Full length article
 Asymptotic zero distribution of biorthogonal polynomials ${ }^{\text {T}}$

D.S. Lubinsky ${ }^{\text {a,* }}$, A. Sidi ${ }^{\text {b }}$, H. Stahl ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
${ }^{\mathrm{b}}$ Department of Computer Science, Technion-IIT, Haifa 32000, Israel
${ }^{\text {c }}$ Fachbereich Mathematik, TFH Berlin, Germany

Available online 22 January 2014

Communicated by Guillermo López Lagomasino

Abstract

Let $\psi:[0,1] \rightarrow \mathbb{R}$ be a strictly increasing continuous function. Let P_{n} be a polynomial of degree n determined by the biorthogonality conditions $$
\int_{0}^{1} P_{n}(x) \psi(x)^{j} d x=0, \quad j=0,1, \ldots, n-1 .
$$

We study the distribution of zeros of P_{n} as $n \rightarrow \infty$, and related potential theory. © 2014 Elsevier Inc. All rights reserved. Keywords: Biorthogonal polynomials; Zero distribution; Potential theory

1. Introduction and results

Let $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ be a strictly increasing continuous function, with inverse $\psi^{[-1]}$. Then we may uniquely determine a monic polynomial P_{n} of degree n by the

[^0]biorthogonality conditions
\[

\int_{0}^{1} P_{n}(x) \psi(x)^{j} d x= $$
\begin{cases}0, & j=0,1,2, \ldots, n-1, \tag{1}\\ I_{n} \neq 0, & j=n .\end{cases}
$$
\]

P_{n} will have n simple zeros in $(0,1)$, so we may write

$$
\begin{equation*}
P_{n}(x)=\prod_{j=1}^{n}\left(x-x_{j n}\right) \tag{2}
\end{equation*}
$$

The proof of this is the same as for classical orthogonal polynomials. Our goal in this paper is to investigate the zero distribution of P_{n} as $n \rightarrow \infty$. Accordingly, we define the zero counting measures

$$
\begin{equation*}
\mu_{n}=\frac{1}{n} \sum_{j=1}^{n} \delta_{x_{j n}}, \tag{3}
\end{equation*}
$$

that place mass $\frac{1}{n}$ at each of the zeros of P_{n}, and want to describe the weak $\operatorname{limit}(\mathrm{s})$ of μ_{n} as $n \rightarrow \infty$.

This topic was initiated by the second author, in the course of his investigations on convergence acceleration [8,24], and numerical integration of singular integrands. He considered [21-23]

$$
\psi(x)=\log x, \quad x \in(0,1)
$$

and found that the corresponding biorthogonal polynomials are

$$
P_{n}(x)=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}\left(\frac{j+1}{n+1}\right)^{j} x^{j}
$$

The latter are now often called the Sidi polynomials, and one may represent them as a contour integral. Using steepest descent, the strong asymptotics of P_{n}, and their zero distribution, were established in [14]. Asymptotics for more general polynomials of this type were analyzed by Elbert [7]. Extensions, asymptotics, and applications in numerical integration, and convergence acceleration have been considered in [15,16,25,26]. Biorthogonal polynomials of a more general form have been studied in several contexts-see [5,10,11]. The sorts of biorthogonal polynomials used in random matrices $[3,6,12]$ are mostly different, although there are some common ideas in the associated potential theory.

Herbert Stahl's interest in this topic arose after he refereed [14]. He and the first author discussed the topic at some length at a conference in honor of Paul Erdős in 1995. This led to a draft paper on zero distribution in the later 1990s, with revisions in 2001, and 2003, and this paper is the partial completion of that work. For the case $\psi(x)=x^{\alpha}, \alpha>0$, we presented explicit formulae in [18]. Rodrigues type representations were studied in [17].

Distribution of zeros of polynomials is closely related to potential theory [1,20,28], and accordingly we introduce some potential theoretic concepts. We let $\mathcal{P}(\mathcal{E})$ denote the set of all probability measures with compact support contained in the set \mathcal{E}. For any positive Borel measure μ, we define its classical energy integral

$$
\begin{equation*}
I(\mu)=\iint \log \frac{1}{|x-t|} d \mu(x) d \mu(t), \tag{4}
\end{equation*}
$$

and denote its support by supp $[\mu]$. Where appropriate, we consider these concepts for signed measures too. For any set \mathcal{E} in the plane, its (inner) logarithmic capacity is

$$
\operatorname{cap}(\mathcal{E})=\sup \left\{e^{-I(\mu)}: \mu \in \mathcal{P}(\mathcal{E})\right\}
$$

We say that a property holds q.e. (quasi-everywhere) if it holds outside a set of capacity 0 . We use meas to denote linear Lebesgue measure 0 . For further orientation on potential theory, see for example [13,19,20].

In our setting we need a new energy integral

$$
\begin{equation*}
J(\mu)=\iint K(x, t) d \mu(x) d \mu(t) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
K(x, t)=\log \frac{1}{|x-t|}+\log \frac{1}{|\psi(x)-\psi(t)|} \tag{6}
\end{equation*}
$$

In [6], a similar energy integral was considered for $\psi(t)=e^{t}$, but with an external field. The minimal energy corresponding to ψ is

$$
\begin{equation*}
J^{*}(\psi)=\inf \{J(\mu): \mu \in \mathcal{P}([0,1])\} \tag{7}
\end{equation*}
$$

Under mild conditions on ψ, we shall prove that there is a unique probability measure, which we denote by ν_{ψ}, attaining the minimum. For probability measures μ, ν, we define the classical potential

$$
\begin{equation*}
U^{\mu}(x)=\int \log \frac{1}{|x-t|} d \mu(t) \tag{8}
\end{equation*}
$$

the mixed potential

$$
\begin{align*}
W^{\mu, v}(x) & =\int \log \frac{1}{|x-t|} d \mu(t)+\int \log \frac{1}{|\psi(x)-\psi(t)|} d v(t) \tag{9}\\
& =U^{\mu}(x)+U^{\nu \circ \psi \psi^{[-1]}} \circ \psi(x) \tag{10}
\end{align*}
$$

and the ψ potential

$$
\begin{equation*}
W^{\mu}(x)=W^{\mu, \mu}(x)=\int K(x, t) d \mu(t) \tag{11}
\end{equation*}
$$

We note that potential theory for generalized kernels is an old topic, see for example, Chapter VI in [13]. However, there does not seem to be a comprehensive treatment covering our setting. Our most important restrictions on ψ are contained in:

Definition 1.1. Let $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ be a strictly increasing continuous function, with inverse $\psi^{[-1]}$. Assume that ψ satisfies the following two conditions:
(I)

$$
\begin{equation*}
\operatorname{cap}(E)=0 \Rightarrow \operatorname{cap}\left(\psi^{[-1]}(E)\right)=0 \tag{12}
\end{equation*}
$$

(II) For each $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
\operatorname{meas}(E) \leq \delta \Rightarrow \operatorname{meas}\left(\psi^{[-1]}(E)\right) \leq \varepsilon \tag{13}
\end{equation*}
$$

Then we say that ψ preserves smallness of sets.
The conditions (I), (II) are satisfied if ψ satisfies a local lower Lipschitz condition. By this we mean that we can write $[0,1]$ as a countable union of intervals $[a, b]$ such that in $[a, b]$, there exist $C, \alpha>0$ depending on a, b, with

$$
|\psi(x)-\psi(t)| \geq C|t-x|^{\alpha}, \quad x, t \in[a, b] .
$$

We can apply Theorem 5.3.1 in [19, p. 137] to ψ^{-1} to deduce (12).
Using classical methods, we shall prove:
Theorem 1.2. Let $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. Define the minimal energy $J^{*}=J^{*}(\psi)$ by (7). Then
(a) J^{*} is finite and there exists a unique probability measure v_{ψ} on $[0,1]$ such that

$$
\begin{equation*}
J\left(v_{\psi}\right)=J^{*} \tag{14}
\end{equation*}
$$

(b)

$$
\begin{equation*}
W^{v_{\psi}} \geq J^{*} \quad \text { q.e. in }[0,1] . \tag{15}
\end{equation*}
$$

In particular, this is true at each point of continuity of $W^{\nu_{\psi}}$.
(c)

$$
\begin{equation*}
W^{v_{\psi}} \leq J^{*} \quad \text { in } \operatorname{supp}\left[v_{\psi}\right] \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
W^{v_{\psi}}=J^{*} \quad \text { q.e. in } \operatorname{supp}\left[v_{\psi}\right] . \tag{17}
\end{equation*}
$$

