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Abstract Recently, we derived some new numerical quadrature formulas of trapezoidal rule
type for the integrals I (1)[g] = ∫ b

a
g(x)
x−t dx and I (2)[g] = ∫ b

a
g(x)

(x−t)2 dx . These integrals are

not defined in the regular sense; I (1)[g] is defined in the sense of Cauchy Principal Value while
I (2)[g] is defined in the sense of Hadamard Finite Part. With h = (b − a)/n, n = 1, 2, . . .,
and t = a+kh for some k ∈ {1, . . . , n−1}, t being fixed, the numerical quadrature formulas
Q(1)

n [g] for I (1)[g] and Q(2)
n [g] for I (2)[g] are

Q(1)
n [g] = h

n∑

j=1

f (a + jh − h/2), f (x) = g(x)

x − t
,

and

Q(2)
n [g] = h

n∑

j=1

f (a + jh − h/2) − π2g(t)h−1, f (x) = g(x)

(x − t)2 .

We provided a complete analysis of the errors in these formulas under the assumption that
g ∈ C∞[a, b]. We actually show that

I (k)[g] − Q(k)
n [g] ∼

∞∑

i=1

c(k)
i h2i as n → ∞,

the constants c(k)
i being independent of h. In this work, we apply the Richardson extrapolation

to Q(k)
n [g] to obtain approximations of very high accuracy to I (k)[g]. We also give a thorough

analysis of convergence and numerical stability (in finite-precision arithmetic) for them. In
our study of stability, we show that errors committed when computing the function g(x),
which form the main source of errors in the rest of the computation, propagate in a relatively
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mild fashion into the extrapolation table, and we quantify their rate of propagation. We
confirm our conclusions via numerical examples.
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1 Introduction and Background

This work concerns the use of some new numerical quadrature formulas for the finite-range
integrals

I (1)[g] =
b∫

a

g(x)

x − t
dx, a < t < b, g ∈ C∞[a, b], (1.1)

and

I (2)[g] =
b∫

a

g(x)

(x − t)2 dx, a < t < b, g ∈ C∞[a, b]. (1.2)

Clearly, neither I (1)[g]nor I (2)[g] exists in the ordinary sense; I (1)[g] is defined in the sense of
Cauchy Principal Value (CPV), while I (2)[g] is defined in the sense of Hadamard Finite Part
(HFP).1 Both integrals arise in different problems of applied mathematics and engineering.
Specifically, they appear in boundary integral equation formulations of 2D boundary value
problems, for example. As such, their accurate evaluation is an important issue. Integral
equations involving I (1)[g] are known as singular integral equations, while those involving
I (2)[g] are known as hypersingular integral equations. In keeping with this nomenclature,
we call I (1)[g] a singular integral and I (2)[g] a hypersingular integral.

For a general treatment of hypersingular integrals and their applications to hypersingular
integral equations, see the books by Lifanov et al. [11] and by Ladopoulos [10]. For some
recent applications arising from problems in elasticity, see Chen et al. [3] and [11], for those
arising from fracture mechanics, see Chan et al. [2] and Chen [4], and for those arising from
scattering from cracks, see Kress [7] and Kress and Lee [8], for example.

In this work, we shall consider two compact numerical quadrature formulas for these
integrals, namely, Q(1)

n [g] for I (1)[g] and Q(2)
n [g] for I (2)[g], which are given as in

Q(1)
n [g] = h

n∑

j=1

f (a + jh − h/2), f (x) = g(x)

x − t
, h = b − a

n
, (1.3)

1 The usual notation for integrals defined in the sense of CPV and HFP is −∫ b
a f (x) dx , and =∫ b

a f (x) dx ,

respectively. In this work, we denote both of them by
∫ b

a f (x) dx , as in (1.1) and (1.2), for simplicity. For the
definition and properties of CPV and HFP integrals, see Davis and Rabinowitz [5], Evans [6], or Kythe and
Schäferkotter [9], for example.
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and

Q(2)
n [g] = h

n∑

j=1

f (a + jh − h/2) − π2g(t)h−1, f (x) = g(x)

(x − t)2 , h = b − a

n
.

(1.4)

Here t = a + kh for some k ∈ {1, . . . , n − 1}. The formula Q(1)
n [g] was originally derived

in Sidi and Israeli [18] by using the classical Euler–Maclaurin (E–M) expansion for regular
integrands. The formula Q(2)

n [g] was derived in the recent paper Sidi [17] by making use
of one of the author’s generalizations of the E–M expansion for integrands with arbitrary
algebraic endpoint singularities. For the classical E–M expansion, see Atkinson [1], Davis
and Rabinowitz [5], and Stoer and Bulirsch [19], for example. See also Sidi [13, Appendix
D]. The author’s generalization of the E–M expansion alluded to here is given in Sidi [15]. For
generalizations of the E–M expansion to the case of arbitrary algebraic-logarithmic endpoint
singularities, see Sidi [14,16].

The results in the following theorem were proved in [17]:

Theorem 1.1 Let I (1)[g] and I (2)[g] be as in (1.1)–(1.2), respectively, and let Q(1)
n [g] and

Q(2)
n [g] be as in (1.3)–(1.4), respectively. Let also {νk}∞k=0 be a sequence of positive integers,

ν0 < ν1 < ν2 < · · · , and let hk = (b − a)/νk . Let t be such that t ∈ {a + jhk}νk−1
j=1 for every

k = 0, 1, . . .. (This is guaranteed if each νk is an integer multiple of ν0 and t ∈ {a+ jh0}ν0−1
j=1 .)

