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Abstract In this paper, we provide the Euler–Maclaurin expansions for (offset)
trapezoidal rule approximations of the finite-range integrals I [f ] = ∫ b

a
f (x) dx,

where f ∈ C∞(a, b) but can have general algebraic-logarithmic singularities at
one or both endpoints. These integrals may exist either as ordinary integrals or as
Hadamard finite part integrals. We assume that f (x) has asymptotic expansions of
the general forms

f (x) ∼ P̂
(
log(x − a)

)
(x − a)−1 +

∞∑

s=0

Ps

(
log(x − a)

)
(x − a)γs as x → a+,

f (x) ∼ Q̂
(
log(b − x)

)
(b − x)−1 +

∞∑

s=0

Qs

(
log(b − x)

)
(b − x)δs as x → b−,

where P̂ (y),Ps(y) and Q̂(y),Qs(y) are polynomials in y. The γs and δs are distinct,
complex in general, and different from −1. They also satisfy

�γ0 ≤ �γ1 ≤ · · · , lim
s→∞�γs = +∞;

�δ0 ≤ �δ1 ≤ · · · , lim
s→∞�δs = +∞.

The results we obtain in this work extend the results of a recent paper [A. Sidi, Nu-
mer. Math. 98:371–387, 2004], which pertain to the cases in which P̂ (y) ≡ 0 and
Q̂(y) ≡ 0. They are expressed in very simple terms based only on the asymptotic
expansions of f (x) as x → a+ and x → b−. The results we obtain in this work gen-
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eralize, and include as special cases, all those that exist in the literature. Let Dω = d
dω

,

h = (b − a)/n, where n is a positive integer, and define Ťn[f ] = h
∑n−1

i=1 f (a + ih).

Then with P̂ (y) = ∑p̂

i=0 ĉiy
i and Q̂(y) = ∑q̂

i=0 d̂iy
i , one of these results reads

Ťn[f ] ∼ I [f ] +
p̂∑

i=0

[
p̂∑

r=i

(
r

i

)

ĉrσr−i

]

(logh)i −
p̂∑

i=0

ĉi

(logh)i+1

i + 1

+
∞∑

s=0

Ps(Dγs )
[
ζ(−γs)hγs+1] +

∞∑

s=0

Qs(Dδs )
[
ζ(−δs)hδs+1]

+
q̂∑

i=0

[
q̂∑

r=i

(
r

i

)

d̂rσr−i

]

(logh)i −
q̂∑

i=0

d̂i

(logh)i+1

i + 1
as h → 0,

where ζ(z) is the Riemann Zeta function and σi are Stieltjes constants defined via

σi = limn→∞[∑n
k=1

(logk)i

k
− (logn)i+1

i+1 ], i = 0,1, . . . .
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1 Introduction

Euler–Maclaurin (E–M) expansions for trapezoidal rule approximations of finite-
range integrals

∫ b

a
f (x) dx, and their various generalizations in the presence of pos-

sible algebraic and/or logarithmic endpoint singularities, are of interest in many dif-
ferent contexts. For example, they play an important role in the design of methods for
the efficient numerical evaluation of such integrals.

In this work, we derive E–M expansions for trapezoidal rule approximations to∫ b

a
f (x) dx, in the presence of arbitrary algebraic-logarithmic endpoint singularities.

Specifically, we assume that f (x) has the following properties:

1. f ∈ C∞(a, b) and has the asymptotic expansions

f (x) ∼ P̂
(
log(x − a)

)
(x − a)−1 +

∞∑

s=0

Ps

(
log(x − a)

)
(x − a)γs as x → a+,

f (x) ∼ Q̂
(
log(b − x)

)
(b − x)−1 +

∞∑

s=0

Qs

(
log(b − x)

)
(b − x)δs as x → b−,

(1.1)
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where P̂ (y), Ps(y) and Q̂(y), Qs(y) are polynomials in y given as in

P̂ (y) =
p̂∑

i=0

ĉiy
i , Ps(y) =

ps∑

i=0

csiy
i,

Q̂(y) =
q̂∑

i=0

d̂iy
i, Qs(y) =

qs∑

i=0

dsiy
i,

(1.2)

and γs and δs are distinct and, in general, complex, and satisfy

γs 	= −1 ∀s; �γ0 ≤ �γ1 ≤ �γ2 ≤ · · · ; lim
s→∞�γs = +∞,

δs 	= −1 ∀s; �δ0 ≤ �δ1 ≤ �δ2 ≤ · · · ; lim
s→∞�δs = +∞.

(1.3)

Here, �z stands for the real part of z.1

As an example, consider the case

f (x) = [
log(x − a)

]i
(x − a)−pga(x) = [

log(b − x)
]j

(b − x)−qgb(x),

where p and q are positive integers and ga ∈ C∞[a, b) and gb ∈ C∞(a, b]. If
ga(x) and gb(x) have full Taylor series about x = a and x = b, respectively, then
the γs and the δs are, respectively,

−p,−p + 1, . . . ,−3,−2,0,1,2, . . . , and

−q,−q + 1, . . . ,−3,−2,0,1,2, . . . ,

and we have

P̂ (y) = g
(p−1)
a (a)

(p − 1)! yi and Q̂(y) = (−1)q−1 g
(q−1)
b (b)

(q − 1)! yj .

2. If p̂ = deg(P̂ ), ps = deg(Ps), q̂ = deg(Q̂), and qs = deg(Qs) for each s, then the
γs and δs are ordered such that

ps ≥ ps+1 if �γs+1 = �γs; qs ≥ qs+1 if �δs+1 = �δs. (1.4)

1We can write the expansions in (1.1) in the “simpler” form

f (x) ∼
∞∑

s=0

Ps

(
log(x−a)

)
(x−a)γs as x → a+, f (x) ∼

∞∑

s=0

Qs

(
log(b−x)

)
(b−x)δs as x → b−,

allowing one of the γs and/or one of the δs to be equal to −1. However, this complicates the statements of
our results. Therefore, we have chosen to separate these two exponents as in (1.1).
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3. By (1.1), we mean that, for every integer r = 0,1, . . . ,

f (x) −
[

P̂
(
log(x − a)

)
(x − a)−1 +

r−1∑

s=0

Ps

(
log(x − a)

)
(x − a)γs

]

= O
(
Pr

(
log(x − a)

)
(x − a)γr

)
as x → a+,

f (x) −
[

Q̂
(
log(b − x)

)
(b − x)−1 +

r−1∑

s=0

Qs

(
log(b − x)

)
(b − x)δs

]

= O
(
Qr

(
log(b − x)

)
(b − x)δr

)
as x → b−.

