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a b s t r a c t

We analyze polynomials Pn that are biorthogonal to dilates of a positive measure µ,
supported on (0,∞):

∞

0
Pn (x) dµ


σn,jx


= 0, 1 ≤ j ≤ n.

We establish representations for Pn in terms of the associated dilation polynomial

Rn (y) =

n
j=1


y + 1/σn,j


.

In the case where

dµ (t) = tαe−tβ dt on (0,∞) ,

we show that strong asymptotics for Rn in the complex plane, as n → ∞, lead to strong
asymptotics for Pn, via the method of steepest descent.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let α > −1 and

σn,j
n
j=1 be distinct exponents in (0,∞). Then we may determine a monic polynomial Pn of degree n,

determined by the biorthogonality conditions
∞

0
xαPn(x)e−σn,jxdx = 0, 1 ≤ j ≤ n.

In developing methods for convergence acceleration, and numerical integration of singular integrands, the second author
introduced some classes of polynomials of this type [1–5]. These include

(I) the polynomials Pn = Λ
(α,∆)
n , for which σn,j = j +∆, 1 ≤ j ≤ n;

(II) the polynomials Pn = G(α)n , for which

σ−1
n,j

n
j=1

are the zeros of the Sidi polynomials D(0,0)n ;

(III) the polynomials Pn = M(α)
n , for which


σ−1
n,j

n
j=1

are the zeros of the Legendre polynomials scaled to (0, 1).

We explored these polynomials, and their zero distribution, in an earlier paper [6].
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In this paper, we consider the more general case when Pn is determined by orthogonality to dilates of a positive measure
µ. Thus we assume that µ is a positive measure supported on the real line, with all moments

µj =


∞

0
xjdµ(x), j = 0, 1, 2, . . . , (1.1)

finite. We assume that for n ≥ 1, we are given distinct positive numbers

σn,j
n
j=1, and determine a monic polynomial Pn of

degree n by the conditions
∞

0
Pn(x)dµ


σn,jx


= 0, 1 ≤ j ≤ n. (1.2)

Equivalently,
∞

0
Pn


t
σn,j


dµ (t) = 0, 1 ≤ j ≤ n. (1.3)

As in [6], Pn is closely related to the polynomial

Rn(y) =

n
j=1


y + σ−1

n,j


=

n
j=0

rn,jyj. (1.4)

We call Rn the dilation polynomial associated with Pn. The following simple proposition establishes the relationship between
Pn and Rn:

Theorem 1.1. Let µ be a positive measure on (0,∞) with infinitely many points in its support, and finite moments

µj

. Let

σn,j
n
j=1 be distinct positive numbers. Let Pn be a monic polynomial of degree n, determined by the orthogonality relations (1.2),

and let Rn be given by (1.4). Then Pn exists, is unique, and

(I)

Pn(x) = (−1)n
n

j=0

rn,j
µn

µj
(−x)j , (1.5)

while

(−1)n Rn (−y) =
1
µn


∞

0
Pn(ty)dµ(t). (1.6)

(II) There exists r > 0 such that

Pn(x) = µn
(−1)n

2π i


|t|=r

Rn


−

x
t


G (t)

dt
t

(1.7)

where

G(t) =

∞
j=0

t j

µj
. (1.8)

(III) Write σj = σn,j, 1 ≤ j ≤ n. Then

Pn(x)
µn

=

det



1 σ−1
1 σ−2

1 · · · σ−n
1

1 σ−1
2 σ−2

2 · · · σ−n
2

...
...

...
. . .

...

1 σ−1
n σ−2

n · · · σ−n
n

1
µ0

x
µ1

x2

µ2
· · ·

xn

µn



det


1 σ−1

1 σ−2
1 · · · σ−n+1

1
1 σ−1

2 σ−2
2 · · · σ−n+1

2
...

...
...

. . .
...

1 σ−1
n σ−2

n · · · σ−n+1
n


. (1.9)
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Fig. 1. The contour 0.

(IV) If µ has the form

dµ(t) = tαe−tβ dt, t ∈ (0,∞) ,

where α > −1, β > 0, then Pn has n simple zeros in (0,∞).

We shall prove this simple result in Section 2. In the special case where dµ(t) = tαe−tdt , it is a combination of
Proposition 1.1 and Theorem 1.5 in [6]. There we denoted Rn by Qn. In the general case, parts of Proposition 1.1 overlap with
results of Brezinski [7], Iserles et al. [8,9] on biorthogonal polynomials in a more general setting. Algebraic and asymptotic
properties of related biorthogonal polynomials have been explored in [10–13].

The main focus of this paper is the asymptotic behavior of {Pn}. These are based on a simple new contour integral
representation of Pn:

Theorem 1.2. Let β ≥ 1, α > −1, and dµ(t) = tαe−tβ dt, t ∈ (0,∞). Let

σn,j
n
j=1 be distinct positive numbers. Let Pn be a

monic polynomial of degree n, determined by the orthogonality relations (1.2), and Rn be given by (1.4). Let

π

2β
< η <

π

β
, (1.10)

s > 0, and let 0 be the contour consisting of the rays 0+ =

reiη : r ≥ s


,0− =


re−iη

: r ≥ s

, and the circular arc

0s =

seiθ : |θ | ≤ η


(see Fig. 1). Assume that 0 is traversed in such a way that 0s is traversed anticlockwise. Then for all

complex z,

Pn(z) =
β2 (−1)n µn

2π i


0

et
β
tβ−α−2Rn


−

z
t


dt. (1.11)

Let νn denote the zero counting function for Rn, so that

νn [a, b] =
1
n
(Number of zeros of Rn in [a, b]). (1.12)

