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Recently, we derived some new numerical quadrature formulas of trapezoidal rule type for
the singular integrals I(1)[u] = ´ b

a (cot π(x−t)
T )u(x)dx and I(2)[u] = ´ b

a (csc2 π(x−t)
T )u(x)dx,

with b − a = T and u(x) a T -periodic continuous function on R. These integrals are not
defined in the regular sense, but are defined in the sense of Cauchy Principal Value
and Hadamard Finite Part, respectively. With h = (b − a)/n, n = 1,2, . . . , the numerical
quadrature formulas Q (1)

n [u] for I(1)[u] and Q (2)
n [u] for I(2)[u] are

Q (1)
n [u] = h

n∑
j=1

f (t + jh − h/2), f (x) =
(

cot
π(x − t)

T

)
u(x),

and

Q (2)
n [u] = h

n∑
j=1

f (t + jh − h/2) − T 2u(t)h−1, f (x) =
(

csc2 π(x − t)

T

)
u(x).

We provided a complete analysis of the errors in these formulas under the assumption that
u ∈ C∞(R) and is T -periodic. We actually showed that,

I(1)[u] − Q (1)
n [u] = O

(
n−μ

)
and

I(2)[u] − Q (2)
n [u] = O

(
n−μ

)
as n → ∞, ∀μ > 0.

In this note, we analyze the errors in these formulas under the weaker assumption that
u ∈ C s(R) for some finite integer s. By first regularizing these integrals, we prove that, if
u(s+1) is piecewise continuous, then

I(1)[u] − Q (1)
n [u] = o

(
n−s−1/2) as n → ∞, if s � 1, and

I(2)[u] − Q (2)
n [u] = o

(
n−s+1/2) as n → ∞, if s � 2.

We also extend these results by imposing different smoothness conditions on u(s+1) .
Finally, we append suitable numerical examples.
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1. Introduction and background

Let u(x) be a T -periodic function that is sufficiently smooth on R and consider the singular integrals

I(1)[u] =
bˆ

a

(
cot

π(x − t)

T

)
u(x)dx, a < t < b; b − a = T , (1.1)

and

I(2)[u] =
bˆ

a

(
csc2 π(x − t)

T

)
u(x)dx, a < t < b; b − a = T . (1.2)

Of these, I(1)[u] is known also as the circular Hilbert transform and is defined in the sense of Cauchy Principal Value (CPV),
while I(2)[u] is a so-called hypersingular integral and is defined in the sense of Hadamard Finite Part (HFP). Note that the
integrands in both integrals are T -periodic with nonintegrable singularities at x = t in the interval of integration (a,b);
namely, the integrand of I(1)[u] has a singularity of the form (x − t)−1, while I(2)[u] has a singularity of the form (x − t)−2.
For the properties of CPV and HFP integrals, see Davis and Rabinowitz [3], Evans [4], or Kythe and Schäferkotter [5], for
example.1

In the recent papers Sidi and Israeli [14] and Sidi [12], we derived trapezoidal rule type approximations to the integrals
I(1)[u] and I(2)[u], respectively.2 With h = T /n, n = 1,2, . . . , these approximations are

Q (1)
n [u] = h

n∑
j=1

f (t + jh − h/2), f (x) =
(

cot
π(x − t)

T

)
u(x), for I(1)[u], (1.3)

and

Q (2)
n [u] = h

n∑
j=1

f (t + jh − h/2) − T 2u(t)h−1, f (x) =
(

csc2 π(x − t)

T

)
u(x), for I(2)[u]. (1.4)

We also derived the following results concerning the errors in these approximations under the assumption that u ∈ C∞(R):

Q (1)
n [u] − I(1)[u] = O

(
n−μ

)
as n → ∞, ∀μ > 0, (1.5)

and

Q (2)
n [u] − I(2)[u] = O

(
n−μ

)
as n → ∞, ∀μ > 0. (1.6)

As is done in [12], both of these results can be derived by using one of the author’s generalizations of the classical Euler–
Maclaurin expansion given in Sidi [10, Theorem 2.3].3

In this work, we analyze the errors in the formulas Q (1)
n [u] and Q (2)

n [u] under the weaker assumption that u(x) is

1 The usual notation for integrals defined in the sense of the Cauchy Principal Value (CPV) is −́b
a f (x)dx, while for those defined in the sense of Hadamard

Finite Part (HFP) it is =́b
a f (x)dx. For simplicity, in this work, we use

´ b
a f (x)dx to denote both, as in (1.1) and (1.2).

