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A. Sidi et al.44

Abstract

The Barnett–Coulson–Löwdin functions (BCLFs) arise as coefficients in series expan-
sions of Slater type orbitals about a displaced center. Following a detailed review of 
these functions, in this work, we provide full asymptotic expansions for them as the 
order of the modified Bessel functions that go into their construction tends to infinity. 
In doing so, we make use of some recent asymptotic expansions of modified Bessel 
functions that appeared in the paper [Ref. 22].

In molecular computations, BCLFs must be computed very many times. Therefore, 
it is necessary to design methods by which BCLFs can be computed efficiently. In this 
work, we also propose an iterative method for computing a whole sequence of BCLFs 
quickly, and accurately for some range of parameters. This method is implemented using 
quadruple-precision arithmetic, which is sufficient and present in some high-level pro-
gramming language compilers used in scientific computing, such as FORTRAN 77 and 
C. The number of arithmetic operations needed for the proposed method is very small.

1.  INTRODUCTION

The Barnett–Coulson–Löwdin functions (BCLFs) arise as coeffi-
cients in the series expansion of a Slater type orbital centered at a distance 
a from the origin, placed on an atomic nucleus where a set of Slater type 
orbitals are centered.19,16 This allows the one- and two-electron multi-
center integrals to be evaluated at a given origin in the molecule. The 
series expansion obtained is infinite, since the molecular geometry variable 
a (usually 1–20 a.u.) is fixed for an electronic structure calculation, whereas 
the instantaneous electron position variable r is independent of it and 
0 < r < ∞. They are both radial vectors and generally cannot be aligned.

The value of the screening parameter ζ generally exceeds 1 and should 
not exceed the atomic number. In practice, the lower limit for ζ is related 
to the first ionization potential I in atomic units, i.e., ζ must not be less than √

2 I . These limitations are helpful in establishing the numerical behavior 
of the BCLFs.

Much work is already available on BCLFs12,13,17,14,15 and references 
therein. As is known, BCLFs are expressed in terms of the modified spheri-
cal Bessel functions In+1/2(x) and Kn+1/2(x), n = 0, 1, . . .. In Section 2, we 
present an up-to-date review of the important properties of BCLFs known 
at present.

In Section 3, we derive the first known asymptotic expansions for 
BCLFs as the order of the modified Bessel functions used in their con-
struction tends to infinity. These are based on some recent asymptotic 
expansions of Sidi and Hoggan22 for the modified Bessel functions Iν(z) 
and Kν(z) as ν → ∞. We would like to emphasize that knowledge of these 
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Asymptotic Expansions of Barnett–Coulson–Löwdin Functions of High Order 45

expansions is helpful in deciding on what extrapolation method to use in 
order to accelerate the convergence of the infinite series mentioned in the 
first paragraph, which converge slowly. In Section 3, we also analyze the 
asymptotic behavior of BCLFs as the instantaneous electron position vari-
able r tends to zero and to infinity.

In Section 4, we propose to compute a whole array of BCLFs simul-
taneously and quickly via one of the known recursion relations among 
the different BCLFs reviewed in Section 2. In Section 5, we discuss the 
algorithmic details of our method. It is important to note that, in this 
method, we do not compute In+1/2(x) and Kn+1/2(x) directly. Taking into 
account the asymptotics of Iν(x) and Kν(x) as ν → ∞, we compute some 
appropriately scaled versions of these functions instead. The scaling we use 
enables us to avoid the underflows and overflows that may occur in direct 
computation of In+1/2(x) and Kn+1/2(x) for large values of n; it is thus an 
important ingredient of our method. This also allows us to scale the BCLFs 
appropriately. In order to end up with BCLFs that have double-precision 
accuracy, in our method, we compute both the functions In+1/2(x) and 
Kn+1/2(x) and the BCLFs in quadruple-precision arithmetic, the idea being 
that the quadruple-precision arithmetic is shown to suffice and it is offered 
with some high-level programming language compilers used for scientific 
applications, such as Fortran 77 and C. As the number of arithmetic opera-
tions required is very small (of the order of wN , where N  is the number of 
BCLFs computed and w is a small integer), the use of quadruple-precision 
arithmetic cannot increase the cost of the computation timewise.

In Appendix A, we summarize the results of 22 that are relevant to the 
present work. In Appendix B, we discuss the recursive computation of 
the scaled versions of In+1/2(x) and Km+1/2(x) that avoids overflows and 
underflows in floating-point arithmetic. In Appendix C, we show that the 
recursive computation of the scaled versions of In+1/2(x) (backward) and 
Km+1/2(x) (forward) is stable numerically.

2.  REVIEW OF BCLFs
2.1  Definition and properties of BCLFs

Let n be a non-negative integer, and let a,r, and ζ be as described in the first 
and second paragraphs of the Introduction. Thus, a and ζ are finite, while r 
assumes values from 0 to infinity. With R defined as in

(1)R =
√

a
2 + r

2 − 2ar cos θ
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A. Sidi et al.46

consider the function Rn−1
e
−ζR. Letting x = cos θ so that x ∈ [−1, +1], its 

expansion in Legendre polynomials Pλ(x) may be expressed as

A
n
λ+1/2 being the BCLFs. From this relation, it is seen that Rn−1

e
−ζR serves 

as a “generating function” for the BCLFs. Since

we immediately deduce from (2) that

Clearly, the An
λ+1/2(ζ , a, r) are symmetric functions of a and r, that is,

because the function Rn−1
e
−ζR is.

A simple expression for BCLFs with n = 0 and λ = 0, 1, . . ., is known 
(see Abramowitz and Stegun Ref. 1, p. 445, formula 10.2.35):

Here, Iλ+1/2(x) and Kλ+1/2(x) are the modified spherical Bessel func-
tions1 of order λ, of the first and third kind, respectively. Because Iλ+1/2(x) 
and Kλ+1/2(x) are defined for all integer values of λ, we let (6) define 
A

0
λ+1/2(ζ , a, r) for λ < 0 as well. This is an important step that enables us 

to define An
λ+1/2(ζ , a, r) for λ < 0 as well, which is what we consider next.

From the integral representation in (4), it follows that, for n ≥ 0,

(2)
R

n−1
e
−ζR =

1
√

ar

∞∑

λ=0

(2λ + 1)A
n
λ+1/2(ζ , a, r) Pλ(x), −1 ≤ x ≤ 1,

(3)
∫ +1

−1

P
2
λ(x) dx =

2

2λ + 1
, λ = 0, 1, . . . ,

(4)A
n
λ+1/2(ζ , a, r) =

√
ar

2

∫ +1

−1

R
n−1

e
−ζR

Pλ(x) dx, λ = 0, 1, . . .

(5)A
n
λ+1/2(ζ , a, r) = A

n
λ+1/2(ζ , r , a),

(6)
A

0
λ+1/2(ζ , a, r) = Iλ+1/2(ζρ)Kλ+1/2(ζρ

′
); ρ = min{a, r}, ρ

′ = max{a, r}.

1 �The functions Iλ+1/2(x) and Kλ+1/2(x) satisfy three-term recursion relations in λ that are given in 
(65) and (66) in this work, and are defined for all integer values of λ. Those Iλ+1/2(x) with λ ≥ 0 are 
called modified spherical Bessel functions of the first kind, while those with λ < 0 are called modified 
spherical Bessel functions of the second kind. The Kλ+1/2(x) are called modified spherical Bessel func-
tions of the third kind. Each of the two pairs [Iλ+1/2(x) and I−λ−1/2(x)] and [Iλ+1/2(x) and Kλ+1/2(x)] 
is a linearly independent set of solutions of the modified spherical Bessel equation of order λ. See 
Abramowitz and Stegun [Ref. 1, Chapter 10].
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Asymptotic Expansions of Barnett–Coulson–Löwdin Functions of High Order 47

and hence

From (6), it is obvious that A
0
λ+1/2(ζ , a, r) = A

0
λ+1/2(1, ζ a, ζ r). By a 

simple manipulation of the integral representation in (4), it can be shown 
analogously that An

λ+1/2(ζ , a, r) satisfy the “homogeneity relation”

This relation shows that An
λ+1/2(ζ , a, r) are actually functions of two vari-

ables, namely, of ζ a and ζ r, and can be computed directly from the func-
tions Ā

n
λ(a, r) that are defined as in

From (9) and (10), it follows that An
λ+1/2(ζ , a, r) can be computed from 

Ā
n
λ(a, r) via

Invoking (11), it is easy to show that (7) can be rewritten as

2.2  Recurrence relations
Now, just as the A

0
λ+1/2 are defined for all integer values of λ, the A

n
λ+1/2, 

n = 1, 2, . . ., too can be defined for all integer values of λ, and satisfy the 
following recurrence relations that are proved in Barnett5:

(7)A
n+1
λ+1/2(ζ , a, r) = −

∂

∂ζ
A

n
λ+1/2(ζ , a, r),

(8)A
n
λ+1/2(ζ , a, r) = (−1)

n ∂
n

∂ζ
n A

0
λ+1/2(ζ , a, r).

