

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 190 (2015) 26-49

www.elsevier.com/locate/jat

Full length article

Asymptotic zero distribution of biorthogonal polynomials[☆]

D.S. Lubinsky^{a,*}, A. Sidi^b, H. Stahl^c

^a School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA ^b Department of Computer Science, Technion-IIT, Haifa 32000, Israel ^c Fachbereich Mathematik, TFH Berlin, Germany

Available online 22 January 2014

Communicated by Guillermo López Lagomasino

Abstract

Let $\psi : [0, 1] \to \mathbb{R}$ be a strictly increasing continuous function. Let P_n be a polynomial of degree n determined by the biorthogonality conditions

$$\int_0^1 P_n(x) \,\psi(x)^j \, dx = 0, \quad j = 0, 1, \dots, n-1.$$

We study the distribution of zeros of P_n as $n \to \infty$, and related potential theory. © 2014 Elsevier Inc. All rights reserved.

Keywords: Biorthogonal polynomials; Zero distribution; Potential theory

1. Introduction and results

Let $\psi : [0,1] \to [\psi(0), \psi(1)]$ be a strictly increasing continuous function, with inverse $\psi^{[-1]}$. Then we may uniquely determine a monic polynomial P_n of degree n by the

 $\stackrel{\text{\tiny{fig}}}{\sim}$ Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399.

* Corresponding author.

E-mail addresses: lubinsky@math.gatech.edu (D.S. Lubinsky), asidi@cs.technion.ac.il (A. Sidi).

^{0021-9045/\$ -} see front matter © 2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jat.2014.01.001

biorthogonality conditions

$$\int_0^1 P_n(x)\psi(x)^j dx = \begin{cases} 0, & j = 0, 1, 2, \dots, n-1, \\ I_n \neq 0, & j = n. \end{cases}$$
(1)

 P_n will have *n* simple zeros in (0, 1), so we may write

$$P_n(x) = \prod_{j=1}^n (x - x_{jn}).$$
 (2)

The proof of this is the same as for classical orthogonal polynomials. Our goal in this paper is to investigate the zero distribution of P_n as $n \to \infty$. Accordingly, we define the zero counting measures

$$\mu_n = \frac{1}{n} \sum_{j=1}^n \delta_{x_{jn}},\tag{3}$$

that place mass $\frac{1}{n}$ at each of the zeros of P_n , and want to describe the weak limit(s) of μ_n as $n \to \infty$.

This topic was initiated by the second author, in the course of his investigations on convergence acceleration [8,24], and numerical integration of singular integrands. He considered [21–23]

 $\psi(x) = \log x, \quad x \in (0, 1)$

and found that the corresponding biorthogonal polynomials are

$$P_n(x) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \left(\frac{j+1}{n+1}\right)^j x^j.$$

The latter are now often called the *Sidi polynomials*, and one may represent them as a contour integral. Using steepest descent, the strong asymptotics of P_n , and their zero distribution, were established in [14]. Asymptotics for more general polynomials of this type were analyzed by Elbert [7]. Extensions, asymptotics, and applications in numerical integration, and convergence acceleration have been considered in [15,16,25,26]. Biorthogonal polynomials of a more general form have been studied in several contexts—see [5,10,11]. The sorts of biorthogonal polynomials used in random matrices [3,6,12] are mostly different, although there are some common ideas in the associated potential theory.

Herbert Stahl's interest in this topic arose after he referred [14]. He and the first author discussed the topic at some length at a conference in honor of Paul Erdős in 1995. This led to a draft paper on zero distribution in the later 1990s, with revisions in 2001, and 2003, and this paper is the partial completion of that work. For the case $\psi(x) = x^{\alpha}$, $\alpha > 0$, we presented explicit formulae in [18]. Rodrigues type representations were studied in [17].

Distribution of zeros of polynomials is closely related to potential theory [1,20,28], and accordingly we introduce some potential theoretic concepts. We let $\mathcal{P}(\mathcal{E})$ denote the set of all probability measures with compact support contained in the set \mathcal{E} . For any positive Borel measure μ , we define its classical energy integral

$$I(\mu) = \iint \log \frac{1}{|x-t|} d\mu(x) d\mu(t), \tag{4}$$

and denote its support by supp $[\mu]$. Where appropriate, we consider these concepts for signed measures too. For any set \mathcal{E} in the plane, its (inner) logarithmic capacity is

$$cap(\mathcal{E}) = \sup \left\{ e^{-I(\mu)} : \mu \in \mathcal{P}(\mathcal{E}) \right\}.$$

We say that a property holds q.e. (quasi-everywhere) if it holds outside a set of capacity 0. We use *meas* to denote linear Lebesgue measure 0. For further orientation on potential theory, see for example [13,19,20].

In our setting we need a new energy integral

$$J(\mu) = \iint K(x,t) d\mu(x) d\mu(t),$$
(5)

where

$$K(x,t) = \log \frac{1}{|x-t|} + \log \frac{1}{|\psi(x) - \psi(t)|}.$$
(6)

In [6], a similar energy integral was considered for $\psi(t) = e^t$, but with an external field. The minimal energy corresponding to ψ is

$$J^{*}(\psi) = \inf \{ J(\mu) : \mu \in \mathcal{P}([0,1]) \}.$$
(7)

Under mild conditions on ψ , we shall prove that there is a unique probability measure, which we denote by ν_{ψ} , attaining the minimum. For probability measures μ , ν , we define the classical potential

$$U^{\mu}(x) = \int \log \frac{1}{|x-t|} d\mu(t),$$
(8)

the mixed potential

$$W^{\mu,\nu}(x) = \int \log \frac{1}{|x-t|} d\mu(t) + \int \log \frac{1}{|\psi(x) - \psi(t)|} d\nu(t)$$
(9)

$$= U^{\mu}(x) + U^{\nu \circ \psi^{[-1]}} \circ \psi(x),$$
(10)

and the ψ potential

$$W^{\mu}(x) = W^{\mu,\mu}(x) = \int K(x,t) \, d\mu(t).$$
(11)

We note that potential theory for generalized kernels is an old topic, see for example, Chapter VI in [13]. However, there does not seem to be a comprehensive treatment covering our setting. Our most important restrictions on ψ are contained in:

Definition 1.1. Let $\psi : [0, 1] \to [\psi(0), \psi(1)]$ be a strictly increasing continuous function, with inverse $\psi^{[-1]}$. Assume that ψ satisfies the following two conditions:

(I)

$$cap(E) = 0 \Rightarrow cap\left(\psi^{[-1]}(E)\right) = 0.$$
(12)

(II) For each $\varepsilon > 0$, there exists $\delta > 0$ such that

$$meas(E) \le \delta \Rightarrow meas\left(\psi^{[-1]}(E)\right) \le \varepsilon.$$
(13)

Then we say that ψ preserves smallness of sets.

The conditions (I), (II) are satisfied if ψ satisfies a local lower Lipschitz condition. By this we mean that we can write [0, 1] as a countable union of intervals [a, b] such that in [a, b], there exist $C, \alpha > 0$ depending on a, b, with

$$|\psi(x) - \psi(t)| \ge C |t - x|^{\alpha}, \quad x, t \in [a, b].$$

We can apply Theorem 5.3.1 in [19, p. 137] to ψ^{-1} to deduce (12).

Using classical methods, we shall prove:

Theorem 1.2. Let $\psi : [0, 1] \rightarrow [\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. Define the minimal energy $J^* = J^*(\psi)$ by (7). Then

(a) J^* is finite and there exists a unique probability measure v_{ψ} on [0, 1] such that

$$J\left(\nu_{\psi}\right) = J^*. \tag{14}$$

(b)

$$W^{\nu_{\psi}} \ge J^* \quad q.e. \ in \ [0,1].$$
 (15)

In particular, this is true at each point of continuity of $W^{\nu_{\psi}}$.

