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Abstract Let {x,,} be a vector sequence that satisfies

o0
Xm ~ S —i—Zaigi(m) asm — 00,

i=1

s being the limit or antilimit of {x,,} and {g;(m)}7°, being an asymptotic scale as
m — 00, in the sense that

Igi I _ iy 0
m—oo | g;(m)||
The vector sequences {g;(m)} >, i = 1,2,..., are known, as well as {x,}. In

this work, we analyze the convergence and convergence acceleration properties of a
vectorized version of the generalized Richardson extrapolation process that is defined
via the equations

k k
Dy A )T =(y, Axp), n<m<ntk—1 spx=x,+ ) dGign),

i=1 i=1

sn.x being the approximation to s. Here, y is some nonzero vector, (-, -) is an
inner product, such that («a, Bb) = op(a,b), and Ax,, = X4+ — X, and
Ag;(m) = g;(m+ 1) — g;(m). By imposing a minimal number of reasonable addi-
tional conditions on the g;(m), we show that the error s, x — s has a full asymptotic
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expansion as n — 0o. We also show that actual convergence acceleration takes place,
and we provide a complete classification of it.

Keywords Acceleration of convergence - Vector extrapolation methods -
Vectorized generalized Richardson extrapolation process
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1 Introduction

Let X be a finite or infinite dimensional linear inner product space with the inner
product (-, -) defined such that (xa, 8b) = af{a, b), and let | - || be the norm induced
by this inner product, namely, ||z]| = v/(z, Z)-

Let {x,,} be a vector sequence in X, and let x,,, have an asymptotic expansion of
the form

o0
xm~s+2a,~gi(m) asm — 00, (1.1)
i=1

s being the limit or antilimit of {x,,} and {g;(m)}7°, being an asymptotic scale as
m — 00, in the sense that

lgii (ml

=0, i=12,.... (1.2)
m—oo || g;(m)|l
The vector sequences {g;(m)}>> ,i = 1,2,..., are known, as well as {x,,}. The

scalars «; do not have to be known. By (1.1), we mean

,
X —S— ) a;gi(m)

i=1

=o(||lg,m)|]) asm — oo, Vr=>1. (1.3)

Of course, the summation Zfil a; g;(m) in the asymptotic expansion of (1.1) does
not need to be convergent; it may diverge in general. Finally, the «; are not all nonzero
necessarily; some may be zero in general.!

Clearly, if &1 # 0 and limy—o0 g1(m) = 0, then {x,,} converges and we have
limy— o0 Xm = . If 1 # 0 and limy,;,— o g1 (m) does not exist, then {x,,} diverges.
In case it converges, the convergence of the sequence {x,,} can be accelerated via a
suitable extrapolation method, which will produce good approximations to s. Extrap-
olation methods can be very useful for obtaining good approximations to s also in
case of divergence, at least in some cases.

In this work, we would like to analyze the convergence and acceleration proper-
ties of one such method, namely, the vector E-algorithm of Brezinski [1]. See also
Brezinski and Redivo Zaglia [2, Chapter 4, pp. 228-232]. The vector E-algorithm

'We may think of an Euler-Maclaurin expansion that may not be full, for example.
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produces from the sequence {x,,} and the sequences {g; (m)}f;O:O, i=1,2,...,a

two-dimensional array of approximations s, i, which are defined via

k
Sk =Xn— Y Fig;(n), (14)
i=1
the @; being the solution to the k x k linear system
k
Z(y, Ag,(m)o; =y, Axp), m=nn+1,....,n+k—1. (1.5)

i=1
Here, y is a nonzero vector in X, Ax,;, = X;y+1 — X and Ag;(m) = g;(m + 1) —

g;(m). Taken together, and by Cramer’s rule, (1.4) and (1.5) give rise to the following
determinant representation for s, x:

Snk = fuk(x); X ={xn}, (1.6)
where, for an arbitrary vector sequence v = {v,,} in X,

v, (¥, Avy) oo (Y, Avppior)
g1(n) (y, Agy(m)) --- (y, Ag(n+k—1))

Nok(@) _ |8k(1) (y, Agr(m)) -~ (y. Agp(n +k — D))

fn,k(v) = Do x (y,Ag,(n)) -+ (y,Ag;(n +k—1))

1.7)

(y. Agp(m) -+ (y, Agp(n +k—1))

Of course, we are assuming that D, x, the denominator determinant of s, , is
nonzero. Note also that N, ¢ (x), the numerator determinant of s, i, which is a vector,
is to be interpreted as its expansion with respect to its first column.