(9)A
n
λ+1/2(ζ , a, r) = ζ

−n
A

n
λ+1/2(1, ζ a, ζ r), n ≥ 0.

(10)Ā
n
λ(a, r) = A

n
λ+1/2(1, a, r).

(11)A
n
λ+1/2(ζ , a, r) = ζ

−n
Ā

n
λ(ζ a, ζ r).

(12)Ā
n+1
λ (a, r) = nĀ

n
λ(a, r) −

(
a

∂

∂a
+ r

∂

∂r

)
Ā

n
λ(a, r), n ≥ 0.

(13)A
1
λ+1/2(ζ , a, r) =

arζ

2λ + 1

[
A

0
λ−1/2(ζ , a, r) − A

0
λ+3/2(ζ , a, r)

]
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A. Sidi et al.48

and

Of these, (13) can be obtained by first letting n = 0 in (7) and invoking 
(6), and next employing the recursion relations among the Iλ+1/2(x) and 
Kλ+1/2(x) and their derivatives, which are valid for all integer values of 
λ. The relation in (14), with λ ≥ 0, can be obtained by first replacing n 
by n + 2 in (4), then writing R

n+1 = R
n−1

R
2 = R

n−1
(a

2 + r
2 − 2arx),  

and then using the recursion relation among the Legendre polynomials 
to express xPλ(x) as a linear combination of Pλ−1(x), Pλ(x), and Pλ+1(x),  
and finally, by invoking (4). Clearly, whenever An

λ+3/2(ζ , a, r) are defined 
for all integer values of λ, so are An+2

λ+1/2(ζ , a, r). From this, it follows that, 
because A0

λ+3/2(ζ , a, r) are defined by (6) for all λ, so are An
λ+3/2(ζ , a, r) 

with n = 1, 2, . . ., by (13) and (14).
Letting ζ = 1 in (13) and (14), we obtain the equivalent recurrence 

relations

Of course, the initial conditions are

Next, using (15) and (16), it is easily seen that Ān
λ(a, r) can be expressed 

as a linear combination of Ā0
k as in

Here, the pn,i(a, r , λ) are polynomial in a, r and rational in λ.

(14)

A
n+2
λ+1/2(ζ , a, r) = (a

2 + r
2
)A

n
λ+1/2(ζ , a, r)

−
2ar

2λ + 1

[
λA

n
λ−1/2(ζ , a, r) + (λ + 1)A

n
λ+3/2(ζ , a, r)

]
.

(15)Ā
1
λ(a, r) =

ar

2λ + 1

[
Ā

0
λ−1(a, r) − Ā

0
λ+1(a, r)

]

(16)

Ā
n+2
λ (a, r) = (a

2 + r
2
)Ā

n
λ(a, r)

−
2ar

2λ + 1

[
λĀ

n
λ−1(a, r) + (λ + 1)Ā

n
λ+1(a, r)

]
, n ≥ 0.

(17)

Ā
0
λ(a, r) = Iλ+1/2(ρ)Kλ+1/2(ρ

′
); ρ = min{a, r}, ρ

′ = max{a, r}.

(18)Ā
n
λ(a, r) =

⌊(n+1)/2⌋∑

i=−⌊(n+1)/2⌋
pn,i(a, r , λ)Ā

0
λ+i(a, r).
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Asymptotic Expansions of Barnett–Coulson–Löwdin Functions of High Order 49

Remark.  The following recurrence relation that appears in Bouferguène6 
is incorrect because it violates the homogeneity relation given in (9):

2.3  Explicit expressions
The relations in (6) and (7), together with recurrence and derivative 
relations on Bessel functions, allow us to obtain explicit expressions for 
A

n
λ+1/2(ζ , a, r) in terms of the modified spherical Bessel functions for any 

n, λ, a, and r. For example, for A1
λ+1/2(ζ , a, r), we have

An explicit expression for A2
λ(a, r) that is analogous to that in (19) is

We now turn to other expressions for BCLFs. Let us define a set of 
polynomials pn(x), n ≥ 0, by the recurrence relation

A
n+1
l (ζ , a, r) =

ar

2l + 1

[
A

n
λ−1/2(ζ , a, r) − A

n
λ+3/2(ζ , a, r)

−A
n−1
λ−1/2(ζ , a, r) − A

n−1
λ+3/2(ζ , a, r)

]
.

(19)

A
1
λ+1/2(ζ , a, r) = aIλ+1/2(ζ r)Kλ−1/2(ζ a)

−rIλ+3/2(ζ r)Kλ+1/2(ζ a), 0 ≤ r ≤ a,

(20)

A
1
λ+1/2(ζ , a, r) =

2λ + 1

ζ
Iλ+1/2(ζ r)Kλ+1/2(ζ a) − rIλ−1/2(ζ r)Kλ+1/2(ζ a)

+aIλ+1/2(ζ r)Kλ−1/2(ζ a), 0 ≤ r ≤ a,

(21)

A
1
λ+1/2(ζ , a, r) = −

2λ + 1

ζ
Iλ+1/2(ζ r)Kλ+1/2(ζ a)

−rIλ+3/2(ζ r)Kλ+1/2(ζ a)

+aIλ+1/2(ζ r)Kλ+3/2(ζ a), 0 ≤ r ≤ a.

(22)

A
2
λ(a, r) = [a2 + r

2 + 2λ(2λ + 1)]Iλ+1/2(r)Kλ+1/2(a)

+2rIλ+3/2(r)Kλ+1/2(a) − 2a
[
rIλ+3/2(r)Kλ+3/2(a)

+λIλ+1/2(r)Kλ+3/2(a)
]

, 0 ≤ r ≤ a.

(23)

pn(x) = (2n − 1)pn−1(x) + x
2
pn−2(x), n ≥ 2;

p0(x) = 1, p1(x) = x + 1.
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A. Sidi et al.50

Obviously, pn(x) have integer coefficients. For example,

The polynomials pn(x) are encountered in Padé approximants of the 
function f (x) = e

2x, in the sense that

is the [n/n] Padé approximant2 to f (x) = e
2x.

For n a non-negative integer, the functions In+1/2(x) and Kn+1/2(x) can 
be expressed in terms of the polynomial pn(x):

the term inside the square brackets being a regular function at x = 0 with 
even parity,

Theorem 2.1  The functions Ān
λ(a, r) have the following explicit representation:

where p
(n)
λ (a, r) and q(n)

λ (a, r) are polynomials in a and r with integer coefficients, 
with degree n + λ with respect to each variable a, r and with total degree n + 2λ with 
respect to a and r.

p2(x) = x
2 + 3x + 3, p3(x) = x

3 + 6x
2 + 15x + 15.

(24)fn,n(x) =
pn(x)

pn(−x)
, n ≥ 1,

2 �fm,n(x) = p̂(x)/q̂(x) is the [m/n] Padé approximant to a function f (x), where p̂(x) and q̂(x) are 
relatively prime polynomials with respective degrees at most m and n and q̂(0) �= 0, such that 
f (x) − p̂(x)/q̂(x) = O(x

m+n+1
) as x → 0. Furthermore, when it exists, fm,n(x) is unique. For Padé 

approximants, see, for example, Baker and Graves–Morris4 and Sidi [Ref. 20, Chapter 17].

(25)In+1/2(x) = (−1)
n x

n+1/2

√
2π

[
pn(−x)e

x − pn(x)e
−x

x
2n+1

]
,

(26)Kn+1/2(x) =
√

πe
−x

√
2 x

n+1/2
pn(x).

(27)Ā
n
λ(a, r) =

e
−a

2a
λ+1/2

r
λ+1/2

[
p
(n)
λ (a, r)e

r + q
(n)
λ (a, r)e

−r
]

,
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2.4  Integral representations
As in Bouferguène and Rinaldi,8 using the integral representation of the 
product of two modified Bessel functions (see Gradshteyn and Rhyzik 
Ref. 10, p. 703, Eq. (6.541)), we have

From (6) and (8), we then have

This is equivalent to Eq. (29) in Bouferguène and Rinaldi.8

The following integral representations are used in Ref.6:

where Hn(x) is the Hermite polynomial of degree n.

