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Abstract In the first part of this work, we derive compact numerical quadrature formu-
las for finite-range integrals I [f ] = ∫ b

a
f (x) dx, where f (x) = g(x)|x − t |β , β being real.

Depending on the value of β, these integrals are defined either in the regular sense or in
the sense of Hadamard finite part. Assuming that g ∈ C∞[a, b], or g ∈ C∞(a, b) but can
have arbitrary algebraic singularities at x = a and/or x = b, and letting h = (b − a)/n,
n an integer, we derive asymptotic expansions for T ∗

n [f ] = h
∑

1≤j≤n−1, xj �=t f (xj ), where
xj = a + jh and t ∈ {x1, . . . , xn−1}. These asymptotic expansions are based on some re-
cent generalizations of the Euler–Maclaurin expansion due to the author (A. Sidi, Euler–
Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities, in Math.
Comput., 2012), and are used to construct our quadrature formulas, whose accuracies are
then increased at will by applying to them the Richardson extrapolation process. We pay
particular attention to the case in which β = −2 and f (x) is T -periodic with T = b − a and
f ∈ C∞(−∞,∞)\{t +kT }∞

k=−∞, which arises in the context of periodic hypersingular inte-
gral equations. For this case, we propose the remarkably simple and compact quadrature for-
mula Q̂n[f ] = h

∑n

j=1 f (t +jh−h/2)−π2g(t)h−1, and show that Q̂n[f ]−I [f ] = O(hμ)

as h → 0 ∀μ > 0, and that it is exact for a class of singular integrals involving trigonometric
polynomials of degree at most n. We show how Q̂n[f ] can be used for solving hypersingu-
lar integral equations in an efficient manner. In the second part of this work, we derive the
Euler–Maclaurin expansion for integrals I [f ] = ∫ b

a
f (x)dx, where f (x) = g(x)(x − t)β ,

with g(x) as before and β = −1,−3,−5, . . . , from which suitable quadrature formulas
can be obtained. We revisit the case of β = −1, for which the known quadrature formula
Q̃n[f ] = h

∑n

j=1 f (t + jh−h/2) satisfies Q̃n[f ]− I [f ] = O(hμ) as h → 0 ∀μ > 0, when
f (x) is T -periodic with T = b−a and f ∈ C∞(−∞,∞)\{t +kT }∞

k=−∞. We show that this
formula too is exact for a class of singular integrals involving trigonometric polynomials of
degree at most n − 1. We provide numerical examples involving periodic integrands that
confirm the theoretical results.
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1 Introduction and Background

Let the function g(x) be in C∞(a, b) with possible arbitrary algebraic singularities at x = a

and x = b. In particular, we assume that g(x) has the following asymptotic expansions

g(x) ∼
∞∑

s=0

cs(x − a)γs as x → a+,

g(x) ∼
∞∑

s=0

ds(b − x)δs as x → b−,

(1.1)

where cs and ds are some constants, γs and δs are distinct and, in general, complex, and
satisfy

γs �= −1 ∀s; Reγ0 ≤ Reγ1 ≤ Reγ2 ≤ · · · ; lim
s→∞ Reγs = +∞,

δs �= −1 ∀s; Re δ0 ≤ Re δ1 ≤ Re δ2 ≤ · · · ; lim
s→∞ Re δs = +∞.

(1.2)

In the first part of this work, we shall be concerned mainly with the derivation of numer-
ical quadrature formulas for computing convergent or divergent integrals of the form

I [f ] =
∫ b

a

f (x) dx, f (x) = g(x)|x − t |β, β real; a < t < b. (1.3)

Here x is the variable while t is a fixed parameter.
It is clear that (i) when g(x) is not integrable at x = a and/or x = b, or (ii) when β ≤ −1,

such integrals do not exist in the regular sense. They do exist in the sense of Hadamard finite
part (HFP), however, and we let I [f ] denote the HFP of

∫ b

a
f (x) dx in these cases.1

A case of special interest is that with β = −2, which arises in connection with so called
hypersingular integral equations that are of the form

λφ(t) +
∫ b

a

K(t, x)φ(x) dx = u(t), t ∈ (a, b), λ scalar, (1.4)

where K(t, x) is of the form

K(t, x) = H(t, x)

(x − t)2
, H ∈ C∞([a, b] × [a, b]). (1.5)

1The usual notation for integrals defined in the sense of the Hadamard finite part (HFP) is =∫ b
a f (x)dx. In

this work, we denote them by
∫ b
a f (x)dx, as in (1.3), for simplicity. For the definition and properties of

Hadamard finite part integrals, see Davis and Rabinowitz [2], Evans [3], or Kythe and Schäferkotter [6], for
example. These integrals have most of the properties of regular integrals and some properties that are quite
unusual. For example, they are invariant with respect to translation, but they are not necessarily invariant
under a scaling of the variable of integration.
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An important example of (1.4)–(1.5) is that in which (i) K(t, x) is periodic in both x

and t , with period T = b − a, and, as a function of x, it is infinitely differentiable in
(−∞,∞) \ {t + kT }∞

k=−∞, and (ii) u(x) and the solution φ(x) are both T -periodic and
infinitely differentiable in (−∞,∞). For hypersingular integral equations, see Ladopoulos
[7] or Lifanov, Poltavskii, and Vainikko [10], for example.

In this work, we are first concerned with the development of some compact numerical
quadrature formulas for efficient computation of the integrals I [f ] in (1.3), whether these
exist in the regular sense or in the sense of HFP. The formulas we derive are actually what
we shall call “corrected” trapezoidal rules, and they are obtained via the approach developed
in the paper by Sidi and Israeli [22] (see also Sidi [17]) in conjunction with some novel
generalizations and extensions of the Euler–Maclaurin (E–M) expansions that were obtained
by the author recently in the paper Sidi [20].2 We also note that the integrals treated in [22]
are those with β > −1 in (1.3), as well as integrals of the form

∫ b

a
g(x)|x − t |β log |x − t |dx

with β > −1 and Cauchy principal value (CPV) integrals3 of the form
∫ b

a
g(x)/(x − t) dx,

and their application to so called weakly singular and singular integral equations .
The derivation of the appropriate E–M expansions for I [f ], whether defined in the reg-

ular sense or in the sense of HFP, will be the subject of the next section. These expansions
form the basis for the development of the corrected trapezoidal rules for any β .

Following the derivation of Sect. 2 for general algebraic endpoint singularities and gen-
eral β , in Sect. 3, we concentrate on the special case of no endpoint singularities and β = −2.
In the process, we derive quadrature formulas that are remarkably simple and compact and
seem to be new. We also show how the accuracy of these formulas can be increased arbitrar-
ily via the Richardson extrapolation process. For the Richardson extrapolation process and
related subjects, see Stoer and Bulirsch [23] or Sidi [18].

In Sect. 4, we turn to the periodic hypersingular case (of β = −2) discussed above and
show that the new quadrature formulas will have very good performance for integrals of
periodic hypersingular functions. We actually show that they produce very high accuracy
(called “spectral” accuracy in the literature) for such integrals. These formulas can be used
very easily in the numerical solution of (periodic) hypersingular integral equations with very
high accuracy. One of these quadrature formulas is

Q̂n[f ] = h

n∑

j=1

f (t + jh − h/2) − π2g(t)h−1, h = b − a

n
.

In Sect. 5, we show that Q̂n[f ] is exact for some periodic hypersingular integrals involving
a family of trigonometric polynomials. The details of the proof are included in Appendix A.
In Sect. 6, we prove that the convergence of Q̂n[f ] is actually of exponential accuracy when
the integrands are analytic in a strip of the complex plane that includes the real axis.

In Sect. 7, we turn to the numerical solution of hypersingular integral equations (the case
β = −2), both periodic and nonperiodic. In Sect. 8, we illustrate the accuracy of our quadra-
ture formulas with a suitable numerical example and confirm the theory of the preceding
sections.

2The paper [22] makes use of the generalizations of the E–M expansions due to Navot [14] and [15] and it
treats the convergent cases of Reβ > −1 in (1.3). The generalized E–M expansions of [20], however, help to
treat in a simple way all of the divergent cases resulting from Reβ ≤ −1 as well.
3The usual notation for integrals defined in the sense of Cauchy principal value (CPV) is −∫ b

a f (x)dx. In this

work, we denote them by
∫ b
a f (x)dx for simplicity. For the definition and properties of Cauchy principal

value integrals, see [2, 3], or [6], for example.



148 J Sci Comput (2013) 54:145–176

In the second part of this work, we consider the integrals

I [f ] =
∫ b

a

f (x) dx; f (x) = g(x)(x − t)β, a < t < b, β = −1,−3,−5, . . . , (1.6)

which are not included in (1.3). Of these integrals, the ones with β = −1 are defined in
the sense of CPV and have received much attention. The ones with β = −3 have also been
investigated, but much less than the case β = −1. In Sect. 9, we extend the approach of
Sect. 2 to obtain the E–M expansion of these integrals and to obtain suitable numerical
quadrature formulas from them. In Sect. 10, we investigate the exactness properties of the
quadrature formula developed in [22], namely,

Q̃n[f ] = h

n∑

j=1

f (t + jh − h/2), h = b − a

n
,

for β = −1; we show that Q̃n[f ], analogously to Q̂n[f ], is exact for some periodic CPV
integrals involving a family of trigonometric polynomials. The details of the proof are in-
cluded in Appendix B. In Sect. 11, we illustrate the use of the quadrature method Q̃n[f ] for
β = −1 with a numerical example.

Throughout this work, we allow the functions g(x) to have arbitrary algebraic endpoint
singularities as in (1.1). Using the results of [21], we can also allow them to have arbi-
trary algebraic-logarithmic endpoint singularities without any extra theoretical effort. This
complicates the technical details, however. We leave the treatment of this case to another
publication.