(c)

$$W^{\nu_{\psi}} \le J^* \quad in \operatorname{supp} \left[\nu_{\psi} \right] \tag{16}$$

and

$$W^{\nu_{\psi}} = J^* \quad q.e. \text{ in supp}\left[\nu_{\psi}\right]. \tag{17}$$

(d) v_{ψ} is absolutely continuous with respect to linear Lebesgue measure on [0, 1]. Moreover, there are constants C_1 and C_2 depending only on ψ , such that for all compact $\mathcal{K} \subset [0, 1]$,

$$\nu_{\psi}(K) \le \frac{C_1}{|\log \operatorname{cap} \mathcal{K}|} \le \frac{C_2}{|\log \operatorname{meas} (\mathcal{K})|}.$$
(18)

(e) There exists $\varepsilon > 0$ such that

$$[0,\varepsilon] \cup [1-\varepsilon,1] \subset \operatorname{supp} \left[\nu_{\psi} \right]. \tag{19}$$

Let

$$I_n = \int_0^1 P_n(t)\psi(t)^n dt, \quad n \ge 1.$$
 (20)

Theorem 1.3. Let $\psi : [0, 1] \rightarrow [\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. Let $\{P_n\}$ be the corresponding biorthogonal polynomials, with zero counting measures $\{\mu_n\}$. If

$$\sup [\nu_{\psi}] = [0, 1],$$
 (21)

then the zero counting measures $\{\mu_n\}$ of (P_n) satisfy

$$\mu_n \stackrel{*}{\to} \nu_{\psi}, \quad n \to \infty \tag{22}$$

and

$$\lim_{n \to \infty} I_n^{1/n} = \exp\left(-J^*\right). \tag{23}$$

The weak convergence (22) is defined in the usual way:

$$\lim_{n\to\infty}\int_0^1 f(t)d\mu_n(t) = \int_0^1 f(t)d\nu_{\psi}(t),$$

for every continuous function $f : [0, 1] \to \mathbb{R}$. We can replace (21) by the more implicit, but more general, assumption that supp $[\nu_{\psi}]$ contains the support of every weak limit of every subsequence of (μ_n) . We can at least prove it when the kernel K, and hence the potential $W^{\nu_{\psi}}$, satisfies a convexity condition:

Theorem 1.4. Let $\psi : [0, 1] \rightarrow [\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. In addition assume that ψ is twice continuously differentiable in (0, 1) and either

(a) for
$$x, t \in (0, 1)$$
 with $x \neq t$,

$$\frac{\partial^2}{\partial x^2} K(x, t) > 0,$$
(24)

or

(b) for $x, t \in (\psi(0), \psi(1))$ with $x \neq t$,

$$\frac{\partial^2}{\partial x^2} \left[K\left(\psi^{[-1]}(x), \psi^{[-1]}(t)\right) \right] > 0.$$
⁽²⁵⁾

Then

$$\sup\left[\nu_{\psi}\right] = [0, 1]. \tag{26}$$

Example. Let $\alpha > 0$ and

 $\psi(x) = x^{\alpha}, \quad x \in [0, 1].$

Then either (25) or (26) holds and hence (21) holds. We show this separately for $\alpha \ge 1$ and for $\alpha < 1$. An explicit formula for ν_{ψ} appears in [18, p.292].

Case I
$$\alpha \geq 1$$

We shall show that the hypotheses of Theorem 1.4(a) are fulfilled. A straightforward calculation gives that

$$\begin{aligned} \Delta(x,t) &:= (x-t)^2 \left(\psi(x) - \psi(t) \right)^2 \frac{\partial^2}{\partial x^2} K(x,t) \\ &= \left(x^\alpha - t^\alpha \right)^2 + \left(\alpha x^{\alpha - 1} \right)^2 (x-t)^2 - \alpha \left(\alpha - 1 \right) x^{\alpha - 2} \left(x^\alpha - t^\alpha \right) (x-t)^2. \end{aligned}$$

Writing s = tx, we see that

$$\Delta(x,t) = x^{2\alpha}H(s),$$

where

$$H(s) := (1 - s^{\alpha})^{2} + \alpha^{2} (1 - s)^{2} - \alpha (\alpha - 1) (1 - s^{\alpha}) (1 - s)^{2}.$$
⁽²⁷⁾

For s > 1, all three terms on the right-hand side of (27) are positive, so H(s) > 0. If $0 \le s < 1$, we see that

$$H(s) = (1 - s^{\alpha})^{2} + \alpha (1 - s)^{2} \{ \alpha - (\alpha - 1) (1 - s^{\alpha}) \}$$

$$\geq (1 - s^{\alpha})^{2} + \alpha (1 - s)^{2} > 0.$$

In summary, if $\alpha > 1$, we have for all $x \in [0, 1]$ and $s \in [0, \infty) \setminus \{1\}$,

$$\Delta(x, sx) > 0$$

so the hypotheses (24) are fulfilled.

Case II $\alpha < 1$.

Here

$$\psi^{[-1]}(x) = x^{1/\alpha}$$

and

$$K\left(\psi^{[-1]}(x),\psi^{[-1]}(t)\right) = \log\frac{1}{\left|x^{1/\alpha} - t^{1/\alpha}\right|} + \log\frac{1}{|x-t|},$$

which is exactly the case $1/\alpha > 1$ treated above, so we see that the hypothesis (25) is fulfilled.

Instead of placing an implicit assumption on the support of v_{ψ} , we can place an implicit assumption on the zeros of $\{P_n\}$, and obtain a unique weak limit:

Theorem 1.5. Let ψ : $[0, 1] \rightarrow [\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. Let $\mathcal{K} \subset [0, 1]$ be compact. Assume that every weak limit of every subsequence of the zero counting measures $\{\mu_n\}$ has support \mathcal{K} . Then there is a unique probability measure μ on K such that

$$\mu_n \stackrel{*}{\to} \mu, \quad n \to \infty, \tag{28}$$

and a unique positive number A such that

$$\lim_{n \to \infty} I_n^{1/n} = A.$$
⁽²⁹⁾

Here μ is absolutely continuous with respect to a linear Lebesgue measure, and is the unique solution of the integral equation

$$W^{\mu}(x) = \text{Constant}, \quad q.e. \ x \in \mathcal{K}.$$
 (30)

Moreover, then

$$W^{\mu}(x) = \log \frac{1}{A}, \quad q.e. \ x \in \mathcal{K}.$$

We note that in [6], a related integral equation to (30) appears. We shall also need the *dual* polynomials Q_n such that $Q_n \circ \psi$ are biorthogonal to powers of x. Thus we define Q_n to be a monic polynomial of degree n determined by the conditions

$$\int_0^1 Q_n \circ \psi(t) t^j dt = 0, \tag{31}$$

j = 0, 1, 2, ..., n - 1. Because of this biorthogonality condition,

$$\int_{0}^{1} Q_{n} \circ \psi(t) t^{n} dt = \int_{0}^{1} Q_{n} \circ \psi(t) P_{n}(t) dt = \int_{0}^{1} P_{n}(t) \psi(t)^{n} dt$$

That is,

$$I_n = \int_0^1 P_n(t)\psi(t)^n dt = \int_0^1 Q_n \circ \psi(t)t^n dt.$$
 (32)

The orthogonality conditions ensure that $Q_n \circ \psi$ has *n* distinct zeros $\{y_{jn}\}$ in (0, 1), so we can write

$$Q_n \circ \psi(t) = \prod_{j=1}^n \left(\psi(t) - \psi\left(y_{jn}\right) \right).$$
(33)

Let

$$\nu_n = \frac{1}{n} \sum_{j=1}^n \delta_{y_{jn}}.$$
(34)

We shall prove

Theorem 1.6. Let $\psi : [0, 1] \rightarrow [\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets, and assume (21). We have as $n \rightarrow \infty$,

 $\nu_n \stackrel{*}{\rightarrow} \nu_{\psi}.$

We also prove the following extremal property for weak subsequential limits of $\{\mu_n\}$.