Equivalently,

νn =
1
n

n
j=1

δ−1/σn,j ,

where δa denotes a unit mass at a. In [6, Theorem 1.2, p. 347], we showed that for β = 1, the zero counting measures of
Pn (−4nx) converge weakly as n → ∞, iff νn converges weakly as n → ∞. Moreover, we related the limiting zero counting
distributions of Rn and Pn. Note that

Rn(z) = exp

n


log (z − t) dνn(t)

,

with the usual branch of the log, at least for z ∉ (−∞, 0). In this paper, we establish a stronger form of asymptotic. We shall
make some assumptions about the behavior of Rn as n → ∞:

Hypotheses on Rn.
(I) For all j, n,

σn,j ∈ [1,∞). (1.13)
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(II) There is a probability distribution ν on [−1, 0], a sequence {λn} of non-negative numbers, and functions D and E such
that as n → ∞,

Rn(z) = exp

n


log (z − t) dν (t)+ λnD(z)+ E(z)+ o(1)

, (1.14)

uniformly for z in compact subsets of C \ [−1, 0].
(III) For each ε > 0, as n → ∞,

λn = o (nε) . (1.15)

(IV) exp(D) and exp(E) are analytic in C \ [−1, 0].

We need the scaled monic polynomials

Qn(z) =


−
µn−1

µn

n

Pn


−
µn

µn−1
z

. (1.16)

For u ∈ C \ (−∞, 0], and z
u ∉ (−∞, 0], we let

Ψ (z, u) =

 0

−1
log

 z
u

− t

dν(t)+

uβ − 1
β

. (1.17)

The critical points of Ψ (z, ·) determine the main part of the asymptotic for Qn. In applying steepest descent, the second
derivative of Ψ plays a role. Accordingly, we need, that when ∂Ψ (z,u)

∂u = 0,

B (z, u) = u2 ∂
2Ψ (z, u)
∂u2

= −

 0

−1

uzt

(z − tu)2
dν(t)+ βuβ . (1.18)

The following function is useful in describing the asymptotics:

H(t) =

βtβ−α−1 exp


tβ − 1
β


α +

1 − β

2


. (1.19)

Following is our asymptotic result.

Theorem 1.3. Assume that β ≥ 1 and α > −1. Let dµ(t) = tα exp

−tβ


dt on (0,∞) and assume that for n ≥ 1, we are

given distinct exponents

σn,j
n
j=1. Let {Pn} denote the corresponding monic biorthogonal polynomials, and {Rn} the associated

exponent polynomials. Assume the hypotheses (I)–(IV) above.

(a) For Re z ≥ 0, z ≠ 0, there is a unique solution u = ψ(z) of the equation

uβ =

 0

−1

z
z − ut

dν(t) (1.20)

with |argψ(z)| < π
2β and |ψ(z)| ≤ 1. Here ψ is an analytic function of z.

(b) Uniformly for z in compact sets of Re z ≥ 0, z ≠ 0,

Qn(z) =
H (ψ(z))

√
B (z, ψ (z))

exp


nΨ (z, ψ(z))+ λnD


z

ψ(z)


+ E


z

ψ(z)


(1 + o(1)) . (1.21)

Remarks.

(a) Let ωn denote the zero counting function of Qn, so that

dωn(t) =
1
n


x:Qn(x)=0

δx.

It has support in (−∞, 0). By taking absolute values and nth roots in the asymptotic above, we see that, at least for
Re(z) ≥ 0,

lim
n→∞


log |z − t| dωn(t) =

 0

−1
log

 z
ψ (z)

− t
 dν(t)+ Re


ψ(z)β − 1

β


.
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It follows from this limit, that ωn converges weakly to a distribution ω that satisfies, at least for Re z ≥ 0,
log |z − t| dω(t) =

 0

−1
log

 z
ψ(z)

− t
 dν(t)+ Re


ψ(z)β − 1

β


.

(b) Since µn
µn−1

=


n
β

1/β
(1 + o(1)), and because the convergence is locally uniform in z, it follows that

Q #
n (z) =


−
µn

µn−1

n

Pn


−


n
β

1/β

z


,

has the same asymptotic representation as Qn.
(c) We expect that the same asymptotic holds more generally for z ∈ C \ (−∞, 0]. We could not do this, because we could

not show there is a unique critical point when Re z < 0

We illustrate Theorem 1.3 with two examples from [6].

Example 1. Consider the polynomials Pn determined by the conditions
∞

0
Pn(x)e−(j+∆)xβ xαdx = 0, 1 ≤ j ≤ n.

In the case β = 1, these polynomials were considered in [6]. The associated dilation polynomials are

Rn(x) =

n
j=1


x + (j +∆)−1 .

Let

F(z) = log (1 + z)− z, z ∉ (−∞,−1) .

We see that

Rn(z)
zn

= exp


1
z

n
j=1

1
j +∆

+

n
j=1

F


1
(j +∆) z


. (1.22)

Here
n

j=1

1
j +∆

=

n
j=1

1
j

−∆

n
j=1

1
j (j +∆)

= log n + γ −∆

∞
j=1

1
j (j +∆)

+ o(1),

where γ is Euler’s constant. Let us set

λn = log n;

D(z) =
1
z
;

E(z) =
1
z


γ −∆

∞
j=1

1
j (j +∆)


+

∞
j=1

F


1
(j +∆) z


.

As F(v) = O

v2

, v → 0, the second series in the last line converges, uniformly for z in compact subsets of C \ (−∞, 0].

