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Abstract

Let ψ : [0, 1] → R be a strictly increasing continuous function. Let Pn be a polynomial of degree n
determined by the biorthogonality conditions 1

0
Pn (x) ψ (x)

j dx = 0, j = 0, 1, . . . , n − 1.

We study the distribution of zeros of Pn as n → ∞, and related potential theory.
c⃝ 2014 Elsevier Inc. All rights reserved.
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1. Introduction and results

Let ψ : [0, 1] → [ψ(0), ψ(1)] be a strictly increasing continuous function, with
inverse ψ [−1]. Then we may uniquely determine a monic polynomial Pn of degree n by the
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biorthogonality conditions 1

0
Pn(x)ψ(x)

j dx =


0, j = 0, 1, 2, . . . , n − 1,
In ≠ 0, j = n.

(1)

Pn will have n simple zeros in (0, 1), so we may write

Pn(x) =

n
j=1


x − x jn


. (2)

The proof of this is the same as for classical orthogonal polynomials. Our goal in this paper is
to investigate the zero distribution of Pn as n → ∞. Accordingly, we define the zero counting
measures

µn =
1
n

n
j=1

δx jn , (3)

that place mass 1
n at each of the zeros of Pn , and want to describe the weak limit(s) of µn as

n → ∞.
This topic was initiated by the second author, in the course of his investigations on con-

vergence acceleration [8,24], and numerical integration of singular integrands. He considered
[21–23]

ψ(x) = log x, x ∈ (0, 1)

and found that the corresponding biorthogonal polynomials are

Pn(x) =

n
j=0

(−1)n− j


n

j


j + 1
n + 1

 j

x j .

The latter are now often called the Sidi polynomials, and one may represent them as a contour
integral. Using steepest descent, the strong asymptotics of Pn , and their zero distribution, were
established in [14]. Asymptotics for more general polynomials of this type were analyzed by
Elbert [7]. Extensions, asymptotics, and applications in numerical integration, and convergence
acceleration have been considered in [15,16,25,26]. Biorthogonal polynomials of a more general
form have been studied in several contexts—see [5,10,11]. The sorts of biorthogonal polynomi-
als used in random matrices [3,6,12] are mostly different, although there are some common ideas
in the associated potential theory.

Herbert Stahl’s interest in this topic arose after he refereed [14]. He and the first author dis-
cussed the topic at some length at a conference in honor of Paul Erdős in 1995. This led to a draft
paper on zero distribution in the later 1990s, with revisions in 2001, and 2003, and this paper
is the partial completion of that work. For the case ψ(x) = xα, α > 0, we presented explicit
formulae in [18]. Rodrigues type representations were studied in [17].

Distribution of zeros of polynomials is closely related to potential theory [1,20,28], and
accordingly we introduce some potential theoretic concepts. We let P (E) denote the set of all
probability measures with compact support contained in the set E . For any positive Borel measure
µ, we define its classical energy integral

I (µ) =


log

1
|x − t |

dµ(x)dµ(t), (4)
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and denote its support by supp [µ]. Where appropriate, we consider these concepts for signed
measures too. For any set E in the plane, its (inner) logarithmic capacity is

cap (E) = sup


e−I (µ)
: µ ∈ P (E)


.

We say that a property holds q.e. (quasi-everywhere) if it holds outside a set of capacity 0. We
use meas to denote linear Lebesgue measure 0. For further orientation on potential theory, see
for example [13,19,20].

In our setting we need a new energy integral

J (µ) =


K (x, t) dµ(x)dµ(t), (5)

where

K (x, t) = log
1

|x − t |
+ log

1
|ψ(x)− ψ(t)|

. (6)

In [6], a similar energy integral was considered for ψ(t) = et , but with an external field. The
minimal energy corresponding to ψ is

J ∗ (ψ) = inf {J (µ) : µ ∈ P ([0, 1])} . (7)

Under mild conditions on ψ , we shall prove that there is a unique probability measure, which
we denote by νψ , attaining the minimum. For probability measures µ, ν, we define the classical
potential

Uµ(x) =


log

1
|x − t |

dµ(t), (8)

the mixed potential

Wµ,ν(x) =


log

1
|x − t |

dµ(t)+


log

1
|ψ(x)− ψ(t)|

dν(t) (9)

= Uµ(x)+ U ν◦ψ [−1]
◦ ψ(x), (10)

and the ψ potential

Wµ(x) = Wµ,µ(x) =


K (x, t) dµ(t). (11)

We note that potential theory for generalized kernels is an old topic, see for example, Chapter VI
in [13]. However, there does not seem to be a comprehensive treatment covering our setting. Our
most important restrictions on ψ are contained in:

Definition 1.1. Letψ : [0, 1] → [ψ (0) , ψ(1)] be a strictly increasing continuous function, with
inverse ψ [−1]. Assume that ψ satisfies the following two conditions:

(I)

cap(E) = 0 ⇒ cap

ψ [−1] (E)


= 0. (12)
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(II) For each ε > 0, there exists δ > 0 such that

meas(E) ≤ δ ⇒ meas

ψ [−1](E)


≤ ε. (13)

Then we say that ψ preserves smallness of sets.