The numerical treatment of singular integrals of the form
∫ b

a
g(x)(x − t)βdx, with

β = −1 and β = −2, and of the corresponding integral equations, has been the subject
of intensive research. The papers by Monegato [13], Mastroianni and Occorsio [11], Mas-
tronardi and Occorsio [12], and Capobianco, Mastroianni, and Russo [1], to name a few,
deal with the cases in which g(x) is of the form g(x) = w(x)u(x), where w(x) is some
admissible weight function for the interval [a, b] (mostly the Jacobi weight function), and
u ∈ Cp[a, b] for some integer p, such that

∫ b

a
g(x)(x − t)βdx exists in the sense of HFP.

(More references on this subject are provided in the bibliographies of these papers. For the
earlier literature, see also Davis and Rabinowitz [2, pp. 182–190].) The quadrature methods
developed and/or analyzed in these works are based on polynomial approximations of the
functions u(x) over the whole interval [a, b], and hence are entirely different from those we
consider in this work.

Since our work is based on the trapezoidal rule approximation of singular integrals, here
we will recall some of the recent works whose methods are based on applications of the
generalized E-M expansions in conjunction with certain representations of hypersingular
integrals. The paper by Huang, Wang, and Zhu [5], which is one of these, approaches the
problem [with the restriction −2 ≤ β < −1 in (1.3)] by following [22], which is based on the
generalizations of the E–M expansions by Navot [14]. As such, [5] is closest to the present
work. The papers by Wu and Sun [25], and Wu, Dai, and Zhang [24] take similar approaches.
Our work here is also along the lines of [22], but is based on the most recent developments
in E–M expansions of Sidi [20] that are valid for all HFP integrals with algebraic endpoint
singularities. As a consequence of these new E–M expansions, our quadrature formulas are
compact in that they consist of trapezoidal like rules with very simple “correction” terms.
They are thus simpler than those that already exist in the literature. For a large bibliography
on the subject, we refer the reader to [5], for example.
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Before proceeding to the next sections, we would like to recall some of the properties of
the Riemann Zeta function ζ(z) and the Bernoulli numbers Bk and the connection between
them for future reference:

B0 = 1, B1 = −1

2
; B2k+1 = 0, B2k �= 0, k = 1,2, . . . ,

ζ(0) = −1

2
; ζ(−2k) = 0, ζ(1 − 2k) = −B2k

2k
�= 0, k = 1,2, . . . .

(1.7)

2 Euler–Maclaurin Expansions and Quadrature Formulas for
∫ b

a
g(x)|x − t|β

Our starting point is Theorem 2.3 in Sidi [20] that concerns the generalization and extension
of the Euler–Maclaurin expansion to integrands with arbitrary algebraic endpoint singulari-
ties. We state it as Theorem 2.1 next.

Theorem 2.1 Let u ∈ C∞(a, b), and assume that u(x) has the asymptotic expansions

u(x) ∼ K(x − a)−1 +
∞∑

s=0

cs (x − a)γ ′
s as x → a+,

u(x) ∼ L(b − x)−1 +
∞∑

s=0

ds (b − x)δ′
s as x → b−,

(2.1)

where the γ ′
s and δ′

s are distinct complex numbers that satisfy

γ ′
s �= −1 ∀s; Reγ ′

0 ≤ Reγ ′
1 ≤ Reγ ′

2 ≤ · · · ; lim
s→∞ Reγ ′

s = +∞,

δ′
s �= −1 ∀s; Re δ′

0 ≤ Re δ′
1 ≤ Re δ′

2 ≤ · · · ; lim
s→∞ Re δ′

s = +∞.
(2.2)

Assume furthermore that, for each positive integer k, u(k)(x) has asymptotic expansions as
x → a+ and x → b− that are obtained by differentiating those of u(x) term by term k

times. Let also h = (b − a)/n for n = 1,2, . . . . Then, as h → 0,

h

n−1∑

j=1

u(a + jh) ∼
∫ b

a

u(x) dx + K(C − logh) +
∞∑

s=0
γ ′
s /∈{2,4,6,...}

cs ζ
(−γ ′

s

)
hγ ′

s+1

+ L(C − logh) +
∞∑

s=0
δ′
s /∈{2,4,6,...}

ds ζ
(−δ′

s

)
hδ′

s+1, (2.3)

where C = 0.577 . . . is Euler’s constant and ζ(z) is the Riemann Zeta function.4

4We can write the expansions in (2.1) in the “simpler” form

u(x) ∼
∞∑

s=0

cs (x − a)γ
′
s as x → a+, u(x) ∼

∞∑

s=0

ds (b − x)δ
′
s as x → b−,
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It is clear from Theorem 2.1 that the positive even powers of (x − a) and (b − x), if
present in the asymptotic expansions of u(x) as x → a+ and x → b−, do not contribute to
the asymptotic expansion of h

∑n−1
j=1 u(a + jh) as h → 0, the reason being that ζ(−2k) = 0

for k = 1,2, . . . , by (1.7).
In addition, if γ ′

p is the first of the γ ′
s that is different from 2,4,6, . . . , and if δ′

q is the first
of the δ′

s that is different from 2,4,6, . . . , then we have the useful observation that
[

h

n−1∑

j=1

u(a + jh) − (K + L)(C − logh)

]

−
∫ b

a

u(x) dx = O
(
hσ+1

)
as h → 0;

σ = min
{
Reγ ′

p,Re δ′
q

}
.

Remark Note that the paper Sidi [20] concerns only arbitrary algebraic endpoint singulari-
ties. The treatment of algebraic-logarithmic endpoint singularities is the subject of Sidi [19]
and [21].

Theorem 2.2 Let f (x) and g(x) be exactly as in (1.3) and (1.1)–(1.2), respectively, with
the notation therein. Let also {nk}∞

k=0 be a sequence of positive integers, n0 < n1 < n2 < · · · ,
and let hk = (b − a)/nk . Let t be such that t ∈ {a + jhk}nk−1

j=1 for every k = 0,1, . . . . (This

is guaranteed if each nk is an integer multiple of n0 and t ∈ {a + jh0}n0−1
j=1 .) Let n ∈ {nk}∞

k=0
and let h = (b − a)/n and xj = a + jh, j = 0,1, . . . , n, and define

T ∗
n [f ] = h

n−1∑

j=1
xj �=t

f (xj ). (2.4)

Define also

Csi(t;β) = (−1)i

(
β

i

)

cs(t − a)β−i , s, i = 0,1, . . . ,

Dsi(t;β) = (−1)i

(
β

i

)

ds(b − t)β−i , s, i = 0,1, . . . .

(2.5)

Then the following are true:

1. For β �= −1,−2, . . . ,

T ∗
n [f ] ∼ I [f ] +

∞∑

s=0

∞∑

i=0
γs+i /∈{2,4,6,...}

Csi(t;β)ζ(−γs − i)hγs+i+1

+
∞∑

s=0

∞∑

i=0
δs+i /∈{2,4,6,...}

Dsi(t;β)ζ(−δs − i)hδs+i+1

+ 2
∞∑

i=0

g(2i)(t)

(2i)! ζ(−β − 2i)hβ+2i+1 as h → 0. (2.6)

ordering the γ ′
s and the δ′

s as in (2.2), and allowing now one of the γ ′
s and/or one of the δ′

s to be equal to −1.
However, this complicates the statements of our results. Therefore, we have chosen to separate these two
exponents as in (2.1).
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2. For β = −m, m = 1,2, . . . ,

T ∗
n [f ] ∼ I [f ] +

∞∑

s=0

∞∑

i=0
γs+i /∈{2,4,6,...}

Csi(t;−m)ζ(−γs − i)hγs+i+1

+
∞∑

s=0

∞∑

i=0
δs+i /∈{2,4,6,...}

Dsi(t;−m)ζ(−δs − i)hδs+i+1

+ 2
∞∑

i=0
2i �=m−1

g(2i)(t)

(2i)! ζ(m − 2i)h−m+2i+1

+ [
1 − (−1)m

]g(m−1)(t)

(m − 1)! (C − logh) as h → 0. (2.7)

Here, by “h → 0” we mean “h → 0, h ∈ {hk}∞
k=0”.

Proof We start by writing

∫ b

a

f (x) dx =
∫ t

a

f (x) dx +
∫ b

t

f (x) dx.

We next apply Theorem 2.1 to the sums h
∑

j≥1, xj <t f (xj ) and h
∑

j≤n−1, xj >t f (xj ) with
∫ t

a
f (x) dx and

∫ b

t
f (x) dx, respectively. For this, we need the asymptotic expansions of

f (x) as x → a+, as x → b−, and as x → t±. This is the only thing that is needed since, by
our assumption that g ∈ C∞(a, b) and by the fact that a < t < b, it is clear that f ∈ C∞(a, t)

and f ∈ C∞(t, b).
Expanding f (x) at x = t±, we have

f (x) ∼
∞∑

i=0

g(i)(t)

i! (x − t)β+i as x → t+,

f (x) ∼
∞∑

i=0

(−1)i g
(i)(t)

i! (t − x)β+i as x → t−.

In addition, by expanding |x − t |β and invoking (1.1), it is easy to see that

f (x) ∼
∞∑

s=0

∞∑

i=0

Csi(t;β)(x − a)γs+i as x → a+,

f (x) ∼
∞∑

s=0

∞∑

i=0

Dsi(t;β)(b − x)δs+i as x → b−.