Also let

ν = δ0,

a unit mass at 0. Then we see from (1.22) that

Rn(z) = exp

n log z +

log n
z

+ E (z)+ o(1)


= exp

n


log (z − t) dν(t)+ λnD(z)+ E(z)+ o(1)

.
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Thus (1.14) holds. Moreover, Eq. (1.20) for u = ψ(z) becomes

uβ = 1.

Thus

ψ(z) = 1 for all z,

while from (1.17),

Ψ (z, ψ(z)) = log z,

and from (1.18),

B (z, ψ(z)) = β.

Moreover,

H (ψ(z)) =

β.

So the asymptotic (1.21) for Qn becomes,

Qn(z) = znn
1
z eE(z) (1 + o(1)) ,

at least for Re z ≥ 0, z ≠ 0. The limiting zero distribution ω satisfies
log |z − t| dω(t) = log |z| ,

suggesting that ω = δ0. For β = 1, this was proved in [6].

Example 2. Let Rn denote the Legendre polynomial for [−1, 0]. By translating asymptotics for the Legendre polynomials
[14, p. 194; p. 63] from [−1, 1] to [−1, 0], we see that uniformly for z in compact subsets of C \ [−1, 0],

Rn(z) = φ(z)n exp (E(z)) (1 + o(1)) ,

where

φ(z) =
1
4


2z + 1 +


(2z + 1)2 − 1


,

and

exp (E(z)) =
√
2

(2z + 1)2 − 1

−1/4
φ(z)1/2.

It is well known that 4φ is the conformal map of C \ [−1, 0] onto the exterior of the unit ball, and

φ(z) = exp
 0

−1
log (z − t)

dt
π

√
t (1 + t)


,

so

dν(t) =
dt

π
√
t (1 + t)

, t ∈ (−1, 0) .

Moreover, u = ψ(z) is the root of

uβ =
z
u
φ′

φ

 z
u


=

2z

u


2 z
u + 1

2
− 1

.

We see then that (1.21) becomes

Qn(z) =
H (ψ(z))

√
B (z, ψ (z))

exp

n

logφ


z

ψ (z)


+
ψ(z)β − 1

β


+ E


z

ψ(z)


+ o(1)


.

Throughout, C, C1, C2, . . . denote positive constants independent of n, x, t and polynomials P of degree at most n. We
write C = C(λ), C ≠ C(λ) to indicate dependence on, or independence of, a parameter λ. The same symbol does not
necessarily denote the same constant in different occurrences. We denote the polynomials of degree ≤ n by Pn.

This paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3, we prove Theorem 1.2. In Section 4,
we present some preliminaries for the proof of Theorem 1.3. In Section 5, we analyze the critical points of Ψ . We prove
Theorem 1.3 in Section 6.
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2. Proof of Theorem 1.1

Proof of Theorem 1.1. Throughout the proof, wewrite σj = σn,j, 1 ≤ j ≤ n. We first prove the existence and uniqueness of

Pn(x) =

n
j=0

pjxj.

The defining relations (1.3) are easily rewritten as the linear system
1 σ−1

1 σ−2
1 · · · σ−n+1

1
1 σ−1

2 σ−2
2 · · · σ−n+1

2
...

...
...

. . .
...

1 σ−1
n σ−2

n · · · σ−n+1
n




p0µ0
p1µ1
...

pn−1µn−1

 = −µn


σ−n
1
σ−n
2
...

σ−n
n

 , (2.1)

recall that pn = 1. The matrix on the left-hand side is a Vandermonde matrix, and all the

σn,j

are distinct, so the matrix is

non-singular. Hence the system has a unique solution for

pj
n−1
j=0 .

(I) We see that
∞

0


n

j=0

rn,j
µn

µj
(−ty)j


dµ(t) = µnRn (−y) ,

and by definition of Rn, this vanishes when y = σ−1
k , 1 ≤ k ≤ n. Then uniqueness of Pn gives (1.5). The last equation

also gives (1.6).
(II) Since µ has infinitely many points in its support in [0,∞), necessarily,

s = lim inf
j→∞

µ
1/j
j > 0.

Then G of (1.8) has radius of convergence s > 0. For r < s, we have

1
2π i


|t|=r

Rn

−

x
t


t

G(t)dt =

n
j=0

rn,j (−x)j
1

2π i


|t|=r

G(t)
t j+1

dt

=

n
j=0

rn,j (−x)j µ−1
j =

(−1)n

µn
Pn(x).

(III) This follows by applying Cramer’s rule to solve (2.1) for

pj
n−1
j=0 . Alternatively, one can compute the integral

∞

0
Pn


x
σk


dµ (x)

by integrating the determinant in (1.9), and then observing that one obtains two identical rows.
(IV) By a substitution, we can recast the orthogonality relations (1.2) as

∞

0
Pn

t1/β


t
α+1
β

−1e−σ
β
k tdt = 0, 1 ≤ k ≤ n. (2.2)

If Pn has less than n sign changes in (0,∞), then so also does Pn

t1/β


. Since all {σk}

n
k=1 are distinct,


e−σ

β
k t
n
k=1

is
a Chebyshev system, so we can find a linear combination h(t) that has sign changes at precisely the less than n sign
changes of Pn


t1/β


in (0,∞). Now (2.2) gives

0 =


∞

0
Pn

t1/β


t
α+1
β

−1h(t)dt.