(1.5)

This is consistent with (1.3) and (1.4). Note that when r = 0, (1.5) is valid, since
the respective summations there are now empty (zero).

4. For each k = 1,2, . . . , the kth derivative of f (x) also has asymptotic expansions
as x → a+ and x → b− that are obtained by differentiating those in (1.1) term by
term.

The following facts are consequences of (1.3):

(i) There are only finitely many γs having the same real parts, and only finitely
many δs having the same real parts; consequently, �γs < �γs+1 and �δs′ <

�δs′+1 for infinitely many values of the indices s and s′.
(ii) The sequences {(x − a)γs }∞s=0 and {(b − x)δs }∞s=0 are asymptotic scales as x →

a+ and x → b−, respectively, in the following sense: For each s = 0,1, . . . ,

lim
x→a+

∣
∣
∣
∣
(x − a)γs+1

(x − a)γs

∣
∣
∣
∣ =

{
1 if �γs = �γs+1,

0 if �γs < �γs+1,

lim
x→b−

∣
∣
∣
∣
(b − x)δs+1

(b − x)δs

∣
∣
∣
∣ =

{
1 if �δs = �δs+1,

0 if �δs < �δs+1.

(iii) The integral
∫ b

a
f (x) dx exists in the ordinary sense only if P̂ (y) ≡ 0, Q̂(y) ≡ 0,

and �γ0 > −1, �δ0 > −1. Otherwise, it exists in the sense of Hadamard finite
part (HFP).2 The latter is defined as follows: Let the integers μ and ν be such
that

�γμ > −1, �δν > −1. (1.6)

2The usual notation for Hadamard finite part (HFP) integrals is =∫ b
a f (x)dx. For simplicity, in this work,

we use
∫ b
a f (x)dx to denote both ordinary and Hadamard finite part integrals. For the definition and

properties of Hadamard finite part integrals, see Davis and Rabinowitz [3, pp. 11–14], for example. These
integrals have some of the usual properties of regular integrals and some properties that are quite unusual.
For example, they are invariant under a linear transformation of the variable of integration that is of the
form y = α ± x, but they are not necessarily invariant under a transformation of the form y = α + βx,
|β| 	= 1.
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Define also

φμ(x) := f (x) −
[

P̂
(
log(x − a)

)
(x − a)−1 +

μ−1∑

s=0

Ps

(
log(x − a)

)
(x − a)γs

]

,

ψν(x) := f (x) −
[

Q̂
(
log(b − x)

)
(b − x)−1 +

ν−1∑

s=0

Qs

(
log(b − x)

)
(b − x)δs

]

.

(1.7)

Then, for arbitrary t ∈ (a, b),

∫ b

a

f (x) dx =
p̂∑

i=0

ĉi

[log(t − a)]i+1

i + 1
+

μ−1∑

s=0

ps∑

i=0

csi

di

dγ i
s

(t − a)γs+1

γs + 1

+
∫ t

a

φμ(x) dx +
q̂∑

i=0

d̂i

[log(b − t)]i+1

i + 1

+
ν−1∑

s=0

qs∑

i=0

dsi

di

dδi
s

(b − t)δs+1

δs + 1
+

∫ b

t

ψν(x) dx. (1.8)

Here the integrals of φμ(x) and ψν(x) exist in the ordinary sense, as is clear
from the way we have chosen μ and ν in (1.6).

The earlier literature on E–M expansions for finite-range integrals
∫ b

a
f (x) dx

concerns either the case (i) f ∈ C∞[a, b], or the case (ii) f (x) = (x − a)γ ×
[log(x − a)]pga(x) = (b − x)δ[log(b − x)]qgb(x), where p and q are nonnegative
integers and ga ∈ C∞[a, b) and gb ∈ C∞(a, b]. The case (i) is treated in many books
on numerical analysis; see, for example, Atkinson [1], Davis and Rabinowitz [3], Ral-
ston and Rabinowitz [12], Steffensen [20], or Stoer and Bulirsch [21]. The case (ii),
with δ = 0 and q = 0, was first treated in two papers by Navot, namely, in [8] with
�γ > −1 and p = 0, and in [9] with �γ > −1 and p = 1; the treatment of [9] can
be extended easily to arbitrary p ≥ 1 using the technique described there. [Actually,
Navot’s results can easily be used to treat the case (ii) as well.] The case (ii) was later
considered by Lyness and Ninham [6] using a different method involving generalized
functions. Navot’s results were later applied by Sidi and Israeli [19] to derive E–M ex-
pansions and quadrature methods of high accuracy for periodic singular and weakly
singular Fredholm integral equations. (For a brief survey of the relevant expansions,
see also Sidi [13, Appendix D].)

Subsequently, in a paper by Ninham [10], Navot’s expansions were shown to hold
also for the case in which �γ ≤ −1 and/or �δ ≤ −1, such that γ and δ are different
from −1,−2, . . . ; in this case,

∫ b

a
f (x) dx is defined as an HFP integral. Finally,

the remaining case in which γ or δ or both are negative integers has recently been
dealt with by Lyness [5] and by Monegato and Lyness [7]. The technique used in [7]
unifies the treatments of the various expansions; it is based on an approach introduced
by Verlinden [23] that employs the Mellin transform.
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Lately, E–M expansions associated with functions f (x) described as in (1.1)–
(1.5), but with P̂ (y) ≡ 0 and Q̂(y) ≡ 0, have been considered in Sidi [14].3 These
generalized E–M expansions can be utilized to improve the performance of the trape-
zoidal rule approximations when the latter are preceded by an appropriate variable
transformation that may be singular at the endpoints. This approach was suggested
by the author in the papers Sidi [15, 16], and [17], in which some novel singular vari-
able transformations are constructed and used in a way that “optimizes” the accuracy
of the trapezoidal rule approximations to finite-range regular integrals with possibly
algebraic endpoint singularities. The accuracies that can be achieved by this approach
are remarkable.