Applying now Theorem 2.1 to the sums h
∑

j≥1, xj <t f (xj ) and h
∑

j≤n−1, xj >t f (xj ),
and summing the resulting expansions, we obtain the asymptotic expansions in (2.6)
and (2.7). �
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Remarks

1. In the sequel, we let f (x) and g(x) be exactly as in (1.3) and (1.1)–(1.2), respectively,
with the notation therein. In addition, by “h → 0” we shall always mean “h → 0, h ∈
{hk}∞

k=0”, the hk being as defined in the statement of Theorem 2.2.
2. In case g ∈ C∞[a, b], f (x) is infinitely differentiable at x = a+ and x = b− since a <

t < b. Consequently, the asymptotic expansions of f (x) as x → a+ and x → b− are
simply its Taylor series at x = a+ and x = b−, respectively, namely,

f (x) ∼
∞∑

s=0

f (s)(a)

s! (x − a)s as x → a+,

f (x) ∼
∞∑

s=0

(−1)s f (s)(b)

s! (b − x)s as x → b−.

Thus, by (1.7), the sum of the first two summations in both (2.6) and (2.7) is simply

−h

2

[
f (a) + f (b)

] +
∞∑

i=1

B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
h2i . (2.8)

3. In case g(x) = (x − a)γ va(x) = (b − x)δvb(x), where va ∈ C∞[a, b) and vb ∈ C∞(a, b],
we have

γs = γ + s, δs = δ + s, s = 0,1, . . . .

Consequently, after proper rearrangement of the powers γs + i + 1 and δs + i + 1, the
sum of the first two summations in both (2.6) and (2.7) is simply

∞∑

s=0
γ+s /∈{2,4,6,...}

As(t;β)ζ(−γ − s)hγ+s+1 +
∞∑

s=0
δ+s /∈{2,4,6,...}

Bs(t;β)ζ(−δ − s)hδ+s+1,

where

As(t;β) =
s∑

i=0

Ci,s−i (t;β), Bs(t;β) =
s∑

i=0

Di,s−i (t;β), s = 0,1, . . . .

Such cases arise, for example, by introducing a weight function with algebraic end
point singularities into the integral

∫ b

a
f (x) dx. A frequently treated example is g(x) =

v(x)(1 − x2)λ, v(x) being a nice function on [−1,1].
4. From the result in (2.7), it is seen that in case β = −m, m = 1,2, . . . , the asymptotic

expansion of T ∗
n [f ] takes on different forms depending on whether m is even or odd.

(a) When m is even, let m = 2r , r = 1,2, . . . . Then, the (C − logh) terms disappear.
In addition, by the fact that ζ(−2k) = 0, for k = 1,2, . . . , all the terms involving
ζ(2r − 2i) with i > r disappear. As a result, we have

T ∗
n [f ] ∼ I [f ] +

∞∑

s=0

∞∑

i=0
γs+i /∈{2,4,6,...}

Csi(t;−2r)ζ(−γs − i)hγs+i+1

+
∞∑

s=0

∞∑

i=0
δs+i /∈{2,4,6,...}

Dsi(t;−2r)ζ(−δs − i)hδs+i+1

+ 2
r∑

i=0

g(2i)(t)

(2i)! ζ(2r − 2i)h−2r+2i+1 as h → 0. (2.9)
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(b) When m is odd, let m = 2r + 1, r = 0,1, . . . . Then we have

T ∗
n [f ] ∼ I [f ] +

∞∑

s=0

∞∑

i=0
γs+i /∈{2,4,6,...}

Csi(t;−2r − 1)ζ(−γs − i)hγs+i+1

+
∞∑

s=0

∞∑

i=0
δs+i /∈{2,4,6,...}

Dsi(t;−2r − 1)ζ(−δs − i)hδs+i+1

+ 2
∞∑

i=0
i �=r

g(2i)(t)

(2i)! ζ(2r + 1 − 2i)h−2r+2i

+ 2
g(2r)(t)

(2r)! (C − logh) as h → 0. (2.10)

With the asymptotic expansions of T ∗
n [f ] available, we can derive various compact nu-

merical quadrature formulas to approximate I [f ]. This can be done by subtracting some of
the lowest order terms in the asymptotic expansions, or suitable approximations to them,
from T ∗

n [f ]. In the next section, we show how this is achieved for β = −2, a case that has
been the subject of quite a few publications in the past. The treatment of the rest of the cases
is quite similar.

3 Compact Quadrature Formulas for the Special Case β = −2 and g ∈ C∞[a,b]
When β = −2, and g ∈ C∞[a, b], by Remarks 2 and 4 of the preceding section, (2.9) as-
sumes the form

T ∗
n [f ] ∼ I [f ] + 2ζ(2)g(t)h−1 + ζ(0)g′′(t)h − h

2

[
f (a) + f (b)

]

+
∞∑

i=1

B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0. (3.1)

Using the fact that ζ(0) = −1/2 and ζ(2) = π2/6, and defining

Qn[f ] =
(

T ∗
n [f ] + h

2

[
f (a) + f (b)

]
)

− π2

3
g(t)h−1,

= h

[
1

2
f (a) +

n−1∑

j=1
xj �=t

f (xj ) + 1

2
f (b)

]

− π2

3
g(t)h−1, (3.2)

we rewrite (3.1) as in

Qn[f ] ∼ I [f ] − 1

2
g′′(t)h +

∞∑

i=1

B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0. (3.3)

Here we have made the natural assumption that g(t) is readily available so that Qn[f ] can be
computed. We can use this result to devise quadrature formulas for I [f ] and also to accel-
erate their convergence via the Richardson extrapolation process, as in the next subsections.
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3.1 Quadrature Formula when g′′(t) Is Available

If g′′(t) is available, then we define

Q̄n[f ] = Qn[f ] + 1

2
g′′(t)h (3.4)

as an approximation to I [f ] with error expansion in the powers h2, h4, h6, . . . , given as in

Q̄n[f ] ∼ I [f ] +
∞∑

i=1

B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0. (3.5)

Consequently, we can apply the Richardson extrapolation process to the sequence Q̄nk
[f ],

with the nk as in the statement of Theorem 2.2.

3.2 Quadrature Formulas when g′′(t) Is Not Available

When g′′(t) is not available, we have a few options.

1. We can take Qn[f ] given in (3.2) as our approximation to I [f ]. Note that the asymptotic
expansion of Qn[f ] given in (3.3) involves the powers h1, h2, h4, h6, . . . . Thus, we can
improve the convergence of Qn[f ] by applying the Richardson extrapolation process to
the sequence Qnk

[f ], with the nk as in the statement of Theorem 2.2.
2. We can approximate g′′(t) by a central difference as in

g′′(t) ≈ g(t + h) − 2g(t) + g(t − h)

h2
,

and replace g′′(t) in the formula for Q̄n[f, t] given in (3.5), to define a new approximation
to I [f ], namely,

Q̄′
n[f ] = Qn[f ] + g(t + h) − 2g(t) + g(t − h)

2h
. (3.6)

Note that t + h and t − h, just as t , belong to the set {x0, x1, . . . , xn}, so that no extra
evaluation of g(x) is necessary here. By the fact that

g(t + h) − 2g(t) + g(t − h)

h2
∼ g′′(t) + 2

∞∑

i=2

g(2i)(t)

(2i)! h2i−2 as h → 0,

and by (3.5), there holds

Q̄′
n[f ] ∼ I [f ] +

∞∑

i=1

wi(t)h
i+1 as h → 0. (3.7)

Here,

w2i−1(t) = B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
, i = 1,2, . . . ,

w2i (t) = 2
g(2i+2)(t)

(2i + 2)! , i = 1,2, . . . .

(3.8)
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Consequently, we can improve the convergence of Q̄′
n[f ] by applying the Richardson

extrapolation to the sequence Q̄′
nk

[f ], with the nk as in the statement of Theorem 2.2.

Note that the asymptotic expansion of the error in Q̄′
n[f ] contains all the powers hi ,

i = 2,3, . . . , and this should be contrasted with the asymptotic expansion of the error
in Q̄n[f ], which contains only the even powers h2i , i = 1,2, . . . . This implies that both
of the errors Q̄n[f ] − I [f ] and Q̄′

n[f ] − I [f ] are asymptotically equal to B2
2! [f ′(b) −

f ′(a)]h2 as h → 0. When applying the Richardson extrapolation process, however, the
cost incurred for Q̄′

n[f ] is larger than that incurred for Q̄n[f ] since we have more (twice
as many) powers to eliminate by extrapolation in the former case.

3. Finally, we can also approximate I [f ] by combining Qn[f ] with Q2n[f ] as follows:

Q̂n[f ] = 2Q2n[f ] − Qn[f ]. (3.9)

This amounts to performing one step of the Richardson extrapolation process on the
asymptotic expansion of Qn[f ] given in (3.3) to eliminate the first power of h and hence
the need to know, or approximate, g′′(t). This is precisely what was done in [22] in
the treatment of CPV integrals. (Observe that t belongs to both {a + jh}n−1

j=1 and {a +
jh/2}2n−1

j=1 , the sets of abscissas for Qn[f ] and Q2n[f ], respectively.) Since the step size
associated with Q2n[f ] is h/2, we have

Q̂n[f ] = h

n∑

j=1

f (a + jh − h/2) − π2g(t)h−1, (3.10)

that is, Q̂n[f ] is the sum of h
∑n

j=1 f (a + jh − h/2), which is simply the midpoint rule
with step size h, and the correction term −π2g(t)h−1. Note also that even though t is in
the set {a+jh/2}2n−1

j=1 as well as the set {a+jh}n−1
j=1, it is not in the set {a+jh−h/2}n

j=1.
As already mentioned, this procedure eliminates the term − 1

2g′′(t)h from the asymptotic
expansion of the error in Qn[f ] in (3.3), and we have the asymptotic expansion in the
powers h2, h4, h6, . . . , given as in

Q̂n[f ] ∼ I [f ] +
∞∑

i=1

B2i

(2i)!
(
21−2i − 1

)[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0. (3.11)

Choosing nk = 2kn0, k = 1,2, . . . , in this case, we can apply the Richardson extrapolation
process to the sequence {Q̂nk

[f ]}∞
k=0.

