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Abstract Let {xm} be a vector sequence that satisfies

xm ∼ s +
∞∑

i=1

αigi (m) as m → ∞,

s being the limit or antilimit of {xm} and {gi (m)}∞i=1 being an asymptotic scale as
m → ∞, in the sense that

lim
m→∞

‖gi+1(m)‖
‖gi (m)‖ = 0, i = 1, 2, . . . .

The vector sequences {gi (m)}∞m=0, i = 1, 2, . . . , are known, as well as {xm}. In
this work, we analyze the convergence and convergence acceleration properties of a
vectorized version of the generalized Richardson extrapolation process that is defined
via the equations

k∑

i=1

〈y, �gi (m)〉̃αi = 〈y, �xm〉, n ≤ m ≤ n + k − 1; sn,k = xn +
k∑

i=1

α̃igi (n),

sn,k being the approximation to s. Here, y is some nonzero vector, 〈· , ·〉 is an
inner product, such that 〈αa, βb〉 = αβ〈a, b〉, and �xm = xm+1 − xm and
�gi (m) = gi (m + 1) − gi (m). By imposing a minimal number of reasonable addi-
tional conditions on the gi (m), we show that the error sn,k − s has a full asymptotic
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expansion as n → ∞. We also show that actual convergence acceleration takes place,
and we provide a complete classification of it.

Keywords Acceleration of convergence · Vector extrapolation methods ·
Vectorized generalized Richardson extrapolation process
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1 Introduction

Let X be a finite or infinite dimensional linear inner product space with the inner
product 〈· , ·〉 defined such that 〈αa, βb〉 = αβ〈a, b〉, and let ‖·‖ be the norm induced
by this inner product, namely, ‖z‖ = √〈z, z〉.

Let {xm} be a vector sequence in X, and let xm have an asymptotic expansion of
the form

xm ∼ s +
∞∑

i=1

αigi (m) as m → ∞, (1.1)

s being the limit or antilimit of {xm} and {gi (m)}∞i=1 being an asymptotic scale as
m → ∞, in the sense that

lim
m→∞

‖gi+1(m)‖
‖gi (m)‖ = 0, i = 1, 2, . . . . (1.2)

The vector sequences {gi (m)}∞m=0, i = 1, 2, . . . , are known, as well as {xm}. The
scalars αi do not have to be known. By (1.1), we mean

∥∥∥∥∥xm − s −
r∑

i=1

αigi (m)

∥∥∥∥∥ = o(‖gr (m)‖) as m → ∞, ∀ r ≥ 1. (1.3)

Of course, the summation
∑∞

i=1 αigi (m) in the asymptotic expansion of (1.1) does
not need to be convergent; it may diverge in general. Finally, the αi are not all nonzero
necessarily; some may be zero in general.1

Clearly, if α1 �= 0 and limm→∞ g1(m) = 0, then {xm} converges and we have
limm→∞ xm = s. If α1 �= 0 and limm→∞ g1(m) does not exist, then {xm} diverges.
In case it converges, the convergence of the sequence {xm} can be accelerated via a
suitable extrapolation method, which will produce good approximations to s. Extrap-
olation methods can be very useful for obtaining good approximations to s also in
case of divergence, at least in some cases.

In this work, we would like to analyze the convergence and acceleration proper-
ties of one such method, namely, the vector E-algorithm of Brezinski [1]. See also
Brezinski and Redivo Zaglia [2, Chapter 4, pp. 228–232]. The vector E-algorithm

1We may think of an Euler–Maclaurin expansion that may not be full, for example.
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produces from the sequence {xm} and the sequences {gi (m)}∞m=0, i = 1, 2, . . . , a
two-dimensional array of approximations sn,k , which are defined via

sn,k = xn −
k∑

i=1

α̃igi (n), (1.4)

the α̃i being the solution to the k × k linear system

k∑

i=1

〈y, �gi (m)〉̃αi = 〈y, �xm〉, m = n, n + 1, . . . , n + k − 1. (1.5)

Here, y is a nonzero vector in X, �xm = xm+1 − xm and �gi (m) = gi (m + 1) −
gi (m). Taken together, and by Cramer’s rule, (1.4) and (1.5) give rise to the following
determinant representation for sn,k:

sn,k = fn,k(x); x ≡ {xm}, (1.6)

where, for an arbitrary vector sequence v ≡ {vm} in X,

fn,k(v) = Nn,k(v)

Dn,k

=

∣∣∣∣∣∣∣∣∣

vn 〈y, �vn〉 · · · 〈y, �vn+k−1〉
g1(n) 〈y, �g1(n)〉 · · · 〈y, �g1(n + k − 1)〉

...
...