2 Actually, in [12], we treated singular integrals of the very general forms

I[g] =
bˆ

a

g(x)
(
log |x − t|)p |x − t|β , β real, p = 0,1, a < t < b,

and

I[g] =
bˆ

a

g(x)(x − t)β , β = −1,−2, . . . , a < t < b,

g(x) being allowed to have arbitrary algebraic endpoint singularities. Of course, I(1)[u] and I(2)[u] are special cases of these.
3 The classical Euler–Maclaurin (E–M) expansion pertains to integrals

´ b
a g(x)dx whose integrands are regular throughout the (closed) interval [a,b],

whereas the generalized E–M expansions of [10] treat the case in which g(x) has arbitrary algebraic endpoint singularities. For the case in which g(x) has
arbitrary algebraic-logarithmic endpoint singularities, see Sidi [9] and [11]. In all three papers [9], [10], and [11], the integrals

´ b
a g(x)dx can be convergent

or divergent; in case of divergence, they are defined in the sense of HFP.
It was observed in [12] that the CPV integrals are also sums of HFP integrals, and this fact was used in the derivation of their associated asymptotic

expansions.
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differentiable only a finite number of times on R. Specifically, we assume that

u ∈ C s(R) and T -periodic, u(s+1) piecewise continuous.4 (1.7)

In this sense, this note complements [12].
The next two theorems are the main results of this work. It is easy to see that, when u ∈ C∞(R), the results in (1.5)

and (1.6) are implied by these theorems.

Theorem 1.1. Let u(x) be as in (1.7). Provided s � 1,

Q (1)
n [u] − I(1)[u] = o

(
n−s−1/2) as n → ∞. (1.8)

Theorem 1.2. Let u(x) be as in (1.7). Provided s � 2,

Q (2)
n [u] − I(2)[u] = o

(
n−s+1/2) as n → ∞. (1.9)

The proofs of these results are the subject of the next section. In these proofs, we first regularize the integral represen-
tations of I(1)[u] and I(2)[u]; namely, we express the latter as integrals defined in the regular sense. We make use of some
standard techniques of Fourier analysis, which can be found in Davis [2], for example. We also make use of Theorems 1.3
and 1.4 that are stated below and that pertain to the exactness of the quadrature formulas Q (1)

n [u] and Q (2)
n [u]. These

theorems were proved in [12] and seem to be of interest in themselves.
The use of the quadrature formulas Q (1)

n [u] and Q (2)
n [u] under the conditions in (1.7) is illustrated with suitable nu-

merical examples in Section 3. In Section 4, we extend the main results to functions u(x) assuming different conditions on
u(s+1)(x) than the one in (1.7).

Below and throughout the remainder of this work, we will sometimes let

em(x) = ei2mπx/T , m integer, (1.10)

for simplicity of notation.

Theorem 1.3. With em(x) as in (1.10) and with the convention that sgn(0) = 0 throughout, the following are true:

1. The integral I(1)[em] = ´ b
a (cot π(x−t)

T ) em(x)dx, b − a = T , satisfies

I(1)[em] = iT sgn(m) em(t), m = 0,±1,±2, . . . . (1.11)

2. The quadrature formula Q (1)
n [em] for I(1)[em] satisfies

Q (1)
n [em] = I(1)[em] = iT sgn(m) em(t), m = 0,±1, . . . ,±(n − 1), (1.12)

while for arbitrary m, we have

Q (1)
n [em] = iT sgn(m)Vm,n em(t), (1.13)

with V−m,n = Vm,n, and

Vm,n =
{

0 if m = 0,

1 if |m| = 1, . . . ,n − 1,
and V±m,n = Vkn+r,n = (−1)k Vr,n, (1.14)

where k and r are unique integers, k � 0 and 0 � r � n − 1, such that |m| = kn + r, in which case,