Let n ∈ {νk}∞k=0 and let h = (b − a)/n. Then Q(1)
n [g] and Q(2)

n [g] are well defined and have
the asymptotic expansions

Q(k)
n [g] ∼ I (k)[g] +

∞∑

i=1

B2i

(2i)! (2
1−2i − 1)

[
f (2i−1)(b) − f (2i−1)(a)

]
h2i as h → 0.

(1.5)

Here Bs are the Bernoulli numbers, f (x) is as in (1.3) for k = 1 and as in (1.4) for k = 2,
and f (s) stands for the sth derivative of f .

It follows from this theorem that if f (x), whether as in (1.3) or as in (1.4), is such that
f (2i−1)(a) = f (2i−1)(b), for i = 1, 2, . . ., then the asymptotic expansion in (1.5) is empty
and this implies that

Q(k)
n [g] − I (k)[g] = O(hμ) as h → 0, ∀ μ > 0. (1.6)

In words, both quadrature formulas Q(k)
n [g], k = 1, 2, have “spectral accuracy.” This situa-

tion arises naturally, when f ∈ C∞(R) and is T -periodic, T = b−a, with polar singularities
at x = t + kT, k = 0,±1,±2, . . .. In this case, (1.3) and (1.4) can be replaced by

Q(1)
n [g] = h

n∑

j=1

f (t + jh − h/2), f (x) = g(x)

x − t
, h = b − a

n
, (1.7)

and

Q(2)
n [g] = h

n∑

j=1

f (t + jh − h/2) − π2g(t)h−1, f (x) = g(x)

(x − t)2 , h = b − a

n
,

(1.8)
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and t can now assume any value in [a, b] on account of the periodicity of f (x). This case is
treated in great detail in [17].

Going back to the nonperiodic case, Theorem 1.1 also suggests immediately that the
classical Richardson extrapolation process can be applied to a sequence of the Q(k)

n [g], n ∈
{ν0, ν1, . . .}, to accelerate its convergence to I (k)[g]. Indeed, this has already been suggested
in [17]. For a detailed treatment of the classical Richardson extrapolation, see [13, Chapters
1 and 2], for example. In this work, we give a detailed analysis of this use of the Richardson
extrapolation, with special attention to the issue of numerical stability associated with it. This
issue arises because of the singular nature of the problems, which causes the roundoff errors
in the computation of the Q(k)

n [g] to tend to infinity as h → 0 (equivalently, as n → ∞). As
will become clear, however, this issue is not very serious because close to machine accuracy
in floating-point arithmetic can be achieved before these errors begin to have an impact on
the accuracy given by the extrapolation procedure. This makes the quadrature formulas very
effective as practical computational tools.

In Sect. 2, we review briefly the classical Richardson extrapolation process, discuss the
issues of convergence and of numerical stability associated with it, and also propose a new
and simple algorithm for the quantitative assessment of stability numerically. It turns out that
this algorithm, after some twist, can be applied to our problems in this work quite easily.
In Sect. 3, we apply the convergence theory of Sect. 2 to the Richardson extrapolation as
this is being applied to the Q(k)

n [g]. The stability issue is the subject of Sects. 4 and 5. In
Sect. 4, we provide a detailed practical numerical treatment of the stability issues involved
in applying the Richardson extrapolation to the Q(k)

n [g]: (i) we develop simple but effective
methods that are based on realistic assumptions having to do with computation in floating-
point arithmetic and (ii) we provide recursive algorithms for these methods. In Sect. 5, we
provide an analytical treatment of the stability issues; we develop the theoretical aspects of
the computational methods proposed in Sect. 4 and show how initial computational errors
propagate in the extrapolation process as this is being applied to the Q(k)

n [g]. Finally, in Sect.
6, we present numerical examples that confirm the validity of the methods proposed in Sect.
4 for assessing numerical stability. The approach to numerical stability given in this work is
new.

2 Convergence and Stability of the Richardson Extrapolation

2.1 Classical Richardson Extrapolation

We begin with a short description of the classical Richardson extrapolation. This will set the
stage for more developments and will also fix the notation we use in the sequel. Our treatment
here is based on Sidi [13, Chapter 1], but is carried out under stronger conditions suitable to
the problems treated in this work.

Let A(y) be a function of the continuous or discrete variable y, defined on the interval
[0, b] for some b > 0, and let A = limy→0 A(y). Assume that A(y) has an asymptotic
expansion of the form

A(y) ∼ A +
∞∑

i=1

αi yσi as y → 0, (2.1)

where αi are constants independent of y, and the σi are real and satisfy

0 < σ1 < σ2 < · · · ; lim
i→∞ σi = ∞. (2.2)
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Fig. 1 Arrangement of
extrapolation table

A(y) is assumed to be known (or computable) for 0 < y < b, but not at y = 0; we want
to determine (or approximate) A(0) = limy→0 A(y) = A. The σi are also assumed to be
known. The αi need not be known.2

The Richardson extrapolation process is now defined as follows:

Algorithm 1
Step 0. Input A(y), {σn}∞n=1, y0 ∈ (0, b), and ω ∈ (0, 1).

Step 1. Set y j = y0ω
j , and compute A( j)

0 = A(y j ), j = 0, 1, . . ..