...

gk(n) 〈y, �gk(n)〉 · · · 〈y, �gk(n + k − 1)〉

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

〈y, �g1(n)〉 · · · 〈y, �g1(n + k − 1)〉
...

...

〈y, �gk(n)〉 · · · 〈y, �gk(n + k − 1)〉

∣∣∣∣∣∣∣

. (1.7)

Of course, we are assuming that Dn,k , the denominator determinant of sn,k , is
nonzero. Note also that Nn,k(x), the numerator determinant of sn,k , which is a vector,
is to be interpreted as its expansion with respect to its first column.

A recursion relation for the sn,k is given in Brezinski [1]. Different recursion
relations for this method are also given in Ford and Sidi [3].

For convenience, let us arrange the sn,k in a two-dimensional array as in Table 1,
where sn,0 = xn, n = 0, 1, . . . .

2 A convergence theory

Convergence acceleration properties of the rows {sn,k}∞n=0, k = 1, 2, . . . , of the
extrapolation table, that is, convergence acceleration properties of sn,k as n → ∞

Table 1 The extrapolation table
s0,0 s1,0 s2,0 · · ·
s0,1 s1,1 s2,1 · · ·
s0,2 s1,2 s2,2 · · ·
.
.
.

.

.

.
.
.
.

. . .
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with k fixed, have been considered under different conditions in the works of Wimp
[7, Chapter 10, p. 180, Theorem 1] and Matos [4]. Here, we provide a new study,
whose results are summarized in Theorem 1 that is stated and proved below. This
theorem provides optimal results in the form of

1. a genuine asymptotic expansion for sn,k as n → ∞, and
2. a definitive and quantitative convergence acceleration result.

The technique we use to prove Theorem 1 is derived in part from Wimp [7]
and mostly from Sidi [5], with necessary modifications to accommodate vector
sequences. It also involves the notion of generalized asymptotic expansion; see
Temme [6, Chapter 1], for example. For convenience, we give the precise definition
of this notion here.

Definition 1 Let {φi(m)}∞i=1 and {ψi(m)}∞i=1 be two asymptotic scales as m → ∞.
Let also {Wm}∞m=0 be a given sequence.We say that the formal series

∑∞
i=1 aiφi(m) is

the generalized asymptotic expansion of Wm with respect to {ψi(m)}∞i=1 as m → ∞,
written in the form

Wm ∼
∞∑

i=1

aiφi(m) as m → ∞; {ψi},

provided

Wm −
r∑

i=1

aiφi(m) = o(ψr(m)) as m → ∞, ∀ r ≥ 1.

The notation we use in the sequel is precisely that introduced in the previous
section.

Theorem 1 Let the sequence {xm} be as in (1.1), with the gi (m) satisfying (1.2), and

lim
m→∞

〈y, gi (m + 1)〉
〈y, gi (m)〉 = bi �= 1, i = 1, 2, . . . ,

bi distinct; |b1| > |b2| > · · · ; lim
i→∞ bi = 0,

(2.1)

in addition. Assume also that

lim
m→∞

gi (m)

〈y, �gi (m)〉 = ĝi �= 0, i = 1, 2, . . . , (2.2)

and define

ĥk,i =

∣∣∣∣∣∣∣∣∣

ĝi 1 bi · · · bk−1
i

ĝ1 1 b1 · · · bk−1
1

...
...

...
...

ĝk 1 bk · · · bk−1
k

∣∣∣∣∣∣∣∣∣

, i ≥ k + 1. (2.3)

Then the following are true:
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1. There holds

lim
m→∞

〈y, �gi (m + 1)〉
〈y, �gi (m)〉 = bi, i = 1, 2, . . . , (2.4)

in addition to (2.1). Furthermore, the sequence {〈y, �gi (m)〉}∞i=1 is an asymp-
totic scale as m → ∞, that is,

lim
m→∞

〈y, �gi+1(m)〉
〈y, �gi (m)〉 = 0, i = 1, 2, . . . . (2.5)

2. With arbitrary v ≡ {vm}∞m=0, fn,k(v) defined in (1.7) exist for all n ≥ n0, n0
being some positive integer independent of v.