Theorem 1.7. Let $\psi : [0, 1] \to [\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. Assume that S is an infinite subsequence of positive integers such that as $n \to \infty$ through S,

$$\mu_n \stackrel{*}{\to} \mu; \tag{35}$$

$$\nu_n \stackrel{*}{\to} \nu;$$
 (36)

and

$$I_n^{1/n} \to A,\tag{37}$$

where $A \in \mathbb{R}$ and $\mu, \nu \in \mathcal{P}([0, 1])$. Then

$$A \le \exp\left(-\sup_{\beta \in \mathcal{P}([0,1])} \inf_{[0,1]} W^{\mu,\beta}\right)$$
(38)

and

$$A \le \exp\left(-\sup_{\alpha \in \mathcal{P}([0,1])} \inf_{[0,1]} W^{\alpha,\nu}\right).$$
(39)

$$Q = U^{\nu \circ \psi^{[-1]}} \circ \psi \quad \text{on } [0, 1]$$

Then the second inequality above says

$$A \leq \exp\left(-\sup_{\alpha \in \mathcal{P}([0,1])} \inf_{[0,1]} \left(U^{\alpha} + Q\right)\right).$$

This is reminiscent of one characterization of the equilibrium measure for the external field Q [20, Theorem I.3.1, p. 43].

- (b) Herbert Stahl sketched a proof that when ψ is strictly increasing and piecewise linear, then (21) holds [27]. His expectation was that this and a limiting argument could establish (21) very generally.
- (c) There are two principal issues left unresolved in this paper, that seem worthy of further study:
 - (I) Find general hypotheses for supp $[\nu_{\psi}] = [0, 1]$.
 - (II) Find an explicit representation of the solution μ' of the integral equation (30), that is of

$$\int_0^1 \log|x - t| \,\mu'(t)dt + \int_0^1 \log|\psi(x) - \psi(t)| \,\mu'(t)dt = \text{Constant}, \quad x \in [0, 1].$$

The usual methods (differentiating, and solving a Cauchy singular integral equation) do not seem to work, even when ψ is analytic.

Next we show that if ψ is constant in an interval, then the support of the equilibrium measure should avoid that interval, as do most of the zeros of $\{P_n\}$:

Example. Let

$$\psi(x) = \begin{cases} 2x, & x \in \left[0, \frac{1}{2}\right] \\ 1, & x \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Then it is not difficult to see that the equilibrium measure v_{ψ} must have support $[0, \frac{1}{2}]$. Indeed if μ is a probability measure that has positive measure on $[a, b] \subset (\frac{1}{2}, 1)$, then as

$$\log \frac{1}{|\psi(x) - \psi(t)|} = \infty, \quad x, t \in [a, b],$$

so

 $J(\mu) = \infty.$

Consequently,

$$J^* = \inf\left[2I\left(\mu\right) + \log\frac{1}{2}\right],$$

where the inf is now taken over all $\mu \in \mathcal{P}\left(\left[0, \frac{1}{2}\right]\right)$. Then ν_{ψ} is the classical equilibrium measure for $\left[0, \frac{1}{2}\right]$, namely

$$\nu'_{\psi}(x) = \frac{1}{\pi \sqrt{x\left(\frac{1}{2} - x\right)}}, \quad x \in \left[0, \frac{1}{2}\right],$$

and

$$J^* = 2\log 8 + \log \frac{1}{2} = \log 32.$$

In this case, we can also almost explicitly determine P_n . The biorthogonality conditions give for π of degree at most n - 1,

$$\int_0^{1/2} P_n(x)\pi(2x)dx + \pi (1) \int_{1/2}^1 P_n(x)dx = 0.$$

In particular, this is true for $\pi \equiv 1$, so

$$\int_{1/2}^{1} P_n(x) dx = -\int_0^{1/2} P_n(x) dx$$

and we obtain for any π of degree at most n - 1,

$$\int_0^{1/2} P_n(x) \left(\pi(2x) - \pi(1) \right) dx = 0.$$

Then for every polynomial *S* of degree $\leq n - 2$,

$$\int_{0}^{1/2} P_n(x)S(x) \left(1 - 2x\right) dx = 0,$$
(40)

which forces P_n to have at least n - 1 distinct zeros in $[0, \frac{1}{2}]$. Then every weak limit of every subsequence of $\{\mu_n\}$ has support in $[0, \frac{1}{2}]$.

This paper is organized as follows: in Section 2, we present a principle of descent, and a lower envelope theorem, and the proof of Theorem 1.2. In Section 3, we prove Theorems 1.3–1.7. Throughout the sequel, we assume that $\psi : [0, 1] \rightarrow [\psi(0), \psi(1)]$ is a strictly increasing continuous function that preserves smallness of sets.

We close this section with some extra notation. Define the *companion polynomial* to P_n , namely

$$R_n(x) = \prod_{j=1}^n \left(x - \psi\left(x_{jn}\right) \right).$$
(41)

It has the property that $R_n \circ \psi$ has the same zeros as P_n . Hence

$$P_n(x)R_n \circ \psi(x) \ge 0 \quad \text{in } [0,1].$$
(42)

Analogous to R_n , we define

$$S_n(t) = \prod_{j=1}^n (t - y_{jn}),$$
(43)

so that

$$S_n(t)Q_n \circ \psi(t) \ge 0, \quad t \in [0,1].$$
 (44)

Observe that I_n of (20) satisfies

$$I_n = \int_0^1 P_n(x) R_n \circ \psi(x) dx = \int_0^1 Q_n \circ \psi(x) S_n(x) dx > 0.$$
(45)

2. Proof of Theorem 1.2

We begin by noting that for any positive measures α , β , $W^{\alpha,\beta}$ is lower semicontinuous, since a potential of any positive measure is, while ψ and $\psi^{[-1]}$ are continuous. We start with

Lemma 2.1 (*The Principle of Descent*). Let $\{\alpha_n\}$ and $\{\beta_n\}$ be finite positive Borel measures on [0, 1] such that

$$\lim_{n \to \infty} \alpha_n ([0, 1]) = 1 = \lim_{n \to \infty} \beta_n ([0, 1]).$$

Assume moreover that as $n \to \infty$,

$$\begin{array}{c}
\alpha_n \stackrel{*}{\rightarrow} \alpha; \\
\beta_n \stackrel{*}{\rightarrow} \beta.
\end{array}$$

(a) If $\{x_n\} \subset [0, 1]$ and $x_n \to x_0, n \to \infty$, then $\liminf_{n \to \infty} W^{\alpha_n, \beta_n}(x_n) \ge W^{\alpha, \beta}(x_0).$

(b) If $\mathcal{K} \subset [0, 1]$ is compact and

$$W^{\alpha,\beta} \geq \lambda \quad in \mathcal{K},$$

then uniformly in K,

$$\liminf_{n\to\infty} W^{\alpha_n,\beta_n}(x) \geq \lambda.$$

Proof. (a) By the classical principle of descent,

$$\liminf_{n\to\infty} U^{\alpha_n}(x_n) \ge U^{\alpha}(x_0),$$

see for example, [20, Theorem I.6.8, p. 70]. Next, we see from the classical principle of descent and continuity of ψ , $\psi^{[-1]}$ that

$$\liminf_{n\to\infty} U^{\beta_n\circ\psi^{[-1]}}\circ\psi(x_n)\geq U^{\beta\circ\psi^{[-1]}}\circ\psi(x_0).$$

Combining these two gives the result.