Step 2. For n = 1, 2, . . ., and j = 0, 1, . . ., compute A( j)
n via

A( j)
n = A( j+1)

n−1 − cn A( j)
n−1

1 − cn
; cn = ωσn . (2.3)

Here, the A( j)
n are the approximations to A, and they can be arranged in a two-dimensional

array as in Fig. 1.
Note also that the cn in (2.3) satisfy

1 > c1 > c2 > · · · ; lim
n→∞ cn = 0. (2.4)

Define the polynomials Un(z) and their coefficients ρni as in

Un(z) =
n∏

i=1

z − ci

1 − ci
=

n∑

i=0

ρni z
i , n = 0, 1, . . . , (2.5)

and note that, by (2.4),

(−1)n−iρni > 0, i = 0, 1, . . . , n. (2.6)

Thus,

Un(1) =
n∑

i=0

ρni = 1 and
∣
∣Un(−1)

∣
∣ =

n∑

i=0

|ρni | =
n∏

i=1

1 + ci

1 − ci
. (2.7)

Then A( j)
n can also be expressed as in

A( j)
n =

n∑

i=0

ρni A(y j+i ). (2.8)

2 Actually, in the treatment given in [13, Chapter 1], we have considered the more general case in which (i)
σi can be complex and satisfy �σ1 < �σ2 < · · · ; limi→∞ �σi = ∞, and (ii) limy→0 A(y) may not have
to exist, in which case A is said to be the antilimit of A(y) as y → 0. Divergence may take place, if �σ1 ≤ 0,
for example.
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2.2 Convergence Theory

In Table 1, the sequences {A( j)
n }∞j=0 with n fixed (called column sequences) and {A( j)

n }∞n=0
with j fixed (called diagonal sequences) are of special interest. For these, we have the
following convergence theorems (see [13, Theorems 1.5.1 and 1.5.4]):

Theorem 2.1 With A(y) as in (2.1) and (2.2), and with fixed n, A( j)
n has the full asymptotic

expansion

A( j)
n ∼ A +

∞∑

i=n+1

αi Un(ci )yσi
j as j → ∞. (2.9)

As a result,

A( j)
n − A = O(yσn+1

j ) = O(c j
n+1) as j → ∞. (2.10)

If αn+μ is the first nonzero αi with i ≥ n + 1, then we also have the asymptotic equality

A( j)
n − A ∼ αn+μUn(cn+μ)y

σn+μ

j as j → ∞. (2.11)

In words, all column sequences converge linearly, and each column converges at least as fast
as the one preceding it. [ Note that Un(ci ) 
= 0 for i ≥ n + 1.]

Theorem 2.2 With A(y) as in (2.1) and (2.2), and with fixed j , and assuming that the σi

satisfy

σi+1 − σi ≥ d > 0, i = 1, 2, . . . , (2.12)

A( j)
n satisfies

A( j)
n − A = O(e−λn) as n → ∞, ∀ λ > 0. (2.13)

By imposing a mild growth condition on the αs , the result in (3.2) can be made much stronger
to read

A( j)
n − A = O((ω + 	)dn2/2) as n → ∞; 	 > 0 arbitrary, j fixed. (2.14)

In words, all diagonal sequences converge superlinearly, hence faster than the column
sequences.

2.3 Assessment of Numerical Stability

The issue of numerical stability, which is relevant to floating-point computations, concerns
the propagation of numerical errors in the input function values, namely, the A(ys), to the
entries A( j)

n in Table 1. Here we tackle this issue under the assumptions made concerning
A(y) in the preceding subsection.

Assume that the function A(y) is computed with errors, that is, assume that we are com-
puting Ā(ys) = A(ys)+	s instead of A(ys). Then, assuming that the rest of the computation
is being done in exact arithmetic, what we are computing by the Richardson extrapolation
process via (2.3) are Ā( j)

n instead of A( j)
n . Thus, by (2.3) and (2.8), we have

Ā( j)
n = Ā( j+1)

n−1 − cn Ā( j)
n−1

1 − cn
=

n∑

i=0

ρni
[
A(y j+i ) + 	 j+i

] = A( j)
n +

n∑

i=0

ρni	 j+i .

(2.15)
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In view of this, the actual absolute error in Ā( j)
n is

Ā( j)
n − A = (

Ā( j)
n − A( j)

n
) + (

A( j)
n − A

) =
n∑

i=0

ρni	 j+i + (
A( j)

n − A
)
, (2.16)

while the more important relative error is

Ā( j)
n − A

A
= Ā( j)

n − A( j)
n

A
+ A( j)

n − A

A
=

∑n
i=0 ρni	 j+i

A
+ A( j)

n − A

A
, providedA 
= 0,

(2.17)

and numerical stability is ultimately connected with the relative error.
By Theorems 2.1 and 2.2, the term

(
A( j)

n − A
)
/A tends to zero as j → ∞ or n → ∞.

This implies that, in (2.17), the term
(

A( j)
n − A

)
/A, for all large j and n, becomes negligible

compared to the term ( Ā( j)
n − A( j)

n )/A, which is always nonzero due to errors committed in
the computation of A( j)

n . Thus, we can safely replace the equality in (2.17) by the following
approximate equality:

Ā( j)
n − A

A
≈ Ā( j)

n − A( j)
n

A
=

∑n
i=0 ρni	 j+i

A
, for all large j or n, providedA 
= 0.

(2.18)

Therefore, the numerical stability issue revolves around the term
( ∑n

i=0 ρni	 j+i
)
/A.

