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a b s t r a c t

In this work, we derive a family of symmetric numerical quadrature formulas for
finite-range integrals I[f ] =

 1
−1 w(x)f (x) dx, where w(x) is a symmetric weight function.

In particular, we will treat the commonly occurring case of w(x) = (1 − x2)α
[log(1 − x2)−1

]
p, p being a nonnegative integer. These formulas are derived by applying

a modification of the Levin L transformation to some suitable asymptotic expansion of the
function H(z) =

 1
−1 w(x)/(z − x) dx as z → ∞, and they turn out to be interpolatory.

The abscissas of these formulas have some rather interesting properties: (i) they are the
same for all α, (ii) they are real and in [−1, 1], and (iii) they are related to the zeros of some
known polynomials that are biorthogonal to certain powers of log(1 − x2)−1. We provide
tables and numerical examples that illustrate the effectiveness of our numerical quadrature
formulas.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and background

In [1,2], the author introduced a novel approach by which one can derive interpolatory numerical quadrature formulas
of high accuracy for integrals of the form

I[f ] =

 b

a
w(x)f (x) dx, (1.1)

where (a, b) is a finite or infinite interval and w(x) is a nonnegative weight function all of whose moments exist. The
quadrature formulas are of the form

In[f ] =

n
i=1

wnif (xni), (1.2)
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xni and wni being, respectively, the abscissas and weights. In this approach, we assume for simplicity that [a, b] is a finite
interval and that f (z) is an analytic function in an open domain D of the z-plane that contains [a, b] in its interior. Then, we
can express f (x) via

f (x) =
1

2π i


Γ

f (z)
z − x

dz, (1.3)

where Γ is a closed contour whose interior contains [a, b] and is traversed counterclockwise. Substituting (1.3) in (1.1), and
changing the order of integration, we obtain

I[f ] =
1

2π i


Γ

H(z)f (z) dz, (1.4)

where we have defined

H(z) =

 b

a

w(x)
z − x

dx. (1.5)

Clearly, H(z) is analytic in the complex z-plane cut along the line segment [a, b]. Next, substituting (1.3) in (1.2), and
changing the order of summation and integration, we obtain

In[f ] =
1

2π i


Γ

Hn(z)f (z) dz, (1.6)

where

Hn(z) =

n
i=1

wni

z − xni
. (1.7)

It is easy to see that Hn(z) is a rational function with degree of numerator at most n − 1 and degree of denominator n. In
addition, the abscissas xni are the poles of Hn(z), while the weights wni are the corresponding residues. By (1.4) and (1.6),
we have

I[f ] − In[f ] =
1

2π i


Γ


H(z)− Hn(z)


f (z) dz. (1.8)

Thus, we conclude that in order for In[f ] to be a good approximation to I[f ] for arbitrary analytic f (z), it is necessary that
Hn(z) be a good approximation toH(z) in the z-plane cut along [a, b]. Thismeans that, in deriving goodnumerical quadrature
formulas of the form given in (1.2), we should construct rational functions Hn(z) that will approximate H(z) well in the
z-plane cut along [a, b].

Now, sequences of rational approximations to H(z) can be generated in different ways. A good way is by applying
appropriate convergence acceleration methods (or sequence transformations) to the sequence of partial sums of the moment
series associated with w(x), which is nothing but the asymptotic expansion of H(z) as z → ∞ in negative powers of z,
namely,

H(z) ∼

∞
m=1

µ̂m

zm
as z → ∞; µ̂m =

 b

a
w(x)xm−1 dx, m = 1, 2, . . . . (1.9)

If the transformation of Shanks [3] is used for this purpose, the rational functions Hn(z) generated by it are simply the
[n − 1/n] Padé approximants from (1.9), and the resulting In[f ] are the Gaussian quadrature formulas for I[f ]. For Padé
approximants, see, for example, Baker [4] and Baker and Graves-Morris [5]. For a brief review, see also Sidi [6, Chapter
17]. For an up-to-date treatment of the Shanks transformation, see [6, Chapter 16]. For Gaussian quadrature, see Davis and
Rabinowitz [7], Stoer and Bulirsch [8], or Ralston and Rabinowitz [9], for example.

In [1], a suitably modified version of the L transformation of Levin [10] is applied to the sequence of partial sums
{
m

i=1 µ̂iz−i
}
∞

m=1 of the moment series in (1.9) with (a, b) = (0, 1) and w(x) = (1 − x)αxβ(log x−1)ν , and good numerical
quadrature formulas for I[f ] are obtained. These formulas also turn out to be interpolatory. One interesting anduseful feature
of these formulas is that their abscissas are independent of β; they can also be made independent of α and ν provided α+ ν
is a small nonnegative integer. In a recent paper by Lubinsky and Sidi [11], it is shown, for example, that the weights wni
associated with these quadrature formulas are positive when α = 0 and β, ν > −1. This is a very important property in
that it implies that limn→∞ In[f ] = I[f ] for every f ∈ C[a, b] since In[f ] is also interpolatory. See Krylov [12, p. 264, Theorem
8], for example.

The approach of [1] is used in [2] for obtaining numerical quadrature formulas for the infinite-range integrals I(i)[f ] =
∞

0 wi(x)f (x) dx, withw1(x) = xαe−x andw2(x) = xαEp(x), where Ep(x) =


∞

1 e−xt t−p dt is the Exponential Integral and p is
arbitrary. Yet in another recent paper by Sidi and Lubinsky [13], we treat the same integrals as in [2], only this time we use a
suitably modified version of the S transformation of Sidi instead of the L transformation. (For the L and S transformations,
see Sidi [6, Chapter 19].) The quadrature formulas developed in [2,13], just as those developed in [1], also turn out to be
interpolatory. Their abscissas have properties similar to those in [1]: the abscissas for I(2)[f ] are independent of p and they
are the same as those of I(1)[f ].
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Before proceeding further, we note that the computation of the abscissas xni is the most substantial part of the
determination of the quadrature formula In[f ] as the xni are the zeros of a polynomial of degree n an hence their
determination is costly for large n. Once the abscissas have been determined, the weights can be computed as the residues
of Hn(z) at a negligible cost. This is why the fact that the abscissas of the quadrature formulas above are independent of β
and of p, for example, is so useful.

Another interesting feature of the quadrature formulas derived in [1,2,13], and mentioned above, is that their abscissas
are the zeros of some polynomials that are biorthogonal to (i) some powers of log x−1 (in [1]), as shown in Sidi and
Lubinsky [14], and (ii) some exponential functions (in [2,13]), as shown in Sidi [15] and in Sidi and Lubinsky [13].1 These
polynomials have interesting asymptotic properties and zero distributions, which are studied in Lubinsky and Sidi [16,17].

In [1, Section 7], again a suitably modified version of the L transformation of Levin [10] is applied to the moment series
in (1.9) with (a, b) = (−1, 1) and w(x) = (1 − x2)α , and good numerical quadrature formulas for I[f ] are obtained. Just as
the weight function, the quadrature formulas derived in this way too are symmetric, that is, if (ξ , w) is an abscissa-weight
pair, then so is (−ξ,w). Unfortunately, however, the abscissas of these quadrature formulas varywith α. The purpose of the
present work is to derive symmetric quadrature formulas that do not suffer from this deficiency. To achieve this, we modify
the approach of [1] substantially by considering an asymptotic expansion of H(z) that is very different from that in (1.9).

In the next section, we develop this modified approach and apply it in the presence of symmetric weight functions of
the form w(x) = (1 − x2)α[log(1 − x2)−1

]
p, p > −1/2 (that are more general than w(x) = (1 − x2)α) and derive a

sequence of rational approximations to H(z). In Section 3, we use these rational approximations to derive our quadrature
formulas.We study some of the properties of these formulas and show that their abscissas are real and lie in [−1, 1], those in
(−1, 1) being the zeros of polynomials that are biorthogonal to some powers of log(1 − x2)−1. The abscissas ±1, if present,
can have multiplicities ≥ 1. In Section 4, we show that these formulas are interpolatory. In Section 5, we derive integral
representations for the weights of the quadrature formulas. In Section 6, we give some tables of abscissas and weights and
also demonstrate the performance of the new formulas with some numerical examples.