This is impossible, as the integrand has one sign in (0,∞) except at the sign changes of Pn

t1/β


. �

3. Proof of Theorem 1.2

In the sequel β ≥ 1 and α > −1, while dµ(t) = tαe−tβ dt . The moments are

µn =


∞

0
tn+αe−tβ dt =

1
β
0


n + α + 1

β


. (3.1)



98 D.S. Lubinsky, A. Sidi / J. Math. Anal. Appl. 397 (2013) 91–108

It is possible to derive (1.11) using the results in Djrbashian’s book [15], but it is actually easier to start with the standard
Hankel loop integral for the reciprocal of the gamma function. Let ρ > 0. Then [16, p. 13], for a > 0,

1
0(a)

=
1

2π i


C

et t−adt.

Here C is a contour that starts at the lower edge of the negative real axis, cut from −∞ to −ρ, then traverses the circle
t = ρeiθ ,−π < θ < π anticlockwise, and then traverses the upper edge of the negative real axis, cut from −ρ
to −∞.

In particular,

1
µj

=
β

0


j+α+1
β

 =
β

2π i


C

et t−
j+α+1
β dt.

Then (1.5) gives

Pn(x) =
β (−1)n µn

2π i


C

et t−
α+1
β

n
j=0

rn,j

−

x
t1/β

j
dt

=
β (−1)n µn

2π i


C

et t−
α+1
β Rn


−

x
t1/β


dt.

Wemake the substitution t = uβ in the last integral, giving

Pn(x) =
β2 (−1)n µn

2π i


C1

eu
β
uβ−α−1Rn


−

x
u


du.

Here C1 is the image of the contour C under the map u = t1/β . Thus C1 consists of a circular arc t = ρ1/βeiθ ,−π
β
< θ < π

β
,

and rays from ρ1/βe±i π
β to ∞, in the left-half plane. Now the integrand is analytic in C \ (−∞, 0] as a function of u, while if

u = reiθ ,euβ  = er
β cosβθ .

This decays rapidly to 0 as r → ∞, as long as θ ∈


π
2β ,

π
β


. It follows that we can deform the contour C1 into the contour

0 described in the statement of Theorem 1.2. �
For Qn of (1.16), we deduce:

Lemma 3.1.

Qn(z) =
δn

2π i


0

e

t µn
µn−1

β
tβ−α−2Rn

 z
t


dt, (3.2)

where

δn = β2

µn−1

µn

n−β+α+1

µn. (3.3)

Proof. Wemake the substitutions z → −
µn
µn−1

z and t → t µn
µn−1

and s → s/ µn
µn−1

in (1.11). Then bymultiplying by

−
µn−1
µn

n
,

we obtain

Qn(z) =


µn−1

µn

n

µn


β2

2π i


0

e

t µn
µn−1

β 
t
µn

µn−1

β−α−2

Rn

 z
t

 µn

µn−1
dt. �

4. Preliminary results

In the sequel, we let

Ωn(z) = exp (λnD(z)+ E(z)) . (4.1)

Recall that H was defined at (1.19).
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Lemma 4.1.

(a)

µn

µn−1
=


n
β

1/β 
1 +

1
n
1
β


α +

1 − β

2


+ O


n−2

; (4.2)
µn

µn−1

β
=

n
β

+
1
β


α +

1 − β

2


+ O


1
n


. (4.3)

(b) Let δn be defined by (3.3). Then

δn =

2πβne−

n
β exp


−

1
β


α +

1 − β

2


(1 + o (1)) . (4.4)

(c) Uniformly for t in compact subsets of C \ (−∞, 0],

δne

t µn
µn−1

β
tβ−α−1

=
√
2πn exp


n

tβ − 1


β

+ o(1)


H(t). (4.5)

Proof.

(a) Using (3.1) and the asymptotic [17, p. 257, 6.1.47]

zb−a0 (z + a)
0 (z + b)

= 1 +
(a − b) (a + b − 1)

2z
+ O


1
z2


,

we see that

µn

µn−1
=


n
β

1/β

1 +

2α+1
β

− 1

2n
+ O


n−2 ,


µn

µn−1

β
=

n
β

+
1
β


α +

1 − β

2


+ O


1
n


.

(b) This follows from (4.3), and Stirling’s formula. We omit the lengthy, but straightforward, calculation.
(c) By (a) and (b) of the lemma,

δne

t µn
µn−1

β
tβ−α−1

=

2πβntβ−α−1 exp


tβ

n
β

+
1
β


α +

1 − β

2


+ O


1
n


−

1
β


α +

1 − β

2


−

n
β

+ o(1)


=
√
2πn exp


n

tβ − 1


β

+ o(1)


H(t). �

Recall thatΨ (z, u)was defined by (1.17), whileΩn was defined at (4.1). Moreover, the contours0s,0−,0+ were defined
in Theorem 1.2. We now write Qn as a sum of three terms, of which the first will be the main one.

Lemma 4.2. Let z ∈ C \ [−1, 0] , m ≥ 1, and s > 0. Let R ≥ |z|, and BR denote the ball center 0, radius R. Then

Qn(z) = I1 + I2 + I3, (4.6)

where

I1 =

√
2πn
2π i


0s

enΨ (z,t)Ωn

 z
t


H(t) (1 + o(1))

dt
t

; (4.7)

I2 =

√
2πn
2π i


(0+∪0−)∩BR

enΨ (z,t)Ωn

 z
t


H(t) (1 + o(1))

dt
t

; (4.8)

|I3| ≤ C1
√
n

2/e1/β

n
e−C2nRβ . (4.9)

The estimates hold uniformly for z in compact sets of C \ [−1, 0]. C1 and C2 are independent of n and R.
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Proof. We use the integral formula in Lemma 3.1:

Qn(z) =
δn

2π i


0s∪0+∪0−

e

t µn
µn−1

β
tβ−α−2Rn

 z
t


dt.