2.5  BCLFs for r = a 
Some simplifications take place in the recursion relations satisfied by 
BCLFs along the “diagonal” r = a. For integers n ≥ 1 and λ ≥ 0, define the 
functions g(n)

λ
 by

It is straightforward to verify the following relations:

(28)Kν(ζ a)Iν(ζ r) =
∫ +∞

0

t

t
2 + ζ

2
Jν(at)Jν(rt) dt, 0 ≤ r ≤ a.

(29)

A
n
λ+1/2(ζ , a, r) =

∫ +∞

0

(−1)
n ∂

n

∂ζ
n

(
t

t
2 + ζ

2

)
Jλ+1/2(at)Jλ+1/2(rt) dt.

(30)

A
0
λ+1/2(ζ , a, r) =

1

2

∫ +∞

0

Iλ+1/2

( ar

2u

)
exp

[
−ζ

2
u −

a
2 + r

2

4u

]
du

u
,

(31)

A
n
λ+1/2(ζ , a, r) =

1

2

∫ +∞

0

u
n/2

Hn(ζ
√

u)Iλ+1/2

( ar

2u

)

exp

[
−ζ

2
u −

a
2 + r

2

4u

]
du

u
,

(32)g
(n)
λ (a) = A

(n)
λ+1/2(1, a, a) = Ā

(n)
λ (a, a).

(33)g
(0)
λ (a) = Iλ+1/2(a)Kλ+1/2(a),
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A. Sidi et al.52

3.  ASYMPTOTICS OF BCLFs

In this section, we study the asymptotic behavior of Ān
λ(a, r) (i) as 

λ → ∞ while r is fixed and (ii) as r → 0 and r → ∞ while λ is fixed.

3.1  Asymptotics as λ → ∞

When studying the asymptotics as λ → ∞, we make use of the results of 
Appendix A as well as of those in Section 2. As the conclusions for r �= a 
and r = a are different, we treat these two cases separately.

We begin with the case r �= a.

Theorem 3.1  Let r �= a, and define ρ = min{a, r}, ρ′ = max{a, r}, and 
σ = ρ/ρ

′. Let also ν = λ + 1/2 for simplicity of notation. Then

where

By the fact that wn,sn
(a, r) �= 0 when r �= a, we also have the asymptotic equalities

(34)g
(1)
λ (a) =

a
2

2λ + 1

[
g
(0)
λ−1(a) − g

(0)
λ+1(a)

]
,

(35)g
(n+1)
λ (a) = ng

(n)
λ (a) − a

d

da
g
(n)
λ (a), n ≥ 0,

(36)

g
(n+2)
λ (a) = 2a

2

{
g
(n)
λ (a) −

1

2λ + 1

[
λg

(n)
λ−1(a) + (λ + 1)g

(n)
λ+1(a)

]}
,

n ≥ 0.

(37)Ā
n
λ(a, r) ∼

σ
ν

ν

∞∑

s=sn

wn,s(a, r)

ν
s as λ → ∞; sn =

⌊
n + 1

2

⌋
,

(38)wn,sn
(a, r) = (−1)

n+sn
(2sn)!

2
2sn+1

sn!
(ρ

′2 − ρ
2
)
sn , n = 0, 1, . . .

(39)Ā
n
λ(a, r) ∼ wn,sn

(a, r)
σ

ν

ν
sn+1

as λ → ∞, n = 0, 1, . . .
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The nature of the wn,s(a, r) will be clear in the proof.

Remark.  In particular, as λ → ∞,

Proof.  We start with n = 0. Let r < a for simplicity of notation. Then, by 
(8), (6), and Theorem A.1, we have

where

bs(z) being a polynomial of degree s in z2. Therefore, ds(ζ a, ζ r) is a polynomial 
of degree s in ζ 2, which we write as in

Note that, by (A.4) and (A.6), we have

We next consider the case n ≥ 1. For this, we employ (8). Differentiating the 
asymptotic expansion in (41) with respect to ζ, we have

(40)

Ā
0
λ(a, r) ∼

1

2

σ
ν

ν
, Ā

1
λ(a, r) ∼

ρ
′2 − ρ

2

4

σ
ν

ν
2

,

Ā
2
λ(a, r) ∼ −

ρ
′2 − ρ

2

4

σ
ν

ν
2

, and so on.

(41)

Ā
0
λ(ζ a, ζ r) = A

0
ν(ζ , a, r)

= Iν(ζ r)Kν(ζ a) ∼
1

2ν

( r

a

)ν
∞∑

s=0

ds(ζ a, ζ r)

ν
s as λ → ∞,

(42)ds(ζ a, ζ r) =
s∑

j=0

(−1)
s−j

bs−j(ζ a) bj(ζ r), s = 0, 1, . . . ,

(43)ds(ζ a, ζ r) =
s∑

i=0

γs,i(a, r)ζ
2i

.

(44)γs,s(a, r) =
1

s!
a
2s

4
s

s∑

j=0

(−1)
s−j

(
s

j

)(
r
2

a
2

)j

=
(r

2 − a
2
)
s

4
s
s!

�= 0.

(45)A
n
ν(ζ , a, r) ∼ (−1)

n 1

2ν

( r

a

)ν
∞∑

s=0

∂
n

∂ζ
n ds(ζ a, ζ r)

ν
s as λ → ∞.
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Because ds(ζ a, ζ r) is an even polynomial in ζ of degree 2s, it follows that

By sn = ⌊(n + 1)/2⌋, we have that 2s < n implies s < sn when s is a non-
negative integer. Thus,

Therefore, by the fact that γs,s(a, r) �= 0 for all s, the first nonzero term of the 
infinite sum in (45) is that with s = sn, which is given by

so that

The results in (37) and (38) follow by combining (44),  (47),  (48),   and (49) in (45), 
and letting ζ = 1 there. Note also that wn,s(a, r) = (−1)

n ∂
n

∂ζ
n dsn

(ζ a, ζ r)
∣∣
ζ=1

. �

Remark.  The asymptotic expansions given in (37) [but not (38)] can also 
be derived by using the recursion relations in (13) and (14).

We now consider the case r = a.

Theorem 3.2  For fixed a > 0, and with v = λ + 1/2  as in Theorem 3.1, 
Ā

0
λ(a, a) has the asymptotic expansion

(46)
∂

n

∂ζ
n ds(ζ a, ζ r) = 0 if 2s < n.

(47)
∂

n

∂ζ
n ds(ζ a, ζ r) = 0 if s < sn.

(48)
∂

n

∂ζ
n dsn

(ζ a, ζ r) =





γsn ,sn
(a, r) (2sn)! ζ if n = 2sn − 1,

γsn ,sn
(a, r) (2sn)! if n = 2sn,

(49)∂
n

∂ζ
n dsn

(ζ a, ζ r)
∣∣
ζ=1

= γsn ,sn
(a, r) (2sn)! for all n.

(50)
Ā

0
λ(a, a) ∼

1

2ν

∞∑

s=0

ps(a)

ν
2s

as λ → ∞,
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where ps(a) are the polynomials defined in Theorem A.2; thus, p0(a) = 1 and, for 
each s = 1, 2, . . . , ps(a) is a polynomial of degree s in a2 and (−1)

s
ps(a) has non-

negative coefficients. The leading coefficient us of ps(a) is given by

For n ≥ 1 and fixed a > 0, Ā
n
λ(a, a) has the asymptotic expansion

where ps(z) are exactly as before. Therefore, the following asymptotic equality is also 
valid:

Proof.  The first part of the theorem pertaining to Ā
0
λ(a, a) follows from the 

fact that Ā
0
λ(a, a) = Iν(a)Kν(a) and from Theorem A.2.

By (10) and (7), the asymptotic expansion of Ā
n
λ(a, a) is given as in

Because ps(ζ a) is an even polynomial of degree 2s in ζ, it follows that

Thus, the infinite sum in (54) begins with the s = sn term. Furthermore, if 
n = 2s − 1 or n = 2s, then

(51)us = (−1)
s (2s − 1)!!

2
s
s!

.

(52)Ā
n
λ(a, a) ∼

(−1)
n

2ν

∞∑

s=sn

∂
n

∂ζ
n ps(ζ a)

∣∣∣∣
ζ=1

1

ν
2s

as ν → ∞; sn =
⌊

n + 1

2

⌋
,

(53)Ā
n
λ(a, a) ∼ (−1)

n+sn
[(2sn − 1)!!]2

2

a
2sn

ν
2sn+1

, as λ → ∞.

(54)

Ā
n
λ(a, a) =

(−1)
n

2ν

∂
n

∂ζ
n Ā

0
λ(ζ a, ζ a)

∣

∣

∣

∣

ζ=1

∼
(−1)

n

2ν

∞
∑

s=0

∂
n

∂ζ
n ps(ζ a)

∣

∣

∣

∣

ζ=1

1

ν
2s

as ν → ∞.

∂
n

∂ζ
n ps(ζ a) = 0 if 2s < n.
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This completes the proof.                                    
Note that the explicit expression for ps(a) given in Theorem A.2 and 

Eq. (54) allow an explicit expression for the asymptotic expansion Ān
λ(a, a) 

to be written. We leave the details to the reader.