In case some good upper bounds δs on the respective |	s | are known, that is,

|	s | ≤ δs, s = 0, 1, . . . , (2.19)

then we have
∣
∣
∣
∣

n∑

i=0

ρni	 j+i

∣
∣
∣
∣ ≤

n∑

i=0

|ρni | |	 j+i | ≤
n∑

i=0

|ρni | δ j+i ,

and hence
∣
∣ Ā( j)

n − A( j)
n

∣
∣

|A| ≤
∑n

i=0 |ρni |δ j+i

|A| ≈
∑n

i=0 |ρni |δ j+i

|A(0)
j+n |

, for all large j or n,

where we have also replaced the unknown limit A by A(0)
j+n , the “best” approximation to A

available to us from the given information, namely, from A(ys), 0 ≤ s ≤ j + n. We can
now use this knowledge to replace the approximate equality in (2.18) by the approximate
inequality in

∣
∣ Ā( j)

n − A
∣
∣

|A| �
D̃( j)

n

|A(0)
j+n |

, for all large j or n; D̃( j)
n =

n∑

i=0

∣
∣ρni

∣
∣ δ j+i . (2.20)

Since both the A(ys) and the δs are known, the right-hand side of (2.20) presents an effective
way of assessing the relative error in Ā( j)

n for all large j or n. That is to say, if D̃( j)
n /|A(0)

j+n |
is of the order of 10−r for some r ≥ 0, then we can safely conclude that Ā( j)

n can have up to
r correct decimal digits for sufficiently large j and/or n.
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We end by giving a convenient recursive algorithm for computing the D̃( j)
n that is based

entirely on Algorithm 1. First, by (2.6) and (2.20), we have

D̃( j)
n =

n∑

i=0

(−1)n−iρniδ j+i = (−1) j+n D( j)
n ; D( j)

n =
n∑

i=0

ρni
[
(−1) j+iδ j+i

]
. (2.21)

Let us define the function D(y) via

D(ys) = (−1)sδs, s = 0, 1, . . . ; D(y) arbitrary otherwise. (2.22)

Then

D( j)
n =

n∑

i=0

ρni D(y j+i ), j, n = 0, 1, . . . . (2.23)

Thus, we can apply Algorithm 1, with the A(ys) and A( j)
n there replaced by D(ys) and D( j)

n ,
respectively.

Thus, we have the following algorithm:

Algorithm 2
Step 0. Input {δs}∞s=0, {σn}∞n=1, y0 ∈ (0, b), and ω ∈ (0, 1).

Step 1. Compute D( j)
0 = D(y j ) = (−1) jδ j , j = 0, 1, . . ..

Step 2. For n = 1, 2, . . ., and j = 0, 1, . . ., compute D( j)
n via

D( j)
n = D( j+1)

n−1 − cn D( j)
n−1

1 − cn
; cn = ωσn . (2.24)

Obviously, Algorithms 1 and 2 can easily be combined into one.
Invoking in (2.24) also the fact that D( j)

n = (−1) j+n D̃( j)
n , we obtain the following equiv-

alent recursion relation for the D̃( j)
n :

D̃( j)
0 = δ j , j ≥ 0; D̃( j)

n = D̃( j+1)
n−1 + cn D̃( j)

n−1

1 − cn
, j ≥ 0, n ≥ 1. (2.25)

2.4 Examples

An immediate and commonly occurring example of this approach is that in which it is known
that the A(ys) have been computed with machine accuracy, which means that

Ā(ys) = A(ys)(1 + ηs), |ηs | ≤ u ∀ s, (2.26)

where u is the unit roundoff of the floating-point arithmetic being used. Consequently,

	s = ηs A(ys) ⇒ |	s | ≤ u|A(ys)| ∀ s. (2.27)

We can now proceed as above by taking δs = u|A(ys)|, s = 0, 1, . . ., since these quantities
are available at no additional cost.

If the A(ys) ≈ A (they need not be very accurate approximations to A, it is enough if
they are of the same order of magnitude), we can simplify the above approach by replacing
A(ys) by A, and hence δs by u|A| in (2.27). Following this, (2.20) becomes

∣
∣ Ā( j)

n − A
∣
∣

|A| � u
n∑

i=0

|ρni | = u
n∑

i=0

(−1)n−iρni = Knu, for all large j or n, (2.28)
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where

Kn =
n∑

i=0

|ρni | = ∣
∣Un(−1)

∣
∣ =

n∏

i=1

1 + ci

1 − ci
. (2.29)

Now, being independent of j , the product
∏n

i=1
1+ci
1−ci

is bounded in j . In addition, by the
assumption in (2.12) of Theorem 2.2, it is also bounded in n since

Kn =
n∏

i=1

1 + ci

1 − ci
<

∞∏

i=1

1 + ci

1 − ci
= K∞ < ∞. (2.30)

Thus, the extrapolation process is very stable in that the relative error is bounded by K∞u
for all large j and n.

3 Richardson Extrapolation Applied to Q(k)
n [g]

We now consider the application of the Richardson extrapolation to the numerical quadrature
formulas Q(1)

n [g] and Q(2)
n [g], recalling that they both satisfy (1.5). Thus, (2.1) holds with

y = h = b − a

n
, A(y) = Q(k)

n [g], and σi = 2i, i = 1, 2, . . . .

In addition, the σi satisfy (2.12). Clearly, both Theorems 2.1 and 2.2 apply with no changes,
and we have

A( j)
n − I (k)[g] = O(ω2 j (n+1)) as j → ∞; n fixed, (3.1)

and

A( j)
n − I (k)[g] = O(e−λn) as n → ∞, ∀ λ > 0; j fixed. (3.2)

By imposing a rather unrestrictive growth condition on the g(s), such as

max
a≤x≤b

∣
∣g(s)(x)

∣
∣ = O

(
exp(csσ )

)
as s → ∞, c ≥ 0, σ < 2,

the result in (3.2) can be made much stronger to read

A( j)
n − I (k)[g] = O((ω + ε)n2

) as n → ∞; ε > 0 arbitrarily small, j fixed. (3.3)

Here, t = a + kh0, where h0 = (b − a)/ν0 for some integer ν0 and k ∈ {1, . . . , ν0 − 1}.
Of course, ω cannot take on arbitrary values. The fact that h can take on only the values
(b − a)/m, m = 1, 2, . . ., requires ω to take on only the values 1/s, s = 2, 3, . . .. The most
common choice is ω = 1/2, and this is our choice in the numerical examples in Sect. 5.