Here by our hypothesis (1.14) on Rn, and by Lemma 4.1,

δnRn

 z
t


e

t µn
µn−1

β
tβ−α−1

=
√
2πn exp (nΨ (z, t)+ o(1))Ωn

 z
t


H(t),

uniformly for t in compact subsets of |t| ≥ s, and z in a compact set. Then (4.6) follows, with

I3 =
δn

2π i


(0+∪0−)\BR

e

t µn
µn−1

β
tβ−α−2Rn

 z
t


dt.

Here as all zeros of Rn lie in [−1, 0], for |t| ≥ R ≥ |z|, we haveRn

 z
t

 ≤


1 +

|z|
|t|

n

≤ 2n.

Then

|I3| ≤ Cδn2n


∞

R
e−


µn
µn−1

r
β

|cos(βη)|rβ−α−2dr

≤ C1δn2ne−C2nRβ ,

by (4.2) and some straightforward estimation. Here C1 and C2 do depend on η, but not on R or n, and may be taken to be the
same for z in a compact set. Finally apply (4.4) for δn. �

5. The critical points of Ψ

In order to apply the method of steepest descent, we need to study the critical points of Ψ . We prove the following.

Theorem 5.1. For each z ∈ C with Re(z) ≥ 0, z ≠ 0, there exists a unique u = ψ(z) such that |arg (ψ(z))| < π
2β ; |ψ(z)| < 1,

and

∂

∂u
Ψ (z, u) = 0. (5.1)

ψ is an analytic function of z. Moreover, if Im(z) ≥ 0, arg (ψ(z)) ∈ [0, π2β ).

Observe from (1.17) that

∂

∂u
Ψ (z, u) =

1
u


−

 0

−1

1
1 − t u

z

dν(t)+ uβ

. (5.2)

We shall make the substitution

v =
1
z

and analyze

F (v, u) = −

 0

−1

1
1 − tuv

dν(t)+ uβ . (5.3)

We shall prove the result by first showing that for Re (v) ≥ 0 > Im(v), F (v, ·)maps the boundary of the sector of the unit
ball,

D+ =


reiθ : r ∈ (0, 1) , 0 < θ <

π

2β


, (5.4)

onto a curve enclosing 0. We let γ = ∂D+ and F ◦ γ denote the image set {F (v, u) : u ∈ γ }, for a given fixed v satisfying
Re(v) ≥ 0 > Im(v). Observe that for such v, F (v, ·) is a single valued analytic function for u ∈ C \ (−∞, 0]. Indeed, as
arg(v) ∈ [−

π
2 , 0), while for u ∈ γ , arg(u) ∈


0, π2β


⊆

0, π2


, we have arg(uv) ∈


−
π
2 ,

π
2


. Then for t ∈ [−1, 0],

Re (1 − tuv) = 1 + |t| Re(uv) ≠ 0.
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It follows that F ◦ γ is a piecewise smooth closed curve. We define the half open quadrants as follows:

Q1 = {w : Re(w) ≥ 0, Im (w) > 0} ;

Q2 = {w : Re(w) ≤ 0, Im (w) > 0} ;

Q3 = {w : Re(w) ≤ 0, Im (w) < 0} ;

Q4 = {w : Re(w) ≥ 0, Im (w) < 0} .

The interior of Qj is Q0
j . We also let

D− =


reiθ : r ∈ (0, 1) , 0 > θ > −

π

2β


. (5.5)

Our main lemma is the following.

Lemma 5.2.

(a) Let v ∈ Q4. Then there exists a unique ϕ(v) ∈ D+ ∪ {1} such that

F (v, ϕ(v)) = 0. (5.6)

Moreover, ϕ is an analytic function of v ∈ Q4.
(b) Let v ∈ Q1. Then there exists a unique ϕ(v) ∈ D− ∪ {1} such that (5.6) holds. Moreover, ϕ is an analytic function of v ∈ Q1.

Proof.
(a) Let us first deal with the ‘‘trivial’’ case where ν is a unit mass at 0. Then we see that

F (v, u) = −1 + uβ ,

and we can choose u = 1, that is u = ϕ(v) = 1 for all v. In the sequel, we assume that ν is not a unit mass at 0. �

We let γ1 = [0, 1] ; γ2 =


eiθ : θ ∈


0, π2β


; γ3 =


xei

π
2β : x ∈ [0, 1]


denote the three arcs of γ . Write

v = ρeiσ and u = reiθ ,

where σ ∈ [−
π
2 , 0) and θ ∈


0, π2β


. Now if u ≠ 0, then r > 0, so Re(uv) = ρr cos (θ + σ) ≥ 0, with strict inequality

unless σ = −
π
2 and θ = 0. In that exceptional case, Im(uv) = ρr sin


−
π
2


≠ 0. Then 0

−1

1
1 − tuv

dν(t)
 ≤

 0

−1

1
|1 − tuv|

dν (t)

≤

 0

−1

1
(1 + |t| Re(uv))2 + (|t| Im(uv))2

1/2 dν(t) < 1, (5.7)

as ν is not a unit mass at 0. We shall use (5.7) repeatedly. Next, we consider the location of the curves F(v, γj), j = 1, 2, 3.

Step 1 F(v, γ1).
Now

F (v, 0) = −

 0

−1
dν(t) = −1.

Moreover, by (5.7),

Re F (v, 1) = 1 − Re
 0

−1

dν (t)
1 − tv

> 0.

Also, for u ∈ (0, 1],

Im F (v, u) =

 0

−1

u |t| Im(v)
|1 + |t| uv|2

dν(t) < 0.