Q (1)
n [em] − I(1)[em] = iT sign(m)(Vm,n − 1) em(t). (1.15)

3. If u(x) is of the form

u(x) =
n−1∑

m=−(n−1)

cmem(x), (1.16)

then the quadrature formula Q (1)
n [u] for I(1)[u], b − a = T , satisfies

Q (1)
n [u] = I(1)[u]. (1.17)

4 A function g(x) is said to be piecewise continuous on [a,b] if it is continuous everywhere in [a,b] except at finitely many points, y1, . . . , yr say,
at which it has finite right-hand and left-hand limits g(yk+) and g(yk−).
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Note that part 1 of Theorem 1.3 can already be found in Lifanov [6].

Theorem 1.4. With em(x) as in (1.10), the following are true:

1. The integral I(2)[em] = ´ b
a (csc2 π(x−t)

T ) em(x)dx, b − a = T , satisfies

I(2)[em] = −2T |m|em(t), m = 0,±1,±2, . . . . (1.18)

2. The quadrature formula Q (2)
n [em] for I(2)[em] satisfies

Q (2)
n [em] = I(2)

n [em] = −2T |m|em(t), m = 0,±1,±2, . . . ,±n, (1.19)

while for arbitrary m, we have

Q (2)
n [em] = T

[
(−1)k(n − 2r) − n

]
em(t), (1.20)

where k and r are unique integers, k � 0 and 0 � r � n − 1, such that |m| = kn + r, in which case,

Q (2)
n [em] − I(2)[em] = T

{[
(−1)k − 1

]
(n − 2r) + 2kn

}
em(t). (1.21)

3. If u(x) is of the form

u(x) =
n∑

m=−n

cmem(x), (1.22)

then the quadrature formula Q (2)
n [u] for I(2)[u], b − a = T , satisfies

Q (2)
n [u] = I(2)[u]. (1.23)

Note that part 1 of Theorem 1.4 can already be found in Lifanov and Poltavskii [7].
Before closing, we would like to mention a recent development pertaining to the quadrature formulas Q (1)

n [u] and
Q (2)

n [u]. We observe that these formulas make use of the integrand values f (t + jh − h/2). Because the functions f (x)
have nonintegrable singularities at x = t , Q (1)

n [u] and Q (2)
n [u] are prone to roundoff errors when computed in floating-point

arithmetic, and these errors increase without bound as h → 0 (equivalently, as n → ∞). Indeed, even though the theoretical
errors Q (1)

n [u] − I(1)[u] and Q (2)
n [u] − I(2)[u] tend to zero as n → ∞ by Theorems 1.1 and 1.2, the actual errors in the

computed Q (1)
n [u] and Q (2)

n [u] first decrease (in accordance with Theorems 1.1 and 1.2) as n increases up to a certain value,
say n0, and then start increasing, thus diminishing the best accuracy achieved for n = n0 gradually until no accuracy is left.
The issue of roundoff errors has been analyzed in detail in Sidi [13, Section 7] recently, the main conclusion being that
roundoff errors in computed Q (1)

n [u] and Q (2)
n [u] increase mildly, like log n and n, respectively. Thus, using a floating-point

arithmetic of relatively high precision, sufficiently high accuracy can be achieved for Q (1)
n [u] and Q (2)

n [u] before the roundoff
errors and the theoretical errors Q (1)

n [u] − I(1)[u] and Q (2)
n [u] − I(2)[u] become of comparable size.

2. Regularization of I (1)[u] and I (2)[u] and proofs of main results

2.1. Regularization of I(1)[u] and I(2)[u]
To prove (1.8) and (1.9), we cannot make direct use of the representations of I(1)[u] and I(2)[u] given in (1.1) and (1.2) as

the integrands in these representations are not integrable in the regular sense. Therefore, we look for integral representa-
tions that are defined in the regular sense. Fortunately, such regularized representations can be derived in a straightforward
way, and we provide these derivations in Theorems 2.1 and 2.2 next. We believe that, despite their simplicity, these regu-
larized forms are of interest by themselves.