3. (a) With gi ≡ {gi (m)}∞m=0, we have fn,k(gi ) = 0 for i = 1, . . . , k, while for
i ≥ k + 1,

fn,k(gi )

〈y, �gi (n)〉 ∼ ĥk,i

V (b1,..., bk)
as n → ∞, if ĥk,i �= 0,

fn,k(gi )

〈y, �gi (n)〉 = o(1) as n → ∞, if ĥk,i = 0,
(2.6)

and also

‖fn,k(gi )‖ ∼ Ck,i‖gi (n)‖ as n → ∞, if ĥk,i �= 0,
‖fn,k(gi )‖ = o(‖gi (n)‖) as n → ∞, if ĥk,i = 0,

(2.7)

where

Ck,i = 1

|V (b1, . . . , bk)|
‖ĥk,i‖
‖ĝi‖

(2.8)

and V (c1, . . . , ck) is the Vandermonde determinant of c1, . . . , ck , given as
in

V (c1, . . . , ck) =

∣∣∣∣∣∣∣∣∣

1 c1 · · · ck−1
1

1 c2 · · · ck−1
2

...
...

...

1 ck · · · ck−1
k

∣∣∣∣∣∣∣∣∣

=
∏

1≤i<j≤k

(cj − ci). (2.9)

(b) In addition, for i ≥ k + 1, {fn,k(gi )}∞i=k+1 is an asymptotic scale as n →
∞, in the following generalized sense:

lim
n→∞

‖fn,k(gi+1)‖
‖gi (n)‖ = 0, i ≥ k + 1. (2.10)

4. sn,k has a genuine generalized asymptotic expansion with respect to the asymp-
totic scale {gi (n)}∞i=1 as n → ∞; namely,

sn,k ∼ s +
∞∑

i=k+1

αifn,k(gi ) as n → ∞; {gi}, (2.11)



942 Numer Algor (2017) 74:937–949

in the sense that

sn,k − s −
r∑

i=k+1

αifn,k(gi ) = o(gr (n)) as n → ∞, ∀ r ≥ k + 1. (2.12)

We also have

sn,k − s −
r∑

i=k+1

αifn,k(gi ) = o(fn,k(gr )) as n → ∞, if ĥk,r �= 0. (2.13)

5. Let αk+μ be the first nonzero αk+i with i ≥ k + 1. Then the following are true:

(a) sn,k satisfies
sn,k − s = O(gk+μ(n)) as n → ∞, (2.14)

and, therefore, also

sn,k+j −s = O(gk+μ(n)) as n → ∞, j = 0, 1, . . . , k+μ−1. (2.15)

(b) We also have

sn,k − s ∼ αk+μfn,k(gk+μ) as n → ∞, if ĥk,k+μ �= 0. (2.16)

As a result, provided ĥk+j,k+μ �= 0, j = 0, 1, . . . , μ − 1, we also have

sn,k+j − s ∼ αk+μfn,k+j (gk+μ) as n → ∞, j = 0, 1, . . . , μ − 1,
(2.17)

which also implies

‖sn,k+j−s‖ ∼ |αk+μ| Ck+j,k+μ ‖gk+μ(n)‖ as n → ∞, j = 0, 1, . . . , μ−1.
(2.18)

(c) If αk �= 0 and ĥk−1,k �= 0, then

‖sn,k+j − s‖
‖sn,k−1 − s‖ = O

(‖gk+μ(n)‖
‖gk(n)‖

)
= o(1) as n → ∞, j = 0, 1, . . . , k + μ − 1.

(2.19)

Proof of part 1 We first note that

〈y, �gi (m + 1)〉
〈y, �gi (m)〉 = 〈y, gi (m + 1)〉

〈y, gi (m)〉

〈y, gi (m + 2)〉
〈y, gi (m + 1)〉 − 1

〈y, gi (m + 1)〉
〈y, gi (m)〉 − 1

.

Taking now limits as m → ∞, and invoking (2.1), we obtain (2.4).
Next, by (2.2), we have the asymptotic equality

gi (m) ∼ 〈y, �gi (m)〉 ĝi as m → ∞, (2.20)

which, upon taking norms, gives the asymptotic equality

|〈y, �gi (m)〉| ∼ ‖gi (m)‖
‖ĝi‖

as m → ∞. (2.21)
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Therefore,

|〈y, �gi+1(m)〉|
|〈y, �gi (m)〉| ∼ ‖ĝi‖

‖ĝi+1‖
‖gi+1(m)‖
‖gi (m)‖ as m → ∞.

