and (2.10) imply that the (even) powers (x− a)2s and
(b−x)2s, even if present in the asymptotic expansions of (1.1), do not con-

tribute to the Euler–Maclaurin expansion of T̃n[f ;
1
2
] when s ∈ {0, 1, . . .},

and they do not contribute to the Euler–Maclaurin expansion of Ťn[f ] when
s ∈ {1, 2, . . .}. Actually, this is caused by the facts that ζ(−2s, 12 ) = 0 for
s = 0, 1, 2, . . . , and ζ(−2s) = 0 for s = 1, 2, . . . , [recall (2.6)]. Despite this,
we have chosen to emphasize their absence from the relevant summations
in (2.9) and (2.10).

3. Proofs

3.1. Asymptotic expansion of the sum
∑n−1

i=0 (i + θ)−1. We begin by stating
the classical result on the Euler–Maclaurin expansion for sums. For a proof of this
result, we refer the reader to Steffensen [19].

Theorem 3.1. Let F (t) ∈ Cm[r,∞), where r is an integer, and let θ ∈ [0, 1] be
fixed. Then, for any integer n > r,

n−1∑
i=r

F (i+ θ) =

∫ n

r

F (t) dt+

m∑
k=1

Bk(θ)

k!

[
F (k−1)(n)− F (k−1)(r)

]
+Rm(n; θ),

where the remainder term Rm(n; θ) is given by

Rm(n; θ) = −
∫ n

r

F (m)(t)
B̄m(θ − t)

m!
dt,
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where B̄k(x) is the periodic Bernoullian function that is the 1-periodic extension of
the Bernoulli polynomial Bk(x).

Applying this theorem with F (t) = t−1 and r = 1, we obtain

(3.1)

n−1∑
i=0

(i+ θ)−1 = θ−1 + log n+

m∑
k=1

Bk(θ)

k!

(
[−1]k−1n

−k − [−1]k−1

)
+Rm(n; θ),

where

Rm(n; θ) = −
∫ n

1

[−1]mt−m−1 B̄m(θ − t)

m!
dt.

Here, we have defined

[ω]0 = 1 and [ω]s =
s−1∏
i=0

(ω − i), s = 1, 2, . . . .

By the fact that B̄m(x) is bounded for all x, it follows that the integrand in Rm(n; θ)
is O(t−m−1) as t → ∞. As a result, Rm(∞; θ) exists when m ≥ 1, and

Rm(n; θ)−Rm(∞; θ) =

∫ ∞

n

[−1]mt−m−1 B̄m(θ − t)

m!
dt = O(n−m) as n → ∞.

With the help of this, we can now rewrite (3.1) in the form

(3.2)
n−1∑
i=0

(i+ θ)−1 = log n+ S′
m(θ) + S′′

m(θ),

where

(3.3) S′
m(θ) = θ−1 −

m∑
k=1

Bk(θ)

k!
[−1]k−1 +Rm(∞; θ)

and

(3.4) S′′
m(θ) =

m∑
k=1

Bk(θ)

k!
[−1]k−1n

−k +O(n−m) as n → ∞.

Clearly, limn→∞ S′′
m(θ) = 0. Consequently,

(3.5) lim
n→∞

[ n−1∑
i=0

(i+ θ)−1 − log n

]
= S′

m(θ), independently of m.

Now, invoking (2.7), we also realize that S′
m(θ) = −ψ(θ). Combining this and (3.4)

in (3.2), we finally have

(3.6)
n−1∑
i=0

(i+ θ)−1 = log n− ψ(θ) +
m∑

k=1

Bk(θ)

k!
[−1]k−1n

−k +O(n−m) as n → ∞.

Note that, for θ = 1, (3.6) reduces to the well-known result

(3.7)
n−1∑
i=0

(i+1)−1 = log n+C+
1

2n
+

m∑
k=2

k even

Bk

k!
[−1]k−1n

−k+O(n−m) as n → ∞.
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3.2. Euler–Maclaurin expansions for the integrals
∫ b

a
(x− a)ωdx and

∫ b

a
(b−

x)ωdx. We now consider the Euler–Maclaurin expansions for the integrals of the
functions

(3.8) uω(x) = (x− a)ω and vω(x) = (b− x)ω.