As we will be applying the Levin L transformation later in this work, we provide a brief description of the essentials of
it in the Appendix to this work. This description should also help the reader to better understand the motivation for the
developments in the next section, hence we advise the reader to study it first.

Before closing, we would like to comment on the relevance of the weight functions treated in this paper. The weight
function w(x) = (1 − x2)β−1/2,−1 < x < 1, is associated with Gegenbauer polynomials (or ultraspherical polynomials)
C (β)n (x), which are of importance in the context of potential theory and harmonic analysis. They are also used in numerical
work just as the Chebyshev and Legendre polynomials, for example. For these and other orthogonal polynomials, see
Szegő [18] or Olver et al. [19], for example. The weight function w(x) = (1 − x2)α[log(1 − x2)−1

]
p, with p = 1, 2, . . . ,

arises as in

dp

dαp

 1

−1
(1 − x2)α f (x) dx = (−1)p

 1

−1
(1 − x2)α[log(1 − x2)−1

]
pf (x) dx.

Finally, we would like to state that when the abscissas and weights of Gaussian quadrature formulas for the integrals we
dealwith in thiswork are available, Gaussian formulas should be used as they provide ‘‘optimal’’ accuracies for functions f (x)
that are infinitely smooth on [−1, 1]. This, of course, requires the determination of the appropriate abscissas and weights
for each α and p, whichmay prove to be cumbersome. As alreadymentioned, for the quadrature formulas we develop in this
work, the abscissas, which are the most important quantities, are independent of α, and also independent of p when p is an
integer. This means that one set of abscissas (with p = 0) is good for all α and integer p. As wewill see later, the abscissas are
obtained as the zeros of some simple polynomials, the determination of the weights being a trivial task once the abscissas
are available. In addition, numerical experience shows that these quadrature formulas are capable of achieving very high
accuracies, and this is sufficient to justify their practical use.

2. Rational approximations to H(z)

Throughout the remainder of this work, we will consider the integrals

I[f ] =

 1

−1
w(x)f (x) dx, (2.1)

where the weight functionw(x) is an even function of x, that is,

w(−x) = w(x), −1 < x < 1. (2.2)

1 A polynomial P(x) of degree n is said to be biorthogonal to a set of (not necessarily polynomial) functions {φ1(x), . . . , φn(x)} in the inner product
(F ,G) =

 b
a w(x)F(x)G(x)dx, if it satisfies (P, φj) = 0, 1 ≤ j ≤ n.

If φj(x) = xj−1, 1 ≤ j ≤ n, then P(x) is the nth orthogonal polynomial in the inner product (F ,G) =
 b
a w(x)F(x)G(x)dx. In this case, the quadrature

method obtained is the Gaussian rule for
 b
a w(x)f (x) dxmentioned following (1.9).
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In addition, we assume that all moments ofw(x) exist. We aim at obtaining numerical quadrature formulas for I[f ] that are
interpolatory and symmetric, and hence of the form

In[f ] =

n
i=1

wni

f (xni)+ f (−xni)


.2 (2.3)

In particular, we will treat the commonly occurring case of

w(x) = (1 − x2)α [log(1 − x2)−1
]
p, α > −1, p > −1/2.3 (2.4)

Let us first define

H(z) =

 1

−1

w(x)
z − x

dx. (2.5)

Clearly, H(z) is analytic in the complex z-plane cut along the line segment [−1, 1]. On account of (2.2), we also have that

H(z) =

 1

−1

w(x)
z + x

dx.

As a result,

H(z) =
1
2

 1

−1
w(x)


1

z − x
+

1
z + x


dx,

from which, we have

H(z) = z
 1

−1

w(x)
z2 − x2

dx. (2.6)

The next lemma provides an asymptotic expansion for H(z) as z → ∞ that is entirely different from that in (1.9).

Theorem 2.1. Assume that w(x) satisfies (2.2), and let

µm =

 1

−1
w(x)(1 − x2)m−1 dx, m = 1, 2, . . . . (2.7)

Then H(z) has the convergent expansion

H(z) = −z
∞

m=1

µm(1 − z2)−m when |1 − z2| > 1. (2.8)

Thus, the right-hand side of (2.8) also represents H(z) asymptotically as z → ∞.

Proof. We begin by rewriting (2.6) in the form

H(z) = −z
 1

−1

w(x)
(1 − z2)− (1 − x2)

dx = −
z

1 − z2

 1

−1

w(x)

1 −
1−x2
1−z2

dx. (2.9)

Now, because |1 − x2| ≤ 1 when x ∈ [−1, 1],

1

1 −
1−x2
1−z2

=

∞
m=1


1 − x2

1 − z2

m−1

when |1 − z2| > 1. (2.10)

Substituting (2.10) in (2.9), integrating termwise, and invoking (2.7), we obtain (2.8). Clearly, the infinite series in (2.10)
converges for all large z, and so does the right-hand side of (2.8). This completes the proof. �

We next analyze the asymptotic behavior of µm as m → ∞ when w(x) is as in (2.4). We need this in order to decide
whether the L transformation can be used to accelerate the convergence of the infinite series in (2.8).

2 Note that ifw(x) is as in (2.2) and the abscissas of In[f ] are ±xni and In[f ] is interpolatory, then In[f ] is as in (2.3). We give an independent proof of this
in Theorem 5.1.
3 The condition α > −1 is needed to makew(x) integrable at x = ±1. The condition p > −1/2 is needed to makew(x) integrable through x = 0 since

[log(1 − x2)−1
]
p

∼ |x|2p as |x| → 0.
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Theorem 2.2. Let w(x) be exactly as in (2.4). Then µm has the asymptotic expansion

µm ∼

∞
j=0

(−1)j
B(1/2)j (α)

j!
Γ (j + p + 1/2)

mj+p+1/2
as m → ∞. (2.11)

Here B(σ )s (u) are generalized Bernoulli polynomials.4

Proof. We start by noting that, due to (2.2), (2.7) can be rewritten in the form

µm = 2
 1

0
w(x)(1 − x2)m−1 dx, m = 1, 2, . . . . (2.12)

Making the change of variable of integration 1 − x2 = e−t in (2.12), we obtain

µm =


∞

0
e−mtg(t) dt, g(t) =


t

et − 1

1/2

e(1/2−α)t tp−1/2. (2.13)

(Note that µm is the Laplace transform of g(t).) By footnote 4,

g(t) =

∞
j=0

(−1)j
B(1/2)j (α)

j!
t j+p−1/2, |t| < 2π. (2.14)

We now apply Watson’s lemma to the integral in (2.13) and obtain (2.11). For Watson’s lemma, see Olver [21], for
example. �

Remark. An important fact to realize in the asymptotic expansion of µm is that the powers of m in (2.11) are independent
of α. (The coefficients in this expansion do depend on α and p, but this is of no concern to us, as we will see later.)

Throughout the remainder of this work, we shall let

ζ = 1 − z2. (2.15)

By Theorem 2.2, the sequence {µm}
∞

m=1 is in a class of sequences denoted by A(−p−1/2)
0 in [6, Chapter 6, Subsection 6.1.1].

Consequently, the sequence {µmζ
−m

}
∞

m=1 is in the sequence class denoted b(1) in [6, Chapter 6, Subsection 6.1.2]. In addition,
by [6, Chapter 6, Theorems 6.7.2 and 6.7.3] (see also [22, Theorems 2.1 and 2.2]) and by the fact thatµm is a Laplace transform
due to (2.13) with (2.14), the partial sums of the infinite series


∞

k=1 µkζ
−k, namely,

Sm(ζ ) =

m
k=1

µkζ
−k, m = 1, 2, . . . , (2.16)

satisfy

Sm−1(ζ ) ∼ G(ζ )+ µmζ
−m

∞
i=0

βim−i asm → ∞, z ∉ [−1, 1], (2.17)

with

G(ζ ) = −

 1

−1

w(x)
z2 − x2

dx = −z−1H(z), z ∉ [−1, 1]. (2.18)

Of course, by (2.8),

G(ζ ) =

∞
k=1

µkζ
−k, when |ζ | = |1 − z2| > 1. (2.19)

Naturally, the βi in (2.17) depend on ζ , α, and p; they do not depend on m, however.