Invoking now the fact that {gi (m)}∞i=1 itself is an asymptotic scale as m → ∞, as in
(1.2), the result in (2.5) follows.

Proof of part 2 By (1.7), fn,k(v) for arbitrary v ≡ {vm} exists provided Dn,k ,
the denominator determinant, is nonzero. Therefore, we need to analyze only the
determinant Dn,k in (1.7). Let us set

ηi,j (m) = 〈y, �gi (m + j)〉
〈y, �gi (m)〉 , i, j = 1, 2, . . . , (2.22)

and observe that

ηi,j (m) =
j∏

r=1

〈y, �gi (m + r)〉
〈y, �gi (m + r − 1)〉 . (2.23)

Letting m → ∞ and invoking (2.4), we obtain

lim
m→∞ ηi,j (m) = b

j
i . (2.24)

Factoring out 〈y, �gj (n)〉 from the j th row of Dn,k , j = 1, . . . , k, we have

Dn,k∏k
j=1〈y, �gj (n)〉 =

∣∣∣∣∣∣∣

1 η1,1(n) · · · η1,k−1(n)
...

...
...

1 ηk,1(n) · · · ηk,k−1(n)

∣∣∣∣∣∣∣
≡ ψn,k, (2.25)

which, upon letting n → ∞, gives

lim
n→∞ ψn,k = V (b1, b2, . . . , bk) =

∏

1≤i<j≤k

(bj − bi), (2.26)

this limit being nonzero since the bi are distinct. Therefore,

Dn,k ∼ V (b1, b2, . . . , bk)

k∏

j=1

〈y, �gj (n)〉 as n → ∞.

From this and from (2.21), we conclude that Dn,k �= 0 for all large n. Since Dn,k is
also independent of v, we have that Dn,k �= 0 for all n ≥ n0, n0 being independent
of v trivially.

Proof of part 3 We now turn to fn,k(gi ) = Nn,k(gi )/Dn,k , where

Nn,k(gi ) =

∣∣∣∣∣∣∣∣∣

gi (n) 〈y, �gi (n)〉 · · · 〈y, �gi (n + k − 1)〉
g1(n) 〈y, �g1(n)〉 · · · 〈y, �g1(n + k − 1)〉

...
...

...

gk(n) 〈y, �gk(n)〉 · · · 〈y, �gk(n + k − 1)〉

∣∣∣∣∣∣∣∣∣

. (2.27)
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We first observe that Nn,k(gi ) = 0 for i = 1, . . . , k, since the determinant in (2.27)
has two identical rows when 1 ≤ i ≤ k. This proves that fn,k(gi ) = 0 for i =
1, . . . , k. Therefore, we consider the case i ≥ k + 1. Proceeding as in the analysis of
Dn,k , let us factor out 〈y, �gi (n)〉 and 〈y, �g1(n)〉,. . . ,〈y, �gk(n)〉 from the k + 1
rows of Nn,k(gi ). We obtain

Nn,k(gi )

〈y, �gi (n)〉∏k
j=1〈y, �gj (n)〉 =

∣∣∣∣∣∣∣∣∣∣∣

gi (n)

〈y,�gi (n)〉 1 ηi,1(n) · · · ηi,k−1(n)
g1(n)

〈y,�g1(n)〉 1 η1,1(n) · · · η1,k−1(n)

...
...

...
...

gk(n)

〈y,�gk(n)〉 1 ηk,1(n) · · · ηk,k−1(n)

∣∣∣∣∣∣∣∣∣∣∣

≡ hk,i(n),

(2.28)
which, upon letting n → ∞ and invoking (2.24), (2.2), and (2.3), gives

lim
n→∞ hk,i(n) = ĥk,i . (2.29)

Combining now (2.28) with (2.25), we obtain

fn,k(gi ) = 〈y, �gi (n)〉hk,i(n)

ψn,k

, (2.30)

which, upon letting n → ∞, gives

lim
n→∞

fn,k(gi )

〈y, �gi (n)〉 = ĥk,i

V (b1, . . . , bk)
, (2.31)

from which, (2.6) follows. (2.7) is obtained by taking norms in (2.6) and by making
use of (2.21).