Note that
∫ b

a
uω(x) dx and

∫ b

a
vω(x) dx exist as ordinary integrals when �ω > −1.

Otherwise, they exist as Hadamard finite part integrals. We have

(3.9) I[uω] =
(b− a)ω+1

(ω + 1)
= I[vω] if ω �= −1, I[u−1] = log(b− a) = I[v−1].

In addition, it is easy to show that, for all ω and for θ ∈ (0, 1),

(3.10) T̃n[uω; θ] = h
n−1∑
i=0

(ih+ θh)ω and T̃n[vω; θ] = h
n−1∑
i=0

(ih+ (1− θ)h)ω,

so that

(3.11) T̃n[vω; θ] = T̃n[uω; 1− θ].

In addition,

(3.12) Ťn[uω] = h

n−1∑
i=1

(ih)ω = Ťn[vω],

and also

(3.13) T ′
n[uω] = h

n−1∑
i=1

(ih)ω +
h

2
(b− a)ω = T ∗

n [vω].

Then we have the following results:

Theorem 3.2. Let m be a nonnegative integer such that m > �ω + 1. Then the
following are true:

(1) For ω �= −1 and θ ∈ (0, 1],

(3.14a)

T̃n[uω; θ] = I[uω] + ζ(−ω, θ)hω+1

+

m∑
k=1

Bk(θ)

k!
u(k−1)
ω (b)hk +O(hm) as h → 0,

(3.14b) T ′
n[uω] = I[uω] + ζ(−ω)hω+1 +

m∑
k=2
keven

Bk

k!
u(k−1)
ω (b)hk +O(hm) as h → 0.

(2) For ω �= −1 and θ ∈ [0, 1),

(3.15a)

T̃n[vω; θ] = I[vω] + ζ(−ω, 1− θ)hω+1

−
m∑

k=1

Bk(θ)

k!
v(k−1)
ω (a)hk +O(hm) as h → 0,

(3.15b) T ∗
n [vω] = I[vω] + ζ(−ω)hω+1 −

m∑
k=2
keven

Bk

k!
v(k−1)
ω (a)hk +O(hm) as h → 0.
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(3) For ω = −1 and θ ∈ (0, 1],

(3.16a)

T̃n[u−1; θ] = I[u−1]− [log h+ ψ(θ)]

+

m∑
k=1

Bk(θ)

k!
u
(k−1)
−1 (b)hk +O(hm) as h → 0,

(3.16b) T ′
n[u−1] = I[u−1]− [log h−C]+

m∑
k=2
keven

Bk

k!
u
(k−1)
−1 (b)hk+O(hm) as h → 0,

(4) For ω = −1 and θ ∈ [0, 1),

(3.17a)

T̃n[v−1; θ] = I[v−1]− [log h+ ψ(θ)]

−
m∑

k=1

Bk(θ)

k!
v
(k−1)
−1 (b)hk +O(hm) as h → 0,

(3.17b) T ∗
n [v−1] = I[v−1]− [log h−C]−

m∑
k=2
keven

Bk

k!
v
(k−1)
−1 (b)hk +O(hm) as h → 0.

When ω is a positive integer and m = ω + 1, the O(hm) terms in (3.14a), (3.14b),
(3.15a), and (3.15b) are all zero.

Proof. Parts 1 and 2 are simply Theorems 3.2 and 3.3 in Sidi [15], which are ex-
tensions to all complex ω �= −1 of the corresponding results by Navot [10], whether
I[uω] and I[vω] exist in the regular sense or as Hadamard finite part integrals. The
proof of parts 3 and 4 can be achieved as follows: We first note that

T̃n[u−1; θ] =

n−1∑
i=0

(i+ θ)−1.