It follows that F(v, γ1) = {F (v, u) : u ∈ [0, 1]} is a path in the lower half-plane, starting at F (v, 0) = −1 and ending at a
point F (v, 1) in Q0

4 .
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Step 2 F(v, γ2).
Here, using (5.7),F v, eiθ  =

eiβθ −

 0

−1

dν(t)
1 − tuv


≥ 1 −

 0

−1

dν(t)
1 − tuv

 > ε > 0,

where ε is independent of θ ∈


0, π2β


. As eiβθ lies on the unit circle and is in Q1, it follows that F


v, eiθ


is a point in the

quadrants Q1,Q2, or Q4, with modulus at least ε. In particular, it cannot lie in Q3.
Moreover,

F

v, ei

π
2β


= i −
 0

−1

dν (t)

1 − ei
π
2β vt

has

Im F

v, ei

π
2β


≥ 1 −

 0

−1

dν(t)

1 − ei
π
2β vt

 > 0;

Re F

v, ei

π
2β


= −

 0

−1

1 + |t| ρ cos

π
2β + σ


1 − ei

π
2β vt

2 dν(t) < 0.

Thus F(v, γ2) is a path from F (v, 1) in Q0
4 to F


v, ei

π
2β

in Q0

2 , that does not intersect Q3, nor the ball center 0, radius ε.

Step 3 F(v, γ3).
Here for u = xei

π
2β ∈ γ3, x ∈ [0, 1], we have

F (v, u) = xβ i −
 0

−1

dν(t)

1 − xei
π
2β vt

so

Re F (v, u) = −

 0

−1

1 + |t| xρ cos

π
2β + σ


1 − xei

π
2β vt

2 dν(t) < 0.

Thus F (v, u) traces a path in the left-half plane from F

v, ei

π
2β

in Q0

2 to F (v, 0) = −1.
In summary, as we traverse γ counterclockwise, F (v, u) traces a path

(i) through the lower half-plane, starting at F (v, 0) = −1 and ending at a point F (v, 1) in Q0
4;

(ii) then from F (v, 1) to F

v, ei

π
2β

in Q0

2 , not intersecting Q3, nor the ball center 0, radius ε;

(iii) then in the open left-half plane, from F

v, ei

π
2β

to F (v, 0) = −1.

It follows that F(v, γ ) encloses 0 in its interior, so that the winding number about 0 is at least 1. It cannot be more than
1—otherwise we would obtain contradictions to (i), (ii), or (iii). So

1
2π i


F(v,γ )

dt
t

= 1.

The substitution t = F (v, u) leads to

1
2π i


γ

∂
∂uF (v, u)
F (v, u)

du = 1.

Since F (v, ·) is analytic inside γ , and continuous on γ , it follows that F (v, ·) has a simple zero inside γ . That is, there is
a unique u = ϕ(v) satisfying (5.6). The uniqueness of the solution, and the local mapping theorem (or implicit function
theorem) then yield local, and hence global, analyticity of ϕ.
(b) This follows from the identity

F (v̄, ū) = F (v, u). �
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Proof of Theorem 5.1. Thus far, we have shown that for v ∈ Q1 ∪ Q4, there exists a unique ϕ(v) satisfying (5.6). We must
still treat the case where v ∈ (0,∞). For such v, we see that

F (v, 0) = −1; F (v, 1) = 1 −

 0

−1

dν(t)
1 + |t| v

≥ 0.

Wehave strict inequality in the second inequality unless ν is a unitmass at 0. It follows that F (v, u) = 0 has a root u ∈ (0, 1].
Moreover,

∂F (v, u)
∂u

= βuβ−1
+

 0

−1

v |t|

(1 − uvt)2
dν(t) > 0,

so the root u of F (v, u) = 0 is unique. Note that as F (v, u)will be non-real for non-real u, the root will also be unique when
u ranges over D+ ∪ D−.

Now recall that we set v =
1
z . Since v maps the open right-half z-plane conformally onto itself, we can set

ψ(z) = ϕ(v) = ϕ


1
z


,

and obtain a unique root u = ψ(z) of the equation

∂Ψ (u, z)
∂u |u=ψ(z)

= 0.

The analyticity of ψ follows from that of ϕ. Here if Im z ≥ 0, Im v ≤ 0, so argψ(z) = argϕ(v) ∈ [0, π2β ), by
Lemma 5.2(a). �

6. Proof of Theorem 1.3

We can prove the asymptotic for Im z ≥ 0, since Pn has real zeros. Thus we assume that

z = ρeiσ , with σ ∈


0,
π

2


and ρ > 0.

Then, writing

ψ(z) = seiθ0 ,

we have s ∈ (0, 1], and

θ0 ∈


0,
π

2β


.

Recall that in Lemma 4.2, we split Qn as a sum of three terms. The main contribution will come from I1. We now further
divide

I1 = I11 + I12 + I13, (6.1)

where

I11 =

√
2πn
2π

 θ0+n−
1
3 −ε

θ0−n−
1
3 −ε

enΨ (z,se
iθ )Ωn

 z
seiθ


H

seiθ

(1 + o(1)) dθ; (6.2)

I12 =

√
2πn
2π


J\


θ0−n−

1
3 −ε

,θ0+n−
1
3 −ε

 enΨ (z,seiθ )Ωn

 z
seiθ


H

seiθ

(1 + o(1)) dθ; (6.3)

I13 =

√
2πn
2π


[−η,η]\J

enΨ (z,se
iθ )Ωn

 z
seiθ


H

seiθ

(1 + o(1)) dθ. (6.4)

Here

0 < ε <
1
6

and

J =


max


−
π

2β
, σ −

π

2


, η


. (6.5)