Finally,
‖fn,k(gi+1)‖

‖gi (n)‖ = |〈y, �gi+1(n)〉| ‖hk,i(n)‖
|ψn,k| ‖gi (n)‖ ,

which, upon letting n → ∞ and invoking (2.21), gives

‖fn,k(gi+1)‖
‖gi (n)‖ ∼ 1

|V (b1, . . . , bk)|
‖hk,i(n)‖
‖ĝi+1‖

‖gi+1(n)‖
‖gi (n)‖ as n → ∞.

Invoking here (1.2), and noting that ‖hk,i(n)‖ is bounded in n, we obtain (2.10).

Proof of part 4 We now turn to sn,k . First, we note that

sn,k − s = fn,k(x) − s = Nn,k(x − s)

Dn,k

; x − s ≡ {xm − s}, (2.32)

with

Nn,k(x − s) =

∣∣∣∣∣∣∣∣∣

xn − s 〈y, �xn〉 · · · 〈y, �xn+k−1〉
g1(n) 〈y, �g1(n)〉 · · · 〈y, �g1(n + k − 1)〉

...
...

...

gk(n) 〈y, �gk(n)〉 · · · 〈y, �gk(n + k − 1)〉

∣∣∣∣∣∣∣∣∣

, (2.33)
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because the coefficient of xn in the expansion of Nn,k(x) is Dn,k . By (1.1), the
elements in the first row of Nn,k(x − s) have the asymptotic expansions

xn − s ∼
∞∑

i=1

αigi (n) as n → ∞,

〈y, �xn+j 〉 ∼
∞∑

i=1

αi〈y, �gi (n + j)〉 as n → ∞, j = 0, 1, . . . .

Multiplying the (i + 1)st row of Nn,k(x − s) in (2.33) by αi and subtracting from the
first row, i = 1, . . . , k, we obtain

Nn,k(x − s) ∼
∣∣∣∣∣∣∣∣∣

∑∞
i=k+1 αigi (n)

∑∞
i=k+1 αi〈y, �gi (n)〉 · · · ∑∞

i=k+1 αi〈y, �gi (n + k − 1)〉
g1(n) 〈y, �g1(n)〉 · · · 〈y, �g1(n + k − 1)〉

...
...

...

gk(n) 〈y, �gk(n)〉 · · · 〈y, �gk(n + k − 1)〉

∣∣∣∣∣∣∣∣∣
(2.34)

as n → ∞. Taking the summations
∑∞

i=k+1 and the multiplicative factors αi from
the first row outside the determinant in (2.34), we have

Nn,k(x − s) ∼
∞∑

i=k+1

αiNn,k(gi ) as n → ∞; gi ≡ {gi (m)}∞m=0, (2.35)

with Nn,k(gi ) as in (2.27). Substituting (2.35) in (2.32), we obtain the asymptotic
expansion of sn,k given in (2.11). This asymptotic expansion will be a valid gen-
eralized asymptotic expansion with respect to the asymptotic scale {gi (n)}∞i=1 as
n → ∞, provided

sn,k − s −
r∑

i=k+1

αifn,k(gi ) = o(gr (n)) as n → ∞, ∀ r ≥ k + 1. (2.36)

By (1.3), for arbitrary r , we have

xm = s +
r∑

i=1

αigi (m) + εr (m); εr (m) = o(gr (m)) as m → ∞. (2.37)

Let us substitute this in (2.32) and proceed exactly as above; we obtain

sn,k = s +
r∑

i=k+1

αifn,k(gi ) + fn,k(εr ). (2.38)

Comparing (2.38) with (2.36), we realize that (2.36) will be satisfied provided

fn,k(εr ) = o(gr (n)) as n → ∞. (2.39)
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Now, fn,k(εr ) = Nn,k(εr )/Dn,k, and

Nn,k(εr ) =

∣∣∣∣∣∣∣∣∣

εr (n) 〈y, �εr (n)〉 · · · 〈y, �εr (n + k − 1)〉
g1(n) 〈y, �g1(n)〉 · · · 〈y, �g1(n + k − 1)〉

...
...

...

gk(n) 〈y, �gk(n)〉 · · · 〈y, �gk(n + k − 1)〉

∣∣∣∣∣∣∣∣∣

.