Next, we invoke n = (b− a)/h in (3.6), and make use of the fact that

[−1]k−1(b− a)−k = u
(k−1)
−1 (b) = (−1)k−1v

(k−1)
−1 (a).

The results in (3.16a) and (3.17a) now follow. The results in (3.16b) and (3.17b)
are obtained from those in (3.16a) and (3.17a) by letting in the latter θ = 1 and
θ = 0, respectively. �

3.3. Completion of proofs. To complete the proof of Theorem 2.1, we define the
functions φμ(x) and ψν(x) exactly as in (1.4), and rewrite these as in

φμ(x) := f(x)−
[
Ku−1(x) +

μ−1∑
s=0

cs uγs
(x)

]
,

ψν(x) := f(x)−
[
Lv−1(x) +

ν−1∑
s=0

ds vδs(x)

]
.

(3.18)
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Next, we split the integral I[f ] =
∫ b

a
f(x) dx as in

I[f ] =

∫ t

a

f(x) dx+

∫ b

t

f(x) dx, t = a+ rh, r =

⌊
n+ 1

2

⌋
,

and derive the Euler–Maclaurin expansions of the (offset) trapezoidal rule for the
integrals ∫ t

a

f(x) dx =

∫ t

a

[
Ku−1(x) +

μ−1∑
s=0

cs uγs
(x)

]
dx+

∫ t

a

φμ(x) dx

and ∫ b

t

f(x) dx =

∫ b

t

[
Lv−1(x) +

ν−1∑
s=0

ds vδs(x)

]
dx+

∫ b

t

ψν(x),

exactly as is done in [15], by invoking all four parts of Theorem 3.2. Following
this, we sum the two expansions to obtain our main results. [Note that, upon
summing the Euler–Maclaurin expansions of the (offset) trapezoidal rules for the
two integrals, the contribution from the left of the point x = t cancels that from
the right completely, because the summations involving the Bk(θ) and the Bk in
Theorem 3.2 have opposite signs for the uω(x) and vω(x).] We refer the reader to
[15] for the details.

4. An example

The summation

(4.1) En(p) = 2−p n

n−1∑
k=1

(
sin

kπ

n

)−p

, p �= 0,

is the Riesz energy of the nth roots of unity, and its asymptotic expansions (as
n → ∞) for all values of p have been derived in [2]. We now show how these results
can be obtained in a simple way by applying Theorem 2.3.

First, defining

(4.2) f(x) =
(
sin πx)−p,

we can express En(p) as in

(4.3) En(p) = 2−p n2 Ťn[f ], Ťn[f ] = h
n−1∑
k=1

f(kh), h =
1

n
.

Clearly, Ťn[f ] approximates

(4.4) I[f ] =

∫ 1

0

f(x) dx,

whether this integral exists as a regular integral or is defined in the sense of the
Hadamard finite part.

To obtain the full asymptotic expansion of Ťn[f ], we need I[f ] and we need to
analyze f(x) near x = 0 and x = 1. First, it is easy to see that

(4.5) f(x) = (πx)−p

(
2iπx

exp(2iπx)− 1

)p

exp(iπpx).
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Consequently, we have the convergent expansion

(4.6) f(x) = (πx)−p
∞∑
s=0

αs(p)x
2s, |x| < 1,

where the αs(p) are defined in terms of the generalized Bernoulli polynomials4 as
in

(4.7) αs(p) = (−1)s
B

(p)
2s ( 12p)

(2s)!
(2π)2s, s = 0, 1, . . . .

By the fact that f(1− x) = f(x), we also have

(4.8) f(x) = [π(1− x)]−p
∞∑
s=0

αs(p)(1− x)2s.