(d) ν_{ψ} is absolutely continuous with respect to linear Lebesgue measure on $[0,1]$. Moreover, there are constants C_{1} and C_{2} depending only on ψ, such that for all compact $\mathcal{K} \subset[0,1]$,

$$
\begin{equation*}
\nu_{\psi}(K) \leq \frac{C_{1}}{\mid \log \text { cap } \mathcal{K} \mid} \leq \frac{C_{2}}{\mid \log \text { meas }(\mathcal{K}) \mid} \tag{18}
\end{equation*}
$$

(e) There exists $\varepsilon>0$ such that

$$
\begin{equation*}
[0, \varepsilon] \cup[1-\varepsilon, 1] \subset \operatorname{supp}\left[\nu_{\psi}\right] \tag{19}
\end{equation*}
$$

Let

$$
\begin{equation*}
I_{n}=\int_{0}^{1} P_{n}(t) \psi(t)^{n} d t, \quad n \geq 1 \tag{20}
\end{equation*}
$$

Theorem 1.3. Let $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. Let $\left\{P_{n}\right\}$ be the corresponding biorthogonal polynomials, with zero counting measures $\left\{\mu_{n}\right\}$. If

$$
\begin{equation*}
\operatorname{supp}\left[\nu_{\psi}\right]=[0,1] \tag{21}
\end{equation*}
$$

then the zero counting measures $\left\{\mu_{n}\right\}$ of $\left(P_{n}\right)$ satisfy

$$
\begin{equation*}
\mu_{n} \xrightarrow{*} v_{\psi}, \quad n \rightarrow \infty \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{n}^{1 / n}=\exp \left(-J^{*}\right) \tag{23}
\end{equation*}
$$

The weak convergence (22) is defined in the usual way:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(t) d \mu_{n}(t)=\int_{0}^{1} f(t) d v_{\psi}(t)
$$

for every continuous function $f:[0,1] \rightarrow \mathbb{R}$. We can replace (21) by the more implicit, but more general, assumption that supp $\left[\nu_{\psi}\right]$ contains the support of every weak limit of every subsequence of $\left(\mu_{n}\right)$. We can at least prove it when the kernel K, and hence the potential $W^{\nu \psi}$, satisfies a convexity condition:

Theorem 1.4. Let $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. In addition assume that ψ is twice continuously differentiable in $(0,1)$ and either
(a) for $x, t \in(0,1)$ with $x \neq t$,

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} K(x, t)>0, \tag{24}
\end{equation*}
$$

or
(b) for $x, t \in(\psi(0), \psi(1))$ with $x \neq t$,

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}}\left[K\left(\psi^{[-1]}(x), \psi^{[-1]}(t)\right)\right]>0 \tag{25}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{supp}\left[v_{\psi}\right]=[0,1] \tag{26}
\end{equation*}
$$

Example. Let $\alpha>0$ and

$$
\psi(x)=x^{\alpha}, \quad x \in[0,1] .
$$

Then either (25) or (26) holds and hence (21) holds. We show this separately for $\alpha \geq 1$ and for $\alpha<1$. An explicit formula for v_{ψ} appears in [18, p.292].

Case $\mathrm{I} \alpha \geq 1$.

We shall show that the hypotheses of Theorem 1.4(a) are fulfilled. A straightforward calculation gives that

$$
\begin{aligned}
\Delta(x, t) & :=(x-t)^{2}(\psi(x)-\psi(t))^{2} \frac{\partial^{2}}{\partial x^{2}} K(x, t) \\
& =\left(x^{\alpha}-t^{\alpha}\right)^{2}+\left(\alpha x^{\alpha-1}\right)^{2}(x-t)^{2}-\alpha(\alpha-1) x^{\alpha-2}\left(x^{\alpha}-t^{\alpha}\right)(x-t)^{2} .
\end{aligned}
$$

Writing $s=t x$, we see that

$$
\Delta(x, t)=x^{2 \alpha} H(s),
$$

where

$$
\begin{equation*}
H(s):=\left(1-s^{\alpha}\right)^{2}+\alpha^{2}(1-s)^{2}-\alpha(\alpha-1)\left(1-s^{\alpha}\right)(1-s)^{2} . \tag{27}
\end{equation*}
$$

For $s>1$, all three terms on the right-hand side of (27) are positive, so $H(s)>0$. If $0 \leq s<1$, we see that

$$
\begin{aligned}
H(s) & =\left(1-s^{\alpha}\right)^{2}+\alpha(1-s)^{2}\left\{\alpha-(\alpha-1)\left(1-s^{\alpha}\right)\right\} \\
& \geq\left(1-s^{\alpha}\right)^{2}+\alpha(1-s)^{2}>0
\end{aligned}
$$

In summary, if $\alpha>1$, we have for all $x \in[0,1]$ and $s \in[0, \infty) \backslash\{1\}$,

$$
\Delta(x, s x)>0
$$

so the hypotheses (24) are fulfilled.
Case II $\alpha<1$.
Here

$$
\psi^{[-1]}(x)=x^{1 / \alpha}
$$

and

$$
K\left(\psi^{[-1]}(x), \psi^{[-1]}(t)\right)=\log \frac{1}{\left|x^{1 / \alpha}-t^{1 / \alpha}\right|}+\log \frac{1}{|x-t|},
$$

which is exactly the case $1 / \alpha>1$ treated above, so we see that the hypothesis (25) is fulfilled.
Instead of placing an implicit assumption on the support of ν_{ψ}, we can place an implicit assumption on the zeros of $\left\{P_{n}\right\}$, and obtain a unique weak limit:

Theorem 1.5. Let $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. Let $\mathcal{K} \subset[0,1]$ be compact. Assume that every weak limit of every subsequence of the zero counting measures $\left\{\mu_{n}\right\}$ has support \mathcal{K}. Then there is a unique probability measure μ on K such that

$$
\begin{equation*}
\mu_{n} \xrightarrow{*} \mu, \quad n \rightarrow \infty, \tag{28}
\end{equation*}
$$

and a unique positive number A such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{n}^{1 / n}=A \tag{29}
\end{equation*}
$$

Here μ is absolutely continuous with respect to a linear Lebesgue measure, and is the unique solution of the integral equation

$$
\begin{equation*}
W^{\mu}(x)=\text { Constant, } \quad \text { q.e. } x \in \mathcal{K} . \tag{30}
\end{equation*}
$$

Moreover, then

$$
W^{\mu}(x)=\log \frac{1}{A}, \quad \text { q.e. } x \in \mathcal{K}
$$

We note that in [6], a related integral equation to (30) appears. We shall also need the dual polynomials Q_{n} such that $Q_{n} \circ \psi$ are biorthogonal to powers of x. Thus we define Q_{n} to be a monic polynomial of degree n determined by the conditions

$$
\begin{equation*}
\int_{0}^{1} Q_{n} \circ \psi(t) t^{j} d t=0 \tag{31}
\end{equation*}
$$

$j=0,1,2, \ldots, n-1$. Because of this biorthogonality condition,

$$
\int_{0}^{1} Q_{n} \circ \psi(t) t^{n} d t=\int_{0}^{1} Q_{n} \circ \psi(t) P_{n}(t) d t=\int_{0}^{1} P_{n}(t) \psi(t)^{n} d t
$$

That is,

$$
\begin{equation*}
I_{n}=\int_{0}^{1} P_{n}(t) \psi(t)^{n} d t=\int_{0}^{1} Q_{n} \circ \psi(t) t^{n} d t \tag{32}
\end{equation*}
$$

The orthogonality conditions ensure that $Q_{n} \circ \psi$ has n distinct zeros $\left\{y_{j n}\right\}$ in $(0,1)$, so we can write

$$
\begin{equation*}
Q_{n} \circ \psi(t)=\prod_{j=1}^{n}\left(\psi(t)-\psi\left(y_{j n}\right)\right) \tag{33}
\end{equation*}
$$

Let

$$
\begin{equation*}
v_{n}=\frac{1}{n} \sum_{j=1}^{n} \delta_{y_{j n}} \tag{34}
\end{equation*}
$$