4 Quadrature Formulas for β = −2 when f (x) is Periodic

In the preceding section, we assumed that β = −2 and g ∈ C∞[a, b], which means that
f ∈ C∞[a, b] \ {t}. We now assume, in addition, that f (x) is a T -periodic function of x for
x ∈ Rt , and that f ∈ C∞(Rt ), where

T = b − a and Rt = R \ {t + kT }∞
k=−∞, with R = (−∞,∞). (4.1)

In this case,

I [f ] =
∫ a′+T

a′
f (x)dx, a′ arbitrary.
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Thus, for each n, we can cause any given t to belong to a set {a′ + jh}n−1
j=1 by choosing a′

suitably. Starting with this observation, and following [22, pp. 213–214, Remarks], we can
express the quadrature formulas Q̄n[f ] and Q̂n[f ] also in the simple forms

Q̄n[f ] = h

n−1∑

j=1

f (t + jh) − π2

3
g(t)h−1 + 1

2
g′′(t)h,

Q̂n[f ] = h

n∑

j=1

f (t + jh − h/2) − π2g(t)h−1.

(4.2)

For this periodic case, we have f (i)(a) = f (i)(b), i = 0,1, . . . . Therefore, the summations

∞∑

i=1

B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
h2i

and
∞∑

i=1

B2i

(2i)!
(
21−2i − 1

)[
f (2i−1)(b) − f (2i−1)(a)

]
h2i

in (3.5) and (3.11), respectively, are now empty. This results in the following theorem:

Theorem 4.1 Let f (x) be as in the first paragraph of this subsection and let Q̄n[f ] and
Q̂n[f ] be as defined in (4.2). Then

Q̄n[f ] − I [f ] = O
(
hμ

)
and Q̂n[f ] − I [f ] = O

(
hμ

)
as h → 0 ∀μ > 0. (4.3)

In words, the errors in Q̄n[f ] and Q̂n[f ] tend to zero as h → 0 faster than any positive
power of h. In the nomenclature of the common literature, the quadrature formulas Q̄n[f ]
and Q̂n[f ] have “spectral” accuracy. Thus, the quadrature formulas Q̄n[f ] and Q̂n[f ] be-
come excellent methods for computing I [f ] when f (x) is T -periodic and infinitely smooth
on Rt , with Rt as defined in (4.1).

What we have done with the formulas Q̄n[f ] and Q̂n[f ] cannot be done with the for-
mula Q̄′

n[f ] because the error expansion for Q̄′
n[f ] is not empty (it contains the powers

h3, h5, h7, . . .) as can be seen from (3.7) and (3.8).

4.1 Another Expression for Q̂n[f ]

If f (x) is T -periodic, by letting u(x) = f (x) sin2 π(x−t)

T
, it may be more convenient to ex-

press f (x) in the form

f (x) = u(x)

sin2 π(x−t)

T

. (4.4)

Note that the function 1/ sin2[π(x − t)/T ] is T -periodic as well, and is in C∞(Rt ). This
implies that u(x) is T -periodic too, and is in C∞(R). Here, R and Rt are as in (4.1). Then,

g(x) = (x − t)2

sin2 π(x−t)

T

u(x),
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and g(t), which is needed for the quadrature formula Q̂n[f ], is obtained from g(t) =
limx→t g(x), which gives

g(t) = T 2

π2
u(t).

Thus, the quadrature formula Q̂n[f ] assumes the form

Q̂n[f ] = h

n∑

j=1

f (t + jh − h/2) − T 2u(t)h−1. (4.5)

In the next section, we will show that this formula can be reduced as in

Q̂n[f ] = h

n∑

j=1

u(t + jh − h/2) − u(t)

sin2[(2j − 1) π
2n

] . (4.6)

5 Exactness Property of Q̂n[f ] and Consequences

5.1 Exactness Property of Q̂n[f ]

It is well known that the trapezoidal rule

Tn[u] = h

[
1

2
u(a) +

n−1∑

j=1

u(a + jh) + 1

2
u(b)

]

; h = b − a

n
, n integer,

is exact for regular integrals
∫ b

a
u(x) dx, when u(x) is a trigonometric polynomial of degree

at most n − 1 with period T = b − a. That is,

Tn[u] =
∫ b

a

u(x) dx, u(x) =
n−1∑

m=−(n−1)

cmei2mπx/T .

Interestingly, the quadrature formula Q̂n[f ] for hypersingular integrals I [f ], with f (x) =
g(x)/(x − t)2 and g ∈ C∞(a, b), has an analogous exactness property. Specifically, we have
the following theorem:

Theorem 5.1 Let

fm(x) = ei 2mπx/T

sin2 π(x−t)

T

, m integer. (5.1)

[Note that fm(x) is T -periodic with a hypersingularity of the form (x − t)−2 at x = t .] Then
the following are true:

1. The integral I [fm] = ∫ b

a
fm(x) dx, b − a = T , satisfies

I [fm] = −2T |m|ei 2mπt/T , m = 0,±1,±2, . . . . (5.2)
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2. The quadrature formula Q̂n[fm] for I [fm] satisfies

Q̂n[fm] = I [fm] = −2T |m|ei2mπt/T , m = 0,±1,±2, . . . ,±n, (5.3)

while for arbitrary m, we have

Q̂n[fm] = T
[
(−1)k(n − 2r) − n

]
ei2mπt/T , (5.4)

where k and r are unique integers, k ≥ 0 and 0 ≤ r ≤ n − 1, such that |m| = kn + r , in
which case,

Q̂n[fm] − I [fm] = T
{[

(−1)k − 1
]
(n − 2r) + 2kn

}
ei2mπt/T . (5.5)

3. If f (x) is of the form

f (x) = u(x)

sin2 π(x−t)

T

, u(x) =
n∑

m=−n

cmei2mπx/T , (5.6)

then the quadrature formula Q̂n[f ] for I [f ] = ∫ b

a
f (x) dx, b − a = T , satisfies

Q̂n[f ] = I [f ]. (5.7)

The proof of Theorem 5.1 is provided in Appendix A. The result of part 1 of this theorem
is actually known and can be found in Lifanov and Poltavskii [9]. Nevertheless, we have
provided an independent proof of it.

5.2 Consequences of Theorem 5.1

With f (x) as in (4.4), we can show that the hypersingular integral
∫ b

a
f (x) dx can be ex-

pressed as a CPV integral. This is done in Theorem 5.2.

Theorem 5.2 Let us express f (x) (whether periodic or not) as in

f (x) = u(x)

sin2 π(x−t)

T

, a < t < b; T = b − a. (5.8)

Then

I [f ] =
∫ b

a

f (x) dx =
∫ b

a

u(x) − u(t)

sin2 π(x−t)

T

dx, (5.9)

which is a CPV integral.

Proof We start by expressing I [f ] in the form

I [f ] =
∫ b

a

u(x) − u(t)

sin2 π(x−t)

T

dx + u(t)

∫ b

a

1

sin2 π(x−t)

T

dx.

Next, by the fact that sin2[π(x − t)/T ] is T -periodic, and by (5.2) with m = 0, we have

∫ b

a

1

sin2 π(x−t)

T

dx = I [f0] = 0.
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The result in (5.9) now follows. That the integral in (5.9) is a CPV integral follows from the
fact that

u(x) − u(t)

sin2 π(x−t)

T

∼ (T /π)2u′(t)
x − t

as x → t .

This completes the proof. �

We have a similar result that concerns Q̂n[f ]:

Theorem 5.3 Let f (x) and I [f ] be as in Theorem 5.2, and let h = T/n. Then, provided
t ∈ {a + jh}n−1

j=1, we have

Q̂n[f ] = h

n∑

j=1

u(a + jh − h/2) − u(t)

sin2 π(a+jh−h/2−t)

T

. (5.10)

If f (x) is T -periodic, then

Q̂n[f ] = h

n∑

j=1

u(t + jh − h/2) − u(t)

sin2[(2j − 1) π
2n

] . (5.11)

Proof By (4.5),

Q̂n[f ] = h

n∑

j=1

u(a + jh − h/2)

sin2 π(a+jh−h/2−t)

T

− T 2u(t)h−1.

Hence

Q̂n[f ] = h

n∑

j=1

u(a + jh − h/2) − u(t)

sin2 π(a+jh−h/2−t)

T

+ Knu(t),

Kn = h

n∑

j=1

1

sin2 π(a+jh−h/2−t)

T

− T 2h−1. (5.12)

By the fact that sin2[π(x − t)/T ] is T -periodic, and t = a + ih for some i ∈ {1, . . . , n − 1},
we have that Kn = Q̂n[f0], with fm(x) as in (5.1). But, by (5.3), Q̂n[f0] = I [f0] = 0, and
this implies that Kn = 0. Substituting this in (5.12), we obtain (5.10). The result in (5.11)
follows from (5.10) by invoking the fact that f (x) is T -periodic. �

The next theorem concerns the error in Q̂n[f ] in terms of the Fourier series of the func-
tion u(x) in (5.8) of Theorem 5.2.