3.2  Asymptotics as r → 0 and r → ∞

Because r ranges from zero to infinity, it is appropriate to analyze the behav-
ior of the BCLFs as r → 0 and as r → ∞. For this, we need the following 
known asymptotic equalities that can be differentiated indefinitely:

Theorem 3.3  With λ fixed, the BCLFs satisfy the asymptotic equalities

and

where Dn,λ and En,λ are constants given as in

and

Proof.  Letting ν = λ + 1/2, we start with

(55)
∂

n

∂ζ
n ps(ζ a)

∣∣∣∣
ζ=1

=
(−1)

n

2
(2s)! us a

2s = (−1)
n+s [(2sn − 1)!!]2

2
a

2s
.

(56)Iν(x) ∼
(x/2)

ν

Ŵ(ν + 1)
as x → 0, Kν(x) ∼

√
π

2x
e
−x

as x → ∞.

(57)Ā
n
λ(a, r) ∼ Dn,λ r

λ+1/2
as r → 0,

(58)Ā
n
λ(a, r) ∼ En,λ r

n−1/2
e
−r

as r → ∞,

(59)
Dn,λ =

(−1)
n

2
ν
Ŵ(ν + 1)

n�

i=0


n

i







n−i�

j=1

(ν − j + 1)


 a

i
K

(i)
ν (a), ν = λ + 1/2,

(60)En,λ =
√

π

2
Iν(a), ν = λ + 1/2.

A
n
ν(ζ , a, r) = (−1)

n ∂
n

∂ζ
n A

0
ν(ζ , a, r) = (−1)

n ∂
n

∂ζ
n

[
Iν(ζρ)Kν(ζρ

′
)
]

,
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where ρ = min{a, r} and ρ′ = max{a, r}, which follows from (6) and (8). Now,

Recalling also (10), we have

Now, by (56), we have the asymptotic equalities

and

The results in (57)–(60) follow by substituting these asymptotic equalities 
in (61).                                                   

4.  NUMERICAL COMPUTATION OF BCLFs

The review given in Section 2 suggests several ways of computing the 
BCLFs. Thus, we can compute them via the recursion relations in (13) and 
(14) given in Section 2.3. We can use the various explicit expressions given in 
Section 2.3. We can also compute the BCLFs by numerically evaluating their 
integral representations discussed in Section 2.4. In what follows, we evalu-
ate the efficiency of the approaches through recursion relations and integral 
representations as these seem to be more convenient than explicit expressions.

4.1  Computing BCLFs by numerical quadrature
One way of computing the BCLFs is via the integral given in (31). Because 
the functions Iλ+1/2(x) tend to infinity like ex

/
√

2πx as x → ∞, it is better 

∂
n

∂ζ
n

�
Iν(ζρ)Kν(ζρ

′
)
�

=
n�

i=0


n

i


 ρ

n−i
I
(n−i)
ν (ζρ) ρ

′i
K

(i)
ν (ζρ

′
).

(61)

Ā
n
λ(a, r) = A

n
ν(ζ , a, r)

��
ζ=1

=





(−1)
n

n�

i=0




n

i


 r

n−i
I
(n−i)
ν (r) a

i
K

(i)
ν (a) if r < a,

(−1)
n

n�

i=0




n

i


 a

n−i
I
(n−i)
ν (a) r

i
K

(i)
ν (r) if r > a.

r
m

I
(m)
ν (r) ∼

∏m
j=1(ν − j + 1)

2
ν
Ŵ(ν + 1)

r
ν

as r → 0, m = 0, 1, . . . ,

r
m

K
(m)
ν (r) ∼ (−1)

m

√
π

2
r
m−1/2

e
−r

as r → ∞, m = 0, 1, . . .
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for numerical purposes to scale them with the factor e−x, as a result of 
which, (31) becomes

where Hn(x) is the nth Hermite polynomial. Because of the homogeneity 
property of BCLFs given in (9), it is sufficient to treat the computation of 
Ā

n
λ(a, r) via

Denoting the integrand in (63) by F(u) for simplicity, and taking into con-
sideration the fact that Hn(x) is even (odd) when n is even (odd), we can 
show that F(u) is infinitely differentiable in the open interval (0, ∞), while

for some nonzero constants C and D. In view of this, it seems appropriate 
to first subdivide the interval into two, namely,

and compute the two integrals separately by appropriate numerical quadra-
ture methods. In particular, we can use Gauss–Laguerre quadrature to com-
pute 

∫ ∞
R F(u) du, while 

∫ R
0 F(u) du can be computed via Gauss–Legendre 

quadrature. This approach to the computation of Ān
λ(a, r) has indeed been 

used in the past, e.g., in STOP by Bouferguène, Fares, and Hoggan.7

Since we ultimately need to sum infinite series whose terms are pro-
portional to Ā

n
λ(a, r), and since these series may converge slowly, it is 

(62)

A
n
λ+1/2(ζ , a, r) =

1

2

∫ ∞

0

u
n/2

Hn(ζ
√

u)
[
exp

(
−

ar

2u

)
Iλ+1/2

( ar

2u

)]

exp

[
−ζ

2
u −

(a − r)
2

4u

]
du

u
,

(63)

Ā
n
λ(a, r) =

1

2

∫ ∞

0

u
n/2

Hn(
√

u)
[
exp

(
−

ar

2u

)
Iλ+1/2

( ar

2u

)]

exp

[
−u −

(a − r)
2

4u

]
du

u
.

(64)F(u) ∼





C u
⌊(n−1)/2⌋+1/2

exp

�
−

(a − r)
2

4u

�
as u → 0

D u
n−λ−3/2

exp(−u) as u → ∞

∫ ∞

0

F(u) du =
∫ R

0

F(u) du +
∫ ∞

R

F(u) du, for some R > 0,
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necessary to compute Ā
n
λ(a, r), λ = 0, 1, . . . , L, L being quite large. This 

will be the case even when we try to accelerate the convergence of these 
series by suitable extrapolation methods. (For a detailed treatment of 
extrapolation methods, see Sidi.20) For each a and r, these integrals can be 
computed using the same numerical integration procedure. This implies 
that Iλ+1/2(x), λ = 0, 1, . . . , L, are required at the same abscissae. Therefore, 
a procedure by which the sequence {Iλ+1/2(x)}L

λ=0 can be computed for 
any positive x to machine accuracy in the most economical way is necessary.

However, the computation of the Ā
n
λ(a, r) with high accuracy via 

numerical quadrature as explained above requires many evaluations of the 
integrand F(u), hence of the functions Iλ+1/2(x). In addition, we need to 
monitor the convergence behavior of the numerical quadrature procedures 
used to make sure that machine accuracy is achieved. In view of these 
facts, we conclude that this way of determining the Ān

λ(a, r) will tend to 
be rather expensive.

4.2  Computing BCLFs via recursion
Computing the Ā

n
λ(a, r) by the recursion relations in (15) and (16) with 

the initial values in (17), on the other hand, seems to be very economical. 
However, when implemented in floating-point arithmetic, this approach 
seems to have one serious drawback, namely, a loss of accuracy takes place 
when computing the Ā

n+2
λ (a, r) from the Ā

n
λ(a, r) for increasing λ, even 

though the Ā0
λ(a, r) have been determined to machine accuracy. Furthermore, 

this loss of accuracy becomes more pronounced as r approaches a. [Note the 
need to compute Ān

λ(a, r) for n = 0, 1, . . . , 6 in order to be able to cover 
the whole periodic table.] The way this phenomenon comes about can be 
explained with the help of Theorems 3.1 and 3.2 as follows.

Let us recall that a loss of accuracy is incurred when taking the differ-
ence between two floating-point numbers that are very close to each other, 
and that this loss of accuracy becomes worse as the two numbers approach 
each other further. The loss of accuracy that is observed in computing the 
BCLFs via the recursion relations in (15) and (16) comes about exactly 
in this way. As can be concluded from the results of Theorems 3.1 and 
3.2, the computation of the Ān

λ(a, r), n ≥ 2, via the recursion relation in 
(16), whether r �= a or r = a, involves taking the difference of two quanti-
ties that are asymptotically equal3 as λ → ∞. Specifically, when computing 

3 �Two functions f (x) and g(x) are said to be asymptotically equal as x → x0 if limx→x0
f (x)/g(x) = 1.