We shall prove
Theorem 1.6. Let $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets, and assume (21). We have as $n \rightarrow \infty$,

$$
v_{n} \xrightarrow{*} v_{\psi} .
$$

We also prove the following extremal property for weak subsequential limits of $\left\{\mu_{n}\right\}$.
Theorem 1.7. Let $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ be a strictly increasing continuous function that preserves smallness of sets. Assume that \mathcal{S} is an infinite subsequence of positive integers such that as $n \rightarrow \infty$ through \mathcal{S},

$$
\begin{align*}
& \mu_{n} \xrightarrow{*} \mu ; \tag{35}\\
& v_{n} \xrightarrow{*} v ; \tag{36}
\end{align*}
$$

and

$$
\begin{equation*}
I_{n}^{1 / n} \rightarrow A \tag{37}
\end{equation*}
$$

where $A \in \mathbb{R}$ and $\mu, v \in \mathcal{P}([0,1])$. Then

$$
\begin{equation*}
A \leq \exp \left(-\sup _{\beta \in \mathcal{P}([0,1])} \inf _{[0,1]} W^{\mu, \beta}\right) \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
A \leq \exp \left(-\sup _{\alpha \in \mathcal{P}([0,1])} \inf _{[0,1]} W^{\alpha, \nu}\right) \tag{39}
\end{equation*}
$$

Remarks. (a) This extremal property is very close to a characterization of equilibrium measures for external fields. For example, with ν as above, let Q be the external field

$$
Q=U^{\nu \circ \psi \psi^{[-1]}} \circ \psi \quad \text { on }[0,1]
$$

Then the second inequality above says

$$
A \leq \exp \left(-\sup _{\alpha \in \mathcal{P}([0,1])} \inf _{[0,1]}\left(U^{\alpha}+Q\right)\right)
$$

This is reminiscent of one characterization of the equilibrium measure for the external field Q [20, Theorem I.3.1, p. 43].
(b) Herbert Stahl sketched a proof that when ψ is strictly increasing and piecewise linear, then (21) holds [27]. His expectation was that this and a limiting argument could establish (21) very generally.
(c) There are two principal issues left unresolved in this paper, that seem worthy of further study:
(I) Find general hypotheses for $\operatorname{supp}\left[v_{\psi}\right]=[0,1]$.
(II) Find an explicit representation of the solution μ^{\prime} of the integral equation (30), that is of

$$
\int_{0}^{1} \log |x-t| \mu^{\prime}(t) d t+\int_{0}^{1} \log |\psi(x)-\psi(t)| \mu^{\prime}(t) d t=\text { Constant }, \quad x \in[0,1] .
$$

The usual methods (differentiating, and solving a Cauchy singular integral equation) do not seem to work, even when ψ is analytic.

Next we show that if ψ is constant in an interval, then the support of the equilibrium measure should avoid that interval, as do most of the zeros of $\left\{P_{n}\right\}$:

Example. Let

$$
\psi(x)= \begin{cases}2 x, & x \in\left[0, \frac{1}{2}\right] \\ 1, & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Then it is not difficult to see that the equilibrium measure v_{ψ} must have support [$0, \frac{1}{2}$]. Indeed if μ is a probability measure that has positive measure on $[a, b] \subset\left(\frac{1}{2}, 1\right)$, then as

$$
\log \frac{1}{|\psi(x)-\psi(t)|}=\infty, \quad x, t \in[a, b]
$$

so

$$
J(\mu)=\infty
$$

Consequently,

$$
J^{*}=\inf \left[2 I(\mu)+\log \frac{1}{2}\right],
$$

where the inf is now taken over all $\mu \in \mathcal{P}\left(\left[0, \frac{1}{2}\right]\right)$. Then ν_{ψ} is the classical equilibrium measure for $\left[0, \frac{1}{2}\right]$, namely

$$
v_{\psi}^{\prime}(x)=\frac{1}{\pi \sqrt{x\left(\frac{1}{2}-x\right)}}, \quad x \in\left[0, \frac{1}{2}\right]
$$

and

$$
J^{*}=2 \log 8+\log \frac{1}{2}=\log 32
$$

In this case, we can also almost explicitly determine P_{n}. The biorthogonality conditions give for π of degree at most $n-1$,

$$
\int_{0}^{1 / 2} P_{n}(x) \pi(2 x) d x+\pi(1) \int_{1 / 2}^{1} P_{n}(x) d x=0
$$

In particular, this is true for $\pi \equiv 1$, so

$$
\int_{1 / 2}^{1} P_{n}(x) d x=-\int_{0}^{1 / 2} P_{n}(x) d x
$$

and we obtain for any π of degree at most $n-1$,

$$
\int_{0}^{1 / 2} P_{n}(x)(\pi(2 x)-\pi(1)) d x=0 .
$$

Then for every polynomial S of degree $\leq n-2$,

$$
\begin{equation*}
\int_{0}^{1 / 2} P_{n}(x) S(x)(1-2 x) d x=0 \tag{40}
\end{equation*}
$$

which forces P_{n} to have at least $n-1$ distinct zeros in $\left[0, \frac{1}{2}\right]$. Then every weak limit of every subsequence of $\left\{\mu_{n}\right\}$ has support in $\left[0, \frac{1}{2}\right]$.

This paper is organized as follows: in Section 2, we present a principle of descent, and a lower envelope theorem, and the proof of Theorem 1.2. In Section 3, we prove Theorems 1.3-1.7. Throughout the sequel, we assume that $\psi:[0,1] \rightarrow[\psi(0), \psi(1)]$ is a strictly increasing continuous function that preserves smallness of sets.

We close this section with some extra notation. Define the companion polynomial to P_{n}, namely

$$
\begin{equation*}
R_{n}(x)=\prod_{j=1}^{n}\left(x-\psi\left(x_{j n}\right)\right) . \tag{41}
\end{equation*}
$$

It has the property that $R_{n} \circ \psi$ has the same zeros as P_{n}. Hence

$$
\begin{equation*}
P_{n}(x) R_{n} \circ \psi(x) \geq 0 \quad \text { in }[0,1] \tag{42}
\end{equation*}
$$

Analogous to R_{n}, we define

$$
\begin{equation*}
S_{n}(t)=\prod_{j=1}^{n}\left(t-y_{j n}\right) \tag{43}
\end{equation*}
$$

so that

$$
\begin{equation*}
S_{n}(t) Q_{n} \circ \psi(t) \geq 0, \quad t \in[0,1] . \tag{44}
\end{equation*}
$$

Observe that I_{n} of (20) satisfies

$$
\begin{equation*}
I_{n}=\int_{0}^{1} P_{n}(x) R_{n} \circ \psi(x) d x=\int_{0}^{1} Q_{n} \circ \psi(x) S_{n}(x) d x>0 . \tag{45}
\end{equation*}
$$

2. Proof of Theorem 1.2

We begin by noting that for any positive measures $\alpha, \beta, W^{\alpha, \beta}$ is lower semicontinuous, since a potential of any positive measure is, while ψ and $\psi^{[-1]}$ are continuous. We start with

Lemma 2.1 (The Principle of Descent). Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be finite positive Borel measures on $[0,1]$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}([0,1])=1=\lim _{n \rightarrow \infty} \beta_{n}([0,1]) .
$$

Assume moreover that as $n \rightarrow \infty$,

$$
\begin{aligned}
& \alpha_{n} \xrightarrow{*} \alpha ; \\
& \beta_{n} \xrightarrow{*} \beta .
\end{aligned}
$$

(a) If $\left\{x_{n}\right\} \subset[0,1]$ and $x_{n} \rightarrow x_{0}, n \rightarrow \infty$, then

$$
\liminf _{n \rightarrow \infty} W^{\alpha_{n}, \beta_{n}}\left(x_{n}\right) \geq W^{\alpha, \beta}\left(x_{0}\right) .
$$

(b) If $\mathcal{K} \subset[0,1]$ is compact and

$$
W^{\alpha, \beta} \geq \lambda \quad \text { in } \mathcal{K},
$$

then uniformly in \mathcal{K},

$$
\liminf _{n \rightarrow \infty} W^{\alpha_{n}, \beta_{n}}(x) \geq \lambda
$$

Proof. (a) By the classical principle of descent,

$$
\liminf _{n \rightarrow \infty} U^{\alpha_{n}}\left(x_{n}\right) \geq U^{\alpha}\left(x_{0}\right),
$$

see for example, [20, Theorem I.6.8, p. 70]. Next, we see from the classical principle of descent and continuity of $\psi, \psi^{[-1]}$ that

$$
\liminf _{n \rightarrow \infty} U^{\beta_{n} \circ \psi^{[-1]}} \circ \psi\left(x_{n}\right) \geq U^{\beta \circ \psi^{[-1]}} \circ \psi\left(x_{0}\right)
$$