Theorem 2.1. Let u ∈ C(R) be T -periodic, and let u′ be piecewise continuous. Then

I(1)[u] = − T

π

bˆ

a

(
log

∣∣∣∣sin
π(x − t)

T

∣∣∣∣
)

u′(x)dx. (2.1)

Proof. Making the variable transformation x = t + T
2π y in (1.1), and invoking the assumption that the integrand is T -periodic,

we obtain

I(1)[u] = T

2π

π̂ (
cot

y

2

)
v(y)dy, v(y) = u

(
t + T

2π
y

)
. (2.2)
−π
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Clearly, v ∈ C(R) and is 2π -periodic, and v ′ is piecewise continuous. In addition, (cot y
2 )v(y), the integrand of (2.2), has

a singularity of the type y−1 at y = 0 in the interval (−π,π).
We next recall the known definition of the CPV integral, namely,

bˆ

a

g(x)

x − t
dx = lim

ε→0+

[( t−εˆ

a

+
bˆ

t+ε

)
g(x)

x − t
dx

]
, a < t < b,

which, in our case, becomes

π̂

−π

(
cot

y

2

)
v(y)dy = lim

ε→0+

[( −εˆ

−π

+
π̂

ε

)(
cot

y

2

)
v(y)dy

]
. (2.3)

Now, upon integrating
´
(cot y

2 )v(y)dy by parts, we have
ˆ (

cot
y

2

)
v(y)dy = 2

(
log

∣∣∣∣sin
y

2

∣∣∣∣
)

v(y) − 2
ˆ (

log

∣∣∣∣sin
y

2

∣∣∣∣
)

v ′(y)dy.

[Observe that the integral
´

log(| sin y
2 |)v ′(y)dy is regular through y = 0.] Substituting this on the right-hand side of (2.3),

and noting that log | sin ±π
2 | = 0 and(

log

∣∣∣∣sin
±ε

2

∣∣∣∣
)

v(±ε) =
[(

log
ε

2

)
+ O

(
ε2)][

v(0) + O (ε)
]

as ε → 0+

= v(0)

(
log

ε

2

)
+ O (ε logε) as ε → 0+,

we see that the sum of the contributions of the integrated term 2 log(| sin y
2 |)v(y) from the endpoints ±π and ±ε tends to

zero as ε → 0+. We thus obtain

π̂

−π

(
cot

y

2

)
v(y)dy = −2

π̂

−π

(
log

∣∣∣∣sin
y

2

∣∣∣∣
)

v ′(y)dy.

Substituting this in (2.2) and invoking v ′(y) = T
2π u′(t + T

2π y) and going back to the variable x, we obtain the result
in (2.1). �
Theorem 2.2. Let u ∈ C1(R) be T -periodic, and let u′′ be piecewise continuous. Then

I(2)[u] = −
(

T

π

)2 bˆ

a

(
log

∣∣∣∣sin
π(x − t)

T

∣∣∣∣
)

u′′(x)dx. (2.4)

Proof. Making the variable transformation x = t + T
2π y in (1.2), and invoking the assumption that the integrand is

T -periodic, we obtain

I(2)[u] = T

2π

π̂

−π

(
csc2 y

2

)
v(y)dy, v(y) = u

(
t + T

2π
y

)
. (2.5)

Clearly, v ∈ C1(R) and is 2π -periodic, and v ′′ is piecewise continuous. In addition, (csc2 y
2 )v(y), the integrand of (2.2), has

a singularity of the type y−2 at y = 0 in the interval (−π,π).
We next recall the known definition of the hypersingular integral, namely,

bˆ

a

g(x)

(x − t)2
dx = lim

ε→0+

[( t−εˆ

a

+
bˆ

t+ε

)
g(x)

(x − t)2
dx − 2g(t)

ε

]
, a < t < b,

which, in our case, becomes

π̂ (
csc2 y

2

)
v(y)dy = lim

ε→0+

[( −εˆ
+

π̂)(
csc2 y

2

)
v(y)dy − 8v(0)

ε

]
. (2.6)
−π −π ε
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Now, upon integrating
´

(csc2 y
2 )v(y)dy by parts, we have

ˆ (
csc2 y

2

)
v(y)dy = −2

(
cot

y

2

)
v(y) + 2

ˆ (
cot

y

2

)
v ′(y)dy.