4 The generalized Bernoulli polynomials B(σ )s (u) are defined via (see Andrews, Askey, and Roy [20, p. 615], for example)
t

et − 1

σ
eut =

∞
s=0

B(σ )s (u)
ts

s!
, |t| < 2π.

They satisfy B(σ )s (σ − u) = (−1)sB(σ )s (u); hence B(σ )s (σ/2) = 0 for s = 1, 3, 5, . . . .B(σ )s (0) are called the generalized Bernoulli numbers and are denoted
by B(σ )s . Note that B(σ )0 (u) = 1 and B(σ )0 = 1 for all σ . In addition, B(σ )k (u) =

k
s=0


k
s


B(σ )k−su

s for all k.



226 A. Sidi / Journal of Computational and Applied Mathematics 272 (2014) 221–238

As explained in [1], an asymptotic expansion for Sm−1(ζ ) different from that in (2.17) can be obtained by substituting
the asymptotic expansion of µm given in Theorem 2.2 in (2.17) and by re-expanding in negative powers ofm. Indeed, upon
doing so, we obtain

Sm−1(ζ ) ∼ G(ζ )+ m−p−1/2ζ−m
∞
i=0

β ′

im
−i as m → ∞, (2.20)

which is also valid for all z ∉ [−1, 1]. This asymptotic expansion is of the form given in (A.3) of the Appendix, with
Am = Sm(ζ ), A = G(ζ ), and ωm = m−p−1/2ζ−m there.

Applying now the L transformation to the sequence {Sm(ζ )} via (A.5), we obtain as approximations to G(ζ ),

A(j)n (ζ ) =

n
i=0
(−1)n−i

 n
i


(j + i + 1)n+p−1/2ζ j+iSj+i(ζ )

n
i=0
(−1)n−i

 n
i


(j + i + 1)n+p−1/2ζ j+i

, (2.21)

which, for simplicity, we write in the form

A(j)n (ζ ) =

N(ζ )D(ζ ) =

n
i=0
λiζ

j+iSj+i(ζ )

n
i=0
λiζ j+i

; λi = (−1)n−i
n
i


(j + i + 1)n+p−1/2. (2.22)

Note also that we define S0(ζ ) = 0 when j = 0.
By (2.16), it is easy to see that ζmSm(ζ ) =

m
k=1 µkζ

m−k is a polynomial of degree m − 1 and is nonzero at ζ = 0. From
this, it follows that A(j)n (ζ ) is a rational function of ζ , with numeratorN(ζ ) of degree at most j+n−1 and denominatorD(ζ )
of degree exactly j + n. In addition, by the fact that A(j)n (ζ ) is an approximation to G(ζ ) and by (2.18), we have that

H(j)n (z) = −zA(j)n (ζ ) (2.23)

is an approximation to H(z). Clearly, H(j)n (z) is a rational function of z, with numerator of degree at most 2j + 2n − 1 and
denominator of degree exactly 2j + 2n. Thus, we can use H(j)n (z) to derive numerical quadrature formulas for I[f ].

2.1. An extension

Our approach applies equally well with the slightly more general weight function

w(x) = |x|γ (1 − x2)α [log(1 − x2)−1
]
p, α > −1, p > −(γ + 1)/2. (2.24)

For, in this case,

µm =


∞

0
e−mtg(t) dt, g(t) =


t

et − 1

1/2−γ /2

e(1/2−γ /2−α)t tp−1/2+γ /2. (2.25)

By footnote 4,

g(t) =

∞
j=0

(−1)j
B(1/2−γ /2)j (α)

j!
t j+p−1/2+γ /2, |t| < 2π. (2.26)

We now apply Watson’s lemma to the integral in (2.25) and obtain

µm ∼

∞
j=0

(−1)j
B(1/2−γ /2)j (α)

j!
Γ (j + p + 1/2 + γ /2)

mj+p+1/2+γ /2
as m → ∞. (2.27)

By this, it is easy to see that (2.20) can now be replaced by

Sm−1(ζ ) ∼ G(ζ )+ m−p−1/2−γ /2ζ−m
∞
i=0

β ′

im
−i as m → ∞, (2.28)

which is also valid for all z ∉ [−1, 1]. This asymptotic expansion is of the form given in (A.3) with Am = Sm(ζ ), A = G(ζ ),
and ωm = m−p−1/2−γ /2ζ−m there. Therefore, the L transformation can be applied as before to obtain numerical quadrature
formulas whose abscissas are independent of α again.

Orthogonal polynomials with respect to the inner product (F ,G) =
 1
−1w(x)F(x)G(x) dx with the weight function

w(x) = |x|γ (i.e., α = 0 and p = 0 in (2.24)) are considered in Szegő [18, pp. 59–60]. It is shown there that, for this
case, the corresponding orthogonal polynomials are related to the Jacobi polynomials P (0,γ±1/2)

n (2x2 − 1).
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3. Numerical quadrature formulas

We now turn to the derivation of our quadrature formulas. We start with the following theorem concerning the zeros of
the denominator polynomial of A(j)n (ζ ).

Theorem 3.1. The denominator polynomialD(ζ ) =
n

i=0 λiζ
j+i of A(j)n (ζ ) has a zero of order j at ζ = 0 and n simple real zeros

in (−1, 1).

Proof. We start by noting thatD(ζ ) = ζ jD(p−1/2,j)
n (ζ ), where D(σ ,β)n (ζ ) are polynomials introduced originally in [1] and

given as in

D(σ ,β)n (ζ ) =

n
i=0

(−1)n−i
n
i


(β + i + 1)n+σ ζ i. (3.1)

It is clear that ζ = 0 is a zero of order j ofD(ζ ). Next, it has been shown in [14, Theorems 2.1 and 2.2] that D(σ ,β)n (ζ ) satisfies
the biorthogonality property 1

0
D(σ ,β)n (ξ)(log ξ−1)k+σ ξβ dξ = 0, k = 0, 1, . . . , n − 1; σ , β > −1, (3.2)

and hence that it has n simple real zeros in (0, 1) since {(log x−1)k}n−1
k=0 is an n-dimensional Chebyshev system on (0, 1) and

ξβ(log x−1)σ > 0 on (0, 1). The result now follows. �

The next theorem concerns the partial fraction decompositions of A(j)n (ζ ) and H(j)n (z).

Theorem 3.2. Denote the n real zeros of D(ζ ), the denominator of A(j)n (ζ ) in (2.22), that are in (0, 1) by ξ (j)ni , i = 1, . . . , n. Then
A(j)n (ζ ) has a partial fraction decomposition of the form

A(j)n (ζ ) =

j−1
i=0

u(j)ni
ζ i+1

+

n
i=1

u(j)ni
ζ − ξ

(j)
ni

. (3.3)

Consequently, H(j)n (z) has a partial fraction decomposition of the form

H(j)n (z) =

j−1
i=0

w(j)ni  1
(z − 1)i+1

+
(−1)i

(z + 1)i+1


+

n
i=1

w
(j)
ni


1

z − x(j)ni
+

1

z + x(j)ni


, (3.4)

where x(j)ni are distinct and

x(j)ni =


1 − ξ

(j)
ni ∈ (0, 1), i = 1, . . . , n. (3.5)

In addition,

w
(j)
ni =

u(j)ni
2
, i = 1, . . . , n, for all j, (3.6)

and

w(1)n0 =
u(1)n0

2
for j = 1. (3.7)

Proof. Because D(ζ ) has j zeros at ζ = 0 and n real simple zeros in (0, 1), it is clear that A(j)n (ζ ) has a partial fraction
decomposition of the form given in (3.3).