4 Numerical Assessment of Stability for Richardson Extrapolation on Q(k)
n [g]

To assess the numerical stability of the Richardson extrapolation process while computing
the A( j)

n obtained as in the preceding section, we start by searching for good and computable
upper bounds on |Q̄(k)

n [g] − Q(k)
n [g]|, where Q̄(k)

n [g] is the computed Q(k)
n [g]. We aim at

obtaining these bounds in terms of the quantities we use to compute Q(k)
n [g], no additional

information being needed, and hence at no extra cost.
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Clearly, the computational errors in g(x) are the main source of error in Q̄(k)
n [g]. We now

make the reasonable assumption that g(x) is being computed with machine accuracy, which
means that what is being computed instead of g(x) is ḡ(x), and that

ḡ(x) = g(x)[1 + η(x)], |η(x)| ≤ u, ∀ x ∈ [a, b]. (4.1)

In the sequel, we also use the short-hand notation

x j = a + jh − h/2, j = 1, . . . , n. (4.2)

4.1 Preliminary Treatment of Q(1)
n [g]

By (1.3) and (4.1),

Q̄(1)
n [g] = Q(1)

n [ḡ] = h
n∑

i=1

ḡ(x j )

x j − t
= Q(1)

n [g] + h
n∑

i=1

g(x j )η(x j )

x j − t
. (4.3)

Thus,

Q̄(1)
n [g] − Q(1)

n [g] = h
n∑

i=1

g(x j )η(x j )

x j − t
, (4.4)

which, upon taking absolute values on both sides, and invoking the fact that |η(x)| ≤ u for
all x ∈ [a, b], gives

∣
∣Q̄(1)

n [g] − Q(1)
n [g]∣∣ ≤ u

[

h
n∑

j=1

| f (x j )|
]

≡ ε(1)
n ; f (x) = g(x)

x − t
. (4.5)

Obviously, ε
(1)
n provides an upper bound for |Q̄(1)

n [g] − Q(1)
n [g]| that can be computed

simultaneously with Q(1)
n [g] with no extra effort.

4.2 Preliminary Treatment of Q(2)
n [g]

By (1.4) and (4.1),

Q̄(2)
n [g] = Q(2)

n [ḡ] = h
n∑

i=1

ḡ(x j )

(x j − t)2 − π2 ḡ(t)h−1

= Q(2)
n [g] + h

n∑

i=1

g(x j )η(x j )

(x j − t)2 − π2g(t)η(t)h−1. (4.6)

Thus,

Q̄(2)
n [g] − Q(2)

n [g] = h
n∑

i=1

g(x j )η(x j )

(x j − t)2 − π2g(t)η(t)h−1, (4.7)

which, upon taking absolute values on both sides, and invoking the fact that |η(x)| ≤ u for
all x ∈ [a, b], gives

∣
∣Q̄(2)

n [g] − Q(2)
n [g]∣∣ ≤ u

[

h
n∑

j=1

| f (x j )| + π2|g(t)|h−1
]

≡ ε(2)
n ; f (x) = g(x)

(x − t)2 .

(4.8)
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Of course, ε
(2)
n provides an upper bound for |Q̄(2)

n [g] − Q(2)
n [g]| that can be computed

simultaneously with Q(2)
n [g] with no extra effort.

4.3 Completion of Numerical Assessment of Stability

With ε
(1)
n and ε

(2)
n available as above, we can now complete the numerical assessment of the

stability of the extrapolation process on Q(1)
n [g] and Q(2)

n [g].
Let us recall the details of the computational process: In accordance with what is proposed

in Theorem 1.1, we choose some positive integer ν0, fix t = a+kh0 with h0 = (b−a)/ν0 and
k ∈ {1, . . . , ν0 − 1}, and choose the integers ν1, ν2, . . ., according to νs = ν0/ω

s . Of course,
ω = 1/m for some integer m ≥ 2, as mentioned earlier. Thus, in applying the Richardson
extrapolation process, we have

ys = hs = h0ω
s, A(s)

0 = Q(k)
νs

[g], D̃(s)
0 = ε(k)

νs
, s = 0, 1, . . . .

Then, we also have

A( j)
n =

n∑

i=0

ρni A( j+i)
0 and D̃( j)

n =
n∑

i=0

|ρni |D̃( j+i)
0 ,

where the ρni are defined via

Un(z) =
n∏

i=1

z − ci

1 − ci
=

n∑

i=0

ρni z
i ; ci = ω2i , i = 1, 2, . . . ,

and that the A( j)
n and D̃( j)

n can be computed via the recursion relations

A( j)
n = A( j+1)

n−1 − cn A( j)
n−1

1 − cn
and D̃( j)

n = D̃( j+1)
n−1 + cn D̃( j)

n−1

1 − cn
, j ≥ 0, n ≥ 1.

We also recall that, since limn→∞ Q(k)
n [g] = I (k)[g], we finally have

∣
∣ Ā( j)

n − A|
|A| �

D̃( j)
n

∣
∣A(0)

j+n

∣
∣
, for all large j or n.

5 Theoretical Assessment of Stability for Richardson Extrapolation on Q(k)
n [g]

In this section, we analyze the theoretical (as opposed to numerical) behavior of the D̃( j)
n

of (2.20) as n increases, because diagonal sequences {A( j)
n }∞n=0, with fixed j , have the best

convergence properties. We do this by developing tight upper bounds denoted Ẽ ( j)
n on the

D̃( j)
n that are simple to express and easy to handle theoretically. The end result is

∣
∣ Ā( j)

n − A
∣
∣

|A| �
D̃( j)

n

|A(0)
j+n |

≤ Ẽ ( j)
n

|A(0)
j+n |

, for all large j or n. (5.1)

As we will see from the examples of Sect. 6, the three quantities in (5.1) are practically
of the same order of magnitude. (i) This confirms our claim that D̃( j)

n /|A(0)
j+n | is an excellent
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numerical on-the-fly estimator of the relative error in Ā( j)
n . (ii) It also shows that the the-

oretical quantity Ẽ ( j)
n /|A(0)

j+n | describes the rate at which errors propagate throughout the
extrapolation table in an exact manner.