The conditions (I), (II) are satisfied if ψ satisfies a local lower Lipschitz condition. By this
we mean that we can write [0, 1] as a countable union of intervals [a, b] such that in [a, b], there
exist C , α > 0 depending on a, b, with

|ψ(x)− ψ(t)| ≥ C |t − x |
α , x, t ∈ [a, b] .

We can apply Theorem 5.3.1 in [19, p. 137] to ψ−1 to deduce (12).
Using classical methods, we shall prove:

Theorem 1.2. Let ψ : [0, 1] → [ψ (0) , ψ(1)] be a strictly increasing continuous function that
preserves smallness of sets. Define the minimal energy J ∗

= J ∗ (ψ) by (7). Then

(a) J ∗ is finite and there exists a unique probability measure νψ on [0, 1] such that

J

νψ


= J ∗. (14)

(b)

W νψ ≥ J ∗ q.e. in [0, 1] . (15)

In particular, this is true at each point of continuity of W νψ .
(c)

W νψ ≤ J ∗ in supp

νψ


(16)

and

W νψ = J ∗ q.e. in supp

νψ

. (17)

(d) νψ is absolutely continuous with respect to linear Lebesgue measure on [0, 1]. Moreover,
there are constants C1 and C2 depending only on ψ , such that for all compact K ⊂ [0, 1],

νψ (K ) ≤
C1

|log cap K|
≤

C2

|log meas (K)|
. (18)

(e) There exists ε > 0 such that

[0, ε] ∪ [1 − ε, 1] ⊂ supp

νψ

. (19)

Let

In =

 1

0
Pn(t)ψ(t)

ndt, n ≥ 1. (20)

Theorem 1.3. Let ψ : [0, 1] → [ψ (0) , ψ(1)] be a strictly increasing continuous function that
preserves smallness of sets. Let {Pn} be the corresponding biorthogonal polynomials, with zero
counting measures {µn}. If

supp

νψ


= [0, 1] , (21)
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then the zero counting measures {µn} of (Pn) satisfy

µn
∗

→ νψ , n → ∞ (22)

and

lim
n→∞

I 1/n
n = exp


−J ∗


. (23)

The weak convergence (22) is defined in the usual way:

lim
n→∞

 1

0
f (t)dµn (t) =

 1

0
f (t)dνψ (t),

for every continuous function f : [0, 1] → R. We can replace (21) by the more implicit, but more
general, assumption that supp


νψ


contains the support of every weak limit of every subsequence
of (µn). We can at least prove it when the kernel K , and hence the potential W νψ , satisfies a
convexity condition:

Theorem 1.4. Let ψ : [0, 1] → [ψ (0) , ψ(1)] be a strictly increasing continuous function that
preserves smallness of sets. In addition assume that ψ is twice continuously differentiable in
(0, 1) and either

(a) for x, t ∈ (0, 1) with x ≠ t ,

∂2

∂x2 K (x, t) > 0, (24)

or
(b) for x, t ∈ (ψ(0), ψ(1)) with x ≠ t ,

∂2

∂x2


K

ψ [−1](x), ψ [−1](t)


> 0. (25)

Then

supp

νψ


= [0, 1] . (26)

Example. Let α > 0 and

ψ(x) = xα, x ∈ [0, 1] .

Then either (25) or (26) holds and hence (21) holds. We show this separately for α ≥ 1 and for
α < 1. An explicit formula for νψ appears in [18, p.292].

Case I α ≥ 1.
We shall show that the hypotheses of Theorem 1.4(a) are fulfilled. A straightforward calcula-

tion gives that

∆ (x, t) := (x − t)2 (ψ (x)− ψ(t))2
∂2

∂x2 K (x, t)

=

xα − tα

2
+


αxα−1

2
(x − t)2 − α (α − 1) xα−2 xα − tα


(x − t)2 .

Writing s = t x , we see that

∆ (x, t) = x2αH(s),
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where

H(s) :=

1 − sα

2
+ α2 (1 − s)2 − α (α − 1)


1 − sα


(1 − s)2 . (27)

For s > 1, all three terms on the right-hand side of (27) are positive, so H(s) > 0. If 0 ≤ s < 1,
we see that

H(s) =

1 − sα

2
+ α (1 − s)2


α − (α − 1)


1 − sα


≥

1 − sα

2
+ α (1 − s)2 > 0.

In summary, if α > 1, we have for all x ∈ [0, 1] and s ∈ [0,∞) \ {1},

∆ (x, sx) > 0

so the hypotheses (24) are fulfilled.
Case II α < 1.

Here

ψ [−1](x) = x1/α

and

K

ψ [−1](x), ψ [−1](t)


= log

1x1/α − t1/α
 + log

1
|x − t |

,

which is exactly the case 1/α > 1 treated above, so we see that the hypothesis (25) is fulfilled.

Instead of placing an implicit assumption on the support of νψ , we can place an implicit
assumption on the zeros of {Pn}, and obtain a unique weak limit:

Theorem 1.5. Let ψ : [0, 1] → [ψ(0), ψ(1)] be a strictly increasing continuous function
that preserves smallness of sets. Let K ⊂ [0, 1] be compact. Assume that every weak limit of
every subsequence of the zero counting measures {µn} has support K. Then there is a unique
probability measure µ on K such that

µn
∗

→µ, n → ∞, (28)

and a unique positive number A such that

lim
n→∞

I 1/n
n = A. (29)

Here µ is absolutely continuous with respect to a linear Lebesgue measure, and is the unique
solution of the integral equation

Wµ(x) = Constant, q.e. x ∈ K. (30)

Moreover, then

Wµ(x) = log
1
A
, q.e. x ∈ K.