Yet in another recent work by Sidi [18], E–M expansions are derived in the pres-
ence of functions f (x) satisfying (1.1)–(1.5), with the limitation that P̂ (y), Ps(y)

and Q̂(y), Qs(y) are constant polynomials. An interesting problem precisely with
this feature has been considered in a recent paper by Brauchart, Hardin, and Saff
[2], and this problem was tackled also in [18] with the help of the new technique
developed there.

By allowing P̂ (y) and/or Q̂(y) to be arbitrary nonzero polynomials, the present
work thus completes the treatments of [14] and [18]. Furthermore, because we have
allowed arbitrary algebraic-logarithmic endpoint singularities, our class of functions,
as characterized via (1.1)–(1.5), contains, but is not contained in, the totality of all
the previous classes. Thus, all of the classes of functions f (x) treated in the earlier
literature are subclasses of our general class here.

In the next section, we state the main results of this work. In Sect. 3, we provide
some useful technical preliminaries. Finally, in Sect. 4, we provide the proofs of the
main results. Our results have the pleasant feature that they are expressed in extremely
simple terms based only on the asymptotic expansions in (1.1).

Before closing this section, we note that we have assumed that f ∈ C∞(a, b) only
for the sake of simplifying the presentation. We can assume that f ∈ Cm(a, b) for
some finite m, and obtain the appropriate E–M expansion for this case in the same
way we obtain the E–M expansion for f ∈ C∞(a, b). The method of proof applies to
this case without any changes.

2 Main Results

Throughout the remainder of the paper, we use the notation

I [f ] :=
∫ b

a

f (x) dx, (2.1)

3Even though the results of [14] are correct under the condition that γs , δs 	= −1, they were stated with the
unnecessarily stringent condition that γs , δs 	= −1,−2,−3, . . . , due to an unfortunate oversight. In this
work, we correct this blunder.
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whether
∫ b

a
f (x) dx exists as an ordinary integral or as an HFP integral, and

T̃n[f ; θ ] := h

n−1∑

i=0

f (a + ih + θh); h = b − a

n
, n = 1,2, . . . . (2.2)

Here T̃n[f ; θ ] is the offset trapezoidal rule approximation to I [f ], and θ ∈ [0,1].
Because f ∈ C∞(a, b), T̃n[f ; θ ] with θ ∈ (0,1) is well defined. Note that T̃n[f ; 1

2 ]
is simply the midpoint rule approximation to I [f ]. We also use the notation

Ťn[f ] := h

n−1∑

i=1

f (a + ih), Tn[f ] := Ťn[f ] + h

2

[
f (a) + f (b)

]
. (2.3)

By the fact that f ∈ C∞(a, b), Ťn[f ] is always well defined just as T̃n[f ; θ ] with
0 < θ < 1. Note that Ťn[f ] is analogous to (but not the same as) T̃n[f ;1]. In addition,
provided f (a) and f (b) exist, which is the case, for example, when f ∈ C[a, b],
Tn[f ] is the ordinary trapezoidal rule approximation to I [f ].

In our results below, ζ(z, θ), the generalized Zeta function (or the Hurwitz Zeta
function), plays an important role. ζ(z, θ) is defined by the convergent Dirichlet series∑∞

k=0 1/(k + θ)z for �z > 1 and continued analytically to the whole complex z-
plane, with the exception of z = 1, where it has a simple pole with residue 1. For
θ = 1, ζ(z,1) is simply ζ(z), the Riemann Zeta function.

We also make use of the Bernoulli polynomials Bj (θ) and the Bernoulli num-
bers Bj . In particular, we make use of the following:

Bj (1 − θ) = (−1)jBj (θ), j = 0,1, . . .

Bj (0) = Bj , j ≥ 0; B1(1) = −B1; Bj (1) = Bj , j ≥ 0, j 	= 1,

B0 = 1, B1 = −1

2
; B2j+1 = 0, B2j 	= 0, j = 1,2, . . . ,

B2j+1

(
1

2

)

= 0, B2j

(
1

2

)

	= 0, j = 0,1, . . . .

(2.4)

For the properties of the Zeta functions, see Titchmarsh [22] or Olver et al.
[11, Chap. 25], for example. For the Bernoulli polynomials and numbers, see [11,
Chap. 24], for example. For a brief summary of these topics, see also Sidi [13, Ap-
pendices D and E].

Finally, we also make use of the Stieltjes constants σs(θ) that are defined as in

σs(θ) := lim
N→∞

(
N−1∑

k=0

[log(k + θ)]s
k + θ

− (logN)s+1

s + 1

)

, s = 0,1, . . . . (2.5)

We set σs ≡ σs(1), which, of course, are defined via

σs := lim
N→∞

(
N∑

k=1

(logk)s

k
− (logN)s+1

s + 1

)

, s = 0,1, . . . . (2.6)
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It is known that

σ0(θ) = −ψ(θ), σ0 = C, (2.7)

where ψ(z) = d
dz

log(z) is the Psi function and C = 0.577 . . . is Euler’s constant.
For Stieltjes constants, see Ivić [4], for example.4

The following theorem gives our main results:

Theorem 2.1 Let f (x) be as in Sect. 1 [in particular, as in (1.1)–(1.5)], with the
notation therein. Set Dω = d

dω
. For an arbitrary polynomial W(y) = ∑k

i=0 eiy
i and

an arbitrary function u that is differentiable sufficiently often as a function of the
parameter ω, define also

W(Dω)u :=
k∑

i=0

ei

[
Di

ωu
] =

k∑

i=0

ei

diu

dωi
.