Theorem 5.4 Let f (x) and u(x) be as in Theorem 5.2, and let u(x) have the Fourier series

u(x) =
∞∑

m=−∞
cmei2mπx/T ; cm = 1

T

∫ b

a

e−i2mπx/T u(x) dx. (5.13)
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Then, with k and r as in Theorem 5.1,

Q̂n[f ]− I [f ] = T

∞∑

m=n+1

{[
(−1)k −1

]
(n−2r)+2kn

}[
cmei2mπt/T +c−me−i2mπt/T

]
. (5.14)

Consequently,

∣
∣Q̂n[f ] − I [f ]∣∣ ≤ 2T

∞∑

m=n+1

(m + n)
(|cm| + |c−m|). (5.15)

Proof The proof of (5.14) is achieved by invoking Theorem 5.1. The proof of (5.15) is
achieved by noting that kn ≤ m and |n − 2r| ≤ n since 0 ≤ r ≤ n − 1 and |m| ≥ kn for
|m| ≥ n. �

6 Error in Q̂n[f ] for Analytic and Periodic f (x)

We now go back to the periodic integrand functions f (x) discussed in Sect. 4. There, we as-
sumed that f (x) is infinitely differentiable on (−∞,∞) excluding the points of singularity
t + kT , k = 0,±1,±2, . . . , where T = b − a. Concerning this case, we recall Theorem 4.1
that states that the error Q̂n[f ]−I [f ] tends to zero faster as h → 0 (equivalently, as n → ∞)
than every positive power of h. In this section we prove that the error tends to zero expo-
nentially in n as n → ∞ if f (z), as a function of the complex variable z, is also analytic in
a strip containing the Re z axis, with the exception of the points t + kT , k = 0,±1,±2, . . . .
This is the subject of Theorem 6.2 below.

In proving Theorem 6.2, we will make use of Theorem 6.1 that follows next. This theo-
rem was stated and proved as Theorem 9 in Sidi and Israeli [22].

Theorem 6.1 Let G(z) be T -periodic and analytic in the strip |Im z| ≤ σ for some
σ > 0, with simple poles at the points t + kT , k = 0,±1,±2, . . . . Let I [G] = ∫ b

a
G(x)dx,

b − a = T .5 Next, let h = (b − a)/n and

Q̃n[G] = h

n∑

j=1

G(t + jh − h/2).

Then
∣
∣Q̃n[G] − I [G]∣∣ ≤ 2T M

(
σ ′) exp(−2πnσ ′/T )

1 − exp(−2πnσ ′/T )
, ∀σ ′ < σ,

where

M(τ) = max
{

max
x∈R

∣
∣Ge(x + iτ)

∣
∣,max

x∈R

∣
∣Ge(x − iτ)

∣
∣
}
,

and

Ge(ξ) = 1

2

[
G(t + ξ) + G(t − ξ)

]
.

[Note that Ge(z) is analytic throughout the strip |Im z| ≤ σ .]

5In this case, I [G] is simply the Cauchy principal value of
∫ b
a G(x)dx.
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Theorem 6.2 Let T = b − a and let f (z) be T -periodic and analytic in the strip |Im z| ≤ σ

for some σ > 0, with double poles at the points t + kT , k = 0,±1,±2, . . . . Express f (z) as
in

f (z) = u(z)

sin2 π(z−t)

T

, (6.1)

and define the function G(z) as in

G(z) = u(z) − u(t)

sin2 π(z−t)

T

, (6.2)

and let

Ge(ξ) = 1

2

[
G(t + ξ) + G(t − ξ)

]
. (6.3)

Then

∣
∣Q̂n[f ] − I [f ]∣∣ ≤ 2T M

(
σ ′) exp(−2πnσ ′/T )

1 − exp(−2πnσ ′/T )
, ∀σ ′ < σ, (6.4)

where

M(τ) = max
{

max
x∈R

∣
∣Ge(x + iτ)

∣
∣,max

x∈R

∣
∣Ge(x − iτ)

∣
∣
}
. (6.5)

Proof We start by noting that 1/ sin2[π(z− t)/T ], just as f (z), is T -periodic and meromor-
phic in the strip | Im z| ≤ σ with double poles at the points t + kT , k = 0,±1,±2, . . . . Con-
sequently, u(z) is analytic and T -periodic throughout the strip | Im z| ≤ σ . Consequently,
G(z) is T -periodic and meromorphic in the strip | Im z| ≤ σ with simple poles at the points
t + kT , k = 0,±1,±2, . . . .

Now, by Theorem 5.2, we have that I [f ] = I [G]. In Theorem 5.3, we showed that Q̂n[f ]
ultimately has the form shown in (5.11). It is easy to verify from this that Q̂n[f ] = Q̃n[G]
defined in Theorem 6.1. Consequently, Q̂n[f ] − I [f ] = Q̃n[G] − I [G]. Therefore, Theo-
rem 6.1 applies, and the result follows. �

7 Application of Q̂n[f ] to Hypersingular Integral Equations

We now consider the application of the quadrature formula Q̂n[f ] to the numerical solution
of hypersingular integral equations of the form

λφ(t) +
∫ b

a

K(t, x)φ(x) dx = w(t), t ∈ (a, b), λ scalar, (7.1)

such that,

K(t, x) = H(t, x)

(x − t)2
, H ∈ C∞([a, b] × [a, b]). (7.2)

In some cases, additional conditions are imposed on the solution to ensure uniqueness, which
we will skip below. The important thing here is to see how the quadrature formula Q̂n is
being used in the context of integral equations.
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7.1 Application to Periodic Hypersingular Integral Equations

In the periodic case, with T , R and Rt as in (4.1), we assume that

1. (a) K(t, x) is T -periodic in both x and t , and is in C∞(Rt ) as a function of x.
(b) As a function of x, K(t, x) has double poles at the points x = t + kT , k =

0,±1,±2, . . . .
2. w(x) and the solution φ(x) are both T -periodic in x and in C∞(R). (That φ ∈ C∞(R)

can be argued heuristically as was done in [22, Introduction].)

Following [22, Sect. 4], for a given integer n, let h = h2n = T/(2n), and xj = a+jh, j =
1, . . . ,2n, and let t be any one of the xj . Let us approximate the integral

∫ b

a
K(t, x)φ(x) dx

by the rule Q̂n with step size 2h (and not by Q̂2n with step size h), namely,

Q̂n

[
K(t, ·)φ] = 2h

n∑

j=1

K(t, t + 2jh − h)φ(t + 2jh − h) − π2H(t, t)φ(t)(2h)−1.

Finally, letting t = xi and noting that t +2jh−h = xi+2j−1, and replacing the φ(t +2jh−h)

by corresponding approximations φ̃i+2j−1, and recalling that everything here is T -periodic,
[for example, φ(xj+2n) = φ(xj + T ) = φ(xj ) for all j , and the same holds true for K(t, x)

and w(x)], we write down the following set of equations for the φ̃j :

λφ̃i + 2h

2n∑

j=1

εijK(xi, xj )φ̃j − π2H(xi, xi)φ̃i(2h)−1 = w(xi), i = 1, . . . ,2n, (7.3)

where

εij =
{

1 if |i − j | odd,

0 if |i − j | even.
(7.4)

Note that we do not need to know H(t, x) for all t, x. It is enough to know H(t, t), which
can be obtained from K(t, x) via H(t, t) = limx→t [(x − t)2K(t, x)]. The linear equations
in (7.3) can be rewritten in the form

2n∑

j=1

K̃ij φ̃j = w(xi), i = 1, . . . ,2n,

K̃ij = 2hεijK(xi, xj ) + [
λ − π2H(xi, xi)(2h)−1

]
δij , ∀i, j.

(7.5)

Here δij stands for the Kronecker delta.

7.2 Application to Nonperiodic Hypersingular Integral Equations

Direct use of the quadrature formula Q̂n in the solution of nonperiodic hypersingular inte-
gral equations in (7.1) will not yield good approximations, because (i) the solution φ(x) is
usually singular at the endpoints with a rather complicated singularity structure; as a result,
the integrand K(t, x)φ(x) has the same characteristics at the endpoints, and (ii) the inte-
grand K(t, x)φ(x) has a double pole singularity at x = t since K(t, x) does. Thus, the error
in Q̂n[K(t, ·)φ] is at best O(h2) as h → 0, contributed by the point of singularity x = t .
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We can increase the accuracy if we apply the quadrature formula Q̂n after transforming
the variable of integration x in (7.1) suitably, provided K(t, x)φ(x) is integrable through
x = a and x = b in the regular sense. A brief description of the procedure follows:

Let x = ψ(ξ), be the variable transformation alluded to, with the properties

ψ : [0,1] → [a, b]; ψ(0) = a, ψ(1) = b; ψ ′(ξ) > 0 for 0 < ξ < 1,

and

ψ(k)(0) = 0, ψ(k)(1) = 0, k = 1, . . . , r, for some r .

Since ψ(ξ) is increasing for 0 < ξ < 1, we have t = ψ(τ) for every t ∈ [a, b]. Of course, τ

is unique. Then (7.1) becomes

λΦ(τ) +
∫ 1

0
K(τ, ξ)Φ(ξ) dξ = W(τ ), τ ∈ (0,1), (7.6)

where

Φ(ξ) = φ
(
ψ(ξ)

)
, W(ξ) = w

(
ψ(ξ)

)
, K(τ, ξ) = K

(
ψ(τ),ψ(ξ)

)
ψ ′(ξ). (7.7)

By taking r sufficiently large, we can make many of the derivatives of the integrand
K(τ, ξ)Φ(ξ) vanish at ξ = 0 and ξ = 1, and this makes the 1-periodic extension of
K(τ, ξ)Φ(ξ) as a function of ξ quite smooth, except at the points ξ = τ + k, k =
0,±1,±2, . . . . (This is the reason why such variable transformations are also called “peri-
odizing” transformations.) Thus, we can apply the quadrature formula Q̂n to the transformed
integral equation in (7.6) exactly in the same way we have described for the periodic case in
the preceding subsection. We leave the details to the reader.