Author’s personal copy



A. Sidi et al.60

Ā
n+2
λ (a, r) via (16), we are taking the difference between the quantities 

(a
2 + r

2
)Ā

n
λ(a, r) and 2ar

2λ+1

[
λĀ

n
λ−1(a, r) + (λ + 1)Ā

n
λ+1(a, r)

]
, which are 

asymptotically equal as λ → ∞, as can be shown by invoking (39). In addi-
tion, when computing Ā1

λ(a, a) via (15) with r = a there, we are taking the 
difference between Ā0

λ−1(a, a) and Ā0
λ+1(a, a), which are also asymptoti-

cally equal as λ → ∞. These explain the loss of accuracy that takes place 
when computing the Ān

λ(a, r) by recursion for large λ. This loss of accuracy 
is more pronounced for r very near a (and for r = a), because, as is suggested 
by Theorem 3.2, the quantities whose difference is being computed in 
floating-point arithmetic are asymptotically equal as λ → ∞, more when 
r = a than when r �= a. As a result, when using a certain floating-point 
arithmetic, maintaining the same (machine) accuracy for all n = 0, 1, . . . , 6, 
becomes impossible. This problem can be overcome by carrying out the 
recursions with variable-precision arithmetic provided by computer alge-
bra systems such as Maple. However, use of these systems may slow down 
the computations considerably, hence may not be very practical at this time. 
Nevertheless, this idea of using high-accuracy arithmetic is appealing, and 
we next discuss a practical way to overcome the timing deficiency.

When using double-precision arithmetic—which is what is normally 
done—this problem can be overcome by performing the computation 
of the Ā

n
λ(a, r) in quadruple-precision arithmetic and truncating the 

results to double precision only after all of the required Ā
n
λ(a, r) have 

been computed. As already mentioned, there is some loss of accuracy in 
going from the Ān

λ(a, r) to the Ān+2
λ (a, r). Specifically, Ā1

λ(a, r) and Ā2
λ(a, r) 

will have approximately the same accuracy but will be less accurate than 
Ā

0
λ(a, r), Ā

3
λ(a, r), and Ā4

λ(a, r) will have approximately the same accuracy 
but will be less accurate than Ā1

λ(a, r) and Ā2
λ(a, r), Ā

5
λ(a, r) and Ā6

λ(a, r) 
will have approximately the same accuracy but will be less accurate than 
Ā

3
λ(a, r) and Ā4

λ(a, r), and so on. Thus, there will be only three accuracy 
reduction steps while computing the Ān

λ(a, r), 0 ≤ n ≤ 6. This means that, 
in the worst case, when five correct decimal digits are lost at each step, 
the number of correct decimal digits lost in computing the Ā5

λ(a, r) and 
Ā

6
λ(a, r) will be about 15. If the Ā0

λ(a, r) have quadruple-precision accuracy 
(approximately 34 correct decimal digits), all the Ān

λ(a, r) thus computed 
will end up having at least double-precision accuracy.

Even though computations in quadruple-precision arithmetic are more 
time consuming than in double-precision arithmetic, the cost of perform-
ing the computation of the Ān

λ(a, r) in quadruple-precision arithmetic in 
FORTRAN is negligible because the number of arithmetic operations 
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needed for this task is very small. In view of all this, we propose to compute 
the BCLFs via the recursion relations, exactly as we have just explained, 
with the caveat that, to avoid underflows and overflows, we will scale both 
the Ān

λ(a, r) and the Iλ+1/2(x) and Kλ+1/2(x) appropriately.

5. � COMPUTATIONAL DETAILS: SCALED MODIFIED 
SPHERICAL BESSEL FUNCTIONS AND BCLFs

	 5.1  Scaled modified spherical Bessel functions
The computation of the modified spherical Bessel functions In+1/2(x) 
and Kn+1/2(x) has been the subject of much work, and various computer 
programs for it exist in the literature. See, for example, Amos.2,3

The procedure used for computing In+1/2(x) with large n is by applying 
Miller’s backward recursion algorithm to the three-term recursion relation 
satisfied by the In+1/2(x), namely, to

For the backward recursion algorithm, see, for example, Gautschi.9

The Kn+1/2(x), on the other hand, can be computed by using the three-
term recursion relation

in the forward direction.
Note that, when x > 0, we have In+1/2(x) > 0 for n ≥ −1, while 

Kn+1/2(x) > 0 for n = 0, ±1, ±2, . . . .
Now, In+1/2(x) and Kn+1/2(x) satisfy the well-known asymptotic 

equalities

These show that the computation of Iν(x) and Kν(x) in floating-point 
arithmetic with very large x will ultimately result in overflows and 
underflows, respectively. To avoid this problem, all known codes compute 
e
−x

In+1/2(x) and ex
Kn+1/2(x) and not In+1/2(x) and Kn+1/2(x).

(65)In+1/2(x) − In+5/2(x) =
2n + 3

x
In+3/2(x), n = 0, ±1, ±2, . . .

(66)
Kn+5/2(x) − Kn+1/2(x) =

2n + 3

x
Kn+3/2(x), n = 0, ±1, ±2, . . . ,

(67)

Iν(x) ∼
1

√
2πx

e
x

as x → ∞ and Kν(x) ∼
√

π

2x
e
−x

as x → ∞.
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Because we need to compute the BCLFs Ā
n
λ(a, r) for very high values of 

λ, we need to make sure that the large values of λ do not introduce additional 
problems in floating-point arithmetic. Now, as mentioned in Appendix A, 
the functions Iν(x) and Kν(x), with x fixed, satisfy the asymptotic equalities

It is thus clear that the computation of Iν(x) with very large ν will ulti-
mately result in underflows. Analogously, the computation of Kν(x) with 
very large ν will ultimately result in overflows. This means that computing 
e
−x

In+1/2(x) and ex
Kn+1/2(x), which is normally what is done as already 

mentioned, will not work for large n.
To avoid both of these problems as much as possible, instead of In+1/2(x) 

and Kn+1/2(x), which are needed in our work, we choose to compute some 
suitably scaled versions of them, the scaling depending on n. Specifically, we 
compute the functions

The complete algorithmic details of this computation are given in 
Appendix B.

The reader may be wondering why we chose Ŵ(n + 1/2), and not the 
simpler Ŵ(n + 1) = n! or Ŵ(n + α) for some other α �= 1, 1/2, to scale 
In+1/2(x) and Kn+1/2(x). The reasons for this are that (i)  with Ŵ(n + 1), the 
În(x), n ≤ −1, are all infinite, and K̂n(x), n ≤ −1, are all zero, and (ii)  with 
α �= 1, 1/2, we need to compute Ŵ(α) in very high precision, which we 
want to avoid; on the other hand, Ŵ(1/2) =

√
π , and is readily available in 

every precision since π = arccos(−1) is.

5.2  Scaled BCLFs
Clearly, in terms of În(x) and K̂n(x), Ā

0
λ(a, r) can be computed via

(68)

Iν(x) ∼
(x/2)

ν

Ŵ(ν + 1)
as ν → ∞ and Kν(x) ∼

1

2

Ŵ(ν)

(x/2)
ν as ν → ∞.

(69)

În(x) =
Ŵ(n + 1/2)

(x/2)
n+1/2

e
−x

In+1/2(x),

K̂n(x) =
(x/2)

n+1/2

Ŵ(n + 1/2)
e
x
Kn+1/2(x), n = 0, ±1, ±2, . . .

(70)

Ā
0
λ(a, r) = (ρ/ρ

′
)
λ+1/2

e
ρ−ρ

′
C

0
λ(a, r); C

0
λ(a, r) = Îλ(ρ) K̂λ(ρ

′
),

ρ = min{a, r}, ρ
′ = max{a, r}.
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With the C
0
λ(a, r) already computed as in (70), we compute 

C
n
λ(a, r), n = 1, 2, . . . , via the recursions

Then, for all n ≥ 0, we have

We shall call the Cn
λ(a, r) scaled BCLFs.

When r ≫ a, the factors (ρ/ρ
′
)
λ+1/2 and eρ−ρ

′
 in (73) are very small 

and thus can cause underflows. To avoid this problem, we should keep the 
three factors (ρ/ρ

′
)
λ+1/2, eρ−ρ

′
, and Cn

λ(a, r) as separate entities. It may be 
even a better idea not to compute (ρ/ρ

′
)
λ+1/2 and eρ−ρ

′
 right away, but 

to incorporate them in whatever computation is done with Ā
n
λ(a, r), in an 

appropriate manner that will avoid underflows.
Before closing, we report the results of some computations we have 

performed with the recursion relation above. These computations confirm 
the conclusions we arrived at above concerning the achievable accuracy 
of the BCLFs via the recursion relation. Let us define ε to be the relative 
error incurred when computing Ā

n
λ(a, r) in quadruple-precision arithmetic. 

Thus,

where vapp is the (approximate) value computed in quadruple-precision 
and vex is the exact value computed with much more precision within a 
computer algebra system. Figures 3.1 and 3.2 show the graphs of − log10 ε 
versus λ, for a = 2.5 and r = 1.0, 2.5, when 0 ≤ λ ≤ 150. Note the lower 
accuracy achieved for r = a = 2.5 in Figure 3.2.