Everything here is as in the preceding section with the same notation. In addition, we use
the notation

‖g‖ = max
a≤x≤b

|g(x)|. (5.2)

5.1 Treatment of Q(1)
n [g]

Recalling that t = a + kh for some k ∈ {1, . . . , n − 1}, (4.5) gives

∣
∣Q̄(1)

n [g] − Q(1)
n [g]∣∣ ≤ u

[

h
n∑

j=1

|g(x j )|
|x j − t |

]

≤ u‖g‖
n∑

j=1

1

| j − 1/2 − k| .

Now,

n∑

j=1

1

| j − 1/2 − k| =
k−1∑

i=0

1

i + 1/2
+

n−k−1∑

i=0

1

i + 1/2
.

It is clear that this summation is O(log n) as n → ∞ for every k and hence for every t . In
addition, the sum

∑m
i=1

1
i+1/2 is the midpoint rule approximation for the integral

∫ m
1

dx
x with

h = 1, and since the second derivative of 1/x is positive for x > 0, we have (see [1], for
example)

m−1∑

i=1

1

i + 1/2
<

m∫

1

dx

x
= log m, (5.3)

and, therefore, we have the inequality

n∑

j=1

1

| j − 1/2 − k| < 4 + log[k(n − k)],

whose right-hand side achieves its maximum for k = n/2, and we have

n∑

j=1

1

| j − 1/2 − k| < 4 + 2 log(n/2).

As a result, for all t = a + kh, k ∈ {1, . . . , n − 1},
∣
∣Q̄(1)

n [g] − Q(1)
n [g]∣∣ ≤ u‖g‖ [

4 + 2 log(n/2)
]
. (5.4)

We now turn to the application of the Richardson extrapolation. As we have already seen,
we need to study the behavior of D̃( j)

n for large n. First, by (2.20), with δs = u‖g‖[4 +
2 log(νs/2)], which follows from (5.4), we have

D̃( j)
n ≤

n∑

i=0

|ρni |δ j+i = u‖g‖
n∑

i=0

|ρni |
[
4 + 2 log(ν j+i/2)

]
. (5.5)
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By the fact that ν j+i = ν jω
−i , we also have

D̃( j)
n ≤ u‖g‖

n∑

i=0

|ρni |
[
4 + 2 log(ν j/2) + 2i log ω−1]. (5.6)

Therefore,

D̃( j)
n ≤ u‖g‖

{
[
4 + 2 log(ν j/2)

] n∑

i=0

|ρni | + 2 log ω−1
n∑

i=0

i |ρni |
}

. (5.7)

Now, by (2.29),
∑n

i=0 |ρni | = Kn , whose properties are known by (2.30). We thus turn to
the analysis of

∑n
i=0 i |ρni |. First, we observe that

U ′
n(z) =

n∑

i=0

iρni z
i−1, (5.8)

and hence that

n∑

i=0

i |ρni | = (−1)n−1
n∑

i=0

i ρni (−1)i−1 = |U ′
n(−1)|. (5.9)

By the fact that Un(z) has c1 > c2 > · · · > cn as its zeros, it follows by Rolle’s theorem that
U ′

n(z) has n − 1 real and distinct zeros, which we denote by c′
1 > c′

2 > · · · > c′
n−1. Clearly,

1 > c1 > c′
1 > c2 > c′

2 > · · · > cn−1 > c′
n−1 > cn > 0. (5.10)

As a result,

U ′
n(z) = nρnn

n−1∏

i=1

(z − c′
i ) ⇒

n∑

i=0

i |ρni | = nρnn

n−1∏

i=1

(1 + c′
i ); ρnn =

n∏

i=1

1

1 − ci
.

(5.11)

Noting the fact that

n∏

i=2

(1 + ci ) <

n−1∏

i=1

(1 + c′
i ) <

n−1∏

i=1

(1 + ci ),

which follows from (5.10), and multiplying through by nρnn , we obtain

Knn

1 + c1
<

n∑

i=0

i |ρni | <
Knn

1 + cn
< Knn. (5.12)

Since Kn are bounded in n, this inequality implies that
∑n

i=0 i |ρni | grows strictly like n as
n increases. Substituting this in (5.7), we obtain

D̃( j)
n ≤ u‖g‖{[4 + 2 log(ν j/2)

]
Kn + 2 log ω−1 Knn

}

= u‖g‖Kn
[
4 + 2 log(ν j+n/2)

] ≡ Ẽ ( j)
n . (5.13)

Thus, we see that the computational errors in g(x) propagate in the diagonal sequence
{A( j)

n }∞n=0 very slowly, exactly like n or, equivalently, like log h−1
j+n .
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5.2 Treatment of Q(2)
n [g]

Recalling that t = a + kh for some k ∈ {1, . . . , n − 1}, (4.8) gives

∣
∣Q̄(2)

n [g] − Q(2)
n [g]∣∣ ≤ u

[

h
n∑

j=1

|g(x j )|
(x j − t)2 + π2|g(t)|h−1

]

≤ u‖g‖h−1
[

π2 +
n∑

j=1

1

( j − 1/2 − k)2

]

.

Now,

n∑

j=1

1

( j − 1/2 − k)2 =
k−1∑

i=0

1

(i + 1/2)2 +
n−k−1∑

i=0

1

(i + 1/2)2 .