A recursion relation for the s, is given in Brezinski [1]. Different recursion
relations for this method are also given in Ford and Sidi [3].

For convenience, let us arrange the s, x in a two-dimensional array as in Table 1,
where s, 0 =x,,n=0,1,....

2 A convergence theory

Convergence acceleration properties of the rows {Sn,k}zozo, k = 1,2,..., of the
extrapolation table, that is, convergence acceleration properties of §, x as n — 00

Table 1 The extrapolation table

50,0 §1,0 §2,0
50,1 S1,1 §$2.1
50,2 S1,2 $22
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with k fixed, have been considered under different conditions in the works of Wimp
[7, Chapter 10, p. 180, Theorem 1] and Matos [4]. Here, we provide a new study,
whose results are summarized in Theorem 1 that is stated and proved below. This
theorem provides optimal results in the form of

1. agenuine asymptotic expansion for s, x as n — 0o, and
2. adefinitive and quantitative convergence acceleration result.

The technique we use to prove Theorem 1 is derived in part from Wimp [7]
and mostly from Sidi [5], with necessary modifications to accommodate vector
sequences. It also involves the notion of generalized asymptotic expansion; see
Temme [6, Chapter 1], for example. For convenience, we give the precise definition
of this notion here.

Definition 1 Let {¢; (m)}7°, and {t; (m)};2, be two asymptotic scales as m — oo.
Letalso {W,,}>~_, be a given sequence. We say that the formal series Zﬁl a;¢i(m)is
the generalized asymptotic expansion of Wy, with respect to {1;(m)}2, as m — oo,
written in the form

oo
Wi ~ Y aigi(m) asm — o0; {¥i},
i=1
provided

Wi — Y aigi(m) = o(y(m)) asm — oo, ¥r>1
i=1

The notation we use in the sequel is precisely that introduced in the previous
section.

Theorem 1 Let the sequence {x,} be as in (1.1), with the g;(m) satisfying (1.2), and

» 8 1

1m M:bl#l’ i:1’2’.'.’

m—00 (y,gl-(m)) 2.1)
b; distinct;  |by| > |bp| > ---; lim b; =0,

i—00
in addition. Assume also that
gim) .
L g:#0, i=12,..., 2.2)
and define
-~ k—1
g 1b - bl}( |
— g 1b - b
ho=[ 0 L izk+L 2.3)
2 1 b - b’,z_l
Then the following are true:
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1.  There holds
(y, Ag;m+ 1))

im =b;, i=12,..., 2.4
in addition to (2.1). Furthermore, the sequence {(y, Ag;(m))}°, is an asymp-
totic scale as m — oo, that is,

) Ag;
A1) _ oy 2.5)

mooo (y, Ag;(m))

2. With arbitrary v = {vm};‘fzo, Ju.k(v) defined in (1.7) exist for all n > nog, ng
being some positive integer independent of v.
3. (a) Withg; = {gi(m)}fnozo, we have f, (g;) = 0fori =1,..., k, while for
i>k+1,

Ink(8i) o i
(y, Agi(n)) V1P

asn — oo, if hy; #0,

‘ R (2.6)
k8 4y asn oo, if s =0,
(y,Agi(n))
and also
I Fuk (8Dl ~ Crillgi I asn— oo, ifhes £0. o
I fni(8) =o(lgimI) asn— oo, ifhg;=0,
where
1 g
Cri = - 2.8)
VL bl gl
and V(c1, ..., cx) is the Vandermonde determinant of c1, . .., ck, given as
in
lep -o- C’f—l
1 cy - 02_1
Vier,...,a0) =, . = ] @@= 9
Dot : I<i<j<k
Lcg--- 011271