As for H(j)n (z), we first note that it is an odd function of z since A(j)n (ζ ) is an even function of z. This implies that it has a
partial fraction decomposition of the form given in (3.4). The results in (3.6) and (3.7) follow from the fact

−
z

ζ − ξ
(j)
ni

=
1
2


1

z − x(j)ni
+

1

z + x(j)ni


.

We leave the details to the reader. �
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We now use the partial fraction decomposition of H(j)n (z) given in Theorem 3.2 to define our quadrature formulas:
• When j = 0, we have the formula

I(0)n [f ] =

n
i=1

w
(0)
ni


f (x(0)ni )+ f (−x(0)ni )


. (3.8)

• When j = 1, we have the formula

I(1)n [f ] =

n
i=0

w
(1)
ni


f (x(1)ni )+ f (−x(1)ni )


; x(1)n0 = 1, w(1)n0 = w(1)n0 . (3.9)

• For arbitrary j, we have the formula

I(j)n [f ] =

j−1
i=0

w(j)ni  f (i)(1)i!
+ (−1)i

f (i)(−1)
i!


+

n
i=1

w
(j)
ni


f (x(j)ni )+ f (−x(j)ni )


. (3.10)

Here, f (i)(x) is the ith derivative of f (x).

Remarks. 1. The quadrature formula I(j)n [f ] has 2j + 2n abscissas. Of these, x = x(j)ni and x = −x(j)ni , i = 1, . . . , n are simple
(2n in number), while x = 1 and x = −1 are j-fold each (2j in number, counting multiplicities).

2. The formula I(0)n [f ] in (3.8) has all its abscissas in (−1, 1) just like the corresponding Gaussian formula.
3. The formula I(1)n [f ] in (3.9), in addition to having 2n of its abscissas in (−1, 1), has also the endpoints x = ±1 as abscissas,

just like the corresponding Lobatto formula.

Note that, by the fact that ξ (j)ni are simple poles of A(j)n (ζ ) = N(ζ )/D(ζ ),we have

u(j)ni = ResA(j)n (ζ )|ζ=ξ (j)ni
=

N(ξ (j)ni )D′(ξ
(j)
ni )
, D′(ζ ) =

d
dζ
D(ζ ),

by (3.3). Consequently, by (3.6), in all the formulas given in (3.8)–(3.10),

w
(j)
ni =

1
2

N(ξ (j)ni )D′(ξ
(j)
ni )

=
1
2

n
i=0
λiζ

j+iSj+i(ζ )

n
i=0
(j + i)λiζ j+i−1


ζ=ξ

(j)
ni

. (3.11)

Note also that, because the denominator polynomialsD(ζ ) of the A(j)n (ζ ) are independent of α, so are their zeros ζ (j)ni and
so are the abscissas ±x(j)ni in the quadrature formulas above. The ±x(j)ni do depend on p, however. The weights w(j)ni and w(j)ni
depend on both α and p through the Sm(ζ ) via the µm. (At the end of Section 4, we show when and how the ±xni can be
made independent of p as well.)

We close this section with the following observation that is useful when checking tables of abscissas and weights:

Theorem 3.3. Let

g(x, z) =
1

z − x
. (3.12)

Then the numerical quadrature formulas derived above satisfy

I(j)n [g(·, z)] = H(j)n (z) = −zA(j)n (ζ ), ζ = 1 − z2, z ∉ [−1, 1]. (3.13)

The proof of this theorem follows from (2.23), (3.4) and (3.10). We leave the details to the reader. The result in (3.13)
can be used to compute the rational function H(j)n (z), for arbitrary z, once via the quadrature formula I(j)n [g(·, z)] and once
(and accurately) via −zA(j)n (ζ ) given by the Levin transformation. Comparison of the numbers thus obtained can give us an
indication about the correctness and/or accuracy of x(j)ni andw

(j)
ni , the abscissas and weights of the quadrature formula I(j)n .

4. Properties of I (j)n [f ]

The quadrature formulas we have just derived have some rather interesting properties, which we explore below.

Theorem 4.1. I(j)n [f ] is interpolatory, that is,

I(j)n [f ] = I[f ] for all f ∈ Π2j+2n−1, (4.1)

whereΠm denotes the set of polynomials of degree at most m.
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Proof. It is sufficient to show that (4.1) holds for f = φk, 1 ≤ k ≤ 2j + 2n, where φk(x) = xk−1, k ≥ 1. For simplicity of
notation we will let wi, wi, and xi stand for w(j)ni , w(j)ni , and x(j)ni , respectively. The proof proceeds through three steps:
(i) First, it is easy to show that, for k = 1, 2, . . . ,

I(j)n [φk] =

 ⟨j,k⟩
i=0

wi


k − 1

i


+

n
i=1

wixk−1
i


[1 + (−1)k−1

]; ⟨j, k⟩ = min{j − 1, k − 1}. (4.2)

(ii) Next, by expanding the partial fraction decomposition of H(j)n (z) given in (3.4) in negative powers of z with |z| > 1, we
obtain the convergent expansion

H(j)n (z) =

j−1
i=0

wi

 ∞
s=0


−i − 1

s


[(−1)i + (−1)s]z−s−i−1


+

n
i=1

wi

 ∞
s=0

[1 + (−1)s]xsi z
−s−1


. (4.3)

Letting k = s + i + 1 in the first term and k = s + 1 in the second term, and changing the orders of summation, we
obtain

H(j)n (z) =

∞
k=1

 ⟨j,k⟩
i=0

wi[(−1)i + (−1)k−i−1
]


−i − 1

k − i − 1


z−k

+

∞
k=1

 n
i=1

wi[1 + (−1)k−1
]xk−1

i


z−k. (4.4)

Now,

(−1)k−i−1


−i − 1
k − i − 1


=


k − 1

k − i − 1


=


k − 1

i


.

Consequently, (4.4) can be re-expressed as in

H(j)n (z) =

∞
k=1

 ⟨j,k⟩
i=0

wi


k − 1

i


+

n
i=1

wixk−1
i


[1 + (−1)k−1

]z−k,

which, upon invoking (4.2), becomes

H(j)n (z) =

∞
k=1

I(j)n [φk] z−k, |z| > 1. (4.5)

Of course, the summation


∞

k=1 I
(j)
n [φk] z−k is also the asymptotic expansion of H(j)n (z) as z → ∞.

(iii) Next, subtracting H(j)n (z) = −zA(j)n (ζ ) from H(z) = −zG(ζ ), with A(j)n (ζ ) as in (2.22), we obtain

H(z)− H(j)n (z) = −z

n
i=0
λiζ

j+i
[G(ζ )− Sj+i(ζ )]

n
i=0
λiζ j+i

. (4.6)

Now, by (2.19), we have G(ζ ) − Sm(ζ ) = O(ζ−m−1) as ζ → ∞. Consequently, the numerator of (4.6) is O(ζ−1) as
ζ → ∞. In addition, the denominator is asymptotically equal to λnζ j+n as ζ → ∞. As a result,

H(z)− H(j)n (z) = O(zζ−j−n−1) = O(z−2j−2n−1) as z → ∞. (4.7)

Here we have used the fact that z and ζ tend to infinity simultaneously and that ζ ∼ −z2 as z → ∞.
Substituting the convergent expansion (z − x)−1

=


∞

k=1 x
k−1z−k with |z| > 1 in (1.5), we obtain the convergent

expansion

H(z) =

∞
k=1

µkz−k
; µk =

 1

−1
w(x)xk−1 dx = I[φk], k = 1, 2, . . . ,

and thus

H(z) =

∞
k=1

I[φk] z−k, |z| > 1. (4.8)

Of course, the summation


∞

k=1 I[φk] z−k is also the asymptotic expansion of H(z) as z → ∞.
Substituting (4.5) and (4.8) in (4.7), we then have

I(j)n [φk] = I[φk], k = 1, . . . , 2j + 2n.