8 A Numerical Example with Q̂n[f ]

As mentioned earlier, because we know the form of the asymptotic expansions of the errors
in the quadrature formulas Q̄n[f ], Q̄′

n[f ], and Q̂n[f ], we can apply the Richardson extrap-
olation process to these formulas and obtain approximations to I [f ] that have increasingly
high accuracy. As this is a very well known subject, we will not give numerical examples
to illustrate it. Instead, we will concentrate on the use of Q̂n[f ] in the context of periodic
integrands since this is of interest when solving periodic hypersingular integral equations
and produces spectral accuracy.

Let us consider the integral I [f ], where

I [f ] =
∫ π

−π

f (x) dx, f (x) = u(x)

sin2 x−t
2

, (8.1)

with

u(x) =
∞∑

m=0

ηm cosmx = 1 − η cosx

1 − 2η cosx + η2
, η real, |η| < 1, (8.2)

which follows from

u(x) = Re
∞∑

m=0

ηmeimx = Re
1

1 − ηeix
.
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Table 1 Numerical results for the integral in (8.1)–(8.3) with t = 1 throughout. Here En(η = c) = |Q̂n[f ]−
I [f ]| for η = c

n En (η = 0.1) En (η = 0.2) En (η = 0.3) En (η = 0.4) En (η = 0.5)

10 5.04D–11 2.30D–07 3.23D–05 1.05D–03 1.50D–02

20 1.91D–20 5.21D–14 3.15D–10 1.49D–07 1.69D–05

30 2.68D–30 6.54D–21 2.00D–15 1.47D–11 1.33D–08

40 4.54D–32 5.78D–28 8.80D–21 9.43D–16 5.76D–12

50 5.07D–32 1.33D–32 1.76D–26 4.40D–21 3.27D–15

60 4.79D–32 1.14D–32 1.68D–31 9.60D–24 1.09D–17

70 1.04D–31 3.42D–32 7.48D–33 1.74D–27 1.47D–20

80 9.23D–32 4.98D–32 6.92D–32 2.78D–31 1.37D–23

90 1.36D–31 2.70D–33 1.06D–31 6.34D–32 8.44D–27

100 1.61D–31 1.66D–32 3.10D–32 3.49D–32 7.53D–31

By (5.2), we have

I [f ] = −4π

∞∑

m=0

mηm cosmt = −4πη
∂

∂η
u(t) = −4πη

(1 + η2) cos t − 2η

(1 − 2η cos t + η2)2
. (8.3)

For this u(x), the function f (z) is meromorphic in the strip | Im z| < σ = logη−1 with
double poles at the points z = t + 2kπ , k = 0,±1,±2, . . . .

We have applied Q̂n[f ] with t = 1 and η = 0.1(0.1)0.5. The results of this computation,
using quadruple precision arithmetic (approximately 35 decimal digits) are given in Table 1.

By Theorem 6.2, En = |Q̂n[f ]− I [f ]| = O(ηn) as n → ∞. As a result, we should have,
En+k/En ≈ ηk , and this can be seen from the results in Table 1.

9 Euler–Maclaurin Expansions and Quadrature Formulas for
∫ b

a
g(x)(x − t)βdx,

β = −1,−3,−5, . . .

We now turn to the treatment of the integrals

I [f ] =
∫ b

a

f (x) dx; f (x) = g(x)(x − t)β, β = −1,−3,−5, . . . , (9.1)

where g(x) is exactly as described in the Introduction via (1.1) and (1.2). (As mentioned
earlier, these integrals are not contained in those of (1.3).) Then we have the following
result, which can be obtained using the technique of proof of Theorem 2.2.

Theorem 9.1 Let g(x) be exactly as in (1.1)–(1.2) with the notation therein, and let f (x)

be as in (9.1). Write β = −(2r + 1), r = 0,1, . . . , for convenience. Let also {nk}∞
k=0 be a

sequence of positive integers, n0 < n1 < n2 < · · · , and let hk = (b − a)/nk . Let t be such
that t ∈ {a + jhk}nk−1

j=1 for every k = 0,1, . . . . (This is guaranteed if each nk is an integer

multiple of n0, k = 1,2, . . . , and t ∈ {a + jh0}n0−1
j=1 .) Let n ∈ {nk}∞

k=0 and let h = (b − a)/n
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and xj = a + jh, j = 0,1, . . . , n, and define

T ∗
n [f ] = h

n−1∑

j=1
xj �=t

f (xj ). (9.2)

Define also

Csi(t;β) = (−1)i+1

(
β

i

)

cs(t − a)β−i , s, i = 0,1, . . . ,

Dsi(t;β) = (−1)i

(
β

i

)

ds(b − t)β−i , s, i = 0,1, . . . .

(9.3)

Then

T ∗
n [f ] ∼ I [f ] +

∞∑

s=0

∞∑

i=0
γs+i /∈{2,4,6,...}

Csi(t;β)ζ(−γs − i)hγs+i+1

+
∞∑

s=0

∞∑

i=0
δs+i /∈{2,4,6,...}

Dsi(t;β)ζ(−δs − i)hδs+i+1

+ 2
r∑

i=0

g(2i+1)(t)

(2i + 1)! ζ(2r − 2i)h−2r+2i+1 as h → 0. (9.4)

As before, by “h → 0” we mean “h → 0, h ∈ {hk}∞
k=0”.

Proof The proof is carried out again by writing I [f ] = ∫ t

a
f (x) dx + ∫ b

t
f (x) dx and

proceeding exactly as in the proof of Theorem 2.2. Note that each of the two integrals∫ t

a
f (x) dx and

∫ b

t
f (x) dx is defined in the sense of HFP, and the corresponding E–M ex-

pansions have a (C − logh) term in them contributed by the point of singularity x = t . Upon
summing the two expansions, these terms cancel each other out, hence the sum given in (9.4)
contains no terms involving (C − logh). We leave the details to the reader. �

Note that Remarks 2 and 3 following the proof of Theorem 2.2 apply to the expansion
in (9.4) with no changes. In particular, when g ∈ C∞[a, b], after some simple manipulation,
the expansion in (9.4) becomes

Qn[f ] ∼ I [f ] + 2
r∑

i=0

g(2i+1)(t)

(2i + 1)! ζ(2r − 2i)h−2r+2i+1

+
∞∑

i=1

B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0, (9.5)

where

Qn[f ] = T ∗
n [f ] + h

2

[
f (a) + f (b)

] = h

[
1

2
f (a) +

n−1∑

j=1
xj �=t

f (xj ) + 1

2
f (b)

]

. (9.6)
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Note that the asymptotic expansion of the error Qn[f ] − I [f ] involves only the derivatives
of f (x) and g(x).

Upon invoking ζ(0) = −1/2 and ζ(2) = π2/6, for the two important cases of β = −1
(hence r = 0) and β = −3 (hence r = 1), (9.5) becomes

Qn[f ] ∼ I [f ] − g′(t)h

+
∞∑

i=1

B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0, (β = −1), (9.7)

which is precisely what was obtained in [22] (in a much different and lengthy way) for the
CPV integral

∫ b

a
g(x)/(x − t) dx, a < t < b, and

Qn[f ] ∼ I [f ] + π2

3
g′(t)h−1 − 1

6
g′′′(t)h

+
∞∑

i=1

B2i

(2i)!
[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0, (β = −3). (9.8)

9.1 The Case β = −1

As is seen from (9.7), when β = −1, hence r = 0, the E–M expansion of Qn[f ] for the CPV
integral

∫ b

a
g(x)/(x − t) dx, a < t < b, contains the term −g′(t)h. When g′(t) is known, we

can use it to define

Q′
n[f ] = Qn[f ] + g′(t)h = h

[
1

2
f (a) +

n−1∑

j=1
xj �=t

f (xj ) + 1

2
f (b)

]

+ g′(t)h

as our numerical quadrature formula. Otherwise, we can replace g′(t) by a (preferably cen-
tral) differentiation formula of suitable accuracy that is at our disposal.

In case we do not know g′(t), and we do not wish to bother with it, the term −g′(t)h
in the asymptotic expansion of (9.7) can be eliminated again by approximating I [f ] via a
linear combination of Qn[f ] and Q2n[f ] as in

Q̃n[f ] = 2Q2n[f ] − Qn[f ]. (9.9)

(This is precisely what was done in [22] in the treatment of CPV integrals. We have already
used this approach in our treatment of the case β = −2 in Sect. 3.) Since the step size
associated with Q2n[f ] is h/2, we have

Q̃n[f ] = h

n∑

j=1

f (a + jh − h/2), (9.10)

that is, Q̃n[f ] is simply the midpoint rule with step size h = (b − a)/n. As a result, the
asymptotic expansion of Q̃n[f ]− I [f ] contains only the powers h2, h4, h6, . . . , and is given
as in

Q̃n[f ] ∼ I [f ] +
∞∑

i=1

B2i

(2i)!
(
21−2i − 1

)[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0. (9.11)
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If, in addition, f (x) is a T -periodic function of x ∈ R and f ∈ C∞(Rt ), where T = b − a,
R = (−∞,∞), and Rt = R \ {t + kT }∞−∞, then (9.11) becomes

Q̃n[f ] − I [f ] = O
(
hμ

) ∀μ > 0. (9.12)

All this is already in [22], although we have shown that the E–M expansion for β = −1 can
be obtained by a technique that is much simpler than the one used in [22]. The exactness
result of the next section pertaining to the case β = −1 seems to be new, however.