Then the following are true:

(1) For 0 < θ < 1, as h → 0, T̃n[f ; θ ] has the asymptotic expansion

T̃n[f ; θ ] ∼ I [f ] +
p̂∑

i=0

[
p̂∑

k=i

(
k

i

)

ĉkσk−i (θ)

]

(logh)i −
p̂∑

i=0

ĉi

(logh)i+1

i + 1

+
∞∑

s=0

Ps(Dγs )
[
ζ(−γs, θ)hγs+1] +

∞∑

s=0

Qs(Dδs )
[
ζ(−δs,1− θ)hδs+1]

+
q̂∑

i=0

[
q̂∑

k=i

(
k

i

)

d̂kσk−i (1 − θ)

]

(logh)i −
q̂∑

i=0

d̂i

(logh)i+1

i + 1
. (2.8)

(2) As h → 0, Ťn[f ] has the asymptotic expansion

Ťn[f ] ∼ I [f ] +
p̂∑

i=0

[
p̂∑

k=i

(
k

i

)

ĉkσk−i

]

(logh)i −
p̂∑

i=0

ĉi

(logh)i+1

i + 1

+
∞∑

s=0

Ps(Dγs )
[
ζ(−γs)hγs+1] +

∞∑

s=0

Qs(Dδs )
[
ζ(−δs)hδs+1]

+
q̂∑

i=0

[
q̂∑

k=i

(
k

i

)

d̂kσk−i

]

(logh)i −
q̂∑

i=0

d̂i

(logh)i+1

i + 1
. (2.9)

4The usual notation used for Stieltjes constants defined via (2.5)–(2.7) is γs(θ) and γs . We have changed
the notation to σs(θ) and σs , respectively, to avoid confusion with our γs in (1.1). These constants appear
also in the Laurent expansions of ζ(z, θ) and ζ(z) as in

ζ(z, θ) = 1

z − 1
+

∞∑

j=0

(−1)j
σj (θ)

j ! (z − 1)j , ζ(z) = 1

z − 1
+

∞∑

j=0

(−1)j
σj

j ! (z − 1)j .
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In (2.8) and (2.9), I [f ] is defined in the sense of HFP as described via (1.6)–(1.8).

Remark To see the explicit form of the expansions in Theorem 2.1, we first note

Di
ω

[
ζ(−ω,θ)hω+1] = hω+1

i∑

j=0

(−1)i−j

(
i

j

)

ζ (i−j)(−ω,θ)(logh)j ,

where ζ (k)(z, θ) is the kth derivative of ζ(z, θ) with respect to z. Using this, it can be
seen that, for example,

Ps(Dγs )
[
ζ(−γs, θ)hγs+1] = hγs+1

ps∑

j=0

wsj (logh)j ,

where

wsj =
ps∑

i=j

(−1)i−j

(
i

j

)

csi ζ
(i−j)(−γs, θ), j = 0,1, . . . , ps.

From this and from (1.3) and (1.4), we see that (2.8) and (2.9) are genuine asymptotic
expansions.

3 Preliminaries

3.1 E–M Expansion for
∑N−1

j=0 [log(j + θ)]s/(j + θ)

We begin by stating the classical result on the E–M expansion for sums. For a proof
of this result, we refer the reader to Steffensen [20].

Theorem 3.1 Let F(y) ∈ Cm[J,∞), where J is an integer, and let θ ∈ [0,1] be
fixed. Then for any integer N > J ,

N−1∑

j=J

F (j + θ) =
∫ N

J

F(y)dy +
m∑

k=1

Bk(θ)

k!
[
F (k−1)(N) − F (k−1)(J )

] + Rm(N; θ),

with the remainder term Rm(N; θ) given by

Rm(N; θ) = −
∫ N

J

F (m)(y)
B̄m(θ − y)

m! dy,

where B̄k(x) is the periodic Bernoullian function that is the 1-periodic extension of
the Bernoulli polynomial Bk(x), given as B̄k(x) = Bk(x − x�).

We use Theorem 3.1 to prove the next result.
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Theorem 3.2 Let

Fs(y) = (logy)s

y
, s = 0,1,2, . . . . (3.1)

(1) For 0 < θ ≤ 1 and with m > 0, as N → ∞,

N−1∑

j=0

Fs(j + θ) = σs(θ) +
∫ N

1
Fs(y) dy

+
m∑

k=1

Bk(θ)

k! F (k−1)
s (N) + O

(
N−m(logN)s

)
. (3.2)

(2) For θ = 1 and with m > 0, as N → ∞,

N−1∑

j=1

Fs(j) + 1

2
Fs(N) = σs +

∫ N

1
Fs(y) dy

+
m∑

k=2

Bk

k! F (k−1)
s (N) + O

(
N−m(logN)s

)
. (3.3)

[Note that, in this case, the summation on k actually contains only the terms with
even k since, by (2.4), B2s+1 = 0 for s = 1,2, . . . .]

Observe that, for all s = 0,1, . . . ,

∫ N

1
Fs(y) dy = (logN)s+1

s + 1
. (3.4)

Proof By Theorem 3.1, with F(y) = Fs(y) and J = 1 there, we first have

N−1∑

j=0

Fs(j + θ) = Fs(θ) +
∫ N

1
Fs(y) dy

+
m∑

k=1

Bk(θ)

k!
[
F (k−1)

s (N) − F (k−1)
s (1)

] + Rm(N; θ), (3.5)

where

N−1∑

j=0

Fs(j +θ) =
N−1∑

j=0

[log(j + θ)]s
j + θ

, Rm(N; θ) = −
∫ N

1
F (m)

s (y)
B̄m(θ − y)

m! dy.

(3.6)
Noting that

F (m)
s (y) = 1

ym+1

min{m,s}∑

k=0

αsmk(logy)s−k (3.7)
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for some constants αsmk , and that |B̄m(x)| is uniformly bounded for all real x, we
have that Rm(∞; θ) = limN→∞ Rm(N; θ) exists for every m ≥ 1. This fact and (3.6)
enable us to rewrite (3.5) in the form

N−1∑

j=0

[log(j + θ)]s
j + θ

= (logN)s+1

s + 1
+ S′

m(θ) + S′′
m(N; θ), (3.8)

where

S′
m(θ) = Fs(θ) −

m∑

k=1

Bk(θ)

k! F (k−1)
s (1) + Rm(∞; θ),

and

S′′
m(N; θ) =

m∑

k=1

Bk(θ)

k! F (k−1)
s (N) + R̃m(N; θ), (3.9)

with

R̃m(N; θ) =
∫ ∞

N

F (m)
s (y)

B̄m(θ − y)

m! dy.