We note that in [6], a related integral equation to (30) appears. We shall also need the dual
polynomials Qn such that Qn ◦ ψ are biorthogonal to powers of x . Thus we define Qn to be a
monic polynomial of degree n determined by the conditions 1

0
Qn ◦ ψ(t)t j dt = 0, (31)
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j = 0, 1, 2, . . . , n − 1. Because of this biorthogonality condition, 1

0
Qn ◦ ψ(t)tndt =

 1

0
Qn ◦ ψ(t)Pn(t)dt =

 1

0
Pn (t) ψ(t)

ndt.

That is,

In =

 1

0
Pn(t)ψ(t)

ndt =

 1

0
Qn ◦ ψ(t)tndt. (32)

The orthogonality conditions ensure that Qn ◦ ψ has n distinct zeros


y jn


in (0, 1), so we can
write

Qn ◦ ψ(t) =

n
j=1


ψ(t)− ψ


y jn

. (33)

Let

νn =
1
n

n
j=1

δy jn . (34)

We shall prove

Theorem 1.6. Let ψ : [0, 1] → [ψ (0) , ψ(1)] be a strictly increasing continuous function that
preserves smallness of sets, and assume (21). We have as n → ∞,

νn
∗

→ νψ .

We also prove the following extremal property for weak subsequential limits of {µn}.

Theorem 1.7. Let ψ : [0, 1] → [ψ (0) , ψ(1)] be a strictly increasing continuous function that
preserves smallness of sets. Assume that S is an infinite subsequence of positive integers such
that as n → ∞ through S ,

µn
∗

→µ; (35)

νn
∗

→ ν; (36)

and

I 1/n
n → A, (37)

where A ∈ R and µ, ν ∈ P ([0, 1]). Then

A ≤ exp


− sup
β∈P([0,1])

inf
[0,1]

Wµ,β


(38)

and

A ≤ exp


− sup
α∈P([0,1])

inf
[0,1]

Wα,ν


. (39)
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Remarks. (a) This extremal property is very close to a characterization of equilibrium measures
for external fields. For example, with ν as above, let Q be the external field

Q = U ν◦ψ [−1]
◦ ψ on [0, 1] .

Then the second inequality above says

A ≤ exp


− sup
α∈P([0,1])

inf
[0,1]


Uα

+ Q

.

This is reminiscent of one characterization of the equilibrium measure for the external field
Q [20, Theorem I.3.1, p. 43].

(b) Herbert Stahl sketched a proof that when ψ is strictly increasing and piecewise linear, then
(21) holds [27]. His expectation was that this and a limiting argument could establish (21)
very generally.

(c) There are two principal issues left unresolved in this paper, that seem worthy of further
study:

(I) Find general hypotheses for supp

νψ


= [0, 1].

(II) Find an explicit representation of the solution µ′ of the integral equation (30), that is of 1

0
log |x − t |µ′(t)dt +

 1

0
log |ψ(x)− ψ(t)|µ′(t)dt = Constant, x ∈ [0, 1] .

The usual methods (differentiating, and solving a Cauchy singular integral equation) do
not seem to work, even when ψ is analytic.

Next we show that if ψ is constant in an interval, then the support of the equilibrium measure
should avoid that interval, as do most of the zeros of {Pn}:

Example. Let

ψ(x) =


2x, x ∈


0,

1
2


1, x ∈


1
2
, 1

.

Then it is not difficult to see that the equilibrium measure νψ must have support [0, 1
2 ]. Indeed if

µ is a probability measure that has positive measure on [a, b] ⊂ ( 1
2 , 1), then as

log
1

|ψ(x)− ψ(t)|
= ∞, x, t ∈ [a, b] ,

so

J (µ) = ∞.

Consequently,

J ∗
= inf


2I (µ)+ log

1
2


,
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where the inf is now taken over all µ ∈ P


0, 1
2


. Then νψ is the classical equilibrium measure

for

0, 1

2


, namely

ν′
ψ (x) =

1

π


x


1
2 − x

 , x ∈


0,

1
2


,

and

J ∗
= 2 log 8 + log

1
2

= log 32.

In this case, we can also almost explicitly determine Pn . The biorthogonality conditions give for
π of degree at most n − 1, 1/2

0
Pn(x)π(2x)dx + π (1)

 1

1/2
Pn(x)dx = 0.

In particular, this is true for π ≡ 1, so 1

1/2
Pn(x)dx = −

 1/2

0
Pn(x)dx,

and we obtain for any π of degree at most n − 1, 1/2

0
Pn(x) (π(2x)− π (1)) dx = 0.

Then for every polynomial S of degree ≤ n − 2, 1/2

0
Pn(x)S(x) (1 − 2x) dx = 0, (40)

which forces Pn to have at least n − 1 distinct zeros in [0, 1
2 ]. Then every weak limit of every

subsequence of {µn} has support in [0, 1
2 ].

This paper is organized as follows: in Section 2, we present a principle of descent, and a lower
envelope theorem, and the proof of Theorem 1.2. In Section 3, we prove Theorems 1.3–1.7.
Throughout the sequel, we assume that ψ : [0, 1] → [ψ(0), ψ(1)] is a strictly increasing con-
tinuous function that preserves smallness of sets.