Next, because the series expansions of f(x) about x = 0 and x = 1 begin with
the powers x−p and (1 − x)−p, respectively, I[f ] exists as a regular integral only
for �p < 1. We can derive a series representation for I[f ] when �p < 1 as follows:
First, we observe that

(4.9) I[f ] = 2

∫ 1/2

0

f(x) dx,

since f(1 − x) = f(x). Next, we substitute the expansion given in (4.6) in (4.9),
and integrate termwise since this expansion is absolutely and uniformly convergent
for 0 < x < 1. This results in the convergent expansion

(4.10) I[f ] = F (p) = 2π−p
∞∑
s=0

αs(p)
( 12 )

2s−p+1

2s− p+ 1
, �p < 1.

By making the transformation of variable y = sin( 12x) in (4.9), we can also obtain
the closed-form expression

(4.11) I[f ] = F (p) =
1√
π

Γ( 12 − 1
2p)

Γ(1− 1
2p)

, �p < 1.

For all other values of p (that is, for �p ≥ 1), I[f ] exists as a Hadamard finite part
integral defined as in (1.5). We concentrate on this issue below.

4 The generalized Bernoulli polynomials B
(σ)
s (u) are defined via (see Luke [6, pp. 18–23] or

Andrews, Askey, and Roy [1, p. 615], for example)

(
t

et − 1

)σ

eut =
∞∑
s=0

B
(σ)
s (u)

ts

s!
, |t| < 2π.

B
(σ)
s (u) is of degree s in u. B

(σ)
s (σ−u) = (−1)sB

(σ)
s (u); hence B

(σ)
s (σ/2) = 0 for s = 1, 3, 5, . . . .

B
(σ)
s (0) are called the generalized Bernoulli numbers and are denoted by B

(σ)
s . B

(σ)
s is a poly-

nomial in σ of degree s. Note that B
(σ)
0 (u) = B

(σ)
0 = 1 for all σ. In addition, B

(σ)
s (u) =∑s

k=0

(s
k

)
B

(σ)
s−ku

k. As a result, B
(σ)
2s (σ/2) is a polynomial in σ of degree 2s.
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4.1. En(p) for p �= 1, 3, 5, . . .. Now the function F (p) can be continued analytically
to the p-plane, except for p = 1, 3, 5, . . . , where it has simple poles. This can be
seen in two different ways:

• The sth term of the series in (4.10) is an analytic function of p, for all
complex p �= 2s+ 1. This is so because αs(p) are entire functions of p, due

to the fact that B
(p)
2s ( 12p) is a polynomial in p of degree 2s (see footnote 4)

and π−p( 12 )
2s−p+1 is entire. Therefore, the expansion in (4.10) continues

F (p) analytically to the whole p-plane, with the exception of p = 1, 3, 5, . . . ,
where it has simple poles. In addition, the series in (4.10) is precisely what
we obtain when computing I[f ] in the sense of the Hadamard finite part as
described in (1.5).

• Because Γ(z) is analytic for all complex z, except z = 0,−1,−2, . . . , where
it has simple poles, the right-hand side of (4.11) is an analytic function of p
for all complex p, except p = 1, 3, 5, . . . , where Γ( 12 −

1
2p) has simple poles.

[The case p = 2, 4, 6, . . . , for which Γ(1 − 1
2p) has simple poles, has some

rather interesting features, and so does the case p = −2,−4,−6, . . . . We
treat these cases separately below.]

In view of the above, the Hadamard finite part of I[f ] for �p ≥ 1, p �= 1, 3, 5, . . . ,
is simply the analytic continuation of F (p). Thus, we have both

(4.12) I[f ] = F (p) = 2π−p
∞∑
s=0

αs(p)
( 12 )

2s−p+1

2s− p+ 1
, p �= 1, 3, 5, . . . ,

and

(4.13) I[f ] = F (p) =
1√
π

Γ( 12 − 1
2p)

Γ(1− 1
2p)

, p �= 1, 3, 5, . . . .

Since the convergent expansions in (4.6) and (4.8) are also asymptotic as x → 0
and x → 1, respectively, we can apply Theorem 2.3. In case p �= 1, 3, 5, . . . , we have
K = L = 0, and γs = δs = 2s− p and cs = ds = π−pαs(p), s = 0, 1, . . . . Therefore,
Theorem 2.3 gives

(4.14) Ťn[f ] ∼ F (p) + 2π−p
∞∑
s=0

2s−p�∈{2,4,6,...}

αs(p)ζ(p− 2s)h2s−p+1 as h → 0.