10 Exactness Property of Q̃n[f ] for β = −1

The quadrature formula Q̃n[f ] for CPV integrals I [f ] = ∫ b

a
g(x)/(x − t) dx has an ex-

actness property analogous to that of Q̂n[f ] for hypersingular integrals I [f ] = g(x)/(x −
t)2 dx described in Theorem 5.1. Specifically, we have the following result that involves the
Hilbert kernel:

Theorem 10.1 Let

fm(x) = cot
π(x − t)

T
ei 2mπx/T , m integer. (10.1)

[Note that fm(x) is T -periodic with a Cauchy singularity of the form (x − t)−1 at x = t .]
Then the following are true with the convention that sgn(0) = 0 throughout:

1. The integral I [fm] = ∫ b

a
fm(x) dx, b − a = T , satisfies

I [fm] = iT sgn(m) ei 2mπt/T , m = 0,±1,±2, . . . . (10.2)

2. The quadrature formula Q̃n[fm] for I [fm] satisfies

Q̃n[fm] = I [fm] = iT sgn(m) ei2mπt/T , m = 0,±1, . . . ,±(n − 1), (10.3)

while for arbitrary m, we have

Q̃n[fm] = iT sgn(m)Vm,n ei2mπt/T , (10.4)

with V−m,n = Vm,n, and

Vm,n =
{

0 if m = 0,

1 if |m| = 1, . . . , n − 1,
and V±m,n = Vkn+r,n = (−1)kVr,n, (10.5)

where k and r are unique integers, k ≥ 0 and 0 ≤ r ≤ n − 1, such that |m| = kn + r , in
which case,

Q̃n[fm] − I [fm] = iT sign(m)(Vm,n − 1)ei2mπt/T . (10.6)

3. If f (x) is of the form

f (x) = cot
π(x − t)

T
u(x), u(x) =

n−1∑

m=−(n−1)

cmei2mπx/T , (10.7)
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then the quadrature formula Q̃n[f ] for I [f ] = ∫ b

a
f (x) dx, b − a = T , satisfies

Q̃n[f ] = I [f ]. (10.8)

Note that V±kn,n = 0, for every integer k, by (10.5).
The proof of Theorem 10.1 is provided in Appendix B. The result of part 1 of this theorem

is actually known and can be found in Lifanov [8], for example. Nevertheless, we have
provided an independent proof of it.

The next theorem concerns the error in Q̂n[f ] in terms of the Fourier series of the func-
tion u(x) in (5.8) of Theorem 5.2.

Theorem 10.2 Let

f (x) = cot
π(x − t)

T
u(x),

and let u(x) have the Fourier series

u(x) =
∞∑

m=−∞
cmei 2mπx/T ; cm = 1

T

∫ b

a

e−i 2mπx/T u(x) dx. (10.9)

Then, with Vm,n as in Theorem 10.1,

Q̃n[f ] − I [f ] = iT
∞∑

m=n

(Vm,n − 1)
[
cmei 2mπt/T − c−me−i 2mπt/T

]
. (10.10)

Consequently,

∣
∣Q̃n[f ] − I [f ]∣∣ ≤ 2T

∞∑

m=n

(|cm| + |c−m|). (10.11)

Proof The proof of (10.10) is achieved by invoking Theorem 10.1. The proof of (10.11) is
achieved by noting that |Vm,n| ≤ 1 for all m and n. �

11 A Numerical Example with Q̃n[f ] for β = −1

In this section we concentrate on the use of Q̃n[f ] in the context of periodic integrands since
this is of interest when solving periodic singular integral equations involving the Cauchy
kernel and produces spectral accuracy.

Let us consider the integral I [f ], where

I [f ] =
∫ π

−π

f (x) dx, f (x) = cot
x − t

2
u(x), (11.1)

with

u(x) =
∞∑

m=0

ηm cosmx = 1 − η cosx

1 + η2 − 2η cosx
, η real, |η| < 1. (11.2)
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Table 2 Numerical results for the integral in (8.1)–(8.3) with t = 1 throughout. Here En(η = c) = |Q̃n[f ]−
I [f ]| for η = c

n En (η = 0.1) En (η = 0.2) En (η = 0.3) En (η = 0.4) En (η = 0.5)

10 4.74D–10 6.28D–07 4.45D–05 9.25D–04 9.64D–03

20 6.77D–20 8.11D–14 2.97D–10 9.89D–08 8.68D–06

30 6.63D–30 7.34D–21 1.39D–15 7.23D–12 5.04D–09

40 2.34D–32 4.12D–28 3.40D–21 1.85D–16 1.91D–14

50 1.18D–32 1.44D–32 1.46D–26 4.70D–20 4.84D–15

60 1.24D–32 1.71D–32 2.43D–31 1.03D–23 7.91D–18

70 3.85D–34 3.85D–34 1.54D–33 1.30D–27 8.35D–21

80 3.03D–32 3.47D–32 3.81D–32 1.53D–31 6.14D–24

90 1.06D–31 1.07D–31 1.09D–31 1.10D–31 2.10D–27

100 8.62D–32 8.72D–32 8.47D–32 9.48D–32 2.50D–30

Thus, by the fact that

u(x) = Re
∞∑

m=0

ηmeimx = Re
1

1 − ηeix

and by (10.2),

I [f ] = Re

(

2iπ
∞∑

m=1

ηmeimt

)

= −2π

[

Im

(

−1 +
∞∑

m=0

ηmeimt

)]

= −2π

(

Im
1

1 − ηeit

)

.

Therefore,

I [f ] = −2π
η sin t

1 + η2 − 2η cos t
.

For this u(x), the function f (z) is meromorphic in the strip | Im z| < σ = logη−1 with
simple poles at the points z = t + 2kπ , k = 0,±1,±2, . . . .

We have applied Q̃n[f ] with t = 1 and η = 0.1(0.1)0.5. The results of this computation,
using quadruple precision arithmetic (approximately 35 decimal digits) are given in Table 2.

By Theorem 6.1, En = |Q̃n[f ]− I [f ]| = O(ηn) as n → ∞. As a result, we should have,
En+k/En ≈ ηk , and this can be seen from the results in Table 2.

Acknowledgement This research was supported in part by the United States–Israel Binational Science
Foundation grant no. 2008399.

Appendix A: Proof of Theorem 5.1

Proof of Part 1 We start by noting that

I [fm] =
[∫ b

a

ei 2mπ(x−t)/T

sin2 π(x−t)

T

dx

]

ei 2mπt/T .
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Making the variable transformation y = 2π(x − t)/T in the integral inside the square brack-
ets, and using the fact that the integrand is T -periodic, we obtain

I [fm] = T

2π
Lmei 2mπt/T ; Lm =

∫ π

−π

eimy

sin2( 1
2y)

dy. (A.1)

Next,

Lm =
∫ π

−π

cos(my)

sin2( 1
2y)

dy + i
∫ π

−π

sin(my)

sin2( 1
2y)

dy,

and since
∫ π

−π

sin(my)

sin2( 1
2 y)

dy = 0 due to its integrand being odd, it follows that

Lm =
∫ π

−π

cos(my)

sin2( 1
2y)

dy ⇒ L−m = Lm. (A.2)

Thus, it suffices to treat only the case m = 0,1, . . . . Now,

cos
[
(m + 1)y

] + cos
[
(m − 1)y

] = 2 cosy cos(my)

= 2

[

1 − 2 sin2

(
1

2
y

)]

cos(my),

which, upon dividing both sides by sin2( 1
2y), gives the identity

cos[(m + 1)y]
sin2( 1

2 y)
− 2

cos(my)

sin2( 1
2y)

+ cos[(m − 1)y]
sin2( 1

2y)
= −4 cos(my). (A.3)

Integrating both sides of this identity over [−π,π ], and invoking (A.2), we obtain

Lm+1 − 2Lm + Lm−1 = −4
∫ π

−π

cos(my)dy. (A.4)

Upon setting m = 0, and invoking the fact that L−1 = L1, (A.4) gives

2L1 − 2L0 = −8π ⇒ L1 = L0 − 4π, (A.5)

while for m ≥ 1, because
∫ π

−π
cos(my)dy = 0, (A.4) gives the recurrence relation

Lm+1 − 2Lm + Lm−1 = 0, m = 1,2, . . . ,

whose general solution is of the form Lm = Am+B . We can determine A and B by invoking
the values of L0 and L1. Now, applying to L0 the known result

∫ b

a

g(x)

(x − t)2
dx = lim

ε→0

[∫ t−ε

a

g(x)

(x − t)2
dx +

∫ b

t+ε

g(x)

(x − t)2
dx − 2

g(t)

ε

]

, a < t < b,

we obtain

L0 =
∫ π

−π

csc2

(
1

2
y

)

dy = lim
ε→0

[
4 cot(ε/2) − 8/ε

] = 0.
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As for L1, by (A.5), we have

L1 = L0 − 4π = −4π.

Consequently, A = −4π and B = 0. Hence, also by the fact that L−m = Lm,

Lm = −4π |m|, m = 0,±1,±2, . . . . (A.6)

Substituting this in (A.1), we obtain (5.2).

Proof of Part 2 To prove (5.3) and (5.4), we proceed similarly. First, by (4.5),

Q̂n[fm] = T

n

(
Wm,n − n2

)
ei 2mπt/T , (A.7)

Wm,n =
n∑

j=1

eimyj

sin2( 1
2 yj )

, yj = (2j − 1)
π

n
, j = 1, . . . , n. (A.8)

Next,

Wm,n =
n∑

j=1

cos(myj )

sin2( 1
2 yj )

+ i
n∑

j=1

sin(myj )

sin2( 1
2yj )

.