Now, by (3.7), we have

F (k−1)
s (N) = O

(
N−k(logN)s

)
, R̃m(N; θ) = O

(
N−m(logN)s

)
as N → ∞.

(3.10)
Therefore, limN→∞ S′′

m(N; θ) = 0, which, together with (2.5), implies that

S′
m(θ) = lim

N→∞

[
N−1∑

j=0

[log(j + θ)]s
j + θ

− (logN)s+1

s + 1

]

= σs(θ) independently of m.

(3.11)
Substituting (3.11) and (3.9) in (3.8), and invoking (3.10), we obtain (3.2).

To prove (3.3), we let θ = 1 in (3.2), and make use of the fact that Bk(1) = Bk for
k ≥ 2 and B1(1) = −B1 = 1

2 . �

3.2 E–M Expansions for
∫ t

a
[log(x − a)]i (x − a)ω dx and

∫ b

t
[log(b − x)]i (b − x)ω dx, a < t < b

Throughout the remainder of this work, we will be using the following notation:
Analogously to (2.1), for arbitrary α,β , we set

I (α,β)[g] =
∫ β

α

g(x) dx. (3.12)
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We define two integers r, r̄ as in

r =
⌊

n

2

⌋

, r̄ = n − r =
⌊

n + 1

2

⌋

, (3.13)

and let

t = a + rh, t̄ = a + r̄h ⇒ b − t = t̄ − a. (3.14)

Clearly, r, r̄, t, t̄ are all functions of n, and satisfy the asymptotic equalities

r ∼ r̄ ∼ n/2, t − a ∼ b − t ∼ (b − a)/2, t ∼ t̄ ∼ (a + b)/2 as n → ∞.

(3.15)
Next, analogously to (2.2) and (2.3), we define

T̃ (a,t)
r [g; θ ] = h

r−1∑

j=0

g(a + jh + θh), T̃
(t,b)
r̄ [g; θ ] = h

n−1∑

j=r

g(a + jh + θh),

(3.16)
and

◦
T (a,t)

r [g] := h

r−1∑

j=1

g(a + jh) + h

2
g(t),

∗
T

(t,b)
r̄ [g] := h

2
g(t) + h

n−1∑

j=r+1

g(a + jh).

(3.17)
It is easy to see that T̃

(a,t)
r [g; θ ] and T̃

(t,b)
r̄ [g; θ ] are the offset trapezoidal rule ap-

proximations to the integrals I (a,t)[g] and I (t,b)[g], respectively. Obviously,

T̃ (a,t)
r [g; θ ] + T̃

(t,b)
r̄ [g; θ ] = T̃n[g; θ ]. (3.18)

Similarly,

◦
T (a,t)

r [g] + ∗
T

(t,b)
r̄ [g] = Ťn[g]. (3.19)

Let us now define

uω,i(x) := [
log(x − a)

]i
(x − a)ω ∀w ∈ C

vω,i(x) := [
log(b − x)

]i
(b − x)ω ∀ω ∈ C,

ûi (x) := u−1,i (x) = [
log(x − a)

]i
(x − a)−1,

v̂i(x) := v−1,i (x) = [
log(b − x)

]i
(b − x)−1.

(3.20)

Then we have

I (a,t)[uω,i] =
∫ t

a

uω,i(x) dx = di

dωi

(t − a)ω+1

ω + 1
, if ω 	= −1,

I (a,t)[ûi] =
∫ t

a

ûi (x) dx = [log(t − a)]i+1

i + 1
,

(3.21)
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I (t,b)[vω,i] =
∫ b

t

vω,i(x) dx = di

dωi

(b − t)ω+1

ω + 1
, if ω 	= −1,

I (t,b)[v̂i] =
∫ b

t

ûi(x) dx = [log(b − t)]i+1

i + 1
.

(3.22)

The results concerning I (a,t)[uω,i] and I (t,b)[vω,i] when ω 	= −1 follow from the fact
that

uω,i = di

dωi
uω, vω,i = di

dωi
vω. (3.23)

The integrals I (a,t)[uω,i] and I (t,b)[vω,i] exist in the ordinary sense only when �ω >

−1; otherwise, they exist in the sense of HFP. The integrals I (a,t)[ûi] and I (t,b)[v̂i]
exist only in the sense of HFP. Clearly, by (3.14), (3.21), and (3.22),

I (t,b)[vω,i] = I (a,t̄)[uω,i] if ω 	= −1, I (t,b)[v̂i] = I (a,t̄)[ûi]. (3.24)

In addition, by (3.14), (3.16), and (3.17),

T̃
(t,b)
r̄ [vω,i; θ ] = T̃

(a,t̄)
r̄ [uω,i;1 − θ ], T̃

(t,b)
r̄ [v̂i; θ ] = T̃

(a,t̄)
r̄ [ûi;1 − θ ], (3.25)

and
∗
T

(t,b)
r̄ [vω,i] = ◦

T
(a,t̄)
r̄ [uω,i],

∗
T

(t,b)
r̄ [v̂i] = ◦

T
(a,t̄)
r̄ [ûi]. (3.26)

These facts enable us to reduce the amount of work we need to do for the proofs
considerably.

The following theorem, concerning the E–M expansions of T̃
(a,t)
r [uω,i; θ ] when

θ ∈ (0,1] and of T̃
(t,b)
r̄ [vω,i; θ ] when θ ∈ [0,1), will be used in our proof of Theo-

rem 2.1.

Theorem 3.3 Set Dω = d
dω

.