We close this section with some extra notation. Define the companion polynomial to Pn ,
namely

Rn(x) =

n
j=1


x − ψ


x jn

. (41)

It has the property that Rn ◦ ψ has the same zeros as Pn . Hence

Pn(x)Rn ◦ ψ(x) ≥ 0 in [0, 1] . (42)

Analogous to Rn , we define

Sn(t) =

n
j=1


t − y jn


, (43)
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so that

Sn(t)Qn ◦ ψ(t) ≥ 0, t ∈ [0, 1] . (44)

Observe that In of (20) satisfies

In =

 1

0
Pn(x)Rn ◦ ψ(x)dx =

 1

0
Qn ◦ ψ(x)Sn(x)dx > 0. (45)

2. Proof of Theorem 1.2

We begin by noting that for any positive measures α, β, Wα,β is lower semicontinuous, since
a potential of any positive measure is, while ψ and ψ [−1] are continuous. We start with

Lemma 2.1 (The Principle of Descent). Let {αn} and {βn} be finite positive Borel measures on
[0, 1] such that

lim
n→∞

αn ([0, 1]) = 1 = lim
n→∞

βn ([0, 1]) .

Assume moreover that as n → ∞,

αn
∗

→α;

βn
∗

→β.

(a) If {xn} ⊂ [0, 1] and xn → x0, n → ∞, then

lim inf
n→∞

Wαn ,βn (xn) ≥ Wα,β (x0) .

(b) If K ⊂ [0, 1] is compact and

Wα,β
≥ λ in K,

then uniformly in K,

lim inf
n→∞

Wαn ,βn (x) ≥ λ.

Proof. (a) By the classical principle of descent,

lim inf
n→∞

Uαn (xn) ≥ Uα (x0) ,

see for example, [20, Theorem I.6.8, p. 70]. Next, we see from the classical principle of
descent and continuity of ψ , ψ [−1] that

lim inf
n→∞

Uβn◦ψ [−1]
◦ ψ (xn) ≥ Uβ◦ψ [−1]

◦ ψ (x0) .

Combining these two gives the result.
(b) This follows easily from (a). If (b) fails, we can choose a sequence (xn) in K with limit

x0 ∈ K such that

lim inf
n→∞

Wαn ,βn (xn) < λ ≤ Wα,β (x0) . �
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Recall our notation Wαn = Wαn ,αn . We now establish

Lemma 2.2 (Lower Envelope Theorem). Assume the hypotheses of Lemma 2.1. Then for q.e.
x ∈ [0, 1],

lim inf
n→∞, n∈S

Wαn (x) = Wα(x).

Proof. We already know from Lemma 2.1 (the principle of descent) that everywhere in [0, 1],

lim inf
n→∞, n∈S

Wαn (x) ≥ Wα(x).

Suppose the result is false. Then there exists ε > 0, and a (Borel) set S of positive capacity such
that

lim inf
n→∞, n∈S

Wαn (x) ≥ Wα(x)+ ε in S. (46)

Because Borel sets are inner regular, and even more, capacitable, we may assume that S is
compact. Then there exists a probability measure ω with support in S such that Uω is continuous
in C. See, for example, [20, Corollary I.6.11, p. 74]. As ψ and ψ [−1] are continuous,

Wω
= Uω

+ Uω◦ψ [−1]
◦ ψ

is also continuous in [0, 1]. Then by Fubini’s Theorem and weak convergence

lim inf
n→∞, n∈S


Wαn dω = lim inf

n→∞, n∈S


Wωdαn

=


Wωdα =


Wαdω.

Here since K (x, t) is bounded below in [0, 1], we may continue this using (46) and Fatou’s
Lemma as

=

 
Wα

+ ε


dω − ε

≤

 
lim inf

n→∞, n∈S
Wαn


dω − ε

≤ lim inf
n→∞, n∈S


Wαn dω − ε.

So we have a contradiction. �

Next, we show that J ∗ is finite, establishing part of Theorem 1.2(a):

Lemma 2.3. J ∗ is finite.

Proof. This is really a consequence of Cartan’s Lemma for potentials. Let µ = meas denote
Lebesgue measure on [0, 1]. Then for x ∈ [0, 1],

Uµ(x) =

 1

0
log

1
|x − t |

dt ≤ 2
 1

0
log

1
s

ds
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and Uµ is continuous. Now consider the unit measure µ◦ψ [−1]. By Cartan’s Lemma [9, p. 366],
if ε > 0 and

Aε
=


y ∈ R : Uµ◦ψ [−1]

(y) > log
1
ε


,

then

µ


Aε


≤ 3eε.

With a suitably small choice of ε, we then have by the hypothesis (13),

µ

ψ [−1] Aε


≤

1
2
.

With this choice of ε, let

B = [0, 1] \ ψ [−1] Aε

,

a closed set. Let

ν =
µ|B
µ (B)

.

As µ (B) ≥
1
2 , ν is a well defined probability measure. Moreover, x ∈ B ⇒ ψ(x) ∉ Aε, and

U ν◦ψ [−1]
◦ ψ(x) =

1
µ(B)


Uµ◦ψ [−1]

◦ ψ(x)− Uµ|[0,1]\B◦ψ [−1]
◦ ψ(x)


≤

1
µ(B)


log

1
ε

+ log

2∥ψ∥L∞[0,1]


=: C0 < ∞.