(b) This follows easily from (a). If (b) fails, we can choose a sequence (x_n) in K with limit $x_0 \in K$ such that

$$\liminf_{n \to \infty} W^{\alpha_n, \beta_n} (x_n) < \lambda \le W^{\alpha, \beta} (x_0). \quad \Box$$

Recall our notation $W^{\alpha_n} = W^{\alpha_n, \alpha_n}$. We now establish

Lemma 2.2 (Lower Envelope Theorem). Assume the hypotheses of Lemma 2.1. Then for q.e. $x \in [0, 1]$,

$$\liminf_{n\to\infty,\ n\in\mathcal{S}}W^{\alpha_n}(x)=W^{\alpha}(x).$$

Proof. We already know from Lemma 2.1 (the principle of descent) that everywhere in [0, 1],

$$\liminf_{n\to\infty,\ n\in\mathcal{S}}W^{\alpha_n}(x)\geq W^{\alpha}(x).$$

Suppose the result is false. Then there exists $\varepsilon > 0$, and a (Borel) set S of positive capacity such that

$$\liminf_{n \to \infty, \ n \in \mathcal{S}} W^{\alpha_n}(x) \ge W^{\alpha}(x) + \varepsilon \quad \text{in } S.$$
(46)

Because Borel sets are inner regular, and even more, capacitable, we may assume that S is compact. Then there exists a probability measure ω with support in S such that U^{ω} is continuous in \mathbb{C} . See, for example, [20, Corollary I.6.11, p. 74]. As ψ and $\psi^{[-1]}$ are continuous,

$$W^{\omega} = U^{\omega} + U^{\omega \circ \psi^{\lfloor -1 \rfloor}} \circ \psi$$

is also continuous in [0, 1]. Then by Fubini's Theorem and weak convergence

$$\liminf_{n \to \infty, n \in S} \int W^{\alpha_n} d\omega = \liminf_{n \to \infty, n \in S} \int W^{\omega} d\alpha_n$$
$$= \int W^{\omega} d\alpha = \int W^{\alpha} d\omega.$$

Here since K(x, t) is bounded below in [0, 1], we may continue this using (46) and Fatou's Lemma as

$$= \int (W^{\alpha} + \varepsilon) d\omega - \varepsilon$$

$$\leq \int \left(\liminf_{n \to \infty, n \in S} W^{\alpha_n}\right) d\omega - \varepsilon$$

$$\leq \liminf_{n \to \infty, n \in S} \int W^{\alpha_n} d\omega - \varepsilon.$$

So we have a contradiction. \Box

Next, we show that J^* is finite, establishing part of Theorem 1.2(a):

Lemma 2.3. J^* is finite.

Proof. This is really a consequence of Cartan's Lemma for potentials. Let $\mu = meas$ denote Lebesgue measure on [0, 1]. Then for $x \in [0, 1]$,

$$U^{\mu}(x) = \int_0^1 \log \frac{1}{|x-t|} dt \le 2 \int_0^1 \log \frac{1}{s} ds$$

and U^{μ} is continuous. Now consider the unit measure $\mu \circ \psi^{[-1]}$. By Cartan's Lemma [9, p. 366], if $\varepsilon > 0$ and

$$\mathcal{A}^{\varepsilon} = \left\{ y \in \mathbb{R} : U^{\mu \circ \psi^{[-1]}}(y) > \log \frac{1}{\varepsilon} \right\},\$$

then

$$\mu\left(\mathcal{A}^{\varepsilon}\right) \leq 3e\varepsilon.$$

With a suitably small choice of ε , we then have by the hypothesis (13),

$$\mu\left(\psi^{\left[-1\right]}\left(\mathcal{A}^{\varepsilon}\right)\right) \leq \frac{1}{2}.$$

With this choice of ε , let

$$\mathcal{B} = [0, 1] \setminus \psi^{[-1]} \left(\mathcal{A}^{\varepsilon} \right),$$

a closed set. Let

$$\nu = \frac{\mu_{|\mathcal{B}}}{\mu_{|\mathcal{B}|}}.$$

As $\mu(\mathcal{B}) \geq \frac{1}{2}$, ν is a well defined probability measure. Moreover, $x \in \mathcal{B} \Rightarrow \psi(x) \notin \mathcal{A}^{\varepsilon}$, and

$$U^{\nu \circ \psi^{[-1]}} \circ \psi(x) = \frac{1}{\mu(B)} \left[U^{\mu \circ \psi^{[-1]}} \circ \psi(x) - U^{\mu_{[[0,1] \setminus \mathcal{B}} \circ \psi^{[-1]}} \circ \psi(x) \right] \\ \leq \frac{1}{\mu(B)} \left[\log \frac{1}{\varepsilon} + \log \left(2 \|\psi\|_{L_{\infty}[0,1]} \right) \right] =: C_0 < \infty.$$

Then

$$J^* \le J(\nu) \le I(\nu) + C_0 < \infty. \quad \Box$$

Proof of Theorem 1.2. (a) We can choose a sequence $\{\alpha_n\}$ of probability measures on [0, 1] such that

 $\lim_{n\to\infty}J\left(\alpha_n\right)=J^*.$

By Helly's Theorem, we can choose a subsequence converging weakly to some probability measure α on [0, 1], and by relabeling, we may assume that the full sequence $\{\alpha_n\}$ converges weakly to α . Then $\{\alpha_n \circ \psi^{[-1]}\}$ converges weakly to $\alpha \circ \psi^{[-1]}$. By the classical principle of descent

$$\liminf_{n\to\infty}I\left(\alpha_n\right)\geq I\left(\alpha\right)$$

and

$$\liminf_{n\to\infty} I\left(\alpha_n\circ\psi^{[-1]}\right)\geq I\left(\alpha\circ\psi^{[-1]}\right),$$

or equivalently,

$$\liminf_{n \to \infty} \iint \log \frac{1}{|\psi(x) - \psi(t)|} d\alpha_n(x) d\alpha_n(t) \ge \iint \log \frac{1}{|\psi(x) - \psi(t)|} d\alpha(x) d\alpha(t).$$

See, for example, [20, Theorem I.6.8, p. 70]. Combining these, we have

$$J^* = \liminf_{n \to \infty} J(\alpha_n) \ge J(\alpha) \,,$$

so α achieves the inf, and is an equilibrium distribution. If β is another such distribution, then the parallelogram law

$$J\left(\frac{1}{2}(\alpha+\beta)\right)+J\left(\frac{1}{2}(\alpha-\beta)\right)=\frac{1}{2}(J(\alpha)+J(\beta))=J^*,$$

gives

$$J\left(\frac{1}{2}\left(\alpha-\beta\right)\right) = J^* - J\left(\frac{1}{2}\left(\alpha+\beta\right)\right) \le 0.$$

as $\frac{1}{2}(\alpha + \beta)$ is also a probability measure on [0, 1]. Here

$$J\left(\frac{1}{2}(\alpha-\beta)\right) = I\left(\frac{1}{2}(\alpha-\beta)\right) + I\left(\frac{1}{2}\left(\alpha\circ\psi^{[-1]}-\beta\circ\psi^{[-1]}\right)\right),$$

and both terms on the right-hand side are non-negative as both measures inside the energy integrals on the right have total mass 0. See [20, Lemma I.1.8, p. 29]. Hence

$$I\left(\frac{1}{2}\left(\alpha-\beta\right)\right)=0,$$

so $\alpha = \beta$ [20, Lemma I.1.8, p. 29].