Substituting this in (2.6), and noting that cot ±π
2 = 0 and

(
cot

±ε

2

)
v(±ε) = 2

±ε

[
1 + O

(
ε2)][v(0) ± v ′(0)ε + O

(
ε2)] as ε → 0+

= 2

±ε

[
v(0) ± v ′(0)ε + O

(
ε2)] as ε → 0+,

we see that the sum of the contributions of the integrated term −2(cot y
2 )v(y) from the endpoints ±π and ±ε with the

term − 8v(0)
ε tends to zero as ε → 0+. We thus obtain

π̂

−π

(
csc2 y

2

)
v(y)dy = 2 lim

ε→0+

[( −εˆ

−π

+
π̂

ε

)(
cot

y

2

)
v ′(y)dy

]

= 2

π̂

−π

(
cot

y

2

)
v ′(y)dy,

the second equality following from (2.3). [Note that (2.3) is applicable to our case since v ′ and v ′′ satisfy the conditions of
Theorem 2.1.] We now apply Theorem 2.1 to the integral

´ π
−π (cot y

2 )v ′(y)dy, and obtain

π̂

−π

(
csc2 y

2

)
v(y)dy = 2

π̂

−π

(
cot

y

2

)
v ′(y)dy = −4

π̂

−π

(
log

∣∣∣∣sin
y

2

∣∣∣∣
)

v ′′(y)dy.

Substituting this in (2.5) and invoking v ′′(y) = ( T
2π )2u′′(t + T

2π y) and going back to the variable x, we obtain the result
in (2.4). �

Note that the kernel (log | sin π(x−t)
T |) that is present in both (2.1) and (2.4) is negative and integrable in the regular

sense since its only singularity at x = t is logarithmic.
Note also that we can unify the results in (2.1) and (2.4) and write

I(q)[u] = −
(

T

π

)q bˆ

a

(
log

∣∣∣∣sin
π(x − t)

T

∣∣∣∣
)

u(q)(x)dx, q = 1,2,

provided u ∈ Cq−1(R) and T -periodic, u(q) piecewise continuous. (2.7)

This also enables us to unify their proofs, as we will see later.

2.2. Proofs of main results

We now turn to the proofs of Theorems 1.1 and 1.2. We start with the following simple lemma concerning infinite
sequences in the Hilbert space l2:

Lemma 2.3. Let

dm = ρm

mp
, m = 1,2, . . . ; {ρm}∞m=1 ∈ l2.

Then,

∞∑
m=N

dm = o
(
N−p+1/2) as N → ∞, provided p > 1/2.
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Proof. First,
∑∞

m=1 |ρm|2 < ∞. Next, it is easy to see that the sequence {m−p}∞m=1 belongs to l2, just as {ρm}∞m=1. Therefore,
by the Cauchy–Schwartz inequality,∣∣∣∣∣

∞∑
m=N

dm

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
m=N

ρm

mp

∣∣∣∣∣ �
( ∞∑

m=N

1

m2p

)1/2( ∞∑
m=N

|ρm|2
)1/2

.

The result now follows by invoking

∞∑
m=N

|ρm|2 = o(1) as N → ∞ and
∞∑

m=N

m−r = O
(
N−r+1) as N → ∞, r > 1. �

For simplicity, we let T = 2π and [a,b] = [−π,π ] in the sequel. Let the Fourier series of u(x) be as in

u(x) =
∞∑

m=−∞
cmeimx; cm = 1

2π

π̂

−π

e−imxu(x)dx, m = 0,±1,±2, . . . . (2.8)

By (1.7), u ∈ C s(R), u(s+1) being piecewise continuous, we have by repeated integration by parts

cm = 1

2π

[
(−1)m

s∑
k=0

u(k)(−π) − u(k)(π)

(im)k+1
+ 1

(im)s+1

π̂

−π

e−imxu(s+1)(x)dx

]
.