Combining these two gives the result.
(b) This follows easily from (a). If (b) fails, we can choose a sequence $\left(x_{n}\right)$ in K with limit $x_{0} \in K$ such that

$$
\liminf _{n \rightarrow \infty} W^{\alpha_{n}, \beta_{n}}\left(x_{n}\right)<\lambda \leq W^{\alpha, \beta}\left(x_{0}\right)
$$

Recall our notation $W^{\alpha_{n}}=W^{\alpha_{n}, \alpha_{n}}$. We now establish
Lemma 2.2 (Lower Envelope Theorem). Assume the hypotheses of Lemma 2.1. Then for q.e. $x \in[0,1]$,

$$
\liminf _{n \rightarrow \infty, n \in \mathcal{S}} W^{\alpha_{n}}(x)=W^{\alpha}(x)
$$

Proof. We already know from Lemma 2.1 (the principle of descent) that everywhere in $[0,1]$,

$$
\liminf _{n \rightarrow \infty, n \in \mathcal{S}} W^{\alpha_{n}}(x) \geq W^{\alpha}(x)
$$

Suppose the result is false. Then there exists $\varepsilon>0$, and a (Borel) set S of positive capacity such that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty, n \in \mathcal{S}} W^{\alpha_{n}}(x) \geq W^{\alpha}(x)+\varepsilon \quad \text { in } S \tag{46}
\end{equation*}
$$

Because Borel sets are inner regular, and even more, capacitable, we may assume that S is compact. Then there exists a probability measure ω with support in S such that U^{ω} is continuous in \mathbb{C}. See, for example, [20, Corollary I.6.11, p. 74]. As ψ and $\psi^{[-1]}$ are continuous,

$$
W^{\omega}=U^{\omega}+U^{\omega \circ \psi \psi^{[-1]}} \circ \psi
$$

is also continuous in $[0,1]$. Then by Fubini's Theorem and weak convergence

$$
\begin{aligned}
\liminf _{n \rightarrow \infty, n \in \mathcal{S}} \int W^{\alpha_{n}} d \omega & =\liminf _{n \rightarrow \infty, n \in \mathcal{S}} \int W^{\omega} d \alpha_{n} \\
& =\int W^{\omega} d \alpha=\int W^{\alpha} d \omega
\end{aligned}
$$

Here since $K(x, t)$ is bounded below in [0, 1], we may continue this using (46) and Fatou's Lemma as

$$
\begin{aligned}
& =\int\left(W^{\alpha}+\varepsilon\right) d \omega-\varepsilon \\
& \leq \int\left(\liminf _{n \rightarrow \infty, n \in \mathcal{S}} W^{\alpha_{n}}\right) d \omega-\varepsilon \\
& \leq \liminf _{n \rightarrow \infty, n \in \mathcal{S}} \int W^{\alpha_{n}} d \omega-\varepsilon .
\end{aligned}
$$

So we have a contradiction.
Next, we show that J^{*} is finite, establishing part of Theorem 1.2(a):
Lemma 2.3. J^{*} is finite.
Proof. This is really a consequence of Cartan's Lemma for potentials. Let $\mu=$ meas denote Lebesgue measure on $[0,1]$. Then for $x \in[0,1]$,

$$
U^{\mu}(x)=\int_{0}^{1} \log \frac{1}{|x-t|} d t \leq 2 \int_{0}^{1} \log \frac{1}{s} d s
$$

and U^{μ} is continuous. Now consider the unit measure $\mu \circ \psi^{[-1]}$. By Cartan's Lemma [9, p. 366], if $\varepsilon>0$ and

$$
\mathcal{A}^{\varepsilon}=\left\{y \in \mathbb{R}: U^{\mu \circ \psi^{[-1]}}(y)>\log \frac{1}{\varepsilon}\right\},
$$

then

$$
\mu\left(\mathcal{A}^{\varepsilon}\right) \leq 3 e \varepsilon
$$

With a suitably small choice of ε, we then have by the hypothesis (13),

$$
\mu\left(\psi^{[-1]}\left(\mathcal{A}^{\varepsilon}\right)\right) \leq \frac{1}{2}
$$

With this choice of ε, let

$$
\mathcal{B}=[0,1] \backslash \psi^{[-1]}\left(\mathcal{A}^{\varepsilon}\right),
$$

a closed set. Let

$$
v=\frac{\mu_{\mid \mathcal{B}}}{\mu(\mathcal{B})} .
$$

As $\mu(\mathcal{B}) \geq \frac{1}{2}, v$ is a well defined probability measure. Moreover, $x \in \mathcal{B} \Rightarrow \psi(x) \notin \mathcal{A}^{\varepsilon}$, and

$$
\begin{aligned}
U^{\nu \circ \psi^{[-1]}} \circ \psi(x) & =\frac{1}{\mu(B)}\left[U^{\mu \circ \psi^{[-1]}} \circ \psi(x)-U^{\mu_{[0,1] \mid \mathcal{B}} \circ \psi^{[-1]}} \circ \psi(x)\right] \\
& \leq \frac{1}{\mu(B)}\left[\log \frac{1}{\varepsilon}+\log \left(2\|\psi\|_{L_{\infty}[0,1]}\right)\right]=: C_{0}<\infty .
\end{aligned}
$$

Then

$$
J^{*} \leq J(\nu) \leq I(\nu)+C_{0}<\infty .
$$

Proof of Theorem 1.2. (a) We can choose a sequence $\left\{\alpha_{n}\right\}$ of probability measures on $[0,1]$ such that

$$
\lim _{n \rightarrow \infty} J\left(\alpha_{n}\right)=J^{*}
$$

By Helly's Theorem, we can choose a subsequence converging weakly to some probability measure α on $[0,1]$, and by relabeling, we may assume that the full sequence $\left\{\alpha_{n}\right\}$ converges weakly to α. Then $\left\{\alpha_{n} \circ \psi^{[-1]}\right\}$ converges weakly to $\alpha \circ \psi^{[-1]}$. By the classical principle of descent

$$
\liminf _{n \rightarrow \infty} I\left(\alpha_{n}\right) \geq I(\alpha)
$$

and

$$
\liminf _{n \rightarrow \infty} I\left(\alpha_{n} \circ \psi^{[-1]}\right) \geq I\left(\alpha \circ \psi^{[-1]}\right),
$$

or equivalently,

$$
\liminf _{n \rightarrow \infty} \iint \log \frac{1}{|\psi(x)-\psi(t)|} d \alpha_{n}(x) d \alpha_{n}(t) \geq \iint \log \frac{1}{|\psi(x)-\psi(t)|} d \alpha(x) d \alpha(t)
$$

See, for example, [20, Theorem I.6.8, p. 70]. Combining these, we have

$$
J^{*}=\liminf _{n \rightarrow \infty} J\left(\alpha_{n}\right) \geq J(\alpha),
$$

so α achieves the inf, and is an equilibrium distribution. If β is another such distribution, then the parallelogram law

$$
J\left(\frac{1}{2}(\alpha+\beta)\right)+J\left(\frac{1}{2}(\alpha-\beta)\right)=\frac{1}{2}(J(\alpha)+J(\beta))=J^{*},
$$

gives

$$
J\left(\frac{1}{2}(\alpha-\beta)\right)=J^{*}-J\left(\frac{1}{2}(\alpha+\beta)\right) \leq 0
$$

as $\frac{1}{2}(\alpha+\beta)$ is also a probability measure on $[0,1]$. Here

$$
J\left(\frac{1}{2}(\alpha-\beta)\right)=I\left(\frac{1}{2}(\alpha-\beta)\right)+I\left(\frac{1}{2}\left(\alpha \circ \psi^{[-1]}-\beta \circ \psi^{[-1]}\right)\right)
$$

and both terms on the right-hand side are non-negative as both measures inside the energy integrals on the right have total mass 0 . See [20, Lemma I.1.8, p. 29]. Hence

$$
I\left(\frac{1}{2}(\alpha-\beta)\right)=0
$$

so $\alpha=\beta$ [20, Lemma I.1.8, p. 29].
(b) Suppose the result is false. Then for some large enough integer n_{0},

$$
E_{1}:=\left\{x \in[0,1]: W^{v_{\psi}}(x) \leq J^{*}-\frac{1}{n_{0}}\right\}
$$