(b) In addition, fori > k + 1, {fn,k(gl-)}f’ik+1 is an asymptotic scale as n —
o0, in the following generalized sense:

| kgDl

im =0, i>k+1. (2.10)
n—oo | g;(n)

4. Spk has a genuine generalized asymptotic expansion with respect to the asymp-
totic scale {g;(n)}2, as n — oo, namely,

o
snk~ S+ Y aifur(g) asn— oo {gl, (2.11)
i=k+1
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in the sense that

r

Snk—S— > aifar(g) =0(g ) asn—oo, Vrzk+1. (212)
i=k+1

We also have

r

Sok—s— 3w fur(@) = o(fuk(g,) asn— oo, iffx, £0. 2.13)
i=k+1

5. Let agqy be the first nonzero ayy; withi > k + 1. Then the following are true:

(a) su satisfies
Spk—S= O(gk+u(n)) asn — 0o, (2.14)

and, therefore, also
Snhk+j—S = 08y, (n)) asn—o0, j=0,1,....k+p—1. (2.15)
(b) We also have

Sk =8 ~ Qs fak (g asn— 00, if hpip #0.  (2.16)

As a result, provided iz\kﬂ,k_m #0,j=0,1,...,u— 1, we also have
Snk+j — 8~ QkrpSnk+j(8ryy) asn—>o00, j=0,1,....,u—1,
2.17)

which also implies

I$nktj =8I ~ 1kt | Cootjbrp 18k M asn — o0, j=0,1,..., u=1
(2.18)

() Ifag #0andhy_i; # 0, then

Isnirj = sll _ (”gk+ﬂ(”)||) —o(l) asn—oo, j=01,.. k+u—1L
$nk—1 — sl gl
(2.19)
Proof of part 1 We first note that
(. 8i(m+2)
(y,Agim+ 1)) _ (y.gi(m+ D) (y,g;(m+1))
(y, Ag;(m)) (y,gi(m)) {y.8m+1)
(y.gi(m))
Taking now limits as m — oo, and invoking (2.1), we obtain (2.4).
Next, by (2.2), we have the asymptotic equality
gi(m) ~ (y, Ag;i(m))g; asm — oo, (2.20)
which, upon taking norms, gives the asymptotic equality
g (m)ll
[y, Ag;(m))| ~ —”",g\'” as m — 0o. (2.21)
l
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Therefore,
Iy, Agip1(m)| ll;fill g1 (M)l ST — 00,
Ky, Ag;(m))]| Igiv1ll llg;m)l
Invoking now the fact that {g;(m)}2, itself is an asymptotic scale as m — 00, as in
(1.2), the result in (2.5) follows. O]

Proof of part 2 By (1.7), fux(v) for arbitrary v = {v,} exists provided D, t,
the denominator determinant, is nonzero. Therefore, we need to analyze only the
determinant D,, ; in (1.7). Let us set

(y, Ag;(m + j))

ni,j(m) = iLj=12..., (2.22)
! (y. Ag;(m))
and observe that
j
,Ag.(m+r)
nijom) =[] 2, A8; ) (2.23)
1 (Y, Agi(m +r —1))

Letting m — oo and invoking (2.4), we obtain
lim 7; ;(m) = b!. (2.24)
m—0o0
Factoring out (y, Ag;(n)) from the jthrow of D, k, j = 1,..., k, we have

I nii(m) -+ nik—1(n)

—k = @29)
. s -(n
A M1 (1) -+« Mice—1(n)
which, upon letting n — oo, gives
lim Y4 =Vbi.by....b)= [] ®;—bo. (2.26)
n—oo
I<i<j<k
this limit being nonzero since the b; are distinct. Therefore,
k
Dyx~V(b1,by, ..., 1_[ y, Agj(n) asn — oo.