(71)C
1
λ(a, r) =

ar

2λ + 1

[
(ρ/ρ

′
)
−1

C
0
λ−1(a, r) − (ρ/ρ

′
)C

0
λ+1(a, r)

]
,

(72)

C
n+2
λ (a, r) = (a

2 + r
2
)C

n
λ(a, r) −

2ar

2λ + 1

[
λ(ρ/ρ

′
)
−1

C
n
λ−1(a, r)

+ (λ + 1)(ρ/ρ
′
)C

n
λ+1(a, r)

]
, n ≥ 0.

(73)

Ā
n
λ(a, r) = (ρ/ρ

′
)
λ+1/2

e
ρ−ρ

′
C

n
λ(a, r); ρ = min{a, r}, ρ

′ = max{a, r}.

(74)ε = max

{∣∣∣∣
vapp − vex

vex

∣∣∣∣ , 10
−32

}
,
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Figure 3.1  Relative error in quadruple-precision computation of Ā
n

λ(a, r) for 
a = 2.5, r = 1.0 as a function of λ.
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Figure 3.2  Relative error in quadruple-precision computation of Ā
n

λ(a, r) for 
a = 2.5, r = 2.5 as a function of λ.
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Figure 3.3  Relative error in quadruple-precision computation of Ā
n

λ(a, r) for 
n = 3, λ = 10, a = 10.0, as a function of r.
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Figure 3.4  Relative error in quadruple-precision computation of Ā
n

λ(a, r) for 
n = 3, λ = 25, a = 10.0, as a function of r.

Author’s personal copy



A. Sidi et al.66

Figures 3.3 and 3.4 show the variation of the relative error when com-
puting Ā

n
λ(a, r) with n = 3 and a = 10.0, as a function of r , 0 < r ≤ 20.0, 

for λ = 10 and λ = 25. Each graph is obtained with 500 evenly distributed 
values of r in the interval [0, 20.0]. Note the lower precision achieved for 
r ≈ a = 10.0 in both figures. Also observe the downward peaks, which 
correspond to zeros of Ā

n
λ(a, r) for n = 3 and a = 10.0. These zeros are 

at r = 7.7194995476864 and r = 11.3859436108731 for λ = 10, and at 
r = 15.2818830196746 for λ = 25.

APPENDIX A.  ASYMPTOTIC EXPANSIONS FOR  
Iν (z), Kν (z), AND Iν(z)Kν(z) AS ν → ∞

The asymptotic analysis of BCLFs is made possible by the asymp-
totics of the modified spherical Bessel functions In+1/2(z) and Kn+1/2(z) 
as n → ∞. These follow immediately from the asymptotic expansions of 
the modified Bessel functions Iν(z) and Kν(z) as ν → ∞, derived in the 
recent paper by Sidi and Hoggan22 for complex z and complex ν. We 
provide these in Theorems A.1 and A.2 that follow. (See also Sidi Ref. 21, 
Section 4, Example 4.1, which was used in22 for completing the proof of 
Theorem A.1.)

Theorem A.1 Define the set T+(ǫ) via

Then, for fixed z �= 0, and | arg z| < π, the principal values of the modified Bessel 
functions Iν(z) and Kν(z) have the asymptotic expansions

and

(A.1)T+(ǫ) =
{
ν : |ν + n| ≥ ǫ; n = 0, 1, 2, . . . , ǫ ∈

(
0, 1

2

)}
.

(A.2)Iν(z) ∼
( 1

2
z)

ν

Ŵ(ν + 1)

∞∑

m=0

bm(z)

ν
m as ν → ∞, ν ∈ T+(ǫ),

(A.3)Kν(z) ∼
1

2

Ŵ(ν)

( 1
2
z)

ν

∞∑

m=0

(−1)
m bm(z)

ν
m as ν → ∞, | arg ν| ≤ 1

2
π − δ,
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where δ > 0 is arbitrarily small, and for each m = 0, 1, . . . , bm(z) is a polynomial 
of degree m in z2, given as in

Here S(m,k) are Stirling numbers of the second kind. [Note that the bm(z) in (A.2) 
and (A.3) are identical and, for each m, the coefficients of bm(z) have alternating 
signs.]

Note. The Stirling numbers of the second kind S(n, k) are defined via the 
recursion relation

with

Note also that Sn,k > 0 for all k ≥ n ≥ 1. They are generated as in

See, for example, Graham, Knuth, and Patashnik [Ref. 11, Sections 6.1 and 
7.4].

Theorem A.2 For fixed z �= 0, the product Iν(z)Kν(z) has the asymptotic 
expansion

where ps(z) is a polynomial of degree s in z2, given by

(A.4)
b0(z) = 1; bm(z) =

m∑

k=1

(−1)
m−k S(m, k)

k!

(
1
4
z

2
)k

, m = 1, 2, . . . .

(A.5)

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k), n = 1, 2, . . . , k = 0, 1, . . . ,

(A.6)
S(n, 0) =





1 if n = 0

0 if n > 0
; S(n, 1) = 1, n ≥ 1;

S(n, n) = 1, n = 0, 1, . . . ; S(n, k) = 0 if n < k or n < 0.

(A.7)
1

(ζ + 1)k

=
∞∑

n=k

(−1)
n−k

S(n, k)ζ
−n

, |ζ | > k.

(A.8)Iν(z)Kν(z) ∼
1

2ν

∞∑

s=0

ps(z)

ν
2s

as ν → ∞, | arg ν| ≤ 1
2
π − δ,

(A.9)p0(z) = 1; ps(z) =
s∑

k=1

γs,k w
k
, s = 1, 2, . . . , ; w = 1

4
z

2
,
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where

Moreover, (−1)
k
γs,k > 0, k = 1, . . . , s. Here, B

(a)
k (u) are generalized Bernoulli 

polynomials.

Note. The generalized Bernoulli polynomials B(a)
k (u) are defined via

Of course, B(a)
k (u) is of degree k in u, and B(a)

0 (u) = 1. These polynomials 
satisfy

from which we also have B(a)
2k+1(

1
2
a) = 0, k = 0, 1, . . . . The constants B(a)

k (0) 
are called generalized Bernoulli numbers and they are denoted simply by B(a)

k .  
Note that (A.11) is valid also when a = u = 0, in which case B(0)

0 (0) = 1 
and B(0)

k (0) = 0, k = 1, 2, . . . . Note that B(a)
2k ( 1

2
a) > 0, k = 0, 1, . . . , when a is a 

negative integer. To see this, we note that with a = −r and u = 1
2
a, where r  

is a positive integer, we have

Since ξ
−1

sinh ξ has a Maclaurin expansion in ξ with only even pow-
ers and positive coefficients, so does its r th power. For more informa-
tion on generalized Bernoulli polynomials, see [Ref. 18, pp. 18–22], for  
example.

APPENDIX B.  COMPUTATION OF SCALED In+1/2(x)  
AND Kn+1/2(x)

	 B.1  Computation of the ̂In(x)
Letting In+1/2(x) = e

x
În(x)(x/2)

n+1/2
/Ŵ(n + 1/2) in (65), and making 

use of the fact that Ŵ(z + 1) = zŴ(z), we obtain the recursion relation

(A.10)γs,k = (−1)
k


2s

2k





2k

k


 B

(−2k)
2s−2k(−k), k = 1, . . . ., s.

(A.11)
(

t

e
t − 1

)a

e
ut =

∞∑

k=0

B
(a)
k (u)

t
k

k!
, |t| < 2π .

(A.12)B
(a)
k (a − u) = (−1)

k
B

(a)
k (u), k = 0, 1, . . . ,

(
t

e
t − 1

)a

e
ut =

(
sinh( 1

2
t)

1
2
t

)r

.
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We also have the power series representation

that is valid for all ν �= −1, −2, . . . , and that converges very quickly for small x.  
From this, and by Ŵ(ν + k) = (ν)kŴ(ν), where (u)k =

∏k
i=1(u + i − 1) is 

the Pochhammer symbol, we obtain the following series representation for 
În(x):

Note that the terms of the infinite series in (B.2) with ν = n + 1/2 
and in (B.3) are all positive for n ≥ −1 when x > 0. Therefore, when 
x > 0, In+1/2(x) > 0 for n ≥ −1, and Î−1(x) < 0 and În(x) > 0 for n ≥ 0.