By 2π -periodicity of u(k)(x) for k = 0,1, . . . , s, this becomes

cm = βm

(im)s+1
, βm = 1

2π

π̂

−π

e−imxu(s+1)(x)dx. (2.9)

Then the Fourier series of u′(x) (when s � 1) and of u′′(x) (when s � 2) over [−π,π ] converge absolutely and uniformly
everywhere,5 and are given as in

u′(x) = u(1)(x) =
∞∑

m=−∞
c(1)

m eimx; c(1)
m = imcm = βm

(im)s
, (2.10)

and

u′′(x) = u(2)(x) =
∞∑

m=−∞
c(2)

m eimx; c(2)
m = (im)2cm = βm

(im)s−1
. (2.11)

For simplicity of notation, let us express (2.7) as in

I(q)[u] =
π̂

−π

φq(x − t)u(q)(x)dx, φq(y) = −2q
(

log

∣∣∣∣sin
y

2

∣∣∣∣
)

. (2.12)

Then, with em(x) = eimx , as in (1.10), we have

N∑
m=−N

cm I(q)[em] = I(q)

[
N∑

m=−N

cmem

]
= I(q)

[
u −

∑
|m|>N

cmem

]
,

which, by (2.10), (2.11), and (2.12), becomes

N∑
m=−N

cm I(q)[em] = I(q)[u] − I(q)

[ ∑
|m|>N

cmem

]

= I(q)[u] −
π̂

−π

φq(x − t)

[ ∑
|m|>N

c(q)
m em(x)

]
dx. (2.13)

5 It is known that if w ∈ C(R) and is 2π -periodic, w ′ being piecewise continuous, then the Fourier series of w(x) on [−π,π ] converges to w(x)
absolutely and uniformly on R.



A. Sidi / Applied Numerical Mathematics 81 (2014) 30–39 37
Now, by the fact that φ(x−t) is in L1[−π,π ], and the series
∑

|m|>N c(q)
m em(x), both for q = 1 and q = 2, converge absolutely

and uniformly everywhere, we have∣∣∣∣∣
π̂

−π

φq(x − t)

[ ∑
|m|>N

c(q)
m em(x)

]
dx

∣∣∣∣∣ �
[ π̂

−π

∣∣φq(x − t)
∣∣dx

](
max
|x|�π

∣∣∣∣ ∑
|m|>N

c(q)
m em(x)

∣∣∣∣
)

�
[ π̂

−π

∣∣φq(x)
∣∣dx

] ∑
|m|>N

∣∣c(q)
m

∣∣, (2.14)

since φq(y) is 2π -periodic and hence
´ π
−π |φq(x − t)|dx = ´ π

−π |φq(x)|dx, independently of t . By our assumptions on s, it

follows that limN→∞
∑

|m|>N |c(q)
m | = 0 by Lemma 2.3. Consequently,

lim
N→∞

π̂

−π

φq(x − t)

[ ∑
|m|>N

c(q)
m em(x)

]
dx = 0,

and hence

lim
N→∞

N∑
m=−N

cm I(q)[em] = I(q)[u].

Thus, we have shown that

I(q)[u] =
∞∑

m=−∞
cm I(q)[em], q = 1,2. (2.15)

As for Q (1)
n [u] and Q (2)

n [u], we note that they are both finite linear combinations of values of u(x) as can be seen from
(1.3) and (1.4), respectively. Therefore, we have immediately

Q (q)
n [u] = Q (q)

n

[ ∞∑
m=−∞

cmem

]
=

∞∑
m=−∞

cm Q (q)[em], q = 1,2. (2.16)

Combining (2.16) with (2.15), we obtain

Q (q)
n [u] − I(q)[u] =

∞∑
m=−∞

cm
(

Q (q)
n [em] − I(q)[em]), q = 1,2. (2.17)