has positive capacity and is compact, since $W^{\nu_{\psi}}$ is lower semi-continuous. But,

$$
\int W^{v_{\psi}} d v_{\psi}=J\left(v_{\psi}\right)=J^{*}
$$

so there exists a compact subset E_{2} disjoint from E_{1} such that

$$
W^{v_{\psi}}(x)>J^{*}-\frac{1}{2 n_{0}}, \quad x \in E_{2},
$$

and

$$
m=v_{\psi}\left(E_{2}\right)>0
$$

Now as E_{1} is a compact set of positive capacity, we can find a positive measure σ on E_{1}, with support in E_{1}, such that U^{σ} is continuous in the plane [20, Corollary I.6.11, p. 74]. Then $U^{\sigma \circ \psi^{[-1]}}$ is also continuous in $[\psi(0), \psi(1)]$, so W^{σ} is continuous in $[0,1]$. We may also assume that

$$
\sigma\left(E_{1}\right)=m
$$

Define a signed measure σ_{1} on $[0,1]$, by

$$
\sigma_{1}:= \begin{cases}\sigma & \text { in } E_{1} \\ -v_{\psi} & \text { in } E_{2} \\ 0 & \text { elsewhere }\end{cases}
$$

Here if $\eta \in(0,1)$,

$$
J\left(v_{\psi}+\eta \sigma_{1}\right)=J\left(v_{\psi}\right)+2 \eta \int W^{v_{\psi}} d \sigma_{1}+\eta^{2} J\left(\sigma_{1}\right)
$$

$$
\begin{aligned}
\leq & J\left(v_{\psi}\right)+2 \eta\left\{\int_{E_{1}}\left[J^{*}-\frac{1}{n_{0}}\right] d \sigma\right. \\
& \left.+\int_{E_{2}}\left[J^{*}-\frac{1}{2 n_{0}}\right] d\left(-v_{\psi}\right)\right\}+\eta^{2} J\left(\sigma_{1}\right) \\
= & J\left(v_{\psi}\right)+2 \eta m\left\{\left[J^{*}-\frac{1}{n_{0}}\right]-\left[J^{*}-\frac{1}{2 n_{0}}\right]\right\}+\eta^{2} J\left(\sigma_{1}\right) \\
= & J\left(v_{\psi}\right)-\frac{\eta m}{n_{0}}+\eta^{2} J\left(\sigma_{1}\right)<J\left(v_{\psi}\right)
\end{aligned}
$$

for small $\eta>0$. As σ_{1} has total mass 0 , so $\nu_{\psi}+\eta \sigma_{1}$ has total mass 1 , and we see from the identity

$$
v_{\psi}+\eta \sigma_{1}=(1-\eta) v_{\psi \mid E_{2}}+v_{\psi \mid[0,1] \backslash E_{2}}+\eta \sigma
$$

that it is non-negative. Then we have a contradiction to the minimality of $J\left(v_{\psi}\right)$.
(c) Let $x_{0} \in \operatorname{supp}\left[v_{\psi}\right]$ and suppose that

$$
W^{v_{\psi}}\left(x_{0}\right)>J^{*}
$$

By the lower semi-continuity of $W^{v_{\psi}}$, there exist $\varepsilon>0$ and closed $[a, b]$ containing x_{0} such that

$$
W^{\nu_{\psi}}(x)>J^{*}+\varepsilon, \quad x \in[a, b] .
$$

We know too that

$$
W^{v_{\psi}}(x) \geq J^{*} \quad \text { for q.e. } x \in \operatorname{supp}\left[v_{\psi}\right] .
$$

Here as J^{*} is finite, so $I\left(v_{\psi}\right)$ must be finite (recall that $K(x, t)$ is bounded below). Then v_{ψ} vanishes on sets of capacity 0 , so this last inequality holds v_{ψ} a.e. (cf. [19, Theorem 3.2.3, p. 56]). Then

$$
\begin{aligned}
J^{*} & =J\left(v_{\psi}\right)=\left(\int_{a}^{b}+\int_{[0,1] \backslash[a, b]}\right) W^{v_{\psi}}(x) d v_{\psi}(x) \\
& \geq\left(J^{*}+\varepsilon\right) v_{\psi}([a, b])+J^{*} v_{\psi}([0,1] \backslash[a, b]) \\
& =J^{*}+\varepsilon v_{\psi}([a, b]),
\end{aligned}
$$

a contradiction.
(d) If $\operatorname{cap}(\mathcal{K})=0$, then as $I\left(v_{\psi}\right)<\infty$, we have also $\nu_{\psi}(\mathcal{K})=0$, and the inequality (18) is immediate. So assume that $\mathcal{K} \subset \operatorname{supp}\left[v_{\psi}\right]$ has positive capacity, and let ω be the equilibrium measure for \mathcal{K}. We may also assume that $\mathcal{K} \subset \operatorname{supp}\left[\nu_{\psi}\right]$, since

$$
v_{\psi}(\mathcal{K})=v_{\psi}\left(\mathcal{K} \cap \operatorname{supp}\left[v_{\psi}\right]\right)
$$

Now, there exists a positive constant C_{0} such that

$$
K(x, t) \geq-C_{0}, \quad x, t \in[0,1]
$$

Then by (c), for $x \in \mathcal{K}$,

$$
\begin{aligned}
\int_{\mathcal{K}} K(x, t) d \nu_{\psi}(t) & \leq J^{*}-\int_{[0,1] \backslash \mathcal{K}} K(x, t) d \nu_{\psi}(t) \\
& \leq J^{*}+C_{0}
\end{aligned}
$$

and hence for $x \in \mathcal{K}$,

$$
\begin{equation*}
\int_{\mathcal{K}} \log \frac{1}{|x-t|} d v_{\psi}(t) \leq J^{*}+C_{0}+\log \left(2\|\psi\|_{L_{\infty}[0,1]}\right)=: C_{1} \tag{47}
\end{equation*}
$$

Here C_{1} is independent of \mathcal{K}, x. Now

$$
U^{\omega}(t)=\log \frac{1}{\operatorname{cap} \mathcal{K}}
$$

for q.e. $t \in \mathcal{K}$ and since ν_{ψ} vanishes on sets of capacity zero, this also holds for v_{ψ} a.e. $t \in \mathcal{K}$. Integrating (47) with respect to $d \omega(x)$ and using Fubini's theorem, gives

$$
\int_{\mathcal{K}} U^{\omega}(t) d v_{\psi}(t) \leq C_{1}
$$

and hence

$$
v_{\psi}(\mathcal{K}) \log \frac{1}{\text { cap } \mathcal{K}} \leq C_{1}
$$

This gives the first inequality in (18), and then well known inequalities relating cap and meas give the second. In particular, that inequality implies the absolute continuity of μ with respect to linear Lebesgue measure.
(e) Suppose that $0 \notin \operatorname{supp}\left[v_{\psi}\right]$. Let $c>0$ be the closest point in the support of v_{ψ} to 0 . Then for $x \in\left[0, \frac{c}{2}\right]$, and for all $t \in[c, 1]$, we have from the strict monotonicity of ψ that

$$
K(x, t)<K(c, t),
$$

so for such x,

$$
\begin{aligned}
W^{\nu_{\psi}}(x) & =\int_{c}^{1} K(x, t) d \nu_{\psi}(t) \\
& <\int_{c}^{1} K(c, t) d v_{\psi}(t)=W^{v_{\psi}}(c) \leq J^{*}
\end{aligned}
$$

Thus in spite of the continuity of $W^{\nu_{\psi}}$ in $[0, c)$,

$$
W^{v_{\psi}}<J^{*} \quad \text { in }\left[0, \frac{c}{2}\right]
$$

contradicting (b). Absolute continuity of ν_{ψ} then shows that for some $\varepsilon>0$, we have $[0, \varepsilon] \subset$ $\operatorname{supp}\left[\nu_{\psi}\right]$. Similarly we can show that for some $\varepsilon>0,[1-\varepsilon, 1] \subset \operatorname{supp}\left[\nu_{\psi}\right]$.