We now describe the method of computing the functions În(x),  
n = 0, ±1, ±2, . . . , that we propose. We need to compute these for 
−l ≤ n ≤ L, where l is a small positive integer (for example l = 5), while L 
is a large positive integer. Here are the steps of this method:
1.	 For small positive x, say x < 1, În(x) can be computed by summing the 

infinite series in (B.3). Because it converges very fast, only very few 
terms of this series suffice for obtaining quadruple-precision accuracy 
for ̂In(x) for all x.  Actually, the number of terms needed for this purpose 
decreases with increasing n. In addition, its terms cn,k(x) = (x/2)

2k

k! (n+3/2)k

 
can be obtained inexpensively by the simple recursion

2.	 For other (larger) values of x, we proceed as follows. We pick an inte-
ger M  that is larger than L, and set aM (x) = 0 and aM−1(x) = 1. Then 
compute an(x), −l ≤ n ≤ M − 2, via the backward recursion

(B.1)

În(x) =
1

n + 1/2

[
(n + 3/2) În+1(x) +

(x/2)
2

n + 3/2
În+2(x)

]
,

n = 0, ±1, ±2, . . .

(B.2)Iν(x) =
∞∑

k=0

(x/2)
ν+2k

k! Ŵ(ν + k + 1)

(B.3)În(x) =
e
−x

n + 1/2

∞∑

k=0

(x/2)
2k

k! (n + 3/2)k

, n = 0, ±1, ±2, . . . .

(B.4)

cn,k(x) = cn,k−1(x)
(x/2)

2

k(n + k + 1/2)
, k = 1, 2, . . . ; cn,0(x) = 1.
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Following this, we compute

and take â
(M )
n (x) as our approximation to În(x) for −l ≤ n ≤ L. This is 

allowed since (i)  a0(x) > 0 for x > 0, which follows directly from (B.5), 
and (ii) Î0(x) > 0 for x > 0 by the fact that

Of course, â
(M )
0 (x) = Î0(x) exactly. In order to avoid problems in 

floating-point arithmetic (especially, overflows for large x, and loss of 
significance for small x), we must compute Î0(x) as in

Note also that, as is clear from (B.5), in backward recursion with n ≥ −1,  
we are adding floating-point numbers that are positive; therefore, no loss 
of significance takes place in the process of computing the an(x). Clearly, 
a
(M )
−1 (x) < 0, and a(M )

n (x) > 0 for 0 ≤ n < M , as can be seen from (B.5) 
and (B.6).

B.2  Computation of the ̂Kn(x)

Letting Kn+1/2(x) = e
−x

K̂n(x)Ŵ(n + 1/2)/(x/2)
n+1/2 in (66), and again 

making use of the fact that Ŵ(z + 1) = zŴ(z), we obtain the recursion 
relation

(B.5)

an(x) =
1

n + 1/2

[
(n + 3/2) an+1(x) +

(x/2)
2

n + 3/2
an+2(x)

]
,

n = M − 2, M − 3, . . . , 1, 0, −1, . . . , −l.

(B.6)â
(M )
n (x) =

an(x)

a0(x)
Î0(x), n = −l, −l + 1, . . . , . . . , L,

Î0(x) =
Ŵ(1/2)

(x/2)
1/2

e
−x

I1/2(x) = 2e
−x sinh x

x
.

(B.7)
�I0(x) =















2 e
−x sinh x

x
for small x

1 − e
−2x

x
for large x.

(B.8)
K̂n+2(x) =

(x/2)
2

(n + 1/2)(n + 3/2)
K̂n(x) + K̂n+1(x), n = 0, ±1, ±2, . . .
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By (6), we need to compute K̂n+1/2(x) for x = ζ max{a, r} ≥ ζ a. Because 
ζ and a are fixed and not small, it is clear that we do not need to compute 
K̂n+1/2(x) for small x. For all other values of x, K̂n(x), 2 ≤ n ≤ L, can be 
computed with machine accuracy from (B.8) by forward recursion, with

as initial values. To compute K̂n(x), −l ≤ n ≤ −1, we use (B.8) in the back-
ward direction, with K̂0(x) and K̂1(x) as initial values again.

Note that, making use of the fact that

we can also compute K̂n(x), −l ≤ n ≤ −1, via

APPENDIX C.  ERROR ANALYSIS

We now turn to the analysis of the errors incurred in approximating 
În(x) and K̂n(x) as explained in the preceding section. For În(x), which 
are computed by backward recursion, we would like to bound the error 
În(x) − â

(M )
n (x) in â(M )

n (x) for large M . For K̂n(x), we would like to bound 
the error K̂n(x) − cn(x) in cn(x), where cn(x) replaces K̂n(x) in (B.8), with 
ci(x) = (1 + ǫi)K̂i(x), i = 0, 1, as initial values with relative errors ǫi. In 
this analysis, we assume that all computations are performed with infinite 
precision. To be able to carry out this analysis in a refined way, we need the 
asymptotic behaviors of the functions Iν(x) and Kν(x) as ν → +∞, when 
x is fixed, which are provided in Appendix A.

(B.9)

K̂0(x) =
(x/2)

1/2

Ŵ(1/2)
e
x
K1/2(x) =

1

2
and

K̂1(x) =
(x/2)

3/2

Ŵ(3/2)
e
x
K3/2(x) =

1

2
(1 + x)

(B.10)K−p−1/2(x) = Kp+1/2(x), p = 0, 1, . . .,

(B.11)

K̂−p(x) =
(x/2)

−p+1/2

Ŵ(−p + 1/2)
e
x
K−p+1/2(x)

=
(x/2)

−p+1/2

Ŵ(−p + 1/2)
e
x
Kp−1/2(x)

=
Ŵ(p − 1/2)

Ŵ(−p + 1/2)
(x/2)

−2p+1
K̂p−1(x), p = 1, 2, . . .
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C.1  Error bounds for ̂In(x) approximations
We start by noting that fn(x) = In+1/2(x) and fn(x) = (−1)

n+1
Kn+1/2(x) 

are two linearly independent solutions of the recursion relation (see 
Abramowitz and Stegun [Ref. 1, p. 444])

Hence

are two linearly independent solutions of the recursion relation in (B.5). 
Therefore, every solution of (B.5) has the form

A and B being some functions of x that are independent of n. Invoking the 
initial conditions aM (x) = 0 and aM−1(x) = 1 with some suitably chosen 
large positive integer M , we obtain the following equations for 
A and B:

Solving these equations by Cramer’s rule and noting that

we obtain

(C.1)fn(x) − fn+2(x) =
2n + 3

x
fn+1(x), n = 0, ±1, ±2, . . .

În(x) =
Ŵ(n + 1/2)

(x/2)
n+1/2

e
−x

In+1/2(x)

Ĥn(x) = (−1)
n+1 Ŵ(n + 1/2)

(x/2)
n+1/2

e
−x

Kn+1/2(x)

(C.2)an(x) = ÂIn(x) + BĤn(x), n = 0, ±1, ±2, . . . ,

ÂIM (x) + BĤM (x) = 0,

ÂIM−1(x) + BĤM−1(x) = 1.

(C.3)In+1/2(x)Kn−1/2(x) + In−1/2(x)Kn+1/2(x) =
1

x
for all n,

A = −
ĤM

�
, B =

ÎM

�
; � = (−1)

M Ŵ(M + 1/2)Ŵ(M − 1/2)

(x/2)
2M

e
−2x

x
.
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Substituting these in (C.2), and invoking (B.6), we obtain

from which we have the relative error

Therefore, for n fixed, there holds

By (68) and by the fact that (see [Ref. 1, p. 257, Eq. 6.1.47])

we have In+1/2(x)/Kn+1/2(x) = O((x/2)
2n

/(n!)2
) as n → ∞. Consequently, 

(C.6) becomes

It is clear from (C.7) that, with x fixed, the relative error in a(M )
n (x) is tend-

ing to zero very quickly as M → ∞. Hence backward recursion indeed 
provides a very effective means of computing În(x), −l ≤ n ≤ L, for some 
specified large L. Note that the number of arithmetic operations for achiev-
ing this task is at most of the order of 2M  additions, 2M  multiplications, and 
M  divisions. Our computations show that, except for a few of the â

(M )
n (x) 

with n very close to M , the rest of the â
(M )
n (x) can be obtained to machine 

(C.4)a
(M )
n (x) = În(x)

1 −
ÎM (x)

ĤM (x)

Ĥn(x)

În(x)

1 −
ÎM (x)

ĤM (x)

Ĥ0(x)

Î0(x)

, n = 0, ±1, ±2, . . . ,

(C.5)

a
(M )
n (x) − În(x)

În(x)
=

Ĥ0(x)

Î0(x)
−

Ĥn(x)

În(x)

1 −
ÎM (x)

ĤM (x)

Ĥ0(x)

Î0(x)

ÎM (x)

ĤM (x)
, n = 0, ±1, ±2, . . . ,

(C.6)

a
(M )
n (x) − În(x)

În(x)
= O

(
ÎM (x)

ĤM (x)

)
= O

(
IM+1/2(x)

KM+1/2(x)

)
as M → ∞,

n = 0, ±1, ±2, . . .