Then

J ∗
≤ J (ν) ≤ I (ν)+ C0 < ∞. �

Proof of Theorem 1.2. (a) We can choose a sequence {αn} of probability measures on [0, 1]
such that

lim
n→∞

J (αn) = J ∗.

By Helly’s Theorem, we can choose a subsequence converging weakly to some probability
measure α on [0, 1], and by relabeling, we may assume that the full sequence {αn} converges
weakly to α. Then


αn ◦ ψ [−1]


converges weakly to α ◦ ψ [−1]. By the classical principle of

descent

lim inf
n→∞

I (αn) ≥ I (α)

and

lim inf
n→∞

I

αn ◦ ψ [−1]


≥ I


α ◦ ψ [−1]


,

or equivalently,

lim inf
n→∞


log

1
|ψ (x)− ψ(t)|

dαn(x)dαn(t) ≥


log

1
|ψ(x)− ψ(t)|

dα(x)dα(t).

See, for example, [20, Theorem I.6.8, p. 70]. Combining these, we have

J ∗
= lim inf

n→∞
J (αn) ≥ J (α) ,
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so α achieves the inf, and is an equilibrium distribution. If β is another such distribution, then
the parallelogram law

J


1
2
(α + β)


+ J


1
2
(α − β)


=

1
2
(J (α)+ J (β)) = J ∗,

gives

J


1
2
(α − β)


= J ∗

− J


1
2
(α + β)


≤ 0,

as 1
2 (α + β) is also a probability measure on [0, 1]. Here

J


1
2
(α − β)


= I


1
2
(α − β)


+ I


1
2


α ◦ ψ [−1]

− β ◦ ψ [−1]

,

and both terms on the right-hand side are non-negative as both measures inside the energy
integrals on the right have total mass 0. See [20, Lemma I.1.8, p. 29]. Hence

I


1
2
(α − β)


= 0,

so α = β [20, Lemma I.1.8, p. 29].
(b) Suppose the result is false. Then for some large enough integer n0,

E1 :=


x ∈ [0, 1] : W νψ (x) ≤ J ∗

−
1
n0


,

has positive capacity and is compact, since W νψ is lower semi-continuous. But,
W νψ dνψ = J


νψ


= J ∗,

so there exists a compact subset E2 disjoint from E1 such that

W νψ (x) > J ∗
−

1
2n0

, x ∈ E2,

and

m = νψ (E2) > 0.

Now as E1 is a compact set of positive capacity, we can find a positive measure σ on E1, with
support in E1, such that Uσ is continuous in the plane [20, Corollary I.6.11, p. 74]. Then Uσ◦ψ [−1]

is also continuous in [ψ(0), ψ(1)], so W σ is continuous in [0, 1]. We may also assume that

σ (E1) = m.

Define a signed measure σ1 on [0, 1], by

σ1 :=

σ in E1
−νψ in E2
0 elsewhere.

Here if η ∈ (0, 1),

J

νψ + ησ1


= J


νψ

+ 2η


W νψ dσ1 + η2 J (σ1)
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≤ J

νψ

+ 2η


E1


J ∗

−
1
n0


dσ

+


E2


J ∗

−
1

2n0


d

−νψ


+ η2 J (σ1)

= J

νψ

+ 2ηm


J ∗

−
1
n0


−


J ∗

−
1

2n0


+ η2 J (σ1)

= J

νψ

−
ηm

n0
+ η2 J (σ1) < J


νψ

,

for small η > 0. As σ1 has total mass 0, so νψ + ησ1 has total mass 1, and we see from the
identity

νψ + ησ1 = (1 − η) νψ |E2 + νψ |[0,1]\E2 + ησ

that it is non-negative. Then we have a contradiction to the minimality of J

νψ

.

(c) Let x0 ∈ supp

νψ


and suppose that

W νψ (x0) > J ∗.

By the lower semi-continuity of W νψ , there exist ε > 0 and closed [a, b] containing x0 such that

W νψ (x) > J ∗
+ ε, x ∈ [a, b] .

We know too that

W νψ (x) ≥ J ∗ for q.e. x ∈ supp

νψ

.

Here as J ∗ is finite, so I

νψ


must be finite (recall that K (x, t) is bounded below). Then νψ
vanishes on sets of capacity 0, so this last inequality holds νψ a.e. (cf. [19, Theorem 3.2.3, p. 56]).
Then

J ∗
= J


νψ


=

 b

a
+


[0,1]\[a,b]


W νψ (x) dνψ (x)

≥

J ∗

+ ε

νψ ([a, b])+ J ∗νψ ([0, 1] \ [a, b])

= J ∗
+ ενψ ([a, b]) ,

a contradiction.
(d) If cap (K) = 0, then as I


νψ

< ∞, we have also νψ (K) = 0, and the inequality (18)

is immediate. So assume that K ⊂ supp

νψ


has positive capacity, and let ω be the equilibrium
measure for K. We may also assume that K ⊂ supp


νψ

, since

νψ (K) = νψ


K ∩ supp

νψ

.

Now, there exists a positive constant C0 such that

K (x, t) ≥ −C0, x, t ∈ [0, 1] .