The parameter η satisfies (1.10), but will be fixed below to be close enough to π
2β . We start with the central term.
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Lemma 6.1. Let 0 < ε < 1
6 . Then

I11 =
H (ψ(z))

√
B (z, ψ (z))

enΨ (z,ψ(z))Ωn


z

ψ(z)


(1 + o(1)) . (6.6)

Proof. Let us fix z = ρeiσ and abbreviate Ψ (u) = Ψ (z, u) in this proof. Recall that Ψ ′

seiθ0


= 0. By a Taylor series

expansion, for |θ − θ0| ≤ n−1/3−ε ,

nΨ

seiθ


= nΨ

seiθ0


+

1
2


seiθ − seiθ0

2
nΨ ′′


seiθ0


+ O


n
seiθ − seiθ0

3
= nΨ


seiθ0


+

1
2


seiθ − seiθ0

2
nΨ ′′


seiθ0


+ O


n−3ε . (6.7)

The order term may be taken uniform for z in compact sets. Now let

f (θ) = Re Ψ

seiθ


=

 0

−1
log

 z
seiθ

− t
 dν(t)+

sβ cosβθ − 1
β

. (6.8)

We see that

f ′ (θ) =
ρ

s
sin (σ − θ)

 0

−1

|t| z
seiθ

− t
2 dν(t)− sβ sinβθ;

f ′′ (θ) = −
ρ

s
cos (σ − θ)

 0

−1

|t| z
seiθ

− t
2 dν(t)− 2

ρ
s
sin (σ − θ)

2  0

−1

|t|2 z
seiθ

− t
4 dν(t)− βsβ cosβθ.

Then

f ′′ (θ) < 0 for |θ | ≤
π

2β
and |σ − θ | ≤

π

2
. (6.9)

In particular, as 0 ≤ θ0 <
π
2β , we have

f ′′ (θ0) < 0. (6.10)

Note too that

f ′ (θ) = −Im

Ψ ′

seiθ

seiθ

;

f ′′ (θ) = −Re

Ψ ′′


seiθ
 

seiθ
2

+ Ψ ′

seiθ

seiθ


so in particular, recalling that ψ(z) = seiθ0 ,

0 > f ′′ (θ0) = −Re

Ψ ′′


seiθ0

 
seiθ0

2
= −Re (B (z, ψ(z))) . (6.11)

Here B (z, u) is given by (1.18). For |θ − θ0| ≤ n−
1
3 −ε , we have

1
2


seiθ − seiθ0

2
nΨ ′′


seiθ0


= −

n
2


seiθ0

2
Ψ ′′


seiθ0


(θ − θ0)

2
+ O


n |θ − θ0|

3
= −

n
2
B (z, ψ(z)) (θ − θ0)

2
+ O


n−3ε . (6.12)

Next, recalling thatΩn was defined at (4.1),

Ωn

 z
seiθ


= exp


λnD

 z
seiθ


+ E

 z
seiθ


= exp


λnD

 z
seiθ0


+ O


λnn−

1
3 −ε


+ E
 z
seiθ0


+ O


n−

1
3 −ε


= Ωn

 z
seiθ0


(1 + O(n−1/3)).
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Moreover, recalling the form (1.19) of H ,

H

seiθ


= H

seiθ0

 
1 + O


n−1/3 .

Combining the last two relations, together with (6.7) and (6.12), we see that θ0+n−
1
3 −ε

θ0−n−
1
3 −ε

enΨ (z,se
iθ )Ωn

 z
seiθ


H

seiθ

dθ

= enΨ (z,ψ(z))Ωn


z

ψ(z)


H (ψ(z))

 θ0+n−
1
3 −ε

θ0−n−
1
3 −ε

e−
n
2 B(z,ψ(z))(θ−θ0)

2
(1 + o(1)) dθ.

The crucial point here is that Re B (z, ψ(z)) > 0, so that by rotating the line segment, θ0+n−
1
3 −ε

θ0−n−
1
3 −ε

e−
n
2 B(z,ψ(z))(θ−θ0)

2
(1 + o(1)) dθ =


2

nB (z, ψ(z))


∞

−∞

e−y2dy + o


1
√
n



=


2π

nB (z, ψ(z))
(1 + o(1)) .

Then we obtain (6.6). �

Next, we estimate the tail in the main integral, using the notation defined in the previous proof:

Lemma 6.2.

|I12| ≤ C1enRe Ψ (z,ψ(z)) exp

−C2n1/3−2ε . (6.13)

Proof. We use the notation of the previous proof. We see that for some constant C1 independent of n, θ ,Ωn

 z
seiθ

 ≤ exp (C1λn) .

Then from (6.3),

|I12| ≤ C2
√
n exp (C1λn)


J\


θ0−n−

1
3 −ε

,θ0+n−
1
3 −ε

 enf (θ)dθ.
Here, from (6.9), f ′ (θ) is decreasing for |θ | ≤

π
2β and |σ − θ | ≤

π
2 , so f ′ (θ) is decreasing in the interval

max

−

π
2β , σ −

π
2


, π2β


. (Recall that σ ∈


0, π2


.) Note that if η > π

2β is close enough to π
2β , we have

f (η) < f

θ0 +

1
2


π

2β
− θ0


,

for the right-hand side is greater than f

π
2β


. It is also less than f (θ0). Choose such an η. For θ ∈


θ0 + n−

1
3 −ε, η


, we have

from (6.7), at least for large enough n,

nf (θ) ≤ nf

θ0 + n−

1
3 −ε


≤ nf (θ0)−
n
2
Re (B (ψ(z)))


n−

1
3 −ε
2

+ O

n−3ε

≤ nf (θ0)−
Re (B (ψ(z)))

2
n1/3−2ε

provided ε < 1
6 , as we assumed. A similar estimate holds for θ ∈


max


−

π
2β , σ −

π
2


, θ0 − n−

1
3 −ε

. Then

|I12| ≤ C2
√
n exp (C1λn) enRe Ψ (z,ψ(z)) exp


−

Re (B (ψ(z)))
2

n1/3−2ε

.