It is clear that this summation is O(1) as n → ∞ for every k and hence for every t . Using
the fact that the Hurwitz Zeta function (see Olver et al. [12], for example) that is defined via

ζ(z, θ) =
∞∑

i=0

1

(i + θ)z
, �z > 1,

also satisfies

ζ(z, 1/2) = (2z − 1)ζ(z),

where ζ(z) = ζ(z, 1) is the Riemann Zeta function, we have the inequality

n∑

j=1

1

( j − 1/2 − k)2 < 2ζ(2, 1/2) = 6ζ(2) = π2.

As a result, for all t = a + kh, k ∈ {1, . . . , n − 1},
∣
∣Q̄(2)

n [g] − Q(2)
n [g]∣∣ ≤ 2π2u‖g‖h−1. (5.14)

We now turn to the application of the Richardson extrapolation. As we have already seen,
we need to study the behavior of D̃( j)

n for large n. First, by (2.20), with δs = 2u‖g‖π2h−1
s ,

which follows from (5.14), and by the fact that h j+i = h jω
i ,

D̃( j)
n ≤ 2u‖g‖π2

n∑

i=0

|ρni |h−1
j+i = 2u‖g‖π2h−1

j

n∑

i=0

|ρni |ω−i . (5.15)

By (2.4)–(2.6),

n∑

i=0

|ρni |ω−i = (−1)n
n∑

i=0

ρni (−ω−1)i = ∣
∣Un(−ω−1)

∣
∣ = Lnω−n; Ln =

n∏

i=1

1 + ωci

1 − ci
.

Therefore,

D̃( j)
n ≤ 2π2u‖g‖Lnh−1

j+n ≡ Ẽ ( j)
n . (5.16)

Now, by the fact that ωci < ci for all i ,

Ln =
n∏

i=1

1 + ωci

1 − ci
<

∞∏

i=1

1 + ωci

1 − ci
= L∞ < ∞.
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This implies that the computational errors in g(x) propagate in the diagonal sequence
{A( j)

n }∞n=0 like h−1
j+n , hence like ω−n . Since convergence is very quick as n increases, this

propagation is not severe. For example, if we take ω = 1/2 in the extrapolation procedure,
which is what we would normally do, for n = 10, we will have ω−n = 1024 ≈ 103.

6 Numerical Examples

In this section, we illustrate the conclusions of the preceding section with two numerical
examples. In these examples, I (1)[g] and I (2)[g] are as defined in (1.1) and (1.2), respectively,
and

g(x) = x

x2 + 1
and [a, b] = [−R, R].

Consequently,

I (1)[g] = 1

t2 + 1

(

t log
R − t

R + t
+ 2 arctan R

)

and

I (2)[g] = d

dt
I (1)[g] = − 2t

(t2 + 1)2

(

t log
R − t

R + t
+ 2 arctan R

)

+ 1

t2 + 1

(

log
R − t

R + t
− 2Rt

R2 − t2

)

.

Here we have made use of the fact that

b∫

a

g(x)

(x − t)2 dx = d

dt

b∫

a

g(x)

x − t
dx, a < t < b.

It is easy to verify that

‖g‖ =
{

R/(R2 + 1) if R ≤ 1,

1/2 if R > 1.

In the computations reported here, we took R = 2 and t = 1. We also took ν0 = 4 and
νs = ν02s, s = 1, 2, . . .. These computations were done in both double-precision and
quadruple-precision arithmetic in FORTRAN 77, for which, we have

u = 2.22 × 10−16 for double-precision,

u = 1.93 × 10−34 for quadruple-precision,

rounded to three significant decimal digits.
The results for I (1)[g] are given in Tables 1 and 2, while those for I (2)[g] are given in

Tables 3 and 4, and they all pertain to the approximations A(0)
n , n = 0, 1, . . .. In both examples

and both arithmetics, we see that the quantities D̃( j)
n /|A(0)

n | and Ẽ ( j)
n /|A(0)

n | in (5.1), which
estimate

∣
∣ Ā( j)

n − A( j)
n

∣
∣/|A| for large n, and the actual relative error

∣
∣ Ā( j)

n − A
∣
∣/|A| as well,

are of the same order of magnitude at the bottoms of the respective tables.
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Table 1 Double-precision
numerical results for the integral
I (1)[g] in Sect. 6, with t = 1
throughout

Here En =
| Ā(0)

n − I (1)[g]|/|I (1)[g]|, D̃( j)
n

as in Sect. 4.3, and Ẽ( j)
n as in

(5.13)

n En D̃(0)
n /|A(0)

n | Ẽ(0)
n /|A(0)

n |
0 2.96D−02 8.40D−16 1.04D−15

1 4.63D−03 1.76D−15 2.24D−15

2 2.00D−04 2.48D−15 3.07D−15

3 3.38D−06 3.08D−15 3.70D−15

4 4.08D−09 3.64D−15 4.27D−15

5 1.99D−11 4.19D−15 4.82D−15

6 3.26D−14 4.74D−15 5.37D−15

7 1.19D−15 5.28D−15 5.91D−15

8 1.79D−15 5.83D−15 6.46D−15

9 7.96D−16 6.37D−15 7.00D−15

10 2.99D−15 6.91D−15 7.54D−15

Table 2 Quadruple-precision
numerical results for the integral
I (1)[g] in Sect. 6, with t = 1
throughout