(b) Suppose the result is false. Then for some large enough integer n_0 ,

$$E_1 := \left\{ x \in [0, 1] : W^{\nu_{\psi}}(x) \le J^* - \frac{1}{n_0} \right\}$$

has positive capacity and is compact, since $W^{\nu_{\psi}}$ is lower semi-continuous. But,

$$\int W^{\nu_{\psi}} d\nu_{\psi} = J\left(\nu_{\psi}\right) = J^*,$$

so there exists a compact subset E_2 disjoint from E_1 such that

$$W^{\nu_{\psi}}(x) > J^* - \frac{1}{2n_0}, \quad x \in E_2,$$

and

$$m = v_{\psi} \left(E_2 \right) > 0.$$

Now as E_1 is a compact set of positive capacity, we can find a positive measure σ on E_1 , with support in E_1 , such that U^{σ} is continuous in the plane [20, Corollary I.6.11, p. 74]. Then $U^{\sigma \circ \psi^{[-1]}}$ is also continuous in $[\psi(0), \psi(1)]$, so W^{σ} is continuous in [0, 1]. We may also assume that

$$\sigma(E_1) = m$$

Define a signed measure σ_1 on [0, 1], by

$$\sigma_1 := \begin{cases} \sigma & \text{in } E_1 \\ -\nu_{\psi} & \text{in } E_2 \\ 0 & \text{elsewhere.} \end{cases}$$

Here if $\eta \in (0, 1)$,

$$J(v_{\psi} + \eta\sigma_1) = J(v_{\psi}) + 2\eta \int W^{v_{\psi}} d\sigma_1 + \eta^2 J(\sigma_1)$$

$$\leq J(v_{\psi}) + 2\eta \left\{ \int_{E_1} \left[J^* - \frac{1}{n_0} \right] d\sigma \right. \\ \left. + \int_{E_2} \left[J^* - \frac{1}{2n_0} \right] d(-v_{\psi}) \right\} + \eta^2 J(\sigma_1) \\ = J(v_{\psi}) + 2\eta m \left\{ \left[J^* - \frac{1}{n_0} \right] - \left[J^* - \frac{1}{2n_0} \right] \right\} + \eta^2 J(\sigma_1) \\ = J(v_{\psi}) - \frac{\eta m}{n_0} + \eta^2 J(\sigma_1) < J(v_{\psi}),$$

for small $\eta > 0$. As σ_1 has total mass 0, so $\nu_{\psi} + \eta \sigma_1$ has total mass 1, and we see from the identity

$$\nu_{\psi} + \eta \sigma_1 = (1 - \eta) \nu_{\psi|E_2} + \nu_{\psi|[0,1]\setminus E_2} + \eta \sigma$$

that it is non-negative. Then we have a contradiction to the minimality of $J(v_{\psi})$.

(c) Let $x_0 \in \text{supp}[\nu_{\psi}]$ and suppose that

 $W^{\nu_{\psi}}(x_0) > J^*.$

By the lower semi-continuity of $W^{\nu_{\psi}}$, there exist $\varepsilon > 0$ and closed [a, b] containing x_0 such that

$$W^{\nu_{\psi}}(x) > J^* + \varepsilon, \quad x \in [a, b].$$

We know too that

$$W^{\nu_{\psi}}(x) \ge J^* \quad \text{for q.e. } x \in \text{supp}[\nu_{\psi}].$$

Here as J^* is finite, so $I(v_{\psi})$ must be finite (recall that K(x, t) is bounded below). Then v_{ψ} vanishes on sets of capacity 0, so this last inequality holds v_{ψ} a.e. (cf. [19, Theorem 3.2.3, p. 56]). Then

$$J^* = J\left(\nu_{\psi}\right) = \left(\int_a^b + \int_{[0,1]\setminus[a,b]}\right) W^{\nu_{\psi}}(x) \, d\nu_{\psi}(x)$$

$$\geq \left(J^* + \varepsilon\right) \nu_{\psi}\left([a,b]\right) + J^* \nu_{\psi}\left([0,1]\setminus[a,b]\right)$$

$$= J^* + \varepsilon \nu_{\psi}\left([a,b]\right),$$

a contradiction.

(d) If $cap(\mathcal{K}) = 0$, then as $I(v_{\psi}) < \infty$, we have also $v_{\psi}(\mathcal{K}) = 0$, and the inequality (18) is immediate. So assume that $\mathcal{K} \subset \text{supp}[v_{\psi}]$ has positive capacity, and let ω be the equilibrium measure for \mathcal{K} . We may also assume that $\mathcal{K} \subset \text{supp}[v_{\psi}]$, since

 $\nu_{\psi}\left(\mathcal{K}\right) = \nu_{\psi}\left(\mathcal{K} \cap \text{supp}\left[\nu_{\psi}\right]\right).$

Now, there exists a positive constant C_0 such that

 $K(x,t) \ge -C_0, \quad x,t \in [0,1].$

Then by (c), for $x \in \mathcal{K}$,

$$\int_{\mathcal{K}} K(x,t) dv_{\psi}(t) \leq J^* - \int_{[0,1]\setminus\mathcal{K}} K(x,t) dv_{\psi}(t)$$
$$\leq J^* + C_0$$

and hence for $x \in \mathcal{K}$,

$$\int_{\mathcal{K}} \log \frac{1}{|x-t|} dv_{\psi}(t) \le J^* + C_0 + \log \left(2 \|\psi\|_{L_{\infty}[0,1]} \right) =: C_1.$$
(47)

Here C_1 is independent of \mathcal{K} , x. Now

$$U^{\omega}(t) = \log \frac{1}{\operatorname{cap} \mathcal{K}}$$

for q.e. $t \in \mathcal{K}$ and since v_{ψ} vanishes on sets of capacity zero, this also holds for v_{ψ} a.e. $t \in \mathcal{K}$. Integrating (47) with respect to $d\omega(x)$ and using Fubini's theorem, gives

$$\int_{\mathcal{K}} U^{\omega}(t) dv_{\psi}(t) \le C_1$$

and hence

$$\nu_{\psi}(\mathcal{K})\log\frac{1}{cap \mathcal{K}} \leq C_1.$$

This gives the first inequality in (18), and then well known inequalities relating *cap* and *meas* give the second. In particular, that inequality implies the absolute continuity of μ with respect to linear Lebesgue measure.

(e) Suppose that $0 \notin \text{supp}[v_{\psi}]$. Let c > 0 be the closest point in the support of v_{ψ} to 0. Then for $x \in [0, \frac{c}{2}]$, and for all $t \in [c, 1]$, we have from the strict monotonicity of ψ that

$$K\left(x,t\right) < K\left(c,t\right) ,$$

so for such x,

$$W^{\nu_{\psi}}(x) = \int_{c}^{1} K(x,t) \, d\nu_{\psi}(t)$$

<
$$\int_{c}^{1} K(c,t) \, d\nu_{\psi}(t) = W^{\nu_{\psi}}(c) \le J^{*}.$$

Thus in spite of the continuity of $W^{\nu_{\psi}}$ in [0, c),

 $W^{\nu_{\psi}} < J^* \quad \text{in } \left[0, \frac{c}{2}\right],$

contradicting (b). Absolute continuity of v_{ψ} then shows that for some $\varepsilon > 0$, we have $[0, \varepsilon] \subset \sup [v_{\psi}]$. Similarly we can show that for some $\varepsilon > 0$, $[1 - \varepsilon, 1] \subset \sup [v_{\psi}]$. \Box

3. Proof of Theorems 1.3-1.7

Recall that μ_n and ν_n were defined respectively by (3) and (34). Throughout this section, we assume that S is an infinite subsequence of positive integers such that as $n \to \infty$ through S,

$$\mu_n \stackrel{*}{\to} \mu; \tag{48}$$

$$\nu_n \xrightarrow{*} \nu;$$
 (49)

and

$$I_n^{1/n} \to A,\tag{50}$$

where $A \in \mathbb{R}$ and $\mu, \nu \in \mathcal{P}([0, 1])$. In the sequel we make frequent use of identities such as

$$|P_n(x)|^{1/n} = \exp(-U^{\mu_n}(x))$$

and

$$|P_n(x)R_n \circ \psi(x)|^{1/n} = \exp\left(-W^{\mu_n}(x)\right).$$

We begin with

Lemma 3.1 (An Upper Bound for W^{μ}).