3. Proof of Theorems 1.3-1.7

Recall that μ_{n} and v_{n} were defined respectively by (3) and (34). Throughout this section, we assume that \mathcal{S} is an infinite subsequence of positive integers such that as $n \rightarrow \infty$ through \mathcal{S},

$$
\begin{align*}
& \mu_{n} \xrightarrow{*} \mu ; \tag{48}\\
& v_{n} \xrightarrow{*} v ; \tag{49}
\end{align*}
$$

and

$$
\begin{equation*}
I_{n}^{1 / n} \rightarrow A \tag{50}
\end{equation*}
$$

where $A \in \mathbb{R}$ and $\mu, v \in \mathcal{P}([0,1])$. In the sequel we make frequent use of identities such as

$$
\left|P_{n}(x)\right|^{1 / n}=\exp \left(-U^{\mu_{n}}(x)\right)
$$

and

$$
\left|P_{n}(x) R_{n} \circ \psi(x)\right|^{1 / n}=\exp \left(-W^{\mu_{n}}(x)\right)
$$

We begin with

Lemma 3.1 (An Upper Bound for W^{μ}).

(a) With the hypotheses above, let $[a, b] \subset[0,1]$ and assume that $[a, b]$ contains two zeros of P_{n} for infinitely many $n \in \mathcal{S}$. Then

$$
\inf _{[a, b]} W^{\mu} \leq \log \frac{1}{A}
$$

(b) In particular, if x_{0} is a limit of two zeros of P_{n} as $n \rightarrow \infty$ through \mathcal{S}, or $x_{0} \in \operatorname{supp}[\mu]$, then

$$
W^{\mu}\left(x_{0}\right) \leq \log \frac{1}{A}
$$

Proof. (a) We may assume (by passing to a subsequence) that for all $n \in \mathcal{S}, P_{n}$ has two zeros in $[a, b]$. Assume on the contrary, that for some $\varepsilon>0$,

$$
\begin{equation*}
\inf _{[a, b]} W^{\mu}>\log \frac{1}{A}+\varepsilon \tag{51}
\end{equation*}
$$

Let x_{n}, y_{n} be two zeros of P_{n} in $[a, b]$ and let

$$
R_{n}^{*}(x)=R_{n}(x) /\left[\left(x-\psi\left(x_{n}\right)\right)\left(x-\psi\left(y_{n}\right)\right)\right] .
$$

Then we see that

$$
P_{n}(x) R_{n}^{*} \circ \psi(x) \geq 0, \quad x \in[0,1] \backslash[a, b],
$$

and

$$
0 \leq P_{n}(x) R_{n} \circ \psi(x) \leq\left|P_{n}(x) R_{n}^{*} \circ \psi(x)\right|\left(4\|\psi\|_{L_{\infty}[0,1]}\right)^{2}, \quad x \in[0,1]
$$

Moreover, as R_{n}^{*} has the same asymptotic zero distribution as R_{n}, we see from Lemma 2.1 and (51) that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty, n \in \mathcal{S}}\left|P_{n}(x) R_{n}^{*} \circ \psi(x)\right|^{1 / n} & \leq \exp \left(-W^{\mu, \mu}(x)\right) \\
& =\exp \left(-W^{\mu}(x)\right) \leq A e^{-\varepsilon}
\end{aligned}
$$

uniformly in $[a, b]$. Then by biorthogonality, and positivity of $P_{n}(x) R_{n}^{*} \circ \psi(x)$ outside $[a, b]$,

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty, n \in \mathcal{S}}\left(\int_{[0,1] \backslash[a, b]}\left|P_{n}(x) R_{n}^{*} \circ \psi(x)\right| d x\right)^{1 / n} \\
& \quad=\limsup _{n \rightarrow \infty, n \in \mathcal{S}}\left|\int_{[a, b]} P_{n}(x) R_{n}^{*} \circ \psi(x) d x\right|^{1 / n} \leq A e^{-\varepsilon}
\end{aligned}
$$

Of course Lemma 2.1(b) also gives

$$
\limsup _{n \rightarrow \infty, n \in \mathcal{S}}\left(\int_{[a, b]}\left|P_{n}(x) R_{n}^{*} \circ \psi(x)\right| d x\right)^{1 / n} \leq A e^{-\varepsilon}
$$

so

$$
\begin{aligned}
A & =\limsup _{n \rightarrow \infty, n \in \mathcal{S}} I_{n}^{1 / n} \\
& \leq \limsup _{n \rightarrow \infty, n \in \mathcal{S}}\left(4\|\psi\|_{L_{\infty}[0,1]}\right)^{2 / n}\left(\int_{0}^{1}\left|P_{n}(x) R_{n}^{*} \circ \psi(x)\right| d x\right)^{1 / n} \\
& \leq A e^{-\varepsilon} .
\end{aligned}
$$

This contradiction gives the result.
(b) This follows from (a), and lower semicontinuity of W^{μ}.

Lemma 3.2 (A Lower Bound for W^{μ}). At each point of continuity of W^{μ} in $[0,1]$, we have

$$
\begin{equation*}
W^{\mu} \geq \log \frac{1}{A} \tag{52}
\end{equation*}
$$

In particular, this inequality holds q.e. in $[0,1]$.
Proof. Assume that $a \in[0,1]$ is a point of continuity of W^{μ}, but for some $\varepsilon>0$,

$$
W^{\mu}(a) \leq \log \frac{1}{A}-2 \varepsilon .
$$

Then there exists an interval $[a, b]$ containing a, such that

$$
W^{\mu}(x) \leq \log \frac{1}{A}-\varepsilon, \quad x \in[a, b] .
$$

By the lower envelope theorem (Lemma 2.2)

$$
\limsup _{n \rightarrow \infty, n \in \mathcal{S}}\left(P_{n}(x) R_{n} \circ \psi(x)\right)^{1 / n}=\exp \left(-\liminf _{n \rightarrow \infty, n \in \mathcal{S}} W^{\mu_{n}}(x)\right)=\exp \left(-W^{\mu}(x)\right) \geq A e^{\varepsilon}
$$

for q.e. $x \in[a, b]$. Let

$$
\mathcal{T}_{n}=\left\{x \in[a, b]:\left(P_{n}(x) R_{n} \circ \psi(x)\right)^{1 / n} \geq A e^{\varepsilon / 2}\right\}
$$

Then for each $m \geq 1$,

$$
\bigcup_{n=m}^{\infty} \mathcal{T}_{n}
$$

contains q.e. $x \in[a, b]$, so has linear Lebesgue measure $b-a$. Then for infinitely many n, \mathcal{T}_{n} has linear Lebesgue measure at least n^{-2}, so

$$
\begin{aligned}
I_{n}^{1 / n} & \geq\left(\int_{\mathcal{T}_{n}} P_{n}(x) R_{n} \circ \psi(x) d x\right)^{1 / n} \\
& \geq n^{-2 / n} A e^{\varepsilon / 2}
\end{aligned}
$$

so

$$
A=\limsup _{n \rightarrow \infty, n \in \mathcal{S}} I_{n}^{1 / n} \geq A e^{\varepsilon / 2}
$$

a contradiction.
Finally, we note that any logarithmic potential is continuous q.e. [13, p. 185], so U^{μ} and $U^{\mu \circ \psi^{[-1]}}$ are continuous q.e. Our hypothesis that $\psi^{[-1]}(E)$ has capacity zero whenever E does ensures that $U^{\mu \circ \psi^{[-1]}} \circ \psi$ is continuous q.e. also. Hence W^{μ} is continuous q.e. and so (52) holds q.e. in $[0,1]$.