Then by (c), for x ∈ K,
K

K (x, t) dνψ (t) ≤ J ∗
−


[0,1]\K

K (x, t) dνψ (t)

≤ J ∗
+ C0
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and hence for x ∈ K,
K

log
1

|x − t |
dνψ (t) ≤ J ∗

+ C0 + log

2∥ψ∥L∞[0,1]


=: C1. (47)

Here C1 is independent of K, x . Now

Uω(t) = log
1

cap K
for q.e. t ∈ K and since νψ vanishes on sets of capacity zero, this also holds for νψ a.e. t ∈ K.
Integrating (47) with respect to dω(x) and using Fubini’s theorem, gives

K
Uω(t)dνψ (t) ≤ C1

and hence

νψ (K) log
1

cap K
≤ C1.

This gives the first inequality in (18), and then well known inequalities relating cap and meas
give the second. In particular, that inequality implies the absolute continuity of µ with respect to
linear Lebesgue measure.

(e) Suppose that 0 ∉ supp

νψ

. Let c > 0 be the closest point in the support of νψ to 0. Then

for x ∈ [0, c
2 ], and for all t ∈ [c, 1], we have from the strict monotonicity of ψ that

K (x, t) < K (c, t) ,

so for such x ,

W νψ (x) =

 1

c
K (x, t) dνψ (t)

<

 1

c
K (c, t) dνψ (t) = W νψ (c) ≤ J ∗.

Thus in spite of the continuity of W νψ in [0, c),

W νψ < J ∗ in

0,

c

2


,

contradicting (b). Absolute continuity of νψ then shows that for some ε > 0, we have [0, ε] ⊂

supp

νψ

. Similarly we can show that for some ε > 0, [1 − ε, 1] ⊂ supp


νψ

. �

3. Proof of Theorems 1.3–1.7

Recall that µn and νn were defined respectively by (3) and (34). Throughout this section, we
assume that S is an infinite subsequence of positive integers such that as n → ∞ through S ,

µn
∗

→µ; (48)

νn
∗

→ ν; (49)

and

I 1/n
n → A, (50)
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where A ∈ R and µ, ν ∈ P ([0, 1]). In the sequel we make frequent use of identities such as

|Pn(x)|
1/n

= exp

−Uµn (x)


and

|Pn(x)Rn ◦ ψ(x)|1/n
= exp


−Wµn (x)


.

We begin with

Lemma 3.1 (An Upper Bound for Wµ).

(a) With the hypotheses above, let [a, b] ⊂ [0, 1] and assume that [a, b] contains two zeros of
Pn for infinitely many n ∈ S . Then

inf
[a,b]

Wµ
≤ log

1
A
.

(b) In particular, if x0 is a limit of two zeros of Pn as n → ∞ through S , or x0 ∈ supp [µ], then

Wµ (x0) ≤ log
1
A
.

Proof. (a) We may assume (by passing to a subsequence) that for all n ∈ S, Pn has two zeros in
[a, b]. Assume on the contrary, that for some ε > 0,

inf
[a,b]

Wµ > log
1
A

+ ε. (51)

Let xn, yn be two zeros of Pn in [a, b] and let

R∗
n(x) = Rn(x)/ [(x − ψ (xn)) (x − ψ (yn))] .

Then we see that

Pn(x)R
∗
n ◦ ψ(x) ≥ 0, x ∈ [0, 1] \ [a, b] ,

and

0 ≤ Pn(x)Rn ◦ ψ(x) ≤
Pn(x)R

∗
n ◦ ψ(x)

 4∥ψ∥L∞[0,1]
2
, x ∈ [0, 1] .

Moreover, as R∗
n has the same asymptotic zero distribution as Rn , we see from Lemma 2.1 and

(51) that

lim sup
n→∞, n∈S

Pn (x) R∗
n ◦ ψ(x)

1/n
≤ exp


−Wµ,µ(x)


= exp


−Wµ(x)


≤ Ae−ε,

uniformly in [a, b]. Then by biorthogonality, and positivity of Pn(x)R∗
n ◦ ψ(x) outside [a, b],

lim sup
n→∞, n∈S


[0,1]\[a,b]

Pn(x)R
∗
n ◦ ψ(x)

 dx

1/n

= lim sup
n→∞, n∈S


[a,b]

Pn(x)R
∗
n ◦ ψ(x)dx

1/n

≤ Ae−ε.
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Of course Lemma 2.1(b) also gives

lim sup
n→∞, n∈S


[a,b]

Pn(x)R
∗
n ◦ ψ(x)

 dx

1/n

≤ Ae−ε,

so

A = lim sup
n→∞, n∈S

I 1/n
n

≤ lim sup
n→∞, n∈S


4∥ψ∥L∞[0,1]

2/n

 1

0

Pn(x)R
∗
n ◦ ψ (x)

 dx

1/n

≤ Ae−ε.

This contradiction gives the result.
(b) This follows from (a), and lower semicontinuity of Wµ. �

Lemma 3.2 (A Lower Bound for Wµ). At each point of continuity of Wµ in [0, 1], we have

Wµ
≥ log

1
A
. (52)

In particular, this inequality holds q.e. in [0, 1].

Proof. Assume that a ∈ [0, 1] is a point of continuity of Wµ, but for some ε > 0,

Wµ(a) ≤ log
1
A

− 2ε.