By the fact that

sin(myn−j+1)

sin2( 1
2yn−j+1)

= − sin(myj )

sin2( 1
2yj )

, j = 1, . . . , n,

and since
∑n

j=1 = ∑n

j=1 wn−j+1, we have
∑n

j=1
sin(myj )

sin2( 1
2 yj )

= 0. Consequently,

Wm,n =
n∑

j=1

cos(myj )

sin2( 1
2yj )

⇒ W−m,n = Wm,n. (A.9)

Thus, it suffices to treat only the case m = 0,1, . . . .
Next, for every m ≥ 0, there exist unique integers k, r ≥ 0, r ≤ n − 1, such that m =

kn+ r . (Thus, k = 0 and r = 0 for m = 0, while k = 1 and r = 0 for m = n.) By the fact that

cos
[
(kn + r)yj

] = cos
[
k(2j − 1)π + ryj

] = (−1)k cos(ryj ), j = 1, . . . , n,

we realize that

Wm,n = Wkn+r,n = (−1)kWr,n. (A.10)

Thus, we need to concern ourselves only with 0 ≤ m ≤ n − 1. (Note that this also implies
that |Wm,n| ≤ max0≤i≤n−1 |Wi,n| for every m, hence {Wm,n}∞

m=−∞ is a bounded sequence for
fixed n.)

Setting y = yj in (A.3) and summing over j from 1 to n, and invoking (A.9), we obtain

Wm+1,n − 2Wm,n + Wm−1,n = −4
n∑

j=1

cos(myj ) = −4

[

Re
n∑

j=1

eimyj

]

. (A.11)
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Upon setting m = 0 in (A.11), and invoking the fact that W−1,0 = W1,0, we first obtain

2W1,n − 2W0,n = −4n ⇒ W1,n = W0,n − 2n. (A.12)

Let us now consider 1 ≤ m ≤ n− 1 in (A.11). For this, we need to compute
∑n

j=1 cos(myj ).
Invoking (A.8), we have

n∑

j=1

eimyj = eimπ/n

n−1∑

j=0

(
ei2mπ/n

)j = eimπ/n
1 − (

ei2mπ/n
)n

1 − ei2mπ/n
= 0,

since 0 < 2mπ/n < 2π for 1 ≤ m ≤ n − 1. As a result,
∑n

j=1 cos(myj ) = 0, and (A.11)
becomes

Wm+1,n − 2Wm,n + Wm−1,n = 0, m = 1,2, . . . , n − 1, (A.13)

which enables us to compute Wm,n for 2 ≤ m ≤ n when W0,n and W1,n are known. The
general solution of (A.13) is of the form Wm,n = Am + B for some constants A and B ,
which we determine by invoking two initial values, namely, those of W0,n and W1,n. To
compute W0,n, let

θj = 1

2
yj and ξj = cos θj , j = 1, . . . , n, (A.14)

and note that ξ1, . . . , ξn are the zeros of Tn(ξ), the nth Chebyshev polynomial of the first
kind. (For Chebyshev polynomials and their properties, see Rivlin [16], for example.)
By (A.9) and (A.14),

W0,n =
n∑

j=1

1

sin2 θj

=
n∑

j=1

1

1 − cos2 θj

=
n∑

j=1

1

1 − ξ 2
j

= 1

2

[ n∑

j=1

1

1 − ξj

+
n∑

j=1

1

1 + ξj

]

,

and since ξn−j+1 = −ξj , j = 1, . . . , n, we have

n∑

j=1

1

1 − ξj

=
n∑

j=1

1

1 + ξj

⇒ W0,n =
n∑

j=1

1

1 − ξj

.

Now, since ξj are the zeros of Tn(ξ), we have the identity

T ′
n(ξ)

Tn(ξ)
=

n∑

j=1

1

ξ − ξj

.

Letting ξ = 1 in this identity, and making use of the facts that Tn(1) = 1, T ′
n(1) = n2, we

have

W0,n =
n∑

j=1

1

1 − ξj

= T ′
n(1)

Tn(1)
= n2.

As for W1,n, using (A.12), we have

W1,n = W0,n − 2n = n2 − 2n.
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Consequently, A = −2n and B = n2, and hence

Wm,n = n2 − 2mn, m = 0,1, . . . , n.

Recalling also the fact that W−m,n = Wm,n, we replace m by |m| everywhere, thus obtaining

Wm,n = n2 − 2|m|n, m = 0,±1, . . . ,±n. (A.15)

Finally, substituting (A.15) in (A.7), we obtain (5.3).
The result in (5.4) is obtained by substituting (A.10), with Wr,n = n2 −2rn, in (A.8). The

result in (5.5) is obtained by subtracting (5.2) from (5.4).

Proof of Part 3 This follows by invoking Part 2 of the theorem in

Q̂n[f ] − I [f ] =
n∑

m=−n

cm

(
Q̂n[fm] − I [fm]).

�

Appendix B: Proof of Theorem 10.1

Proof of Part 1 We start by noting that

I [fm] =
[∫ b

a

cot
π(x − t)

T
ei 2mπ(x−t)/T dx

]

ei 2mπt/T .

Making the variable transformation y = 2π(x − t)/T in the integral inside the square brack-
ets, and using the fact that the integrand is T -periodic, we obtain

I [fm] = T

2π
Kmei 2mπt/T ; Km =

∫ π

−π

cot

(
1

2
y

)

eimy dy. (B.1)

Next,

Km =
∫ π

−π

cot

(
1

2
y

)

cos(my)dy + i
∫ π

−π

cot

(
1

2
y

)

sin(my)dy,

and since
∫ π

−π
cot( 1

2y) cos(my)dy = 0 due to its integrand being odd, it follows that

Km = i
∫ π

−π

cot

(
1

2
y

)

sin(my)dy ⇒ K0 = 0, K−m = −Km. (B.2)

Thus, it suffices to treat only the case m = 1,2, . . . . For m ≥ 1, the integral in (B.2) repre-
senting Km is regular. By making the variable transformation z = 1

2 y in this integral, and
invoking Gradshteyn and Ryzhik [4, p. 366, formula 3.612(7)], we obtain

Km = 4i
∫ π/2

0
cos z

sin(2mz)

sin z
dz = 2π i, m = 1,2, . . . . (B.3)

Substituting this in (B.1), we obtain (10.2), with sgn(0) = 0.
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Proof of Part 2 By (9.10), we have first

Q̃n[fm] = T

n
Um,n ei 2mπt/T ,

Um,n =
n∑

j=1

cot

(
1

2
yj

)

eimyj , yj = (2j − 1)
π

n
, j = 1, . . . , n. (B.4)

Next,

Um,n =
n∑

j=1

cot

(
1

2
yj

)

cos(myj ) + i
n∑

j=1

cot

(
1

2
yj

)

sin(myj ).

By the fact that

cot

(
1

2
yn−j+1

)

cos(myn−j+1) = − cot

(
1

2
yj

)

cos(myj ), j = 1, . . . , n,

and since
∑n

j=1 wj = ∑n

j=1 wn−j+1, we have
∑n

j=1 cot( 1
2yj ) cos(myj ) = 0. Consequently,

Um,n = i
n∑

j=1

cot

(
1

2
yj

)

sin(myj ) ⇒ U0,n = 0, U−m,n = −Um,n. (B.5)

Thus, it suffices to treat only the case m = 1,2, . . . .
Next, for every m ≥ 0, there exist unique integers k, r ≥ 0, r ≤ n − 1, such that m =

kn + r . (Thus, k = 0 and r = 0 for m = 0, while k = 1 and r = 0 for m = n, and, therefore,
U±kn,n = 0 for k = 0,1, . . . .) By the fact that

sin
[
(kn + r)yj

] = sin
[
k(2j − 1)π + ryj

] = (−1)k sin(ryj ), j = 1, . . . , n,

we realize that

Um,n = Ukn+r,n = (−1)kUr,n. (B.6)

Thus, we need to concern ourselves only with 1 ≤ m ≤ n − 1. (Note that this also implies
that |Um,n| ≤ max0≤i≤n−1 |Ui,n| for every m, hence {Um,n}∞

m=−∞ is a bounded sequence for
fixed n.)

Now,

sin

(

my ± 1

2
y

)

= sin(my) cos

(
1

2
y

)

± cos(my) sin

(
1

2
y

)

. (B.7)

Dividing both sides of this identity by sin( 1
2y), we obtain

sin(my ± 1
2y)

sin( 1
2y)

= cot

(
1

2
y

)

sin(my) ± cos(my). (B.8)

Let us now set y = yj in this identity and sum over j from 1 to n. Invoking (B.5), we obtain

n∑

j=1

sin(myj ± 1
2 yj )

sin( 1
2 yj )

= −iUm,n ±
n∑

j=1

cos(myj ). (B.9)
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Note that the yj in (B.4) are the same as the yj in (A.8), and hence
∑n

j=1 cos(myj ) = 0 for
1 ≤ m ≤ n − 1, as shown in the proof of Theorem 5.1 given in Appendix A. Consequently,
(B.9) becomes

Dm+1 = −iUm,n = Dm, 1 ≤ m ≤ n − 1; Dk =
n∑

j=1

sin(kyj − 1
2 yj )

sin( 1
2yj )

. (B.10)

Therefore, Dn = Dn−1 = · · · = D2 = D1 = n, so that

Um,n = in, m = 1, . . . , n − 1.

Recalling also (B.5), we have

Um,n = i sgn(m)n, m = 0,±1, . . . ,±(n − 1); sign(0) = 0. (B.11)

Substituting (B.11) in (B.4), we obtain (10.3). Combining (B.11) with (B.5) and (B.6), we
obtain (10.4) with (10.5). The result in (10.6) is obtained by subtracting (10.2) from (10.4).

Proof of Part 3 This follows by invoking Part 2 of the theorem in

Q̂n[f ] − I [f ] =
n−1∑

m=−(n−1)

cm

(
Q̂n[fm] − I [fm]).

�
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