From this and from (2.21), we conclude that D,, y # 0 for all large n. Since D, i is
also independent of v, we have that D, x # 0 for all n > ng, ng being independent
of v trivially. O

Proof of part 3 We now turn to f, x(g;) = Nu.x(g;)/Dn k, Where

gin) (y, Agi(m) --- (y,Agi(n+k—1))
g1(n) (y, Agi(n)) -~ (y, Agy(n+k—1))
Nok(g) =] . : : : 2.27)

gc(m) (y, Agr(m)) --- (y, Agr(n+k—1))
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We first observe that N, x(g;) = 0fori =1, ..., k, since the determinant in (2.27)
has two identical rows when 1 < i < k. This proves that f, x(g;,) = 0 fori =
1, ..., k. Therefore, we consider the case i > k + 1. Proceeding as in the analysis of
Dy, i, let us factor out (y, Ag;(n)) and (y, Ag;(n)),...,(y, Ag(n)) from the k + 1
rows of N, «(g;). We obtain

gi(n)

Ooagay L M@)o nig—10n)
Nos(g) | L) - () .
- . . . = ny,i(n),
(v, Agi(m) [T5=, (v, Ag ;) Do :
% L) - meg—1(n)
(2.28)
which, upon letting n — oo and invoking (2.24), (2.2), and (2.3), gives
lim hy;(n) = hy;. (2.29)
n— oo
Combining now (2.28) with (2.25), we obtain
(y, Ag;(n))hy i (n)
frrlgn = 228 —, (2.30)
1pn,k
which, upon letting n — oo, gives
. T
S8 ki 2.31)

im = ,
n—>oo (y, Ag;(n))  V(by,...,b)

from which, (2.6) follows. (2.7) is obtained by taking norms in (2.6) and by making
use of (2.21).
Finally,
I frk(@ir DIl Ky, Agip ) Ay, ()|l

lg: Vil llg; ()l

which, upon letting n — oo and invoking (2.21), gives

I fok(&iv )l 1 ki) 11gi 1M
lg: (ml Vi, ... bl gl gl

Invoking here (1.2), and noting that || ; (n)|| is bounded in n, we obtain (2.10). [

asn — oQ.

Proof of part 4 We now turn to s, k. First, we note that

Smk =8 = forr) —s = Mk T e — ), (2.32)
Dn,k
with
Xp—S (y,Axy) --- (¥, AXppk—1)
g1(m) (3. Agi(m) - (y. Agy(n+k— 1)
Nn,k(x - S) = . . . s (233)

gc(n) (y. Agr(n)) --- (y, Agr(n+k —1))
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because the coefficient of x, in the expansion of N, x(x) is D, k. By (1.1), the
elements in the first row of N, x(x — s) have the asymptotic expansions

o0
X, —S§~ Zaig,-(n) asn — 0o,
i=1

o0
(3, Axpij) ~ ) aily, Agi(n+j)) asn—oo, j=0,1,....
i=1

Multiplying the (i 4 1)st row of N, x(x —s) in (2.33) by «; and subtracting from the
firstrow, i =1, ..., k, we obtain

Nn,k(x —5)~
Z?ik.;_] Oligi(n) Z?ik+l a;(y, Ag; (n)) --- ch‘)ik+1 a;(y, Agi(n +k—1))
21 (n) 3 Ag ) (0 Agi k= 1)
2u(n) 3. Ag) - (3 Agin k= 1)

(2.34)

as n — oo. Taking the summations ) 72, | and the multiplicative factors o; from
the first row outside the determinant in (2.34), we have

o0
Nog(x =)~ Y aiNyx(g) asn— oo g ={g;(mlny (235
i=k+1

with N, r(g;) as in (2.27). Substituting (2.35) in (2.32), we obtain the asymptotic
expansion of s, x given in (2.11). This asymptotic expansion will be a valid gen-
eralized asymptotic expansion with respect to the asymptotic scale {g;(n)}2, as
n — oo, provided

r

Snk—S— Y aifar(g)=o0(g,(m) asn—>oo, Vr=k+1. (236)
i=k+1

By (1.3), for arbitrary r, we have
r
Xp =S8+ Zoc,-gi(m) +¢€,(m); €,(m)=o0(g,.(m)) asm — oo. (2.37)
i=1
Let us substitute this in (2.32) and proceed exactly as above; we obtain
r
Sk =S+ Y oifur(8)+ fuk(€r). (2.38)
i=k+1