This completes the proof. �
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Remark. In some instances, f (i)(±1), 0 ≤ i ≤ j − 1 for some j > 0 may be readily available. Then, in view of the result
of Theorem 4.1, it is more advantageous to employ the formula I(j)n [f ] rather than I(0)n [f ] since the former integrates more
polynomials exactly than the latter.

Our next result concerns the biorthogonality property of the polynomials

R(j)n (x) = (x2 − 1)j
n

i=1

(x2 − x2i ), (4.9)

where xi again denotes x(j)ni for short. Note that the abscissas of the quadrature formula I(j)n [f ] (with their multiplicities) are
the zeros of R(j)n (x).

Theorem 4.2. The polynomials R(j)n (x) have the biorthogonality property 1

−1
R(j)n (x)


log(1 − x2)−1p−1/2+k

|x| dx = 0, k = 0, 1 . . . , n − 1. (4.10)

Proof. Recalling thatD(ζ ) = ζ jD(p−1/2,j)
n (ζ ) and that D(p−1/2,j)

n (ζ ) satisfies (3.2), we have the biorthogonality property 1

0
D(p−1/2,j)
n (ξ)[log ξ−1p−1/2+k

ξ jdξ = 0, k = 0, 1, . . . , n − 1. (4.11)

Making the change of variable ξ = 1 − x2, (4.11) becomes 1

0
(1 − x2)j D(p−1/2,j)

n (1 − x2) [log(1 − x2)−1p−1/2+k
x dx = 0, k = 0, 1, . . . , n − 1. (4.12)

The result now follows by recalling thatD(ξ) = λnξ
jn

i=1(ξ − ξ
(j)
ni ) and that ξ (j)ni = 1 − [x(j)ni ]

2, from which we have

(−1)j+nλ−1
n (1 − x2)jD(p−1/2,j)

n (1 − x2) = R(j)n (x). �

As a corollary of Theorems 4.1 and 4.2, we also have the following interesting result.

Theorem 4.3. The quadrature formula I(j)n [f ] is exact for functions f (x) that are of the form

f (x) =

2j+2n−1
i=0

cixi + |x|(1 − x2)−αR(j)n (x)
n−1
k=0

dk

log(1 − x2)−1k−1/2

, (4.13)

dk being arbitrary constants.

The case p = 0, 1, 2, . . .
So far, we have seen that the quadrature formulas that we have developed for the weight function w(x) = (1 − x2)α

[log(1 − x2)−1
p

have abscissas that are independent of α. They do seem to depend on p, however. In case, p is a small
integer such as 0, 1, 2, . . . , these abscissas can be made independent of p too. This can be achieved as follows: When
p is a nonnegative integer, the asymptotic expansion in (2.20), which forms the foundation of the effectiveness of the L
transformation, can be rewritten in the form

Sm−1(ζ ) ∼ G(ζ )+ m−1/2ζ−m
∞
i=0

β ′′

i m
−i as m → ∞, (4.14)

where
β ′′

i = 0, i = 0, 1, . . . , p − 1; β ′′

i = β ′

i−p, i = p, p + 1, . . . . (4.15)

Applying the L transformation to the sequence {Sm(ζ )}, but with ωm = m−1/2ζ−m now, we obtain

A(j)n (ζ ) =

N(ζ )D(ζ ) =

n
i=0
λiζ

j+iSj+i(ζ )

n
i=0
λiζ j+i

; λi = (−1)n−i
n
i


(j + i + 1)n−1/2. (4.16)

From here on, we proceed exactly as before.
Note that, because the denominator polynomialsD(ζ ) of the A(j)n (ζ ) are now independent of both α and p, so are their

zeros ζ (j)ni and so are the abscissas ±x(j)ni in the quadrature formulas above. As before, the weights w(j)ni and w(j)ni depend on
both α and p through the Sm(ζ ) via the µm.
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5. Integral representations for the weights w
(0)
ni

Aswehave seen, the abscissas±xni and theweightsw(0)ni of the quadrature formula I(0)n [f ] =
n

i=1w
(0)
ni [f (x(0)ni )+f (−x(0)ni )]

are given by

x(0)ni =


1 − ξ

(0)
ni , w

(0)
ni =

1
2u
(0)
ni , (5.1)

ξ
(0)
ni being the poles of A(0)n (ζ ) (hence zeros of the polynomial D(−1/2,0)(ζ )) and the u(0)ni being the corresponding residues.
We next provide an integral representation for the weights of an interpolatory quadrature formula involving an arbitrary
symmetric weight functionW (x) and 2n abscissas ±xi.

Theorem 5.1. Let W (x) defined on (−a, a) be such that W (−x) = W (x) there, and let

În[f ] =

n
i=1


Wif (xi)+ W−if (−xi)


be the interpolatory 2n-point numerical quadrature formula for the integral Î[f ] =

 a
−a W (x)f (x)dx. Then

W−i = Wi =
1
2

 a

−a
W (x)

 n
k=1
k≠i

x2 − x2k
x2i − x2k


dx, i = 1, . . . , n. (5.2)

Proof. Using the fundamental polynomials of Lagrange, we first have

W±i =

 a

−a
W (x)

 n
k=1
k≠i

x − xk
±xi − xk

 n
k=1
k≠i

x + xk
±xi + xk


x − (∓xi)

±xi − (∓xi)
dx

=

 a

−a
W (x)

 n
k=1
k≠i

x2 − x2k
x2i − x2k


x ± xi
±2xi

dx. (5.3)

That W−i = Wi can be shown by making the variable transformation t = −x in the integral representation of W−i in (5.3)
and by invoking W (−x) = W (x). The integral representation in (5.2) is obtained by summing the integral representations
ofW−i and Wi in (5.3) and dividing by 2. �

Corollary 5.2. Let W (x) = U(1 − x2) and denote ξ = 1 − x2 and ξi = 1 − x2i , i = 1, . . . , n. Let also W±i be the weights
associated with the interpolatory quadrature formula

În[f ] =

n
i=1


Wif (xi)+ W−if (−xi)


for the integral Î[f ] =

 1
−1 W (x)f (x)dx. Then

W±i =
1
2

 1

0

U(ξ)
√
1 − ξ

li(ξ) dξ, i = 1, . . . , n,

where li(ξ) are the fundamental polynomials of Lagrange over the set of points {ξ1, . . . ξn} given as in

li(ξ) =

n
k=1
k≠i

ξ − ξk

ξi − ξk
, i = 1, . . . , n.

Corollary 5.3. The weightsw(0)ni of the quadrature formula I(0)n [f ] obtained in Section 3 are given as in

w
(0)
ni =

1
2

 1

0

U(ξ)
√
1 − ξ

Dn(ξ)

D′
n(ξ

(0)
ni )

dξ

ξ − ξ
(0)
ni

, i = 1, . . . , n. (5.4)

Here U(ξ) = ξα(log ξ−1)p,Dn(ξ) = D(p−1/2,0)
n (ξ), and D′

n(ξ) =
d
dξ Dn(ξ). Invoking (4.11), we also have

w
(0)
ni =

1
2

 1

0
(log ξ−1)p−1/2 Dn(ξ)

D′
n(ξ

(0)
ni )


ξα(log ξ−1)1/2

√
1 − ξ

1

ξ − ξ
(0)
ni

−

n−1
k=0

ck(log ξ−1)k

dξ, (5.5)

c0, c1, . . . , cn−1 being arbitrary constants.
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By choosing the ck in (5.5) appropriately, it might be possible to show that the weights w(0)ni in the quadrature formula
I(0)n are positive for all n, at least for some cases. This approach was used successfully in Lubinsky and Sidi [11] for some of
the quadrature formulas of Sidi [1]. So far, we have not been able to prove such a result for the quadrature formulas of this
work, however.