(1) We have the following E–M expansions for T̃
(a,t)
r [uω,i; θ ] when θ ∈ (0,1] and

for T̃
(t,b)
r̄ [vω,i; θ ] when θ ∈ [0,1):

(1-a) For ω 	= −1 and with m > �ω + 1, as h → 0,

T̃ (a,t)
r [uω,i; θ ] = I (a,t)[uω,i] + Di

ω

[
ζ(−ω,θ)hω+1]

+
m∑

k=1

Bk(θ)

k! u
(k−1)
ω,i (t) hk + O

(
hm

); 0 < θ ≤ 1, (3.27)

T̃
(t,b)
r̄ [vω,i; θ ] = I (t,b)[vω,i] + Di

ω

[
ζ(−ω,1 − θ)hω+1]

−
m∑

k=1

Bk(θ)

k! v
(k−1)
ω,i (t) hk + O

(
hm

); 0 ≤ θ < 1. (3.28)
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(1-b) With m > 0, as h → 0,

T̃ (a,t)
r [ûi; θ ] = I (a,t)[ûi] +

[
i∑

s=0

(
i

s

)

σs(θ)(logh)i−s − (logh)i+1

i + 1

]

+
m∑

k=1

Bk(θ)

k! û
(k−1)
i (t) hk + O

(
hm(logh)i

); 0 < θ ≤ 1,

(3.29)

T̃
(t,b)
r̄ [v̂i; θ ] = I (t,b)[v̂i] +

[
i∑

s=0

(
i

s

)

σs(1 − θ)(logh)i−s − (logh)i+1

i + 1

]

−
m∑

k=1

Bk(θ)

k! v̂
(k−1)
i (t) hk + O

(
hm(logh)i

); 0 ≤ θ < 1.

(3.30)

(2) Letting θ = 1 in (3.27) and (3.29), and θ = 0 in (3.28) and (3.30), we obtain
the following E–M expansions:

(2-a) For ω 	= −1 and with m > �ω + 1, as h → 0,

◦
T (a,t)

r [uω,i] = I (a,t)[uω,i] + Di
ω

[
ζ(−ω)hω+1]

+
m∑

k=2

Bk

k! u
(k−1)
ω,i (t) hk + O

(
hm

)
, (3.31)

∗
T

(t,b)
r̄ [vω,i] = I (t,b)[vω,i] + Di

ω

[
ζ(−ω)hω+1]

−
m∑

k=2

Bk

k! v
(k−1)
ω,i (t) hk + O

(
hm

)
. (3.32)

(2-b) With m > 0, as h → 0,

◦
T (a,t)

r [ûi] = I (a,t)[ûi] +
[

i∑

s=0

(
i

s

)

σs · (logh)i−s − (logh)i+1

i + 1

]

+
m∑

k=2

Bk

k! û
(k−1)
i (t) hk + O

(
hm(logh)i

)
, (3.33)

∗
T

(t,b)
r̄ [v̂i] = I (t,b)[v̂i] +

[
i∑

s=0

(
i

s

)

σs · (logh)i−s − (logh)i+1

i + 1

]

−
m∑

k=2

Bk

k! v̂
(k−1)
i (t) hk + O

(
hm(logh)i

)
. (3.34)
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The O(hm) and O(hm(logh)i) terms in the results above are all uniformly valid
in t . [Note that, by (2.4), the summations on k in (3.31)–(3.34) actually contain only
the terms with even k, since B2s+1 = 0 for s = 1,2, . . . .]

Remark Note that the summations involving the Bk(θ) in each of the four parts of
this theorem are the same in form, except that they have opposite signs. This fact
plays an important role in the proofs of our main results.

Proof The proofs of the results pertaining to uω,i and vω,i with ω 	= −1 can be found
in Sidi [14]. They are obtained by repeated application of a powerful device suggested
and used by Navot [9], which is based on the observation in (3.23).

We now turn to the proofs of the results concerning ûi and v̂i . It is sufficient to
give the details for T̃

(a,t)
r [ûi; θ ]. Making use of the fact that log[(j + θ)h] = log(j +

θ) + logh, we start by observing that

T̃ (a,t)
r [ûi; θ ] =

r−1∑

j=0

(log[(j + θ)h])i
j + θ

=
i∑

s=0

(
i

s

)

(logh)i−s

r−1∑

j=0

Fs(j + θ), (3.35)

with Fs(y) as in Theorem 3.2. Invoking (3.2) in (3.35) and rearranging, we obtain

T̃ (a,t)
r [ûi; θ ] =

i∑

s=0

(
i

s

)

σs(θ)(logh)i−s +
∫ r

1

i∑

s=0

(
i

s

)

(logh)i−sFs(y) dy

+
m∑

k=1

Bk(θ)

k!
i∑

s=0

(
i

s

)

(logh)i−sF (k−1)
s (r)

+
i∑

s=0

(
i

s

)

(logh)i−sO
(
r−m(log r)s

)
as r → ∞. (3.36)

We can now complete the proof of (3.29) (i) by observing that, by (3.1) and (3.4),

i∑

s=0

(
i

s

)

(logh)i−sFs(y) = [log(ht)]i
y

= hFi(hy),

i∑

s=0

(
i

s

)

(logh)i−sF (k)
s (y) = h

dk

dtk
Fi(hy) = hk+1F

(k)
i (hy),

∫ r

1

i∑

s=0

(
i

s

)

(logh)i−sFs(y) dy = h

∫ r

1
Fi(hy)dy

=
∫ rh

h

Fi(τ ) dτ = I (a,t)[ûi] − (logh)i+1

i + 1
,
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and

Fi(x − a) = ûi (x) ⇒ F
(k)
i (x − a) = û

(k)
i (x)

⇒ F
(k)
i (rh) = F

(k)
i (t − a) = û

(k)
i (t),

where we have recalled that rh = t − a, and (ii) by noting that

(logh)i−sr−m(log r)s ∼ Khm(logh)i as h → 0, |K| =
[

1

2
(b − a)

]−m

> 0,

since r = (t − a)/h ∼ 1
2 (b − a)h−1 as n → ∞.

To prove (3.30), we start by replacing θ and r in (3.29) by 1 − θ and t̄ , respec-

tively. To complete the proof, we recall that T̃
(t,b)
r̄ [v̂i; θ ] = T̃

(a,t̄)
r̄ [ûi;1−θ ] by (3.25),

I (t,b)[v̂i] = I (a,t̄)[ûi] by (3.24), and Bk(1 − θ) = (−1)kBk(θ) by (2.4), and observe
that

û
(k)
i (t̄ ) = (−1)kv̂

(k)
i (t) ⇒ Bk(1 − θ)û

(k−1)
i (t̄ ) = −Bk(θ)v̂

(k−1)
i (t).