Let us factor out 〈y, �gr (n)〉 and 〈y, �g1(n)〉,. . . ,〈y, �gk(n)〉 from the k + 1 rows
of this determinant. We obtain

Nn,k(εr )

〈y, �gr (n)〉∏k
j=1〈y, �gj (n)〉 =

∣∣∣∣∣∣∣∣∣∣∣

εr (n)
〈y,�gr (n)〉

〈y,�εr (n)〉
〈y,�gr (n)〉

〈y,�εr (n+1)〉
〈y,�gr (n)〉 · · · 〈y,�εr (n+k−1)〉

〈y,�gr (n)〉
g1(n)

〈y,�g1(n)〉 1 η1,1(n) · · · η1,k−1(n)

...
...

...
...

gk(n)

〈y,�gk(n)〉 1 ηk,1(n) · · · ηk,k−1(n)

∣∣∣∣∣∣∣∣∣∣∣

≡ φn,k(εr ). (2.40)

Dividing now (2.40) by (2.25), we obtain

fn,k(εr ) = φn,k(εr )

ψn,k

〈y, �gr (n)〉,

which, upon taking norms and invoking (2.21), gives

‖fn,k(εr )‖ ∼ ‖φn,k(εr )‖
|V (b1, . . . , bk)|

‖gr (n)‖
‖ĝr‖

as n → ∞.

Therefore, (2.36) will hold provided limn→∞ φn,k(εr ) = 0. As we already know,
with the exception of the elements in the first row, all the remaining elements of the
determinant φn,k(εr ) have finite limits as n → ∞, by (2.2) and (2.24). Therefore,
limn→∞ φn,k(εr ) = 0 will hold provided all the elements in the first row of φn,k(εr )

tend to zero as n → ∞. That this is the case is what we show next.
First, by (2.21)–(2.24), as n → ∞,

‖gr (n + j)‖ ∼ ‖ĝr‖ |〈y, �gr (n + j)〉| ∼ |bj
r | ‖ĝr‖ |〈y, �gr (n)〉| ∼ |bj

r | ‖gr (n)‖.
(2.41)

Next, by applying the Cauchy–Schwarz inequality to 〈y, �εr (n + j)〉, and invoking
(2.37) and (2.41), we have

|〈y, �εr (n + j)〉| ≤ ‖y‖ (‖εr (n + j + 1)‖ + ‖εr (n + j)‖)
= o(‖gr (n + j + 1)‖) + o(‖gr (n + j)‖) as n → ∞
= o(‖gr (n)‖) as n → ∞.

Invoking also (2.21), for the elements in the first row of φn,k(εr ), we finally obtain
∥∥∥∥

εr (n)

〈y, �gr (n)〉
∥∥∥∥ = o(1) as n → ∞,
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and ∣∣∣∣
〈y, �εr (n + j)〉

〈y, �gr (n)〉
∣∣∣∣ = o(1) as n → ∞, j = 0, 1, . . . , k − 1.

This implies that φn,k(εr ) = o(1) as n → ∞, and the proof is complete.

Proof of Part 5 By αk+j = 0, j = 1, . . . , μ − 1, and αk+μ �= 0,2 the validity of
(2.14) is obvious. (2.15) follows from (2.14). The validity of (2.16)–(2.18) can be
shown in the same way. As for (2.19), we start with

‖sn,k − s‖
‖sn,k−1 − s‖ ∼ ‖sn,k − s‖

|αk|Ck−1,k‖gk(n)‖ ,

which follows from (2.18) and invoke (2.15). We leave the details to the reader.

3 Remarks on the convergence theory

1. Note that Theorem 1 is stated under a minimal number of conditions on the
gi (m) and the xm. Of these, the condition in (2.1) is already in [7, p. 180, Eq.(3)],
while that in (2.2) is a modification of [7, p. 180, Eq.(5)].

2. The conditions we have imposed on the gi (m) enable us to proceed with the
proof rigorously by employing asymptotic equalities ∼ everywhere possible.
This should be contrasted with bounds formulated in terms of the big O notation,
which do not allow us to obtain the optimal results we have in our theorem.3

3. Note that we have imposed essentially two different conditions on the gi (m),
namely (2.1) and (2.2). One may naturally think that these conditions could con-
tradict each other. In addition, one may think that they could also contradict the
very first and fundamental property in (1.2), which must hold to make (1.1) a
genuine asymptotic expansion. Thus, we need to make sure that there are no con-
tradictions present in our theorem. For this, it is enough to show that all three
conditions can hold simultaneously, which is the case when

gi (m) ∼ wib
m
i as m → ∞, |bi | > |bi+1| ∀ i ≥ 1.