Comparing (2.38) with (2.36), we realize that (2.36) will be satisfied provided

Jnk(€r) =o0(g,(n)) asn — oo. (2.39)
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NOW, fn,k(er) = Nn,k(er)/Dn,k: and
€(n) (y, A€ (n)) -+ (y, Aer(n+k —1))

gi1(n) (y, Ag(n)) - (y, Ag1(n+k—1))
Nn,k(fr) = . . X .

ge(m) (3. Age(m) -+ (3. Age(n +k — 1))

Let us factor out (y, Ag,(n)) and (y, Ag{(n)),...,(y, Agi(n)) from the k + 1 rows
of this determinant. We obtain

Nn,k(er) _
T =
€r(n) (. A€, (n))  (y,A€r(n+1)) . (y,Ae; (n+k—1))
(y,Aszrgn» (y.Ag,.(n))  (y,Ag,(n)) (y,A8,(n))
g1(n 1
5 Ae T i@ - mg—1(n)
paamn . _ = puile,). (240)
N W - )
(¥, A8k (n)) Nk, 1(n Nk, k—1(n

Dividing now (2.40) by (2.25), we obtain

Dk (€r)
Ipn,k

which, upon taking norms and invoking (2.21), gives

|k (enl] ~ |0k (€r)l IIgL(n)II a5 11— 0.
[V(i,....00 gl
Therefore, (2.36) will hold provided lim,—, oo ¢n.k(€,) = 0. As we already know,
with the exception of the elements in the first row, all the remaining elements of the
determinant ¢, x(e€,) have finite limits as n — oo, by (2.2) and (2.24). Therefore,
lim,, oo Pn.k (€,) = 0 will hold provided all the elements in the first row of ¢, «(€,)
tend to zero as n — o0. That this is the case is what we show next.
First, by (2.21)-(2.24), as n — o0,

fn’k(ér)z <y7 Agr(n))a

g, + DI~ g I Ky, Ag, (a4 )1 ~ 1611 1& 1 1{y, Ag, ()| ~ [b]|llg,m)].

(2.41)
Next, by applying the Cauchy—Schwarz inequality to (y, A€, (n + j)), and invoking
(2.37) and (2.41), we have

Ky, Ae,(n+ ) < Nyl le-(n+j 4+ DIl + lle,(n + )
=o(lg,(n+j+ DI +o(lg,(n+ )l asn— oo

= o(lg-(m) asn — oo.
Invoking also (2.21), for the elements in the first row of ¢, i (€,), we finally obtain

€:(n)

H—” =o(l) asn — oo,
(y, Ag,(n))
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and A )
W' —o(l) asn— oo, j=0,1,... k—1.
(y, Ag,(n))
This implies that ¢, x(€,) = o(1) as n — 00, and the proof is complete. ]

Proof of Part 5 By apj = 0, j = 1,...,u — 1, and oy, # 0,2 the validity of
(2.14) is obvious. (2.15) follows from (2.14). The validity of (2.16)—(2.18) can be
shown in the same way. As for (2.19), we start with
Iswi =sll_ llsui —sll
Isni—1 — sl laxlCr1xllgr(ml’
which follows from (2.18) and invoke (2.15). We leave the details to the reader. [

3 Remarks on the convergence theory

1. Note that Theorem 1 is stated under a minimal number of conditions on the
g;(m) and the x,,. Of these, the condition in (2.1) is already in [7, p. 180, Eq.(3)],
while that in (2.2) is a modification of [7, p. 180, Eq.(5)].

2. The conditions we have imposed on the g;(m) enable us to proceed with the
proof rigorously by employing asymptotic equalities ~ everywhere possible.
This should be contrasted with bounds formulated in terms of the big O notation,
which do not allow us to obtain the optimal results we have in our theorem.?