The proof of the remaining parts is similar to that of part (2) of Theorem 3.2, and
we leave it to the reader. �

Remark Before closing, we would like to emphasize that the remainder terms present
throughout the statement of Theorem 3.3 all depend on t . Since t changes with n

(hence with h), we might be led to believe that these terms cannot be bounded inde-
pendently of t after all. Actually, they can be bounded by some constant multiples of
hm and hm(logh)i independently of t , because t remains in a small neighborhood of
x = 1

2 (a + b) by (3.15) and hence the intervals [a, t] and [t, b] are asymptotically of
fixed and nonzero length 1

2 (b − a) as n → ∞ (equivalently, as h → 0).

4 Proof of Theorem 2.1

We now turn to the proof of Theorem 2.1. We carry out the proof of (2.8) for the case
0 < θ < 1 only. The proof of (2.9) is almost identical; we give a brief sketch of it,
leaving the details to the reader.

We begin by stating the classical result on the E–M expansion for the trapezoidal
rule. For a proof of this result, we refer the reader to Steffensen [20].

Theorem 4.1 Let g ∈ Cm[α,β], where [α,β] is a finite interval, and define I [g] =∫ β

α
g(x) dx. Let h = (β − α)/N , where N = 1,2, . . . , and

T̃N [g; θ ] = h

N−1∑

j=0

g(α + jh+ θh), TN [g] = h

N−1∑

j=0

g(α + jh)+ h

2

[
g(α)+g(β)

]
.
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(1) For all θ ∈ [0,1],

T̃N [g; θ ] = I [g] +
m∑

k=1

Bk(θ)

k!
[
g(k−1)(β) − g(k−1)(α)

]
hk + Um(h; θ),

where the remainder term Um(h; θ) is given by

Um(h; θ) = −hm

∫ β

α

g(m)(x)
B̄m(θ − N x−α

β−α
)

m! dx = O
(
hm

)
as h → 0.

As before, B̄k(x) is the periodic Bernoullian function that is the 1-periodic extension
of the Bernoulli polynomial Bk(x).

(2) For the case θ = 1, the result of part (1) can be rewritten as

TN [g] = I [g] +
m∑

k=2
keven

Bk

k!
[
g(k−1)(β) − g(k−1)(α)

]
hk + O

(
hm

)
as h → 0.

For μ ≥ 0 and ν ≥ 0 arbitrary integers, and with uω,i(x) and vω,i(x) defined as in
(3.20), we split the function f (x) as in

f (x) =
p̂∑

i=0

ĉi ûi (x) +
μ−1∑

s=0

ps∑

i=0

csi uγs ,i(x) + φμ(x),

f (x) =
q̂∑

i=0

d̂i v̂i (x) +
ν−1∑

s=0

qs∑

i=0

dsi vδs ,i (x) + ψν(x).

(4.1)

Note that φμ(x) and ψν(x) are exactly as in (1.7) and (1.8). Clearly, φμ ∈ C∞(a, b)

and ψν ∈ C∞(a, b), and they have the asymptotic expansions

φμ(x) ∼
∞∑

s=μ

ps∑

i=0

csi uγs ,i (x) as x → a+,

ψν(x) ∼
∞∑

s=ν

qs∑

i=0

dsi vδs ,i (x) as x → b−,

which, by our assumptions on f (k)(x), are termwise differentiable infinitely many
times. Thus,

φ
(k)
μ (x) = O

(
(x − a)γμ−k

[
log(x − a)

]pμ
)

as x → a+, k = 0,1,2, . . . ,

ψ
(k)
ν (x) = O

(
(b − x)δν−k

[
log(b − x)

]qν
)

as x → b−, k = 0,1,2, . . . .
(4.2)
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Let m be an arbitrary positive integer, and let μ and ν be the smallest integers for
which

γμ > m, δν > m. (4.3)

Because lims→∞ �γs = +∞ and lims→∞ �δs = +∞, such μ and ν exist and are
unique. Then, by (4.2) and (4.3), for every t ∈ (a, b), there hold

φμ ∈ Cm[a, t]; φ
(k)
μ (a) = 0, k = 0,1, . . . ,m − 1,

ψν ∈ Cm[t, b]; ψ
(k)
ν (b) = 0, k = 0,1, . . . ,m − 1.

(4.4)

We now split the integral I [f ] = ∫ b

a
f (x) dx as in

I [f ] = I (a,t)[f ] + I (t,b)[f ], (4.5)

where

I (a,t)[f ] :=
∫ t

a

f (x) dx, I (t,b)[f ] :=
∫ b

t

f (x) dx. (4.6)

We also split the offset trapezoidal rule T̃n[f ; θ ] as in

T̃n[f ; θ ] = T̃ (a,t)
r [f ; θ ] + T̃

(t,b)
r̄ [f ; θ ], (4.7)

where

T̃ (a,t)
r [f ; θ ] := h

r−1∑

i=0

f (a + ih + θh), T̃
(t,b)
r̄ [f ; θ ] := h

n−1∑

i=r

f (a + ih + θh).

(4.8)

4.1 E–M Expansions for T̃
(a,t)
r [f ; θ ] and T̃

(t,b)
r̄ [f ; θ ]

We first give a detailed derivation of the E–M expansion associated with T̃
(a,t)
r [f ; θ ].