6. Computation of tables and numerical examples

6.1. Computation of tables

We have computed the abscissas and weights for the quadrature formulas I(0)n [f ] ≡ In[f ] for the cases of α = 0,± 1
2 with

p = 0, 1. Thus, these 2n-point quadrature formulas are given as in

In[f ] =

n
i=1

wni[f (xni)+ f (−xni)],

with

xni =

1 − ξni, wni =

1
2uni, i = 1, . . . , n,

where ξni are the zeros of the polynomialD(ξ) = D(−1/2,0)(ξ), that is,

D(ξ) =

n
i=0

λiξ
i, λi = (−1)n−i

n
i


(i + 1)n−1/2, i = 0, 1, . . . , n,

while uni are the residues of the rational function

Gn(ζ ) =

N(ζ )D(ζ ) =

n
i=0
λiζ

iSi(ζ )

n
i=0
λiζ i

, Si(ζ ) =

i
m=1

µmζ
−m, S0(ζ ) ≡ 0,

that is

uni =

n
k=0
λkξ

k
niSk(ξni)

n
k=1

kλkξ k−1
ni

, i = 1, . . . , n.

We would like to emphasize that the abscissas used by all the quadrature formulas mentioned here are the same.
These abscissas, along with the weights for the case (α, p) = (0, 0), are given in Table A.1. Note that because the polyno-

mialsD(ξ) are known explicitly, we can use any polynomial solver to determine their zeros, namely, the ξni. However, for
large n, the computation of these zeros in finite-precision (floating-point) arithmetic tomachine accuracy becomes difficult,
the apparent reason being that the coefficients λi of the polynomialD(ξ) have widely differing orders of magnitude. This
suggests that, for large n, the zeros ofD(ξ) can be determined with a desired level of accuracy by using variable-precision
arithmetic. We have done all our computations in quadruple-precision arithmetic (approximately 35 decimal digits).

Below,we give theµm and theH(z) corresponding to theweight functionw(x) = (1−x2)α[log(1−x2)−1
]
p forα = 0,± 1

2
and p = 0, 1; we make use of all these in our numerical examples in the next subsection. In our derivations, we have used
the following facts about the Beta function B(p, q) =

 1
0 xp−1(1 − x)q−1 dx and the Psi function ψ(z) = Γ ′(z)/Γ (z), which

can be found in Olver et al. [19], for example: 1

−1
(1 − x2)s−1 dx = B


s, 1

2


=
Γ (s)Γ

 1
2


Γ

s +

1
2

 ,
ψ(n + 1) = −C +

n
k=1

1
k
, ψ


n +

1
2


= −C − 2 log 2 + 2

n
k=1

1
2k − 1

, n = 0, 1, . . . ,

where C = 0.577 · · · is Euler’s constant.

6.1.1. The case p = 0:w(x) = (1 − x2)α

For general α, we have

µm =

 1

−1
(1 − x2)α+m−1 dx = B


α + m, 1

2


=
Γ (α + m)Γ

 1
2


Γ (α + m +

1
2 )
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Table A.1

Abscissas and weights for In[f ] =
n

i=1 wni


f (xni)+ f (−xni)


, where In[f ] ≈ I[f ] =

 1
−1 f (x) dx.

xni wni

n = 1
5.4119610014619698439972321D−01 1.0000000000000000000000000D+00

n = 2
8.8199814124846467645818789D−01 3.1018628575402138302549524D−01
3.6526315298784059413137281D−01 6.8981371424597861697450476D−01

n = 3
9.6291003451434110548285272D−01 1.1043787018465275147099603D−01
7.3180493014805533228953150D−01 3.5559653744512494467814777D−01
2.7540504853097747888247794D−01 5.3396559237022230385085620D−01

n = 4
9.8684741664521784499474052D−01 4.4082771810283745930510809D−02
8.7705229956103853683906177D−01 1.8474139053372512227981102D−01
6.1344572196726965397095366D−01 3.3787207931152409279472066D−01
2.2092736165441734882831134D−01 4.3330375834446703899495751D−01

n = 5
9.9496493397313047028449190D−01 1.8889978640414315693904544D−02
9.3976809388470725898715557D−01 1.0001277873139157502804730D−01
7.8535947753616054137198608D−01 2.0982914317550698060192843D−01
5.2432325693157630796737901D−01 3.0741594494497870079581448D−01
1.8439687545269276245425981D−01 3.6385215450770842788030524D−01

n = 6
9.9797031154063462926049930D−01 8.4647446952118649809507818D−03
9.6897413472135917983507509D−01 5.6230545665115090547192369D−02
8.7602162491322879023309190D−01 1.3225780359221649403363426D−01
7.0313374384511158340501634D−01 2.1242271755261208367786149D−01
4.5633210778862138591705937D−01 2.7731325912414344774826612D−01
1.5821069722874873035150912D−01 3.1331092937070101901209498D−01

n = 7
9.9915131800121532535002644D−01 3.9070100268109333327893661D−03
9.8339636410080084918431612D−01 3.2580894412392226748953569D−02
9.2595388740854267611759835D−01 8.5098683855522346092298703D−02
8.1005624729740316998297375D−01 1.4711612386652510311531018D−01
6.3290482695942516754689986D−01 2.0567784432939556971721089D−01
4.0326372402100668683819598D−01 2.5065166838817660790689363D−01
1.3852544915346738183563748D−01 2.7496777512117721308654367D−01

n = 8
9.9963545112185601860320276D−01 1.8404966843233851000220744D−03
9.9084707606689373820524764D−01 1.9326349014700975874825143D−02
9.5454248452315299727279248D−01 5.5839317736741432271878946D−02
8.7563730762724305718721893D−01 1.0296829877373098061268707D−01
7.4801003247700561367491900D−01 1.5193557437633093601053112D−01
5.7360840976734965182998265D−01 1.9542920107186075908266765D−01
3.6089763845975149538167636D−01 2.2774291021564705701259005D−01
1.2319030029582244897369481D−01 2.4491785212666447403479795D−01

n = 9
9.9984017702648704616001930D−01 8.7958366367138993899506533D−04
9.9483428193774225239926564D−01 1.1677568162390772624846429D−02
9.7145521940022580450376269D−01 3.7272393589472958275307418D−02
9.1691894347167615847300429D−01 7.2967700674393676136817664D−02
8.2417004473103543496361195D−01 1.1274046593051652510665047D−01
6.9185541588772868303701344D−01 1.5129164454615373288969313D−01
5.2346456995748970707424647D−01 1.8424146746861778462915817D−01
3.2638833024642496782687007D−01 2.0817896798296232410025213D−01
1.1090820561305683088816675D−01 2.2075020798182083629827952D−01

n = 10
9.9992880911064403778869304D−01 4.2472194108304154784338328D−04
9.9702860770995345059378933D−01 7.1604935632497948419772107D−03
9.8173686739417016234880528D−01 2.5243586219582729798419233D−02
9.4352722045388943740815279D−01 5.2334741010271851000427879D−02
8.7545179826307014616258535D−01 8.4286416572384425764212531D−02
7.7463576911282035237780873D−01 1.1721277070685658264503035D−01
6.4181934339309973931765153D−01 1.4777907002534929435549838D−01
4.8078945465247329287733098D−01 1.7323033772478613874599884D−01
2.9778420973998792752595295D−01 1.9142732465706454801625444D−01
1.0085076012048194099327901D−01 2.0090053757937159328433776D−01

(continued on next page)
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Table A.1 (continued)

xni wni

n = 11
9.9996788611766575177321525D−01 2.0664891263047423180643340D−04
9.9826388434942462659497641D−01 4.4431963377443846291538316D−03
9.8813087590130540871991369D−01 1.7308181982610925039356860D−02
9.6103865523778298418396372D−01 3.7950977302954002886955229D−02
9.1058202032439645864813344D−01 6.3538072015910536981151229D−02
8.3327821233985747187729831D−01 9.1189770921851771528580906D−02
7.2836935137208713082300364D−01 1.1835312909582853153735439D−01
5.9746719223931997438114926D−01 1.4284340784456714696684799D−01
4.4417927181574491582902273D−01 1.6285703962177340901428492D−01
2.7371554068138113067900377D−01 1.7699810208902805936017517D−01
9.2464197766109564204279083D−02 1.8431147387510075782433305D−01

n = 12
9.9998536484182813367539571D−01 1.0111978554881788558392859D−04
9.9897231629125418238598794D−01 2.7840577799682020814370588D−03
9.9218371338647156251495130D−01 1.1991282474571807067357128D−02
9.7277384253456978603255331D−01 2.7790850161557216566800416D−02
9.3503464492488072451615623D−01 4.8288789242719849953840219D−02
8.7534817964362068853557208D−01 7.1337861132145017070813919D−02
7.9216855488508165199332167D−01 9.4966212765820808000775276D−02
6.8580215712415311428607990D−01 1.1744362951087763548794047D−01
5.5816145262039039283183352D−01 1.3728921645679420135780338D−01
4.1251098230744566611072654D−01 1.5328231804991653331591555D−01
2.5319823493775455142027475D−01 1.6448116415360031811962708D−01
8.5364350882625105086383834D−02 1.7024349848647959309210567D−01

and

H(z) = B

α + 1, 1

2

 z
z2 − 1 2F1


α + 1, 1;α +

3
2 ; (1 − z2)−1


.