Here En =
| Ā(0)

n − I (1)[g]|/|I (1)[g]|, D̃( j)
n

as in Sect. 4.3, and Ẽ( j)
n as in

(5.13)

n En D̃(0)
n /|A(0)

n | Ẽ(0)
n /|A(0)

n |
0 2.96D−02 7.31D−34 9.05D−34

1 4.63D−03 1.53D−33 1.94D−33

2 2.00D−04 2.16D−33 2.67D−33

3 3.38D−06 2.68D−33 3.22D−33

4 4.08D−09 3.17D−33 3.71D−33

5 1.99D−11 3.65D−33 4.19D−33

6 3.31D−14 4.12D−33 4.67D−33

7 8.03D−18 4.59D−33 5.14D−33

8 5.11D−22 5.06D−33 5.61D−33

9 5.68D−27 5.54D−33 6.09D−33

10 5.35D−33 6.01D−33 6.56D−33

11 1.04D−33 6.48D−33 7.03D−33

12 6.90D−34 6.95D−33 7.50D−33

13 8.29D−33 7.43D−33 7.97D−33

14 1.04D−32 7.90D−33 8.45D−33

15 2.04D−32 8.37D−33 8.92D−33

7 The Periodic Case Revisited

As we mentioned in the paragraph following the statement of Theorem 1.1 in Sect. 1, if
f ∈ C∞(R) and is T -periodic, T = b − a, with polar singularities at x = t + kT, k =
0,±1,±2, . . ., then Q(k)

n [g], k = 1, 2, have spectral accuracy, since their associated E–M
expansions are empty; see (1.6). This means that no extrapolation is needed to improve their
accuracies, which are already excellent. Here we would like to analyze the numerical stability
properties of Q(k)

n [g], k = 1, 2, as they are (i.e., without extrapolation).
Note that these quadrature formulas can be used, as they are, in the numerical solution of

singular and hypersingular integralequations
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Table 3 Double-precision
numerical results for the integral
I (2)[g] in Sect. 6, with t = 1
throughout

Here En =
| Ā(0)

n − I (2)[g]|/|I (2)[g]|, D̃( j)
n

as in Sect. 4.3, and Ẽ( j)
n as in

(5.16)

n En D̃(0)
n /|A(0)

n | Ẽ(0)
n /|A(0)

n |
0 1.89D−02 1.10D−15 1.26D−15

1 1.57D−07 3.44D−15 3.71D−15

2 1.07D−04 7.84D−15 8.15D−15

3 4.47D−07 1.64D−14 1.67D−14

4 4.71D−09 3.33D−14 3.36D−14

5 1.32D−11 6.69D−14 6.73D−14

6 1.11D−14 1.34D−13 1.35D−13

7 2.54D−14 2.69D−13 2.69D−13

8 2.44D−13 5.38D−13 5.38D−13

9 1.54D−12 1.08D−12 1.08D−12

10 9.37D−12 2.15D−12 2.15D−12

Table 4 Quadruple-precision
numerical results for the integral
I (2)[g] in Sect. 6, with t = 1
throughout

Here En =
| Ā(0)

n − I (2)[g]|/|I (2)[g]|, D̃( j)
n

as in Sect. 4.3, and Ẽ( j)
n as in

(5.16)

n En D̃(0)
n /|A(0)

n | Ẽ(0)
n /|A(0)

n |
0 1.89D−02 9.57D−34 1.09D−33

1 1.57D−07 2.99D−33 3.22D−33

2 1.07D−04 6.82D−33 7.09D−33

3 4.47D−07 1.42D−32 1.45D−32

4 4.71D−09 2.89D−32 2.92D−32

5 1.33D−11 5.82D−32 5.85D−32

6 5.44D−15 1.17D−31 1.17D−31

7 3.70D−18 2.34D−31 2.34D−31

8 7.11D−23 4.68D−31 4.68D−31

9 3.93D−27 9.36D−31 9.36D−31

10 2.65D−30 1.87D−30 1.87D−30

11 2.17D−29 3.74D−30 3.74D−30

12 3.33D−29 7.49D−30 7.49D−30

13 5.88D−29 1.50D−29 1.50D−29

14 8.20D−29 3.00D−29 3.00D−29

15 3.65D−28 5.99D−29 5.99D−29

u(t) + λ

b∫

a

K (t, x)u(x) dx = w(t), a ≤ t ≤ b,

where K (t, x) is T -periodic in t and x and infinitely differentiable for all real t and x except for
t = x and w(x) is T -periodic in x and infinitely differentiable for all real x . This guarantees
that the solution u(x) is also T -periodic in x and infinitely differentiable throughout the real
line. For this use of the quadrature formulas, see the discussions in [18] and [17, Section 7].

Using the techniques of Sect. 5.1, we first have,

∣
∣Q̄(1)

n [g] − Q(1)
n [g]∣∣ ≤ u

[

h
n∑

j=1

|g(t + jh − h/2)|
jh − h/2

]

≤ u‖g‖
n−1∑

j=0

1

j + 1/2
,
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which, by (5.3), gives
∣
∣Q̄(1)

n [g] − Q(1)
n [g]∣∣ ≤ u‖g‖ (2 + log n). (7.1)

Next, using the technique of Sect. 5.2, we have

∣
∣Q̄(2)

n [g] − Q(2)
n [g]∣∣ ≤ u

[

h
n∑

j=1

|g(t + jh − h/2)|
( jh − h/2)2 + π2|g(t)|h−1

]

≤ u‖g‖h−1
[

π2 +
n∑

j=0

1

( j + 1/2)2

]

≤ u‖g‖h−1
[

π2 + ζ(2, 1/2)

]

,

which finally gives
∣
∣Q̄(2)

n [g] − Q(2)
n [g]∣∣ ≤ 3

2π2u‖g‖h−1. (7.2)

From (7.1) and (7.2), it is clear that the relative errors in the quadrature formulas Q(1)
n [g]

and Q(2)
n [g] increase very mildly with increasing n.
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