Upon invoking part 3 of Theorem 1.3 and part 3 of Theorem 1.4 in (2.17), we first obtain

Q (q)
n [u] − I(q)[u] =

∑
|m|>Nq

cm
(

Q (q)
n [em] − I(q)[em]), q = 1,2, (2.18)

where we have set

N1 = n − 1, N2 = n. (2.19)

We next take moduli on both sides, and by manipulating (1.15) and (1.21), respectively, we obtain

∣∣Q (1)
n [u] − I(1)[u]∣∣ � 4π

∞∑
m=n

(|cm| + |c−m|) (2.20)

and

∣∣Q (2)
n [u] − I(2)[u]∣∣ � 8π

∞∑
m=n+1

m
(|cm| + |c−m|). (2.21)

Finally, we substitute (2.9) in (2.20) and (2.21) and apply Lemma 2.3 with ρm = β±m , and with p = s + 1 for (2.20) and
p = s in (2.21). The results in (1.8) and (1.9) now follow.

Note. Observe that what we have in (2.18) are actually closed-form error formulas for Q (q)
n [u] − I(q)[u], once we recall the

explicit expressions for Q (q)
n [em] − I(q)[em] given in (1.15) and (1.21).
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3. Numerical examples

To illustrate our results, we have applied our quadrature formulas to the cases in which u(x) = B p(x), where B p(x) is the
pth periodic Bernoulli function. B p(x) is defined as the 1-periodic extension of B p(x), the Bernoulli polynomial of degree p,
namely,

B p(x) = B p(x − k), for x ∈ [k,k + 1), k = 0,±1,±2, . . . .

For Bernoulli polynomials and their periodic extensions, see Abramowitz and Stegun [1, Chapter 23] or Sidi [8, Appendix D],
for example.

Now, the Bernoulli polynomials satisfy

B(k)
p (0) = B(k)

p (1), k = 0,1, . . . , p − 2, but B(p−1)
p (0) �= B(p−1)

p (1), p � 2. (3.1)

Consequently,

B p ∈ C p−2(R) and B(p−1)
p piecewise continuous on R, p = 2,3, . . . .

For brevity, from here on, we concentrate on B p(x) with p = 2r, r = 1,2, . . . . From [1, p. 805, Eq. 23.1.18], B2r(x) has the
Fourier series

B2r(x) = (−1)r−1 2 (2r)!
(2π)2r

∞∑
k=1

cos 2kπx

k2r
, x ∈ [0,1], r = 1,2, . . . .

Let ek(x) = exp(i2kπx) as in (1.10). Applying parts 1 of Theorems 1.3 and 1.4 to wk(x) = cos 2kπx = 1
2 [ek(x) + e−k(x)], with

[a,b] = [0,1] and T = 1, we obtain, respectively,

I(1)[wk] = − sin 2kπt and I(2)[wk] = −2k cos 2kπt, k = 1,2, . . . .

Thus, by (2.15), we have the following series representations for I(1)[B2r] and I(2)[B2r]:

I(1)[B2r] =
1ˆ

0

[
cotπ(x − t)

]
B2r(x)dx = (−1)r 2 (2r)!

(2π)2r

∞∑
k=1

sin 2kπt

k2r
, r = 1,2, . . . ,

I(2)[B2r] =
1ˆ

0

[
csc2 π(x − t)

]
B2r(x)dx = (−1)r 4 (2r)!

(2π)2r

∞∑
k=1

cos 2kπt

k2r−1
, r = 1,2, . . . .

Here, we present the results of the computations we have carried out in quadruple-precision floating-point arithmetic
by applying the quadrature formulas Q (1)

n [u] and Q (2)
n [u] with u(x) = B6(x) (i.e., r = 3 above), and t = 0.3. Note that

B6(x) = x6 − 3x5 + 5

2
x4 − 1

2
x2 + 1

42
.