(a) With the hypotheses above, let $[a, b] \subset [0, 1]$ and assume that [a, b] contains two zeros of P_n for infinitely many $n \in S$. Then

$$\inf_{[a,b]} W^{\mu} \le \log \frac{1}{A}.$$

(b) In particular, if x_0 is a limit of two zeros of P_n as $n \to \infty$ through S, or $x_0 \in \text{supp}[\mu]$, then

$$W^{\mu}(x_0) \le \log \frac{1}{A}.$$

Proof. (a) We may assume (by passing to a subsequence) that for all $n \in S$, P_n has two zeros in [a, b]. Assume on the contrary, that for some $\varepsilon > 0$,

$$\inf_{[a,b]} W^{\mu} > \log \frac{1}{A} + \varepsilon.$$
(51)

Let x_n , y_n be two zeros of P_n in [a, b] and let

$$R_n^*(x) = R_n(x) / \left[(x - \psi(x_n)) (x - \psi(y_n)) \right]$$

Then we see that

$$P_n(x)R_n^*\circ\psi(x)\geq 0,\quad x\in[0,1]\setminus[a,b],$$

and

$$0 \le P_n(x)R_n \circ \psi(x) \le |P_n(x)R_n^* \circ \psi(x)| (4\|\psi\|_{L_{\infty}[0,1]})^2, \quad x \in [0,1].$$

Moreover, as R_n^* has the same asymptotic zero distribution as R_n , we see from Lemma 2.1 and (51) that

$$\limsup_{n \to \infty, \ n \in \mathcal{S}} |P_n(x) R_n^* \circ \psi(x)|^{1/n} \le \exp\left(-W^{\mu,\mu}(x)\right)$$
$$= \exp\left(-W^{\mu}(x)\right) \le Ae^{-\varepsilon},$$

uniformly in [a, b]. Then by biorthogonality, and positivity of $P_n(x)R_n^* \circ \psi(x)$ outside [a, b],

$$\lim_{n \to \infty, n \in \mathcal{S}} \sup_{n \to \infty, n \in \mathcal{S}} \left(\int_{[0,1] \setminus [a,b]} \left| P_n(x) R_n^* \circ \psi(x) \right| dx \right)^{1/n}$$
$$= \lim_{n \to \infty, n \in \mathcal{S}} \sup_{n \to \infty, n \in \mathcal{S}} \left| \int_{[a,b]} P_n(x) R_n^* \circ \psi(x) dx \right|^{1/n} \le A e^{-\varepsilon}$$

Of course Lemma 2.1(b) also gives

$$\lim_{n \to \infty, n \in \mathcal{S}} \sup_{n \to \infty, n \in \mathcal{S}} \left(\int_{[a,b]} |P_n(x)R_n^* \circ \psi(x)| \, dx \right)^{1/n} \le Ae^{-\varepsilon},$$

$$A = \lim_{n \to \infty, n \in \mathcal{S}} \sup_{n \to \infty, n \in \mathcal{S}} I_n^{1/n}$$

$$\le \lim_{n \to \infty, n \in \mathcal{S}} (4\|\psi\|_{L_{\infty}[0,1]})^{2/n} \left(\int_0^1 |P_n(x)R_n^* \circ \psi(x)| \, dx \right)^{1/n}$$

$$\le Ae^{-\varepsilon}.$$

This contradiction gives the result.

(b) This follows from (a), and lower semicontinuity of W^{μ} .

Lemma 3.2 (A Lower Bound for W^{μ}). At each point of continuity of W^{μ} in [0, 1], we have

$$W^{\mu} \ge \log \frac{1}{A}.$$
(52)

In particular, this inequality holds q.e. in [0, 1].

Proof. Assume that $a \in [0, 1]$ is a point of continuity of W^{μ} , but for some $\varepsilon > 0$,

$$W^{\mu}(a) \le \log \frac{1}{A} - 2\varepsilon.$$

Then there exists an interval [a, b] containing a, such that

$$W^{\mu}(x) \le \log \frac{1}{A} - \varepsilon, \quad x \in [a, b]$$

By the lower envelope theorem (Lemma 2.2)

$$\limsup_{n \to \infty, \ n \in \mathcal{S}} \left(P_n(x) R_n \circ \psi(x) \right)^{1/n} = \exp\left(-\liminf_{n \to \infty, \ n \in \mathcal{S}} W^{\mu_n}(x) \right) = \exp\left(-W^{\mu}(x) \right) \ge A e^{\varepsilon}$$

for q.e. $x \in [a, b]$. Let

$$\mathcal{T}_n = \left\{ x \in [a, b] : \left(P_n(x) R_n \circ \psi(x) \right)^{1/n} \ge A e^{\varepsilon/2} \right\}.$$

Then for each $m \ge 1$,

$$\bigcup_{n=m}^{\infty} \mathcal{T}_n$$

contains q.e. $x \in [a, b]$, so has linear Lebesgue measure b - a. Then for infinitely many n, T_n has linear Lebesgue measure at least n^{-2} , so

$$I_n^{1/n} \ge \left(\int_{\mathcal{T}_n} P_n(x) R_n \circ \psi(x) dx\right)^{1/n}$$
$$\ge n^{-2/n} A e^{\varepsilon/2}$$

so

so

$$A = \limsup_{n \to \infty, \ n \in \mathcal{S}} I_n^{1/n} \ge A e^{\varepsilon/2},$$

a contradiction.

Finally, we note that any logarithmic potential is continuous q.e. [13, p. 185], so U^{μ} and $U^{\mu\circ\psi^{[-1]}}$ are continuous q.e. Our hypothesis that $\psi^{[-1]}(E)$ has capacity zero whenever E does ensures that $U^{\mu\circ\psi^{[-1]}}\circ\psi$ is continuous q.e. also. Hence W^{μ} is continuous q.e. and so (52) holds q.e. in [0, 1]. \Box

Next, we establish lower and upper bounds for A.

Lemma 3.3. (a) There exist constants $C_1, C_2 > 0$ depending only on ψ (and not on the subsequence S above) such that

$$C_1 \ge A \ge C_2. \tag{53}$$

(b) In particular,

 $I(\mu) < \infty$.

(c)

$$J\left(\mu\right) = \log\frac{1}{A}\tag{54}$$

and

$$W^{\mu} = \log \frac{1}{A}$$
 q.e. and a.e. (μ) in supp [μ]. (55)

(d) μ is absolutely continuous with respect to linear Lebesgue measure on [0, 1]. Moreover, there are constants C_1 and C_2 depending only on ψ , and not on S, such that for all compact $\mathcal{K} \subset [0, 1]$,

$$\mu(K) \le \frac{C_1}{|\log \operatorname{cap} \mathcal{K}|} \le \frac{C_2}{|\log \operatorname{meas} (\mathcal{K})|}$$

Proof. (a) Firstly as all zeros of P_n and $R_n \circ \psi$ lie in [0, 1], so

$$I_n = \int_0^1 P_n(x) R_n \circ \psi(x) dx$$

$$\leq (\text{diam } \psi [0, 1])^n.$$

Here diam denotes the diameter of a set. So

$$A \leq \operatorname{diam} \psi [0, 1]$$
.