Here are the special cases of α = 0,± 1
2 :

1. The case α = 0

µm = 2
(m − 1)! 3

2


m−1

, H(z) = log
z + 1
z − 1

.

2. The case α = −1/2

µm = π

 1
2


m−1

(m − 1)!
, H(z) =

π

(z2 − 1)1/2
.

3. The case α = 1/2

µm = π

 1
2


m

m!
, H(z) = π


z − (z2 − 1)1/2


.

6.1.2. The case p = 1:w(x) = (1 − x2)α log(1 − x2)−1

By the fact that

w(x) = (1 − x2)α log(1 − x2)−1
= −

∂

∂α
(1 − x2)α,

for general α, we have

µm = −
∂

∂α
B

α + m, 1

2


=

ψ(α + m +

1
2 )− ψ(α + m)


B

α + m, 1

2


and

H(z) = −
z

z2 − 1
∂

∂α


B

α + 1, 1

2


2F1

α + 1, 1;α +

3
2 ; (1 − z2)−1.
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Here are the special cases of α = 0,± 1
2 :

1. The case α = 0

µm = 2
(m − 1)! 3

2


m−1


−2 log 2 + 2

2m−1
k=m

1
k


,

H(z) = −z
∞

m=0

µm(1 − z2)−m, |z2 − 1| > 1.5

2. The case α = −1/2

µm = π

 1
2


m−1

(m − 1)!


2 log 2 − 2

2m−2
k=m

1
k


,

H(z) =
2π

√
z2 − 1

log
z +

√
z2 − 1

√
z2 − 1

.

3. The case α = 1/2

µm = π

 1
2


m

m!


2 log 2 − 2

2m
k=m+1

1
k


,

H(z) = (2π log 2)z − 2π

z2 − 1 log

z +
√
z2 − 1

√
z2 − 1

.

The expression for H(z) in case α = −
1
2 appears in Gradshteyn and Ryzhik [23, p. 562, Eq. (4.295.36)]. The expression

for H(z) in case α =
1
2 is obtained from 1

−1
log(1 − x2)−1


1 − x2

dx
z − x

=

 1

−1

log(1 − x2)−1

√
1 − x2


x + z +

1 − z2

z − x


dx

= z
 1

−1

log(1 − x2)−1

√
1 − x2

dx + (1 − z2)
 1

−1

log(1 − x2)−1

√
1 − x2

dx
z − x

,

and from µ1 and H(z) of the case α = −
1
2 .

6.2. Numerical examples

We have applied the new quadrature formulas discussed in the preceding subsection to several integrals and observed
that they have excellent convergence properties. Here we bring some of the numerical results. All our computations have
been carried out in quadruple-precision arithmetic (approximately 35 decimal digits).

Example 6.1. First, we have applied I(0)n = In to the function g(x, z) = 1/(z − x). In Table A.2, we give the relative errors
in the approximations In[g(·, 2)] to the integrals I[g(·, 2)] with g(x, z) = 1/(z − x) and for α = 0,± 1

2 and p = 0, 1 in the
weight function, the abscissas of the quadrature formulas used being the same for all approximations. These integrals were
considered in the preceding subsection. As mentioned following Theorem 3.3, for these integrals, we have

In[g(·, z)] = H(0)n (z) = −zA(0)n (1 − z2), z ∉ [−1, 1].

The errors shown in Table A.2 are actually those computed from the appropriate−zA(0)n (1−z2), the reason for this being that
we would like to ascertain the actual efficiency of our quadrature formulas, since A(0)n (ζ ) can be computed with machine
accuracy. We would like to note that, due to the fact that we are not able to compute the abscissas, and hence also the
weights, of the quadrature formulas I(0)n for large n to machine precision, the approximations I(0)n [g(·, z)] via the quadrature
formulas (with abscissas and weights computed in floating-point arithmetic) do not achieve machine accuracy for large
n, even though they must be identical to −zA(0)n (1 − z2) theoretically. (To achieve the same accuracy as −zA(0)n (1 − z2),
the abscissas and weights of I(0)n must be computed to machine accuracy, preferably in variable-precision arithmetic, as
we mentioned earlier.) In this respect, we would like to mention that, with z = 2 in g(z, x), the smallest relative errors
obtained from actual use of the quadrature formulas (computed using quadruple-precision arithmetic, as in Table A.1) are
of order 10−23 and take place for n ≈ 13 and increase gradually as n is increased due to the limited accuracy of the computed
abscissas and weights. This is so for all the integrals treated in the present example. For z = 5, the smallest relative errors
are of order 10−27 and take place for n ≈ 11 for all the integrals.

5 Unfortunately, at the present, we do not have a simple expression for H(z) in this case.
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Table A.2
Relative errors for the quadrature formulas I(α,p)n ≡ I(0)n of Section 6.2 as these are applied to the integrals I(α,p)[g(·, z)], g(x, z) = 1/(z − x), where
I(α,p)[f ] =

 1
−1(1 − x2)α[log(1 − x2)−1

]
pf (x) dx. E(α,p)n stands for

I(α,p)n [g(·, 2)] − I(α,p)[g(·, 2)]
/I(α,p)[g(·, 2)]. The abscissas in I(α,p)n are the same for all

α and for p = 0, 1, and are determined as in Section 6.1.

n E(0,0)n E(−1/2,0)
n E(1/2,0)n E(0,1)n E(−1/2,1)

n E(1/2,1)n

1 1.78D−02 6.56D−02 6.73D−03 1.14D−01 1.56D−01 8.08D−02
2 7.24D−05 2.16D−03 1.30D−04 1.87D−03 8.46D−03 1.67D−03
3 5.28D−07 4.39D−05 5.14D−06 1.02D−05 2.42D−04 2.69D−06
4 3.33D−08 6.83D−07 7.17D−08 2.17D−08 4.63D−06 7.00D−07
5 7.65D−10 8.06D−09 9.19D−11 2.15D−09 6.74D−08 1.49D−08
6 9.34D−12 7.55D−11 2.84D−11 7.13D−11 7.66D−10 1.09D−10
7 3.77D−14 7.70D−13 7.18D−13 1.28D−12 7.28D−12 2.60D−12
8 4.87D−15 3.42D−15 8.53D−15 8.61D−15 6.44D−14 1.09D−13
9 1.22D−16 2.51D−17 4.58D−17 2.81D−16 3.42D−16 1.96D−15

10 1.43D−18 8.94D−19 4.64D−18 1.15D−17 3.27D−18 1.15D−17
11 9.52D−21 1.64D−20 1.10D−19 2.09D−19 3.43D−20 4.56D−19
12 8.40D−22 1.94D−22 1.21D−21 1.14D−21 6.65D−22 1.73D−20
13 1.94D−23 1.69D−24 1.07D−23 5.28D−23 1.32D−23 2.97D−22
14 2.01D−25 1.22D−25 7.83D−25 1.92D−24 5.53D−26 1.33D−24
15 2.22D−27 2.70D−27 1.74D−26 3.21D−26 3.53D−27 8.24D−26
16 1.42D−28 2.61D−29 1.69D−28 1.17D−28 1.21D−28 2.82D−27
17 3.06D−30 3.56D−31 2.30D−30 9.64D−30 1.93D−30 4.53D−29
18 2.80D−32 2.04D−32 1.32D−31 3.12D−31 5.12D−33 1.24D−31
19 7.01D−34 4.25D−34 2.86D−33 6.96D−33 5.53D−34 1.54D−32
20 1.75D−34 1.06D−34 1.14D−34 2.45D−33 0.00D+00 2.70D−34