Then there exists an interval [a, b] containing a, such that

Wµ(x) ≤ log
1
A

− ε, x ∈ [a, b] .

By the lower envelope theorem (Lemma 2.2)

lim sup
n→∞, n∈S

(Pn(x)Rn ◦ ψ(x))1/n
= exp


− lim inf

n→∞, n∈S
Wµn (x)


= exp


−Wµ(x)


≥ Aeε

for q.e. x ∈ [a, b]. Let

Tn =


x ∈ [a, b] : (Pn(x)Rn ◦ ψ(x))1/n

≥ Aeε/2

.

Then for each m ≥ 1,
∞

n=m
Tn

contains q.e. x ∈ [a, b], so has linear Lebesgue measure b − a. Then for infinitely many n, Tn
has linear Lebesgue measure at least n−2, so

I 1/n
n ≥


Tn

Pn(x)Rn ◦ ψ(x)dx

1/n

≥ n−2/n Aeε/2
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so

A = lim sup
n→∞, n∈S

I 1/n
n ≥ Aeε/2,

a contradiction.
Finally, we note that any logarithmic potential is continuous q.e. [13, p. 185], so Uµ and

Uµ◦ψ [−1]
are continuous q.e. Our hypothesis that ψ [−1](E) has capacity zero whenever E does

ensures that Uµ◦ψ [−1]
◦ψ is continuous q.e. also. Hence Wµ is continuous q.e. and so (52) holds

q.e. in [0, 1]. �

Next, we establish lower and upper bounds for A.

Lemma 3.3. (a) There exist constants C1,C2 > 0 depending only on ψ (and not on the
subsequence S above) such that

C1 ≥ A ≥ C2. (53)

(b) In particular,

I (µ) < ∞.

(c)

J (µ) = log
1
A

(54)

and

Wµ
= log

1
A

q.e. and a.e. (µ) in supp [µ] . (55)

(d) µ is absolutely continuous with respect to linear Lebesgue measure on [0, 1]. Moreover,
there are constants C1 and C2 depending only on ψ , and not on S , such that for all compact
K ⊂ [0, 1],

µ(K ) ≤
C1

|log cap K|
≤

C2

|log meas (K)|
.

Proof. (a) Firstly as all zeros of Pn and Rn ◦ ψ lie in [0, 1], so

In =

 1

0
Pn(x)Rn ◦ ψ(x)dx

≤ (diam ψ [0, 1])n .

Here diam denotes the diameter of a set. So

A ≤ diam ψ [0, 1] .

In the other direction, we use Cartan’s Lemma for polynomials [2, p. 175], [4], [9, p. 366]. This
asserts that if δ > 0, then

|Rn(x)| ≥


δ

4e

n

outside a set E of linear Lebesgue measure at most δ. Then

|Rn ◦ ψ(x)| ≥


δ

4e

n

, x ∈ [0, 1] \ ψ [−1] (E) .
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By our hypothesis (13), we may choose δ so small that

meas (E) ≤ δ ⇒ meas

ψ [−1] (E)


≤

1
4
.

Next, Cartan’s Lemma also shows that

|Pn(x)| ≥


1

16e

n

, x ∈ [0, 1] \ F ,

where

meas (F) ≤
1
4
.

Then

Pn(x)Rn ◦ ψ(x) ≥


δ

64e2

n

, x ∈ [0, 1] \


ψ [−1] (E) ∪ F


and so

In ≥


[0,1]\(ψ [−1](E)∪F)

Pn (x) Rn ◦ ψ(x)dx

≥


δ

64e2

n 1
2
.

Hence

A ≥
δ

64e2 .

(b) Since for x, t ∈ [0, 1],

log
1

|ψ(x)− ψ(t)|
≥ log

1
2 diam ψ [0, 1]

> −∞,

so for x ∈ supp [µ], Lemma 3.1(b) gives

log
1
A

≥ Wµ(x) ≥ Uµ(x)+ log
1

2 diam ψ [0, 1]
.

Then

I (u) ≤ log
1
A

− log
1

2 diam ψ [0, 1]
.

(c) As µ has finite energy, it vanishes on sets of capacity zero. Then combining Lemmas 3.1 and
3.2,

Wµ
= log

1
A

both q.e. and a.e. (µ) in supp [µ] .

Then the first assertion (54) also follows.
(d) This is almost identical to that of Theorem 1.2(d), following from the fact that

Wµ
≤ log

1
A

in supp [µ] . �
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Proof of Theorem 1.5. Assume that S, µ and A are as in the beginning of this section. Assume
that S #, µ#, A# satisfy analogous hypotheses. We shall show that

A = A# and µ = µ#.

Our hypothesis on the zeros shows that

supp [µ] = supp

µ#


= K.

Then Lemma 3.3 shows that

Wµ
= log

1
A

q.e. in K

and

Wµ#
= log

1
A# q.e. in K.

Since I (µ) and I

µ#


are finite by Lemma 3.3, these last statements also hold µ a.e. and µ# a.e.
in K. Then

log
1
A

=


Wµdµ#

=


Wµ#

dµ = log
1
A# .

It follows that there is a unique number A that is the limit of I 1/n
n as n → ∞. Next,

J

µ− µ#


= J (µ)+ J


µ#


− 2


Wµdµ#

= log
1
A

+ log
1
A

− 2 log
1
A

= 0.

As in Theorem 1.2(a), this then gives

µ = µ#.