3. Note that we have imposed essentially two different conditions on the g;(m),
namely (2.1) and (2.2). One may naturally think that these conditions could con-
tradict each other. In addition, one may think that they could also contradict the
very first and fundamental property in (1.2), which must hold to make (1.1) a
genuine asymptotic expansion. Thus, we need to make sure that there are no con-
tradictions present in our theorem. For this, it is enough to show that all three
conditions can hold simultaneously, which is the case when

g;(m) ~w;b" asm — oo, |bj|>|bjt1| Vi=1

It is easy to verify that (1.2), (2.1), and (2.2) are satisfied simultaneously in this
case.

4. Due to the possibility that & ; = 0 for some i > k + 1, we cannot claim a priori
that {f, x(g;)}72, is an asymptotic scale in the regular sense. Note, however,
that we can safely replace (2.6) by

| fok(8)l = O(lg:m)I) asn—>o0, Vix>k+1,
whether iz\k,i # 0 or ’I;k,,- =0.

ZNote that this already takes into account the possibility that x| # 0, in which case, & = 1.

3Recall that u,, ~ v, as m — oo if and only if lim,,— oo (4, /Vn) = 1. One big advantage of asymptotic
equalities is that they allow symmetry and division. That is, if u,, ~ v,, then v,, ~ u,, as well. In addition,
Um ~ vy and u, ~ v), also imply wu,,/u, ~ vy /v,,. On the other hand, if u,, = O(vy), we do not
necessarily have v, = O(uy). In addition, u,, = O(vy) and u), = O(v},) do not necessarily imply
um/u;n = O(U,,,/U,/n).
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5. ﬁk,i # O forall i > k + 1 if, for example, the vectors g; are all linearly indepen-
dent, which is possible if X is an infinite dimensional space. This can be seen by
expanding the determinant defining Ay ; in (2.3) with respect to its first column
and realizing that il\k,,' =g + ZIJ‘: 1€ ,-§ T where ¢; and the c; are all nonzero
Vandermonde determinants. In such a case, by (2.7) and (1.2),

) Cy )
I fok(@irDll  Crivt 181 I _ o(l) asn — oo,
I fn k(8 Cri llgim)ll
hence { f, x(g;)};2, is an asymptotic scale in the regular sense. Therefore, the

asymptotic expansion of s,  in (2.11) is a regular asymptotic expansion, which
means that

r

Snk—S— Y ifar(g)=0(fur(g)) asn—o0, Vr=k+l.
i=k+1

6. When o1 # 0, the sequence {x,,} is convergent if |b;| < 1; it is divergent if
|b1] > 1. The asymptotic result in (2.12), which is always true, shows clearly
that s, x converges to s faster than x, when {x,,} is convergent. In case {x,} is
divergent, by the assumption that lim;_, o b; = 0, we have that |b;| < 1,i > p,
for some integer p, and s, x converges when k > p.

7. Consider the case

ar #0, o1 = =apyp-1=0, gy #0.
By (2.12)-(2.19), the following transpire:
° Whetherit\k,l,k =0 oriz\k,lyk # 0,
Spk—1— S = 0(gg(n)) asn — oo,
o  Whether Ay jiip =00r by jjsp #0,0<j<p—1,
Snk+j— 8 = O(gk+u(n)) asn—o00, 0<j<pu-—1.

o If hy_1x # 0, then s, x converges faster (or diverges slower) than s, x—_1,
that is,

lI$n.x — sl

n=>00 ||sp -1 =S|
o Whiijisu #0, 0=<j<p—1, then
I$nktj =S~ MiyjllgrrpMI asn—oo0, j=0,1,....,u—1,

for some positive constants My ;. That is, s, k, Sp k+1, ..., Spk+p—1 CON-
verge (or diverge) at precisely the same rate.

8.  We have assumed that X is an inner product space only for the sake of simplicity.
We can assume X to be a normed Banach space in general. In this case, we
replace (y, u) by Q(u), where Q is a bounded linear functional on X. With this,
the analysis of this section goes through in a straightforward manner.
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