Ŵ(z + a)

Ŵ(z + b)
∼ z

a−b
as z → ∞,

(C.7)

a
(M )
n (x) − În(x)

În(x)
= O

(
(x/2)

2M

(M !)2

)
as M → ∞, n = 0, ±1, ±2, . . .
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precision. For example, in quadruple-precision arithmetic, by choosing 
M = 150, we are able to approximate În(x) via â

(M )
n (x), −5 ≤ n ≤ 145, to 

machine accuracy for all x ≥ 0.1.

C.2  Error bounds for ̂Kn(x) approximations
In analogy to what we did for În(x) in the preceding subsection, we start 
by noting that gn(x) = (−1)

n
In+1/2(x) and gn(x) = Kn+1/2(x) are two 

linearly independent solutions of the recursion relation

Hence

are two linearly independent solutions of the recursion relation

because (C.9) is obtained from (C.8) by letting gn(x) = [Ŵ(n + 1/2)/

(x/2)
n+1/2]e−x

cn(x). Therefore,

A and B being some functions of x that are independent of n. Invoking the 
initial conditions c0(x) = (1 + ǫ0)K̂0(x) and c1(x) = (1 + ǫ1)K̂1(x), where 
ǫ0 and ǫ1 are the relative errors in c0(x) and c1(x) satisfying |ǫ0| ≤ ǫ̂  and 
|ǫ1| ≤ ǫ̂ , we obtain the following equations for A and B:

Solving these equations by Cramer’s rule and noting (C.3), we obtain

(C.8)gn+2(x) − gn(x) =
2n + 3

x
gn+1(x), n = 0, ±1, ±2, . . .

̂Jn(x) = (−1)
n (x/2)

n+1/2

Ŵ(n + 1/2)
e
x
In+1/2(x)

̂Kn(x) =
(x/2)

n+1/2

Ŵ(n + 1/2)
e
x
Kn+1/2(x)

(C.9)
cn+2(x) =

(x/2)
2

(n + 1/2)(n + 3/2)
cn(x) + cn+1(x), n = 0, ±1, ±2, . . . ,

(C.10)cn(x) = ÂJn(x) + BK̂n(x), n = 0, ±1, ±2, . . . ,

ÂJ0(x) + BK̂0(x) = (1 + ǫ0)K̂0(x),

ÂJ1(x) + BK̂1(x) = (1 + ǫ1)K̂1(x).

A =
(ǫ0 − ǫ1)K̂0(x)K̂1(x)

�
, B = 1 +

ǫ1̂J0(x)K̂1(x) − ǫ0̂J1(x)K̂0(x)

�
;

� =
(x/2)

2

Ŵ(1/2)Ŵ(3/2)

e
2x

x
=

x

2π
e
2x

.
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Now, the expression for the relative error in cn(x) is

By the fact that In+1/2(x) and Kn+1/2(x), n = 0, 1, . . ., are all positive, we 
have that

from which we have

Because In+1/2(x)/Kn+1/2(x) = O((x/2)
2n

/(n!)2
) as n → ∞, it follows 

from (C.12) that forward recursion is very stable and accurate for K̂n(x) 
with large n. If c0(x) and c1(x) have machine precision, then ǫ̂  is simply 
the roundoff unit of the floating-point arithmetic being used, hence cn(x) 
approximate K̂n(x) for all large n with machine precision as well.
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Ĵn(x)

K̂n(x)
+ (B − 1) n = 0, ±1, ±2, . . .

|A| ≤ 2xK1/2(x)K3/2(x)̂ǫ, |B − 1| ≤ ǫ̂
[

̂J0(x)̂K1(x) + |̂J1(x)|̂K0(x)
]

/|�| = ǫ̂,

(C.12)

∣∣∣∣
cn(x) − K̂n(x)

K̂n(x)

∣∣∣∣ ≤

[
2xK1/2(x)K3/2(x)

In+1/2(x)

Kn+1/2(x)
+ 1

]
ǫ̂, n = 0, 1, 2, . . .

Author’s personal copy

http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0005
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0005
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0010
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0010
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0010
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0015
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0015
http://www.princeton.edu/~allengrp/ms/other/ajcat.pdf
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0020
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0020
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0025
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0025
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0025
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0030
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0030
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0030


A. Sidi et al.76

	9.	 Gautschi, W. Computational Aspects of Three-Term Recurrence Relations. SIAM Rev. 
1967, 9, 24–82.

	10.	 Gradshteyn, I. S.; Ryzhik, I. M. Table of Integrals, Series, and Products; Academic Press (Fifth 
printing)

	11.	 Graham, R. L.; Knuth, D. E.; Patashnik, O. Concrete Mathematics: A Foundation for 
Computer Science; Addison-Wesley: New York, 1989.

	12.	 Jones, H. W. Analytic Löwdin Alpha-Function Method for Two-Center Electron-
Repulsion Integrals over Slater-Type Orbitals. In International Conference on ETO 
Multicenter Integrals, Tallahasse, Florida, ; Weatherford, C. A., Jones, H. W., Eds.;, pp 53.

	13.	 Jones, H. W. Analytical Evaluation of Multicenter Molecular Integrals over Slater-
Type Orbitals Using Expanded Löwdin Alpha Functions. Phys. Rev. A 1988, 38 (2), 
1065–1068.

	14.	 Jones, H. W. Analytic Löwdin Alpha-Function Method for Two-Center Electron-
Repulsion Integrals over Slater-Type Orbitals. J. Comput. Chem. 1991, 12 (10), 
1217–1222.

	15.	 Jones, H. W.; Jain, J. Computer-generated Formulas for Some Three-Center Molecular 
Integrals over Slater-Type Orbitals. Int. J. Quantum Chem. 1983, 23 (3), 953–957.

	16.	 Jones, H. W.; Weatherford, C. A. A Modified Form of Sharma Formula for STO Löwdin 
Alpha Functions with Recurrence Relations for the Coefficient Matrix. Int. J. Quantum 
Chem. Symp. 1978, 12, 483.

	17.	 Jones, H. W.; Weatherford, C. A. The Löwdin α-Function and Its Application to the 
Multi-Center Molecular Integral Problem over Slater-Type Orbitals. J. Mol. Struct.: 
THEOCHEM 1989, 199, 233–243.

	18.	 Luke, Y. L. The Special Functions and Their Approximations;  Volume 1 Academic Press: 
New York, 1969.

	19.	 Sharma, R. R. Expansion of a Function About a Displaced Center for Multicenter 
Integrals: A General and Closed Expression for the Coefficients in the Expansion of a 
Slater Orbital and for Overlap Integrals. Phys. Rev. A 1976, 13 (2), 517–527.

	20.	 Sidi, A. Practical Extrapolation Methods: Theory and Applications Number 10 in Cambridge 
Monographs on Applied and Computational Mathematics; Cambridge University Press: 
Cambridge, 2003.

	21.	 Sidi, A. Asymptotic Expansion of Mellin Transforms in the Complex Plane. Int. J. Pure 
Appl. Math. 2011, 71, 465–480.

	22.	 Sidi, A.; Hoggan, P. E. Asymptotics of Modified Bessel Functions of High Order. Int. J. 
Pure Appl. Math. 2011, 71, 481–498.

Author’s personal copy

http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0035
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0035
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0040
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0040
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0045
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0045
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0050
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0050
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0050
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0055
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0055
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0055
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0060
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0060
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0060
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0065
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0065
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0070
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0070
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0070
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0075
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0075
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0075
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0080
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0080
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0085
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0085
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0085
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0090
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0090
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0090
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0095
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0095
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0100
http://refhub.elsevier.com/B978-0-12-800536-1.00003-4/h0100

	3
 Asymptotic Expansions of Barnett–Coulson–Löwdin Functions of High Order
	1. Introduction
	2. Review of BCLFs
	2.1 Definition and properties of BCLFs
	2.2 Recurrence relations
	2.3 Explicit expressions
	2.4 Integral representations
	2.5 BCLFs for r = a 

	3. Asymptotics of BCLFs
	3.1 Asymptotics as 
	3.2 Asymptotics as  and 

	4. Numerical computation of BCLFs
	4.1 Computing BCLFs by numerical quadrature
	4.2 Computing BCLFs via recursion

	5. Computational details: scaled modified spherical Bessel functions and BCLFs
	5.1 Scaled modified spherical Bessel functions
	5.2 Scaled BCLFs

	Appendix A. Asymptotic expansions for Iν (z), Kν (z), and  as 
	Appendix B. Computation of scaled  and 
	B.1 Computation of the 
	B.2 Computation of the 

	Appendix C. Error analysis
	C.1 Error bounds for  approximations
	C.2 Error bounds for  approximations

	References




