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Abstract

In a series of recent publications of the author, three rational interpolation meth-
ods, denoted IMPE, IMMPE, and ITEA, were proposed for vector-valued functions
F (z), where F : C → C

N , and their algebraic properties were studied. The conver-
gence studies of two of the methods, namely, IMPE and IMMPE, were also carried
out as these methods are being applied to meromorphic functions with simple poles,
and de Montessus and König type theorems for them were proved. In the present
work, we concentrate on ITEA. We study its convergence properties as it is applied
to meromorphic functions with simple poles and prove de Montessus and König
type theorems analogous to those obtained for IMPE and IMMPE.

Keywords: vector-valued rational interpolation, Hermite interpolation, New-
ton interpolation formula, de Montessus theorem, König theorem.

MSC: 30E10, 30E15, 41A20, 41A25.

§1. Introduction and background

In [5], the author developed three rational interpolation methods for vector-valued func-
tions of a complex variable. These methods were denoted IMPE, IMMPE and
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ITEA1. Each of these methods generates a two-dimensional sequence {Rp,k(z)} of approximations to
a vector-valued function F (z), such that Rp,k(z) = Up,k(z)/Vp,k(z), where Up,k(z) is a vector-valued
polynomial of degree at most p− 1 and Vp,k(z) is a scalar-valued polynomial of degree k, and Rp,k(z)
interpolates F (z) in the Hermite sense at p points in the complex plane.

Some of the algebraic properties of all these three methods were already presented in [5] while
others were explored in [6], where it was also shown that (i) the Rp,k(z) are symmetric functions of
the points of interpolation and (ii) they reproduce vector-valued rational functions exactly.

In order to be considered valid approximations, in addition to possessing these two algebraic
properties, the Rp,k(z) should at least allow sound convergence theories of de Montessus and König
types when F (z) is a vector-valued meromorphic function, analogously to Padé approximants. Roughly
speaking, a de Montessus type theory concerns the convergence properties, in a set Ω of the complex
plane, of Rp,k(z) as p → ∞ while k is being held fixed, k being the number of the poles (counting
multiplicities) of F (z) in Ω. The König type theory concerns the convergence as p → ∞ of the poles
of Rp,k(z) to those of F (z) in Ω.

In [7, 8, 9], we presented de Montessus and König type convergence theories for IMMPE and IMPE,
as these methods are applied to vector-valued meromorphic functions with simple poles. In this work,
we treat the convergence properties of ITEA, as it is being applied to the same class of functions,
and we prove de Montessus and König type theorems analogous to those for IMPE and IMMPE. As
it will become clear, following some necessary adjustments, the techniques of [7] that were developed
for analyzing IMMPE will be directly applicable when analyzing ITEA.

Before we go on, we would like to note that the de Montessus type theories developed in the works
[7, 8, 9] and in the present work as well, are in the spirit of that developed originally by Saff [3].

§2. Review of the algebraic properties of ITEA

To set the stage for later developments, and to fix the notation as well, we start with a brief description
of the developments in [5] and [6].

Let z be a complex variable and let F (z) be a vector-valued function such that F : C → CN .
Assume that F (z) is defined on a bounded open set Ω ⊂ C and consider the problem of interpolating
F (z) at some of the points ξ1, ξ2, . . . in this set. We do not assume that the ξi are necessarily distinct.
The general picture is described in the next paragraph.

1MPE, MMPE and TEA are three vector extrapolation methods used in accelerating the convergence of sequences
of vectors, which have been studied and applied extensively. IMPE, IMMPE and ITEA are interpolatory analogues of
MPE, RRE and TEA. The letter “I” in these names stands for the word “interpolatory”. For a detailed treatment of
vector extrapolation methods and their applications, see the recent book by Sidi [10], for example.
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Let a1, a2, . . . be distinct complex numbers and order the ξi such that

ξ1 = ξ2 = · · · = ξr1 = a1,

ξr1+1 = ξr1+2 = · · · = ξr1+r2 = a2,

ξr1+r2+1 = ξr1+r2+2 = · · · = ξr1+r2+r3 = a3,

· · · (2.1)

Let Gm,n(z) be the vector-valued polynomial (of degree at most n−m) that interpolates F (z) at the
points ξm, ξm+1, . . . , ξn in the generalized Hermite sense. Thus, in Newtonian form, this polynomial
is given as in (see, e.g., Stoer and Bulirsch [11, Chapter 2] or Atkinson [1, Chapter 3])

Gm,n(z) =

n∑

i=m

F [ξm, ξm+1, . . . , ξi]

i−1∏

j=m

(z − ξj). (2.2)

Here, F [ξr, ξr+1, . . . , ξr+s] is the divided difference of order s of F (z) over the set of points {ξr, ξr+1, . . . ,
ξr+s}. Obviously, F [ξr, ξr+1, . . . , ξr+s] are all vectors in C

N .
Let us define the scalar polynomials ψm,n(z) via

ψm,n(z) =
n∏

r=m

(z − ξr), n ≥ m ≥ 1; ψm,m−1(z) ≡ 1, m ≥ 1.

Let us also define the vectors Dm,n via

Dm,n = F [ξm, ξm+1, . . . , ξn], n ≥ m.

With this notation, we can rewrite (2.2) in the form

Gm,n(z) =

n∑

i=m

Dm,i ψm,i−1(z).