Thus,
(4.15)

En(p) ∼ 2−pF (p)n2 + 2(2π)−p
∞∑
s=0

2s−p�∈{2,4,6,...}

αs(p)ζ(p− 2s)np−2s+1 as n → ∞.

The cases p = ±2m, m = 1, 2, . . . , are rather unusual, and they are treated in
detail in [2]. For completeness, we turn briefly to these cases next.

• When p = 2m, 1/Γ(1− 1
2p) = 0 and hence I[f ] = F (2m) = 0. In addition,

ζ(p − 2s) = 0 for s > m by (2.6). The results in (4.14) and (4.15) now
become, respectively,

(4.16) Ťn[f ] = 2π−p
m∑
s=0

αs(p)ζ(p− 2s)h2s−p+1 +O(hμ) as h → 0, ∀μ > 0
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and
(4.17)

En(p) = 2(2π)−p
m∑
s=0

αs(p)ζ(p− 2s)np−2s+1 +O(n−μ), as n → ∞, ∀μ > 0.

• When p = −2m, by (4.13), we have

(4.18) I[f ] = F (−2m) = 2−2m

(
2m

m

)
.

In addition, the infinite series in (4.14) is empty since ζ(p − 2s) = 0 for
s = 0, 1, . . . . Thus, (4.14) gives

Ťn[f ] = F (p) +O(hμ), as h → 0, ∀μ > 0.

Actually, we have exactly

(4.19) Ťn[f ] = F (p) for n > m.

We can see this as follows: First, because f(0) = f(1) = 0, we have Ťn[f ] =
Tn[f ], where Tn[f ] is the standard trapezoidal rule approximation for I[f ]
defined as in (2.4). Next, f(x) = (sinπx)2m is a trigonometric polynomial
of the form

f(x) =

m∑
j=0

uj cos(2πjx).

Therefore, Tn[f ] = I[f ] when n > m. This proves (4.19). As a result,
(4.15) becomes

(4.20) En(p) =

(
2m

m

)
n2, for n > m.

4.2. En(p) for p = 1, 3, 5, . . .. Let p = 2m + 1, m = 0, 1, . . . . In this case, I[f ]
can be computed in the sense of the Hadamard finite part precisely as described in
(1.5). We start by rewriting (4.6) and (4.8) in the form

(4.21) f(x) = π−p

[
αm(p)x−1 +

∞∑
s=0
s �=m

αs(p)x
2s−p

]

and

(4.22) f(x) = π−p

[
αm(p)(1− x)−1 +

∞∑
s=0
s �=m

αs(p)(1− x)2s−p

]
.

Next, we substitute (4.21) in the expansion in (4.9) and integrate termwise in the
sense of the Hadamard finite part since this expansion is absolutely and uniformly
convergent for 0 < x < 1. We obtain the convergent expansion

(4.23) I[f ] = 2π−p

[
αm(p) log( 12 ) +

∞∑
s=0
s �=m

αs(p)
( 12 )

2s−p+1

2s− p+ 1

]
≡ Gm.

For a simple and more explicit representation of Gm, see [2].
The asymptotic expansion of Ťn[f ] can be obtained by applying Theorem 2.3

with (4.21) and (4.22). We have
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Ťn[f ] ∼ Gm + 2π−p

[
αm(p) (C − log h)(4.24)

+

∞∑
s=0
s �=m

αs(p) ζ(p− 2s)h2s−p+1

]
as h → 0.

Thus,

En(p) ∼ 2−pGmn2 + 2(2π)−p

[
αm(p) (C + log n)n2(4.25)

+

∞∑
s=0
s �=m

αs(p) ζ(p− 2s)np−2s+1

]
as n → ∞.
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