In the other direction, we use Cartan's Lemma for polynomials [2, p. 175], [4], [9, p. 366]. This asserts that if $\delta > 0$, then

$$|R_n(x)| \ge \left(\frac{\delta}{4e}\right)^n$$

outside a set \mathcal{E} of linear Lebesgue measure at most δ . Then

$$|R_n \circ \psi(x)| \ge \left(\frac{\delta}{4e}\right)^n, \quad x \in [0,1] \setminus \psi^{[-1]}(\mathcal{E}).$$

By our hypothesis (13), we may choose δ so small that

$$meas\left(\mathcal{E}\right) \leq \delta \Rightarrow meas\left(\psi^{\left[-1\right]}\left(\mathcal{E}\right)\right) \leq \frac{1}{4}$$

Next, Cartan's Lemma also shows that

$$|P_n(x)| \ge \left(\frac{1}{16e}\right)^n, \quad x \in [0,1] \setminus \mathcal{F},$$

where

meas
$$(\mathcal{F}) \leq \frac{1}{4}$$
.

Then

$$P_n(x)R_n \circ \psi(x) \ge \left(\frac{\delta}{64e^2}\right)^n, \quad x \in [0,1] \setminus \left(\psi^{[-1]}(\mathcal{E}) \cup \mathcal{F}\right)$$

and so

$$I_n \ge \int_{[0,1]\setminus (\psi^{[-1]}(\mathcal{E})\cup\mathcal{F})} P_n(x) R_n \circ \psi(x) dx$$
$$\ge \left(\frac{\delta}{64e^2}\right)^n \frac{1}{2}.$$

Hence

$$A \ge \frac{\delta}{64e^2}.$$

(b) Since for $x, t \in [0, 1]$,

$$\log \frac{1}{|\psi(x) - \psi(t)|} \ge \log \frac{1}{2 \operatorname{diam} \psi[0, 1]} > -\infty,$$

so for $x \in \text{supp}[\mu]$, Lemma 3.1(b) gives

$$\log \frac{1}{A} \ge W^{\mu}(x) \ge U^{\mu}(x) + \log \frac{1}{2 \operatorname{diam} \psi [0, 1]}$$

Then

$$I(u) \le \log \frac{1}{A} - \log \frac{1}{2 \operatorname{diam} \psi[0, 1]}$$

(c) As μ has finite energy, it vanishes on sets of capacity zero. Then combining Lemmas 3.1 and 3.2,

$$W^{\mu} = \log \frac{1}{A}$$
 both q.e. and a.e. (μ) in supp $[\mu]$.

Then the first assertion (54) also follows.

(d) This is almost identical to that of Theorem 1.2(d), following from the fact that

$$W^{\mu} \leq \log \frac{1}{A} \quad \text{in supp}\left[\mu\right]. \quad \Box$$

Proof of Theorem 1.5. Assume that S, μ and A are as in the beginning of this section. Assume that $S^{\#}$, $\mu^{\#}$, $A^{\#}$ satisfy analogous hypotheses. We shall show that

$$A = A^{\#}$$
 and $\mu = \mu^{\#}$.

Our hypothesis on the zeros shows that

$$\operatorname{supp}\left[\mu\right] = \operatorname{supp}\left[\mu^{\#}\right] = \mathcal{K}.$$

Then Lemma 3.3 shows that

$$W^{\mu} = \log \frac{1}{A}$$
 q.e. in \mathcal{K}

and

$$W^{\mu^{\#}} = \log \frac{1}{A^{\#}}$$
 q.e. in \mathcal{K} .

Since $I(\mu)$ and $I(\mu^{\#})$ are finite by Lemma 3.3, these last statements also hold μ a.e. and $\mu^{\#}$ a.e. in \mathcal{K} . Then

$$\log \frac{1}{A} = \int W^{\mu} d\mu^{\#} = \int W^{\mu^{\#}} d\mu = \log \frac{1}{A^{\#}}$$

It follows that there is a unique number A that is the limit of $I_n^{1/n}$ as $n \to \infty$. Next,

$$J(\mu - \mu^{\#}) = J(\mu) + J(\mu^{\#}) - 2\int W^{\mu}d\mu^{\#}$$
$$= \log\frac{1}{A} + \log\frac{1}{A} - 2\log\frac{1}{A} = 0.$$

As in Theorem 1.2(a), this then gives

$$\mu = \mu^{\#}.$$

This proof also shows that μ is the unique solution of the integral equation

$$W^{\mu} = C$$
 q.e. in \mathcal{K} .

We turn to the

Proof of Theorem 1.3. Let μ be a weak limit of some subsequence $\{\mu_n\}_{n\in\mathcal{S}}$ of $\{\mu_n\}_{n=1}^{\infty}$. We may also assume that (50) holds. From Lemma 3.3, μ has finite logarithmic energy, and from Lemma 3.2,

$$W^{\mu} \ge \log \frac{1}{A}$$
 q.e. in [0, 1].

Moreover, by Theorem 1.2(c) and our hypothesis (21),

$$W^{\nu_{\psi}} = J^*$$
 q.e. in [0, 1].

Then the last relations also hold μ a.e. and ν_{ψ} a.e., so

$$J^* = \int W^{\nu_{\psi}} d\mu = \int W^{\mu} d\nu_{\psi} \ge \log \frac{1}{A}.$$

Moreover, by Lemma 3.3(c),

$$W^{\mu} = \log \frac{1}{A} \quad \mu \text{ a.e. in supp } [\mu]$$

so

$$J(\mu) = \int W^{\mu} d\mu = \log \frac{1}{A} \le J^*.$$

Then necessarily

$$\log \frac{1}{A} = J(\mu) = J^*$$

and

$$\mu = \nu_{\psi}.$$
 \Box

Proof of Theorem 1.4. Assume first that ψ'' is continuous in (0, 1) and that for each $x, t \in [0, 1]$ with $x \neq t$,

$$\frac{\partial^2}{\partial x^2} K\left(x,t\right) > 0,$$

but that the support is not all of [0, 1]. We already know that $[0, \varepsilon] \cup [1 - \varepsilon, 1] \subset \text{supp} [\nu_{\psi}]$ for some $\varepsilon > 0$. Then there exist 0 < a < b < 1 such that

$$(a,b) \cap \operatorname{supp}\left[\nu_{\psi}\right] = \varnothing.$$
(56)

We may assume that both

$$a, b \in \operatorname{supp}\left[v_{\psi}\right]. \tag{57}$$

Then by Theorem 1.2(c),

 $W^{\nu_{\psi}}(a) \leq J^*$ and $W^{\nu_{\psi}}(b) \leq J^*$.

But in (a, b), which lies outside the support of μ , W^{μ} will be twice continuously differentiable, and by our hypothesis,

$$\frac{\partial^2}{\partial x^2} W^{\nu_{\psi}}(x) = \int \frac{\partial^2}{\partial x^2} K(x,t) \, d\nu_{\psi}(t) > 0.$$

The convexity of $W^{\nu_{\psi}}$ forces in some $(c, d) \subset (a, b)$

$$W^{\mu} < J^*$$

This contradicts Theorem 1.2(b).