It is easy to verify that (1.2), (2.1), and (2.2) are satisfied simultaneously in this
case.

4. Due to the possibility that ĥk,i = 0 for some i ≥ k + 1, we cannot claim a priori
that {fn,k(gi )}∞i=k+1 is an asymptotic scale in the regular sense. Note, however,
that we can safely replace (2.6) by

‖fn,k(gi )‖ = O(‖gi (n)‖) as n → ∞, ∀ i ≥ k + 1,

whether ĥk,i �= 0 or ĥk,i = 0.

2Note that this already takes into account the possibility that αk+1 �= 0, in which case, μ = 1.
3Recall that um ∼ vm as m → ∞ if and only if limm→∞(um/vm) = 1. One big advantage of asymptotic
equalities is that they allow symmetry and division. That is, if um ∼ vm then vm ∼ um as well. In addition,
um ∼ vm and u′

m ∼ v′
m also imply um/u′

m ∼ vm/v′
m. On the other hand, if um = O(vm), we do not

necessarily have vm = O(um). In addition, um = O(vm) and u′
m = O(v′

m) do not necessarily imply
um/u′

m = O(vm/v′
m).
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5. ĥk,i �= 0 for all i ≥ k + 1 if, for example, the vectors ĝi are all linearly indepen-
dent, which is possible if X is an infinite dimensional space. This can be seen by
expanding the determinant defining ĥk,i in (2.3) with respect to its first column
and realizing that ĥk,i = ci ĝi + ∑k

j=1 cj ĝj , where ci and the cj are all nonzero
Vandermonde determinants. In such a case, by (2.7) and (1.2),

‖fn,k(gi+1)‖
‖fn,k(gi )‖

∼ Ck,i+1

Ck,i

‖gi+1(n)‖
‖gi (n)‖ = o(1) as n → ∞,

hence {fn,k(gi )}∞i=1 is an asymptotic scale in the regular sense. Therefore, the
asymptotic expansion of sn,k in (2.11) is a regular asymptotic expansion, which
means that

sn,k − s −
r∑

i=k+1

αifn,k(gi ) = o(fn,k(gr )) as n → ∞, ∀ r ≥ k + 1.

6. When α1 �= 0, the sequence {xm} is convergent if |b1| < 1; it is divergent if
|b1| ≥ 1. The asymptotic result in (2.12), which is always true, shows clearly
that sn,k converges to s faster than xn when {xm} is convergent. In case {xm} is
divergent, by the assumption that limi→∞ bi = 0, we have that |bi | < 1, i ≥ p,
for some integer p, and sn,k converges when k ≥ p.

7. Consider the case

αk �= 0, αk+1 = · · · = αk+μ−1 = 0, αk+μ �= 0.

By (2.12)–(2.19), the following transpire:

• Whether ĥk−1,k = 0 or ĥk−1,k �= 0,

sn,k−1 − s = O(gk(n)) as n → ∞,

• Whether ĥk+j,k+μ = 0 or ĥk+j,k+μ �= 0, 0 ≤ j ≤ μ − 1,

sn,k+j − s = O(gk+μ(n)) as n → ∞, 0 ≤ j ≤ μ − 1.

• If ĥk−1,k �= 0, then sn,k converges faster (or diverges slower) than sn,k−1,
that is,

lim
n→∞

‖sn,k − s‖
‖sn,k−1 − s‖ = 0.

• If ĥk+j,k+μ �= 0, 0 ≤ j ≤ μ − 1, then

‖sn,k+j − s‖ ∼ Mk+j‖gk+μ(n)‖ as n → ∞, j = 0, 1, . . . , μ − 1,

for some positive constants Mk+j . That is, sn,k, sn,k+1, . . . , sn,k+μ−1 con-
verge (or diverge) at precisely the same rate.

8. We have assumed that X is an inner product space only for the sake of simplicity.
We can assume X to be a normed Banach space in general. In this case, we
replace 〈y, u〉 by Q(u), where Q is a bounded linear functional on X. With this,
the analysis of this section goes through in a straightforward manner.
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