Because of our growth assumption (1.15) on λn, the stated estimate follows. �
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Now we deal with I13 given by (6.4):

Lemma 6.3.

|I13| ≤ C1enRe Ψ (z,ψ(z)) exp

−C2n1/3−2ε . (6.14)

Proof. Let us first assume that ν is not a unit mass at 0. Observe that [−η, η] \ J ⊂ (−∞, 0). For θ ∈ (0, η], a simple
calculation shows that

f (θ)− f (−θ) =

 0

−1
log


ρ

s e
i(σ−θ) − t

ρ

s e
i(σ+θ) − t

 dν(t)
=

1
2

 0

−1
log


1 +

4 ρs |t| (sin σ) (sin θ) ρ
s e

i(σ+θ) − t
2


dν(t)

> 0.

Since [−η, η] \ J omits 0, we see there exists∆ > 0 such that for θ ≥ 0 with −θ ∈ [−η, η] \ J,

f (θ)− f (−θ) ≥ ∆.

Then straightforward estimation gives

|I13| ≤ C1
√
neC2λn−n∆

 η

0
enf (θ)dθ

≤ C1
√
neC2λn−n∆

 η

0
enRe Ψ (z,se

iθ )dθ

and (6.14) follows in a stronger form, from the previous lemmas. Finally, if ν = δ0, a unit mass at 0, then

Ψ (z, u) = log
z
u

+
uβ − 1
β

,

so
∂Ψ (z, u)
∂u

= −
1
u

+ uβ−1

and this vanishes when u = 1. So in this case u = ψ(z) = 1, and θ0 = 0. We then have symmetry of the integrals about the
real line, and I13 can be estimated by a constant multiple of |I12|. �

Lemma 6.4. For some C1, C2 > 0, I2 of (4.8) admits the estimate

|I2| ≤ C1enRe Ψ (z,ψ(z)) exp (−C2n) . (6.15)

Proof. We split I2 of (4.8) into integrals over the upper and lower half rays:

I2± =

√
2πn
2π i


0±∩BR

enΨ (z,t)Ωn

 z
t


H(t) (1 + o(1))

dt
t
. (6.16)

Let us suppose first that

|σ − η| ≤
π

2
. (6.17)

(We shall discuss this condition later.) Then for r ≥ s, z
reiη

=
ρ

r e
i(σ−η) lies in the right-half plane, so that

 z
reiη

− t
 decreases

as r increases for t ∈ [−1, 0]. Hence 0

−1
log

 z
reiη

− t
 dν (t) ≤

 0

−1
log

 z
seiη

− t
 dν(t)

= Re Ψ

z, seiη


−

sβ cosβη − 1
β

,

so

Re Ψ

z, reiη


≤ Re Ψ


z, seiη


+

rβ − sβ

 cosβη
β

.
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Thus

|I2+| ≤

√
2πn
2π


0+

enΨ (z,t)Ωn

 z
t


H(t)

 (1 + o(1))
|dt|
|t|

≤

√
2πn
2π

enΨ (z,seiη)  ∞

s
e−n(rβ−sβ) |cosβη|

β

Ωn

 z
reiη

 H reiη dr
≤ C1

enΨ (z,seiη) n−1/2eC2λn .

Now, as we saw in the proof of Lemma 6.2,

a = Re Ψ

z, seiη


− Re Ψ


z, seiθ0


= f (η)− f (θ0) < 0,

so

|I2+| ≤ C3e−nC4
enΨ (z,ψ(z)) . (6.18)

Next, we attend to the condition (6.17). Since σ ∈

0, π2


,

−η ≤ σ − η ≤
π

2
− η <

π

2
.

As our only restrictions on η are π
2β < η < π

β
, and β ≥ 1, we can choose η to satisfy (6.17) unless β = 1 and σ = 0, that

is unless z lies in (0,∞). We now attend to this case. We use the fact that in this case s = ψ(z) also is in (0,∞) (as was
shown in the proof of Theorem 5.1). We have, for r ≥ s,

Re Ψ

z, reiη


=

 0

−1
log

 z
reiη

+ |t|
 dν (t)+

rβ cosβη − 1
β

≤

 0

−1
log

 z
r

+ |t|
 dν(t)+

rβ cosβη − 1
β

≤

 0

−1
log

 z
s

+ |t|
 dν(t)+

rβ cosβη − 1
β

= Ψ (z, s)+
rβ cosβη − sβ

β

= Ψ (z, ψ(z))−
rβ |cosβη| + sβ

β
.

We can now proceed much as above, to obtain (6.15). �

Proof of Theorem 1.3. From Lemmas 4.2 and 6.1 to 6.4,

Qn(z) = I11 + I12 + I13 + I2 + I3

=
H (ψ(z))

√
B (z, ψ (z))

enΨ (z,ψ(z))Ωn


z

ψ(z)


(1 + o(1))+ O


enRe Ψ (z,ψ(z))e−C2n1/3−2ε


+ O


2ne−C2nRβ


.

Recall here that 0 < ε < 1
6 . Now R may be chosen so large that

2ne−C2nRβ ≤ enRe Ψ (z,ψ(z))−n.

Then the result follows. �
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