Next, we establish lower and upper bounds for A.
Lemma 3.3. (a) There exist constants $C_{1}, C_{2}>0$ depending only on ψ (and not on the subsequence \mathcal{S} above) such that

$$
\begin{equation*}
C_{1} \geq A \geq C_{2} \tag{53}
\end{equation*}
$$

(b) In particular,

$$
I(\mu)<\infty
$$

(c)

$$
\begin{equation*}
J(\mu)=\log \frac{1}{A} \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
W^{\mu}=\log \frac{1}{A} \quad \text { q.e. and a.e. }(\mu) \text { in } \operatorname{supp}[\mu] \tag{55}
\end{equation*}
$$

(d) μ is absolutely continuous with respect to linear Lebesgue measure on $[0,1]$. Moreover, there are constants C_{1} and C_{2} depending only on ψ, and not on \mathcal{S}, such that for all compact $\mathcal{K} \subset[0,1]$,

$$
\mu(K) \leq \frac{C_{1}}{\mid \log \text { cap } \mathcal{K} \mid} \leq \frac{C_{2}}{\mid \log \text { meas }(\mathcal{K}) \mid}
$$

Proof. (a) Firstly as all zeros of P_{n} and $R_{n} \circ \psi$ lie in [0, 1], so

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} P_{n}(x) R_{n} \circ \psi(x) d x \\
& \leq(\operatorname{diam} \psi[0,1])^{n}
\end{aligned}
$$

Here diam denotes the diameter of a set. So

$$
A \leq \operatorname{diam} \psi[0,1]
$$

In the other direction, we use Cartan's Lemma for polynomials [2, p. 175], [4], [9, p. 366]. This asserts that if $\delta>0$, then

$$
\left|R_{n}(x)\right| \geq\left(\frac{\delta}{4 e}\right)^{n}
$$

outside a set \mathcal{E} of linear Lebesgue measure at most δ. Then

$$
\left|R_{n} \circ \psi(x)\right| \geq\left(\frac{\delta}{4 e}\right)^{n}, \quad x \in[0,1] \backslash \psi^{[-1]}(\mathcal{E})
$$

By our hypothesis (13), we may choose δ so small that

$$
\text { meas }(\mathcal{E}) \leq \delta \Rightarrow \operatorname{meas}\left(\psi^{[-1]}(\mathcal{E})\right) \leq \frac{1}{4}
$$

Next, Cartan's Lemma also shows that

$$
\left|P_{n}(x)\right| \geq\left(\frac{1}{16 e}\right)^{n}, \quad x \in[0,1] \backslash \mathcal{F},
$$

where

$$
\operatorname{meas}(\mathcal{F}) \leq \frac{1}{4}
$$

Then

$$
P_{n}(x) R_{n} \circ \psi(x) \geq\left(\frac{\delta}{64 e^{2}}\right)^{n}, \quad x \in[0,1] \backslash\left(\psi^{[-1]}(\mathcal{E}) \cup \mathcal{F}\right)
$$

and so

$$
\begin{aligned}
I_{n} & \geq \int_{[0,1] \backslash(\psi[-1](\mathcal{E}) \cup \mathcal{F})} P_{n}(x) R_{n} \circ \psi(x) d x \\
& \geq\left(\frac{\delta}{64 e^{2}}\right)^{n} \frac{1}{2}
\end{aligned}
$$

Hence

$$
A \geq \frac{\delta}{64 e^{2}}
$$

(b) Since for $x, t \in[0,1]$,

$$
\log \frac{1}{|\psi(x)-\psi(t)|} \geq \log \frac{1}{2 \operatorname{diam} \psi[0,1]}>-\infty
$$

so for $x \in \operatorname{supp}[\mu]$, Lemma 3.1(b) gives

$$
\log \frac{1}{A} \geq W^{\mu}(x) \geq U^{\mu}(x)+\log \frac{1}{2 \operatorname{diam} \psi[0,1]}
$$

Then

$$
I(u) \leq \log \frac{1}{A}-\log \frac{1}{2 \operatorname{diam} \psi[0,1]} .
$$

(c) As μ has finite energy, it vanishes on sets of capacity zero. Then combining Lemmas 3.1 and 3.2,

$$
W^{\mu}=\log \frac{1}{A} \quad \text { both q.e. and a.e. }(\mu) \text { in } \operatorname{supp}[\mu] .
$$

Then the first assertion (54) also follows.
(d) This is almost identical to that of Theorem 1.2(d), following from the fact that

$$
W^{\mu} \leq \log \frac{1}{A} \quad \text { in supp }[\mu] .
$$

Proof of Theorem 1.5. Assume that \mathcal{S}, μ and A are as in the beginning of this section. Assume that $\mathcal{S}^{\#}, \mu^{\#}, A^{\#}$ satisfy analogous hypotheses. We shall show that

$$
A=A^{\#} \quad \text { and } \quad \mu=\mu^{\#}
$$

Our hypothesis on the zeros shows that

$$
\operatorname{supp}[\mu]=\operatorname{supp}\left[\mu^{\#}\right]=\mathcal{K} .
$$

Then Lemma 3.3 shows that

$$
W^{\mu}=\log \frac{1}{A} \quad \text { q.e. in } \mathcal{K}
$$

and

$$
W^{\mu^{\#}}=\log \frac{1}{A^{\#}} \quad \text { q.e. in } \mathcal{K} .
$$

Since $I(\mu)$ and $I\left(\mu^{\#}\right)$ are finite by Lemma 3.3, these last statements also hold μ a.e. and $\mu^{\#}$ a.e. in \mathcal{K}. Then

$$
\log \frac{1}{A}=\int W^{\mu} d \mu^{\#}=\int W^{\mu^{\#}} d \mu=\log \frac{1}{A^{\#}}
$$

It follows that there is a unique number A that is the limit of $I_{n}^{1 / n}$ as $n \rightarrow \infty$. Next,

$$
\begin{aligned}
J\left(\mu-\mu^{\#}\right) & =J(\mu)+J\left(\mu^{\#}\right)-2 \int W^{\mu} d \mu^{\#} \\
& =\log \frac{1}{A}+\log \frac{1}{A}-2 \log \frac{1}{A}=0
\end{aligned}
$$

As in Theorem 1.2(a), this then gives

$$
\mu=\mu^{\#}
$$

This proof also shows that μ is the unique solution of the integral equation

$$
W^{\mu}=C \quad \text { q.e. in } \mathcal{K} .
$$

We turn to the
Proof of Theorem 1.3. Let μ be a weak limit of some subsequence $\left\{\mu_{n}\right\}_{n \in \mathcal{S}}$ of $\left\{\mu_{n}\right\}_{n=1}^{\infty}$. We may also assume that (50) holds. From Lemma 3.3, μ has finite logarithmic energy, and from Lemma 3.2,

$$
W^{\mu} \geq \log \frac{1}{A} \quad \text { q.e. in }[0,1]
$$

Moreover, by Theorem 1.2(c) and our hypothesis (21),

$$
W^{v_{\psi}}=J^{*} \quad \text { q.e. in }[0,1] .
$$

Then the last relations also hold μ a.e. and ν_{ψ} a.e., so

$$
J^{*}=\int W^{v_{\psi}} d \mu=\int W^{\mu} d v_{\psi} \geq \log \frac{1}{A} .
$$

Moreover, by Lemma 3.3(c),

$$
W^{\mu}=\log \frac{1}{A} \quad \mu \text { a.e. in } \operatorname{supp}[\mu]
$$

so

$$
J(\mu)=\int W^{\mu} d \mu=\log \frac{1}{A} \leq J^{*}
$$

Then necessarily

$$
\log \frac{1}{A}=J(\mu)=J^{*}
$$

and

$$
\mu=v_{\psi}
$$

Proof of Theorem 1.4. Assume first that $\psi^{\prime \prime}$ is continuous in $(0,1)$ and that for each $x, t \in[0,1]$ with $x \neq t$,

$$
\frac{\partial^{2}}{\partial x^{2}} K(x, t)>0
$$

but that the support is not all of $[0,1]$. We already know that $[0, \varepsilon] \cup[1-\varepsilon, 1] \subset \operatorname{supp}\left[\nu_{\psi}\right]$ for some $\varepsilon>0$. Then there exist $0<a<b<1$ such that

$$
\begin{equation*}
(a, b) \cap \operatorname{supp}\left[v_{\psi}\right]=\varnothing \tag{56}
\end{equation*}
$$

We may assume that both

$$
\begin{equation*}
a, b \in \operatorname{supp}\left[v_{\psi}\right] \tag{57}
\end{equation*}
$$

Then by Theorem 1.2(c),

$$
W^{v_{\psi}}(a) \leq J^{*} \quad \text { and } \quad W^{\nu_{\psi}}(b) \leq J^{*} .
$$

But in (a, b), which lies outside the support of μ, W^{μ} will be twice continuously differentiable, and by our hypothesis,

$$
\frac{\partial^{2}}{\partial x^{2}} W^{v_{\psi}}(x)=\int \frac{\partial^{2}}{\partial x^{2}} K(x, t) d \nu_{\psi}(t)>0
$$

The convexity of $W^{\nu_{\psi}}$ forces in some $(c, d) \subset(a, b)$

$$
W^{\mu}<J^{*} .
$$

This contradicts Theorem 1.2(b).
Next, suppose that for $x, t \in(\psi(0), \psi(1))$ with $x \neq t$,

$$
\frac{\partial^{2}}{\partial x^{2}}\left[K\left(\psi^{[-1]}(x), \psi^{[-1]}(t)\right)\right]>0
$$