Next, suppose that for $x, t \in (\psi(0), \psi(1))$ with $x \neq t$,

$$\frac{\partial^2}{\partial x^2} \left[K\left(\psi^{[-1]}(x), \psi^{[-1]}(t) \right) \right] > 0.$$

Consider

$$W^{\nu_{\psi}} \circ \psi^{[-1]}(x) = \int K\left(\psi^{[-1]}(x), t\right) d\nu_{\psi}(t)$$

= $\int K\left(\psi^{[-1]}(x), \psi^{[-1]}(s)\right) d\nu_{\psi} \circ \psi^{[-1]}(s).$

46

We have

$$W^{\nu_{\psi}} \circ \psi^{[-1]}(x) \leq J^* \quad \text{if } x \in \psi\left(\sup\left[\nu_{\psi}\right]\right)$$

and at each point of continuity of $W^{\nu_{\psi}} \circ \psi^{[-1]}$, Theorem 1.2(b) gives

 $W^{\nu_{\psi}} \circ \psi^{[-1]}(x) \ge J^*.$

We also see that for $x \in [\psi(0), \psi(1)] \setminus \psi(\sup [\nu_{\psi}])$,

$$\frac{\partial^2}{\partial x^2} \left[W^{\nu_{\psi}} \circ \psi^{[-1]}(x) \right] = \int \frac{\partial^2}{\partial x^2} \left[K \left(\psi^{[-1]}(x), \psi^{[-1]}(s) \right) \right] d\nu_{\psi} \circ \psi^{[-1]}(s) > 0.$$

If 0 < a < b < 1 and (56), (57) hold, then by Theorem 1.2(c),

$$W^{\nu_{\psi}} \circ \psi^{[-1]}(\psi(a)) \le J^*$$
 and $W^{\nu_{\psi}} \circ \psi^{[-1]}(\psi(b)) \le J^*$

so in some interval

$$(c,d) \subset (\psi(a),\psi(b)),$$

the convexity gives

$$W^{\nu_{\psi}} \circ \psi^{[-1]} < J^*.$$

But then

$$W^{\nu_{\psi}} < J^*$$
 in $(\psi(c), \psi(d))$

contradicting Theorem 1.2(b). \Box

Proof of Theorem 1.6. Recall from (45) that

$$I_n = \int_0^1 S_n Q_n \circ \psi$$

and

$$|S_n(x)Q_n\circ\psi(x)|^{1/n}=\exp\left(-W^{\nu_n}(x)\right).$$

Then much as in the proof of Lemmas 3.1, 3.2, under the hypotheses (48)–(50), we obtain

$$W^{\nu} \le \log \frac{1}{A}$$
 in supp $[\nu]$

and

$$W^{\nu} \ge \log \frac{1}{A}$$
 q.e. in [0, 1],

in particular at every point of continuity of W^{ν} . Then the proof of Theorem 1.3 shows that $\nu = \nu_{\psi}$, and the result follows. \Box

We next prove an inequality for I_n , assuming the hypotheses (35)–(36). Below, if α , β are probability measures on [0, 1], we set

$$m_{\alpha,\beta} := \inf_{[0,1]} W^{\alpha,\beta}.$$

Proof of Theorem 1.7. Let β be a probability measure on [0, 1]. By orthogonality, for any monic polynomial Π_n of degree *n*, we have

$$I_n = \int_0^1 P_n(x) \Pi_n \circ \psi(x) dx.$$

Given a probability measure on [0, 1], we may choose a sequence of polynomials Π_n such that Π_n has *n* simple zeros in $[\psi(0), \psi(1)]$, and the corresponding zero counting measures converge weakly to $\beta \circ \psi^{[-1]}$ as $n \to \infty$. (This follows easily as pure jump measures are dense in the set of probability measures.) As

 $W^{\mu,\beta} \ge m_{\mu,\beta}$ in the closed set [0, 1],

we obtain, by Lemma 2.1,

$$\limsup_{n \to \infty, n \in \mathcal{S}} |P_n(x) \Pi_n \circ \psi(x)|^{1/n} \le \exp\left(-m_{\mu,\beta}\right),$$

uniformly in [0, 1]. Then

$$A = \limsup_{n \to \infty, \ n \in \mathcal{S}} I_n^{1/n} \le \exp\left(-m_{\mu,\beta}\right)$$

Taking sup's over all such β gives (38). The other relation follows similarly, because of the duality identity (32). \Box

References

- V.V. Andrievskii, H.P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer, New York, 2002.
- [2] G.A. Baker Jr., Essentials of Padé Approximants, Academic Press, 1975.
- [3] A. Borodin, Biorthogonal ensembles, Nuclear Phys. B 536 (1999) 704-732.
- [4] P. Borwein, T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
- [5] C. Brezinski, Biorthogonality and its Applications to Numerical Analysis, Marcel Dekker, New York, 1992.
- [6] T. Claeys, D. Wang, Random matrices with equispaced external source. Manuscript.
- [7] C. Elbert, Strong asymptotics of the generating polynomials of the Stirling numbers of the second kind, J. Approx. Theory 109 (2001) 198–217.
- [8] W. Ford, A. Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J. Numer. Anal. 24 (1987) 1212–1232.
- [9] W.K. Hayman, Subharmonic Functions, Vol. 2, Academic Press, London, 1989.
- [10] A. Iserles, S.P. Norsett, Bi-orthogonality and zeros of transformed polynomials, J. Comput. Appl. Math. 19 (1987) 39–45.
- [11] A. Iserles, S.P. Norsett, E.B. Saff, On transformations and zeros of polynomials, Rocky Mountain J. Math. 21 (1991) 331–357.
- [12] A. Kuijlaars, K.T-R. McLaughlin, A Riemann-Hilbert problem for biorthogonal polynomials, J. Comput. Appl. Math. 178 (2005) 313–320.
- [13] N.S. Landkof, Foundations of Modern Potential Theory, Springer, 1972.
- [14] D.S. Lubinsky, A. Sidi, Strong asymptotics for polynomials biorthogonal to powers of log x, Analysis 14 (1994) 341–379.
- [15] D.S. Lubinsky, A. Sidi, Zero distribution of composite polynomials and polynomials biorthogonal to exponentials, Constr. Approx. 28 (2008) 343–371.
- [16] D.S. Lubinsky, A. Sidi, Polynomials biorthogonal to dilations of measures and their asymptotics, J. Math. Anal. Appl. 397 (2013) 91–108.
- [17] D.S. Lubinsky, I. Soran, Weights whose biorthogonal polynomials admit a Rodrigues formula, J. Math. Anal. Appl 324 (2006) 805–819.
- [18] D.S. Lubinsky, H. Stahl, Some explicit biorthogonal polynomials, in: C.K. Chui, M. Neamtu, L.L. Schumaker (Eds.), Approximation Theory XI, Nashboro Press, Brentwood, TN, 2005, pp. 279–285.

- [19] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
- [20] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, New York, 1996.
- [21] A. Sidi, Numerical quadrature and non-linear sequence transformations: unified rules for efficient computation of integrals with algebraic and logarithmic endpoint singularities, Math. Comp. 35 (1980) 851–874.
- [22] A. Sidi, Numerical quadrature for some infinite range integrals, Math. Comp. 38 (1982) 127-142.
- [23] A. Sidi, Problems 5–8, in: H. Brass, G. Hämmerlin (Eds.), Numerical Integration III, Birkhäuser, Berlin, 1988, pp. 321–325.
- [24] A. Sidi, Practical Extrapolation Methods, Cambridge University Press, Cambridge, 2003.
- [25] A. Sidi, D.S. Lubinsky, On the zeros of some polynomials that arise in numerical quadrature and convergence acceleration, SIAM J. Numer. Anal. 20 (1983) 589–598.
- [26] A. Sidi, D.S. Lubinsky, Biorthogonal polynomials and numerical integration formulas for infinite intervals, J. Numer. Anal. Ind. Appl. Math. 2 (2007) 209–226.
- [27] H. Stahl, Handwritten Notes, 2003.
- [28] H. Stahl, V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.