Consequently,

I(1)[B6] = − 45

2π6

∞∑
k=1

sin 2kπt

k6
and I(2)[B6] = − 45

π6

∞∑
k=1

cos 2kπt

k5
.

Since these series converge relatively quickly, they can be used to obtain the exact values of I(1)[u] and I(2)[u] conveniently;
for t = 0.3, these are

I(1)[u] = −0.02202945729223988 . . . and I(2)[u] = 0.01548960081292585 . . . .

Table 1 contains the relative errors

E(1)
n =

∣∣∣∣ Q (1)
n [u] − I(1)[u]

I(1)[u]
∣∣∣∣ and E(2)

n =
∣∣∣∣ Q (2)

n [u] − I(2)[u]
I(2)[u]

∣∣∣∣
in the results obtained by applying the quadrature formulas Q (1)

n [u] and Q (2)
n [u] with t = 0.3 and n = 2k , 1 � k � 14. Note

that Q (1)
n [u] and Q (2)

n [u] achieve accuracies of eight significant decimal digits already for n = 16. The last two numbers for
E (2)

n at the bottom of the table exhibit the effect of the roundoff errors we alluded to in the last paragraph of Section 1.



A. Sidi / Applied Numerical Mathematics 81 (2014) 30–39 39
Table 1
Quadruple-precision floating-point numerical results for the integrals I(1)[u] and
I(2)[u] in Section 3, with [a,b] = [0,1], T = 1, u(x) = B6(x) and t = 0.3 through-
out. Here E(1)

n = |Q (1)
n [u] − I(1)[u]|/|I(1)[u]| and E(2)

n = |Q (2)
n [u] − I(2)[u]|/|I(2)[u]|.

Of course, h = 1/n in the quadrature formulas Q (1)
n [u] and Q (2)

n [u].
n E (1)

n E (2)
n

2 1.12E−02 6.98E−03
4 2.16E−04 2.53E−04
8 7.45E−07 3.20E−06

16 2.51E−09 8.64E−09
32 6.59E−10 1.87E−09
64 4.63E−12 1.28E−11

128 1.37E−13 4.15E−13
256 8.15E−16 2.50E−15
512 3.52E−17 1.05E−16

1024 2.18E−19 6.50E−19
2048 8.49E−21 2.56E−20
4096 5.21E−23 1.50E−24
8192 2.08E−24 1.61E−22

16 384 6.77E−27 1.55E−22

4. Concluding remarks

The functions u(x) that we treated above were assumed to be such that u(s+1) is piecewise continuous. This lead to
the useful conclusion that u(s+1) ∈ L2[a,b], hence the sequence {βm}∞m=−∞ is in the space l2, which allowed the asymptotic
results of Theorems 1.1 and 1.2 to hold. Of course, the same results are obtained if we allow u(s+1) to satisfy the weaker
condition that u(s+1) ∈ L2[a,b].

We can also assume that u(x) is in the Hölder class C s+1,α[a,b], 0 < α � 1, that is, u ∈ C s+1[a,b] such that u(i)(x),
i = 0,1, . . . , s, are all T -periodic, T = b − a and u(s+1) is in the Hölder class C0,α[a,b].6 This imposes a stronger condition
on u(s+1); namely, u(s+1) is now continuous on [a,b]. Clearly, Theorems 1.1 and 1.2 apply to this case with no changes
since u(s+1) is continuous on R. For 1/2 < α � 1, better results can be obtained, however. First, it is known that, in (2.9),
βm = O (m−α) as m → ∞, so that cm = O (m−s−α−1) as |m| → ∞. Thus, provided s > 1 − α, the Fourier series of u′(x)
converges absolutely and uniformly, hence (2.20) holds, from which we obtain

Q (1)
n [u] − I(1)[u] = o

(
n−s−α

)
as n → ∞, if s > 1 − α. (4.2)

Similarly, provided s > 2 − α, the Fourier series of u′′(x) converges absolutely and uniformly, and hence, (2.21) holds, from
which we obtain

Q (2)
n [u] − I(2)[u] = o

(
n−s−α+1) as n → ∞, if s > 2 − α. (4.3)
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