Consider

$$
\begin{aligned}
W^{\nu_{\psi}} \circ \psi^{[-1]}(x) & =\int K\left(\psi^{[-1]}(x), t\right) d \nu_{\psi}(t) \\
& =\int K\left(\psi^{[-1]}(x), \psi^{[-1]}(s)\right) d \nu_{\psi} \circ \psi^{[-1]}(s) .
\end{aligned}
$$

We have

$$
W^{v_{\psi}} \circ \psi^{[-1]}(x) \leq J^{*} \quad \text { if } x \in \psi\left(\operatorname{supp}\left[\nu_{\psi}\right]\right)
$$

and at each point of continuity of $W^{\nu_{\psi}} \circ \psi^{[-1]}$, Theorem 1.2(b) gives

$$
W^{v_{\psi}} \circ \psi^{[-1]}(x) \geq J^{*}
$$

We also see that for $x \in[\psi(0), \psi(1)] \backslash \psi\left(\operatorname{supp}\left[v_{\psi}\right]\right)$,

$$
\frac{\partial^{2}}{\partial x^{2}}\left[W^{\nu_{\psi}} \circ \psi^{[-1]}(x)\right]=\int \frac{\partial^{2}}{\partial x^{2}}\left[K\left(\psi^{[-1]}(x), \psi^{[-1]}(s)\right)\right] d \nu_{\psi} \circ \psi^{[-1]}(s)>0
$$

If $0<a<b<1$ and (56), (57) hold, then by Theorem 1.2(c),

$$
W^{\nu_{\psi}} \circ \psi^{[-1]}(\psi(a)) \leq J^{*} \quad \text { and } \quad W^{\nu_{\psi}} \circ \psi^{[-1]}(\psi(b)) \leq J^{*}
$$

so in some interval

$$
(c, d) \subset(\psi(a), \psi(b)),
$$

the convexity gives

$$
W^{\nu_{\psi}} \circ \psi^{[-1]}<J^{*} .
$$

But then

$$
W^{v_{\psi}}<J^{*} \quad \text { in }(\psi(c), \psi(d)),
$$

contradicting Theorem 1.2(b).
Proof of Theorem 1.6. Recall from (45) that

$$
I_{n}=\int_{0}^{1} S_{n} Q_{n} \circ \psi
$$

and

$$
\left|S_{n}(x) Q_{n} \circ \psi(x)\right|^{1 / n}=\exp \left(-W^{v_{n}}(x)\right) .
$$

Then much as in the proof of Lemmas 3.1, 3.2, under the hypotheses (48)-(50), we obtain

$$
W^{\nu} \leq \log \frac{1}{A} \quad \text { in } \operatorname{supp}[\nu]
$$

and

$$
W^{\nu} \geq \log \frac{1}{A} \quad \text { q.e. in }[0,1]
$$

in particular at every point of continuity of W^{ν}. Then the proof of Theorem 1.3 shows that $\nu=v_{\psi}$, and the result follows.

We next prove an inequality for I_{n}, assuming the hypotheses (35)-(36). Below, if α, β are probability measures on $[0,1]$, we set

$$
m_{\alpha, \beta}:=\inf _{[0,1]} W^{\alpha, \beta} .
$$

Proof of Theorem 1.7. Let β be a probability measure on [0,1$]$. By orthogonality, for any monic polynomial Π_{n} of degree n, we have

$$
I_{n}=\int_{0}^{1} P_{n}(x) \Pi_{n} \circ \psi(x) d x
$$

Given a probability measure on $[0,1]$, we may choose a sequence of polynomials Π_{n} such that Π_{n} has n simple zeros in $[\psi(0), \psi(1)]$, and the corresponding zero counting measures converge weakly to $\beta \circ \psi^{[-1]}$ as $n \rightarrow \infty$. (This follows easily as pure jump measures are dense in the set of probability measures.) As

$$
W^{\mu, \beta} \geq m_{\mu, \beta} \text { in the closed set }[0,1]
$$

we obtain, by Lemma 2.1,

$$
\limsup _{n \rightarrow \infty, n \in \mathcal{S}}\left|P_{n}(x) \Pi_{n} \circ \psi(x)\right|^{1 / n} \leq \exp \left(-m_{\mu, \beta}\right),
$$

uniformly in $[0,1]$. Then

$$
A=\limsup _{n \rightarrow \infty, n \in \mathcal{S}} I_{n}^{1 / n} \leq \exp \left(-m_{\mu, \beta}\right)
$$

Taking sup's over all such β gives (38). The other relation follows similarly, because of the duality identity (32).

References

[1] V.V. Andrievskii, H.P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer, New York, 2002.
[2] G.A. Baker Jr., Essentials of Padé Approximants, Academic Press, 1975.
[3] A. Borodin, Biorthogonal ensembles, Nuclear Phys. B 536 (1999) 704-732.
[4] P. Borwein, T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[5] C. Brezinski, Biorthogonality and its Applications to Numerical Analysis, Marcel Dekker, New York, 1992.
[6] T. Claeys, D. Wang, Random matrices with equispaced external source. Manuscript.
[7] C. Elbert, Strong asymptotics of the generating polynomials of the Stirling numbers of the second kind, J. Approx. Theory 109 (2001) 198-217.
[8] W. Ford, A. Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J. Numer. Anal. 24 (1987) 1212-1232.
[9] W.K. Hayman, Subharmonic Functions, Vol. 2, Academic Press, London, 1989.
[10] A. Iserles, S.P. Norsett, Bi-orthogonality and zeros of transformed polynomials, J. Comput. Appl. Math. 19 (1987) 39-45.
[11] A. Iserles, S.P. Norsett, E.B. Saff, On transformations and zeros of polynomials, Rocky Mountain J. Math. 21 (1991) 331-357.
[12] A. Kuijlaars, K.T-R. McLaughlin, A Riemann-Hilbert problem for biorthogonal polynomials, J. Comput. Appl. Math. 178 (2005) 313-320.
[13] N.S. Landkof, Foundations of Modern Potential Theory, Springer, 1972.
[14] D.S. Lubinsky, A. Sidi, Strong asymptotics for polynomials biorthogonal to powers of $\log x$, Analysis 14 (1994) 341-379.
[15] D.S. Lubinsky, A. Sidi, Zero distribution of composite polynomials and polynomials biorthogonal to exponentials, Constr. Approx. 28 (2008) 343-371.
[16] D.S. Lubinsky, A. Sidi, Polynomials biorthogonal to dilations of measures and their asymptotics, J. Math. Anal. Appl. 397 (2013) 91-108.
[17] D.S. Lubinsky, I. Soran, Weights whose biorthogonal polynomials admit a Rodrigues formula, J. Math. Anal. Appl 324 (2006) 805-819.
[18] D.S. Lubinsky, H. Stahl, Some explicit biorthogonal polynomials, in: C.K. Chui, M. Neamtu, L.L. Schumaker (Eds.), Approximation Theory XI, Nashboro Press, Brentwood, TN, 2005, pp. 279-285.
[19] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
[20] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, New York, 1996.
[21] A. Sidi, Numerical quadrature and non-linear sequence transformations: unified rules for efficient computation of integrals with algebraic and logarithmic endpoint singularities, Math. Comp. 35 (1980) 851-874.
[22] A. Sidi, Numerical quadrature for some infinite range integrals, Math. Comp. 38 (1982) 127-142.
[23] A. Sidi, Problems 5-8, in: H. Brass, G. Hämmerlin (Eds.), Numerical Integration III, Birkhäuser, Berlin, 1988, pp. 321-325.
[24] A. Sidi, Practical Extrapolation Methods, Cambridge University Press, Cambridge, 2003.
[25] A. Sidi, D.S. Lubinsky, On the zeros of some polynomials that arise in numerical quadrature and convergence acceleration, SIAM J. Numer. Anal. 20 (1983) 589-598.
[26] A. Sidi, D.S. Lubinsky, Biorthogonal polynomials and numerical integration formulas for infinite intervals, J. Numer. Anal. Ind. Appl. Math. 2 (2007) 209-226.
[27] H. Stahl, Handwritten Notes, 2003.
[28] H. Stahl, V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.

[^0]: ${ }^{*}$ Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399.

 * Corresponding author.

 E-mail addresses: lubinsky@math.gatech.edu (D.S. Lubinsky), asidi@cs.technion.ac.il (A. Sidi).