Example 6.2. Wehave applied our quadrature formulas to the integrals I[f ], with f (x) = 1/(1+x2) andα = 0,± 1
2 , p = 0, 1

in the weight functionw(x) = (1 − x2)α[log(1 − x2)−1
]
p. For these integrals, we have

(α, p) = (0, 0) I[f ] =
π

2

(α, p) =


−

1
2
, 0


I[f ] =
π
√
2

(α, p) =


1
2
, 0


I[f ] = π
√

2 − 1


(α, p) = (0, 1) I[f ] = 2G −
π

2
log 2, G = 0.915965594177 · · · Catalan’s constant

(α, p) =


−

1
2
, 1


I[f ] = π
√
2 log(1 + 1/

√
2)

(α, p) =


1
2
, 1


I[f ] = 2π [
√
2 log(1 + 1/

√
2)− log 2]

The relative errors in the In[f ] are given in Table A.3. Again, the abscissas of the quadrature formulas used are the same
for all approximations. Note that the errors are increasing towards the bottom of Table A.3 when, actually, they should be
decreasing and should do so fast. Of course, the reason for this is that the abscissas and weights we are using here have not
been computed to machine accuracy due to limitations imposed by the floating-point arithmetic used in determining them.
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Appendix. Levin L transformation

The Levin [10] L transformation is a most successful method used for accelerating the convergence of infinite sequences
{Am} whose members are such that

Am−1 = A + ωmh(m), (A.1)
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Table A.3
Relative errors for the quadrature formulas I(α,p)n ≡ I(0)n of Section 6.2 as these are applied to the integrals I(α,p)[f ], f (x) = 1/(1 + x2), where
I(α,p)[f ] =

 1
−1(1 − x2)α[log(1 − x2)−1

]
pf (x) dx. E(α,p)n stands for

I(α,p)n [f ] − I(α,p)[f ]
/I(α,p)[f ]. The abscissas in I(α,p)n are the same for all α and for

p = 0, 1, and are determined as in Section 6.1.

n E(0,0)n E(−1/2,0)
n E(1/2,0)n E(0,1)n E(−1/2,1)

n E(1/2,1)n

1 1.52D−02 9.38D−02 6.64D−02 2.77D−01 4.18D−01 1.82D−01
2 2.95D−03 9.52D−03 4.82D−03 3.41D−03 4.43D−02 1.48D−02
3 2.48D−04 2.41D−04 4.04D−04 3.53D−04 2.87D−03 9.46D−04
4 2.06D−05 2.17D−05 3.49D−05 3.25D−05 1.07D−04 7.59D−05
5 1.75D−06 5.91D−07 3.01D−06 2.63D−06 4.01D−06 6.73D−06
6 1.51D−07 8.17D−08 2.58D−07 2.21D−07 3.49D−08 5.88D−07
7 1.30D−08 6.41D−09 2.23D−08 1.90D−08 5.94D−09 5.07D−08
8 1.12D−09 5.64D−10 1.92D−09 1.65D−09 3.35D−10 4.36D−09
9 9.71D−11 4.85D−11 1.66D−10 1.42D−10 3.19D−11 3.77D−10

10 8.39D−12 4.20D−12 1.43D−11 1.23D−11 2.71D−12 3.26D−11
11 7.26D−13 3.63D−13 1.24D−12 1.06D−12 2.35D−13 2.81D−12
12 6.27D−14 3.14D−14 1.07D−13 9.19D−14 2.03D−14 2.43D−13
13 5.43D−15 2.71D−15 9.26D−15 7.95D−15 1.70D−15 2.11D−14
14 4.69D−16 2.35D−16 8.01D−16 6.88D−16 9.50D−17 1.82D−15
15 4.06D−17 2.03D−17 6.93D−17 5.95D−17 4.39D−17 1.58D−16
16 3.49D−18 1.76D−18 6.02D−18 5.15D−18 5.59D−17 1.36D−17
17 3.30D−19 2.64D−19 6.30D−20 4.27D−19 5.70D−17 1.16D−18
18 9.39D−18 6.68D−18 7.27D−18 1.23D−18 5.68D−17 1.60D−19
19 2.68D−16 3.11D−16 4.16D−16 2.84D−18 5.92D−17 3.64D−17
20 4.11D−15 7.52D−15 1.61D−15 1.60D−16 2.47D−16 6.73D−16

where h(m) is a function having an asymptotic expansion of the form

h(m) ∼

∞
i=0

βi

mi
as m → ∞. (A.2)

Here A is either the limit of {Am} when the latter converges or the so-called antilimit of {Am} when the latter diverges.6
Substituting (A.2) in (A.1), we have the asymptotic expansion

Am−1 ∼ A + ωm

∞
i=0

βi

mi
as m → ∞. (A.3)

We are only interested in determining (or approximating) A, whether it is the limit or the antilimit of {Am}.
With the sequences {Am} and {ωm} available, the Levin L transformation (based on the asymptotic expansion in (A.3)) is

defined via the linear systems of equations

Am−1 = A(j)n + ωm

n−1
i=0

β̄i

mi
, m = j + 1, j + 2, . . . , j + n + 1. (A.4)

Here j ≥ 0 and n ≥ 1, and A(j)n is the approximation to A, while β̄i are additional (auxiliary) unknowns of no interest to us.
The solution of (A.4) for A(j)n can be expressed in closed form as in

A(j)n =

n
i=0
(−1)n−i

 n
i


(j + i + 1)n−1Aj+i/ωj+i+1

n
i=0
(−1)n−i

 n
i


(j + i + 1)n−1/ωj+i+1

. (A.5)

Note that the linear system in (A.4) has been obtained from (A.3) by replacing A by A(j)n , βi by β̄i, and the asymptotic equality
sign ∼ by =, and by truncating the infinite series


∞

i=0 βi/mi at the i = n − 1 term, and finally by collocating the equality
obtained at the n + 1 points m = j + 1, j + 2, . . . , j + n + 1, thus obtaining n + 1 equations to accommodate the n + 1
unknowns A(j)n and β̄0, β̄1, . . . , β̄n−1. Also note that we do not need to know the βi in (A.3); we would like to emphasize
that mere knowledge of the existence of the asymptotic expansion in (A.3) together with the sequence {ωm} is sufficient for
applying the L transformation.

6 In case Am is the mth partial sum of an infinite power series in z with a finite radius of convergence ρ > 0, A = limm→∞ Am for |z| < ρ represents a
function f (z) that is analytic in the set {z : |z| < ρ}. If the function f (z) can be continued analytically to some subset of {z : |z| ≥ ρ}, then this analytic
continuation is the antilimit of {Am} in this subset. For a discussion of antilimits and their variousmeanings, see [6, Introduction, Section 0.2], where several
examples from different problems are also given.
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In Levin’s work [10], ωm = mσ (Am − Am−1), where σ is some integer at most 1. When σ = 0, the L transformation
is called the t-transformation, and when σ = 1, it is called the u-transformation. In developing our numerical quadrature
formulas, however, we do not necessarily use Levin’s ωm; our ωm are designed such that the asymptotic expansion in (A.3)
is valid (with different βi though) and the resulting quadrature formulas enjoy a great amount of flexibility. This approach
was first suggested and used by the author in [1,2]. The convergence properties of the sequences {A(j)n }

∞

j=0 (with n fixed) and

{A(j)n }
∞

n=0 (with j fixed) with generalωm were first studied by the author in Sidi [22,24]. See also [6, Chapter 19] for additional
developments.
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