In view of the splittings in (4.1), we first have

T̃ (a,t)
r [f ; θ ] =

p̂∑

i=0

ĉi T̃
(a,t)
r [ûi; θ ]+

μ−1∑

s=0

ps∑

i=0

csi T̃
(a,t)
r [uγs,i; θ ] + T̃ (a,t)

r [φμ; θ ]. (4.9)

By parts (1-a) and (1-b) of Theorem 3.3 on the ûi and uγs,i , and by part (1) of Theo-
rem 4.1 on φμ, and letting

Ĝi(logh) =
i∑

s=0

(
i

s

)

σs(θ)(logh)i−s − (logh)i+1

i + 1
, (4.10)
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(4.9) becomes

T̃ (a,t)
r [f ; θ ]

=
p̂∑

i=0

ĉi

{

I (a,t)[ûi] + Ĝi(logh) +
m∑

k=1

Bk(θ)

k! û
(k−1)
i (t) + O

(
hm(logh)i

)
}

+
μ−1∑

s=0

ps∑

i=0

csi

{

I (a,t)[uγs,i] + Di
γs

[
ζ(−γs, θ)hγs+1]

+
m∑

k=1

Bk(θ)

k! u
(k−1)
γs ,i

(t) hk + O
(
hm

)
}

+
{

I (a,t)[φμ] +
m∑

k=1

Bk(θ)

k!
[
φ(k−1)

μ (t) − φ(k−1)
μ (a)

]
hk + O

(
hm

)
}

as h → 0.

(4.11)

Invoking the fact that φ
(k−1)
μ (a) = 0 for k = 1, . . . ,m, which follows from (4.4), and

rearranging, (4.11) becomes

T̃ (a,t)
r [f ; θ ] = I (a,t)

[
p̂∑

i=0

ĉi ûi +
μ−1∑

s=0

ps∑

i=0

csiuγs ,i + φμ

]

+
p̂∑

i=0

ĉi Ĝi(logh) +
μ−1∑

s=0

ps∑

i=0

csiD
i
γs

[
ζ(−γs, θ)hγs+1]

+
m∑

k=1

Bk(θ)

k!

[
p̂∑

i=0

ĉi û
(k−1)
i (t) +

μ−1∑

s=0

ps∑

i=0

csiu
(k−1)
γs ,i

(t) + φ(k−1)
μ (t)

]

hk

+ O
(
hm(logh)p̂

)
as h → 0. (4.12)

Invoking (4.1), we finally obtain

T̃ (a,t)
r [f ; θ ] = I (a,t)[f ] +

p̂∑

i=0

ĉi Ĝi(logh) +
μ−1∑

s=0

ps∑

i=0

csiD
i
γs

[
ζ(−γs, θ)hγs+1]

+
m∑

k=1

Bk(θ)

k! f (k−1)(t)hk + O
(
hm(logh)p̂

)
as h → 0. (4.13)

We now employ the E–M expansion of T̃
(a,t)
r [f ; θ ] given in (4.13) in conjunction

with (3.22), (3.24), and (3.25) to write down the E–M expansion associated with
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T̃
(t,b)
r̄ [f ; θ ] without further effort. Letting

Ĥi(logh) =
i∑

s=0

(
i

s

)

σs(1 − θ)(logh)i−s − (logh)i+1

i + 1
, (4.14)

we obtain, analogously to (4.13),

T̃
(t,b)
r̄ [f ; θ ] = I (t,b)[f ] +

q̂∑

i=0

d̂i Ĥi(logh) +
ν−1∑

s=0

qs∑

i=0

dsiD
i
δs

[
ζ(−δs,1 − θ)hδs+1]

−
m∑

k=1

Bk(θ)

k! f (k−1)(t)hk + O
(
hm(logh)q̂

)
as h → 0. (4.15)

4.2 Completion of Proof for T̃n[f ; θ ]

Substituting (4.13) and (4.15) in (4.7), and recalling also (4.5), we obtain

T̃n[f ; θ ] = I [f ] +
p̂∑

i=0

ĉi Ĝi(logh) +
μ−1∑

s=0

ps∑

i=0

csiD
i
γs

[
ζ(−γs, θ)hγs+1]

+
q̂∑

i=0

d̂i Ĥi(logh) +
ν−1∑

s=0

qs∑

i=0

dsiD
i
δs

[
ζ(−δs,1 − θ)hδs+1]

+ O
(
hm(logh)L

)
as h → 0; L = max{p̂, q̂}. (4.16)

Note that there is no contribution to the expansion in (4.16) from x = t . This is a
consequence of the fact that the summations involving the Bk(θ) in (4.13) and (4.15)
have opposite signs and hence cancel each other. In addition, by (4.10) and (4.14),

p̂∑

i=0

ĉi Ĝi(logh) =
p̂∑

i=0

[
p̂∑

r=i

(
r

i

)

ĉrσr−i (θ)

]

(logh)i −
p̂∑

i=0

ĉi

(logh)i+1

i + 1
,

q̂∑

i=0

d̂i Ĥi(logh) =
q̂∑

i=0

[
q̂∑

r=i

(
r

i

)

d̂rσr−i (1 − θ)

]

(logh)i −
q̂∑

i=0

d̂i

(logh)i+1

i + 1
,

(4.17)

and

ps∑

i=0

csiD
i
γs

[
ζ(−γs, θ)hγs+1] = Ps(Dγs )

[
ζ(−γs, θ)hγs+1],

qs∑

i=0

dsiD
i
δs

[
ζ(−δs,1 − θ)hδs+1] = Qs(Dδs )

[
ζ(−δs,1 − θ)hδs+1].

(4.18)
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The result in (2.8) now follows by substituting (4.17) and (4.18) in (4.16) and by
recalling that m is an arbitrary integer and that m,μ,ν → ∞ simultaneously. �

4.3 Sketch of Proof for Ťn[f ]

The proof of (2.9) can be carried out similarly. This time, we split Ťn[f ] as in

Ťn[f ] = ◦
T (a,t)

r [f ] + ∗
T

(t,b)
r̄ [f ],

and compute the E–M expansions for
◦
T

(a,t)
r [f ] and

∗
T

(t,b)
r̄ [f ]. To do this, we make

use of parts (2-a) and (2-b) of Theorem 3.3 on the ûi and uγs,i , and part (2) of Theo-

rem 4.1 on φμ and ψν , realizing that T
(a,t)
r [φμ] and T

(t,b)
r̄ [ψμ], the trapezoidal rule

approximations for the integrals I (a,t)[φμ] and I (t,b)[ψμ], respectively, satisfy

T (a,t)
r [φμ] = ◦

T (a,t)
r [φμ], T

(t,b)
r̄ [ψμ] = ∗

T (t,b)
n [ψν]

because φμ(a) = 0 and ψν(b) = 0 by (4.4), and continue as above. We leave the
details to the reader.
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