This proof also shows that µ is the unique solution of the integral equation

Wµ
= C q.e. in K. �

We turn to the

Proof of Theorem 1.3. Let µ be a weak limit of some subsequence {µn}n∈S of {µn}
∞

n=1. We
may also assume that (50) holds. From Lemma 3.3, µ has finite logarithmic energy, and from
Lemma 3.2,

Wµ
≥ log

1
A

q.e. in [0, 1] .

Moreover, by Theorem 1.2(c) and our hypothesis (21),

W νψ = J ∗ q.e. in [0, 1] .

Then the last relations also hold µ a.e. and νψ a.e., so

J ∗
=


W νψ dµ =


Wµdνψ ≥ log

1
A
.
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Moreover, by Lemma 3.3(c),

Wµ
= log

1
A

µ a.e. in supp [µ]

so

J (µ) =


Wµdµ = log

1
A

≤ J ∗.

Then necessarily

log
1
A

= J (µ) = J ∗

and

µ = νψ . �

Proof of Theorem 1.4. Assume first thatψ ′′ is continuous in (0, 1) and that for each x , t ∈ [0, 1]
with x ≠ t ,

∂2

∂x2 K (x, t) > 0,

but that the support is not all of [0, 1]. We already know that [0, ε] ∪ [1 − ε, 1] ⊂ supp

νψ


for
some ε > 0. Then there exist 0 < a < b < 1 such that

(a, b) ∩ supp

νψ


= ∅. (56)

We may assume that both

a, b ∈ supp

νψ

. (57)

Then by Theorem 1.2(c),

W νψ (a) ≤ J ∗ and W νψ (b) ≤ J ∗.

But in (a, b), which lies outside the support of µ, Wµ will be twice continuously differentiable,
and by our hypothesis,

∂2

∂x2 W νψ (x) =


∂2

∂x2 K (x, t) dνψ (t) > 0.

The convexity of W νψ forces in some (c, d) ⊂ (a, b)

Wµ < J ∗.

This contradicts Theorem 1.2(b).
Next, suppose that for x, t ∈ (ψ(0), ψ(1)) with x ≠ t ,

∂2

∂x2


K

ψ [−1](x), ψ [−1](t)


> 0.

Consider

W νψ ◦ ψ [−1](x) =


K

ψ [−1](x), t


dνψ (t)

=


K

ψ [−1](x), ψ [−1](s)


dνψ ◦ ψ [−1](s).
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We have

W νψ ◦ ψ [−1](x) ≤ J ∗ if x ∈ ψ

supp


νψ


and at each point of continuity of W νψ ◦ ψ [−1], Theorem 1.2(b) gives

W νψ ◦ ψ [−1](x) ≥ J ∗.

We also see that for x ∈ [ψ(0), ψ(1)] \ ψ

supp


νψ


,

∂2

∂x2


W νψ ◦ ψ [−1](x)


=


∂2

∂x2


K

ψ [−1](x), ψ [−1](s)


dνψ ◦ ψ [−1](s) > 0.

If 0 < a < b < 1 and (56), (57) hold, then by Theorem 1.2(c),

W νψ ◦ ψ [−1] (ψ(a)) ≤ J ∗ and W νψ ◦ ψ [−1] (ψ(b)) ≤ J ∗

so in some interval

(c, d) ⊂ (ψ(a), ψ(b)) ,

the convexity gives

W νψ ◦ ψ [−1] < J ∗.

But then

W νψ < J ∗ in (ψ(c), ψ(d)) ,

contradicting Theorem 1.2(b). �

Proof of Theorem 1.6. Recall from (45) that

In =

 1

0
Sn Qn ◦ ψ

and

|Sn(x)Qn ◦ ψ(x)|1/n
= exp


−W νn (x)


.

Then much as in the proof of Lemmas 3.1, 3.2, under the hypotheses (48)–(50), we obtain

W ν
≤ log

1
A

in supp [ν]

and

W ν
≥ log

1
A

q.e. in [0, 1] ,

in particular at every point of continuity of W ν . Then the proof of Theorem 1.3 shows that
ν = νψ , and the result follows. �

We next prove an inequality for In , assuming the hypotheses (35)–(36). Below, if α, β are
probability measures on [0, 1], we set

mα,β := inf
[0,1]

Wα,β .
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Proof of Theorem 1.7. Let β be a probability measure on [0, 1]. By orthogonality, for any monic
polynomial Πn of degree n, we have

In =

 1

0
Pn(x)Πn ◦ ψ(x)dx .

Given a probability measure on [0, 1], we may choose a sequence of polynomials Πn such that
Πn has n simple zeros in [ψ(0), ψ(1)], and the corresponding zero counting measures converge
weakly to β ◦ ψ [−1] as n → ∞. (This follows easily as pure jump measures are dense in the set
of probability measures.) As

Wµ,β
≥ mµ,β in the closed set [0, 1] ,

we obtain, by Lemma 2.1,

lim sup
n→∞, n∈S

|Pn (x)Πn ◦ ψ(x)|1/n
≤ exp


−mµ,β


,

uniformly in [0, 1]. Then

A = lim sup
n→∞, n∈S

I 1/n
n ≤ exp


−mµ,β


.

Taking sup’s over all such β gives (38). The other relation follows similarly, because of the
duality identity (32). �
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