Then the vector-valued rational function Rp,k(z) from ITEA that interpolates F (z) at ξ1, . . . , ξp
in the sense of Hermite is defined as

Rp,k(z) =
Up,k(z)

Vp,k(z)
=

∑k
j=0 cj ψ1,j(z)Gj+1,p(z)
∑k

j=0 cj ψ1,j(z)
, (2.3)



88 Avram Sidi

the scalars c0, c1, . . . , ck being determined by the requirement

(
q,

k∑

j=0

cjDj+1,p+i

)
= 0, i = 1, . . . , k; ck = 1, (2.4)

where (· , ·) is an inner product and q is some fixed nonzero vector in CN . Clearly, (2.4) results in the
linear system

k−1∑

j=0

ui,jcj = −ui,k, i = 1, . . . , k; ck = 1; ui,j =
(
q,Dj+1,p+i

)
, (2.5)

a unique solution for which exists provided
∣∣∣∣∣∣∣∣∣

u1,0 u1,1 · · · u1,k−1

u2,0 u2,1 · · · u2,k−1

...
...

...
uk,0 uk,1 · · · uk,k−1

∣∣∣∣∣∣∣∣∣
6= 0.

Combining (2.3) and (2.5), we obtain the following determinant representation for Rp,k(z) from
ITEA, with ui,j = (q,Dj+1,p+i), i ≥ 1, j ≥ 0:

Rp,k(z) =
P (z)

Q(z)
=

∣∣∣∣∣∣∣∣∣∣∣

ψ1,0(z)G1,p(z) ψ1,1(z)G2,p(z) · · · ψ1,k(z)Gk+1,p(z)
u1,0 u1,1 · · · u1,k
u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

ψ1,0(z) ψ1,1(z) · · · ψ1,k(z)
u1,0 u1,1 · · · u1,k
u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣

. (2.6)

Here, the numerator determinant P (z) is vector-valued and is defined by its expansion with respect to
its first row. That is, if Mj is the cofactor of the term ψ1,j(z) in the denominator determinant Q(z),
then

Rp,k(z) =

∑k
j=0Mj ψ1,j(z)Gj+1,p(z)
∑k

j=0Mj ψ1,j(z)
. (2.7)
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Note that this determinant representation offers a very effective tool for the algebraic and analytical
study of Rp,k(z). As we will see later in this work, it forms the basis of our convergence study.

From (2.3) and (2.4), it is clear that the number of function evaluations (namely, (i)F (ξi) in case the
ξi are distinct and (ii)F (ξi) and some of its derivatives otherwise) that are needed to determine Rp,k(z)
is p+ k, and these are based on ξ1, . . . , ξp+k . This should be contrasted with the interpolants Rp,k(z)
that result from IMPE and IMMPE, which need p+ 1 function evaluations based on ξ1, . . . , ξp+1.

Remarks 2.1.

1. Rp,k(z) = Up,k(z)/Vp,k(z) from ITEA interpolates F (z) at ξ1, . . . , ξp in the sense of Hermite,
provided Vp,k(ξi) 6= 0 for all i = 1, . . . , p.

2. Note that Rp,k(z), even with arbitrary cj in (2.3), interpolates F (z) at ξ1, . . . , ξp in the sense
of Hermite, provided Vp,k(ξi) 6= 0 for all i = 1, . . . , p. However, the quality of Rp,k(z) as an
approximation to F (z) in the z-plane depends heavily on how the cj are chosen. Thus, the
methods IMPE, IMMPE and ITEA choose the cj in special ways; as we have shown in [7, 8, 9],
the methods IMPE and IMMPE do provide very good approximations for meromorphic functions
F (z). Here we prove that ITEA does too.

We end this section by stating four algebraic properties of ITEA. Of these, the first three were
explored in [6], while the forth is new:

1. Limiting property: when all ξi tend to 0 simultaneously, it follows from the equations in (2.5)
that Rp,k(z) tends to the approximant sn+k,k(z) from the method denoted STEA in [4], as the
latter is being applied to the Maclaurin series of F (z) 2. Here n = p− k.

2. Symmetry property: the denominator polynomial Vp,k(z) =
∑k

j=0 cjψ1,j(z) is a symmetric func-
tion of ξ1, . . . , ξp+k, which go into its construction. Rp,k(z) itself is a symmetric function of
ξ1, . . . , ξp

3.

3. Reproducing property: if F (z) = Ũ(z)/Ṽ (z) is a vector-valued rational function with degree

of numerator Ũ(z) at most p − 1 and degree of denominator Ṽ (z) equal to k and if F (ξi),
i = 1, . . . , p, are all defined, then Rp,k(z) ≡ F (z).

2We note that the STEA approximants were developed originally by Brezinski in [2]; they were obtained by applying
the topological epsilon algorithm (TEA), which was also developed in [2], to the sequence of partial sums of the Maclaurin
series of F (z). See also [10].

3A function f(x1, . . . , xm) is symmetric in x1, . . . , xm if f(xi1 , . . . , xim) = f(x1, . . . , xm) for every permutation
(xi1 , . . . , xim) of (x1, . . . , xm).
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4. Projection property: in addition to interpolating F (z) at ξ1, . . . , ξp, Rp,k(z) also has the following
projection property: (

q, F (z)−Rp,k(z)
)∣∣

z=ξp+i
= 0, i = 1, . . . , k.

Next lemma that concerns the scalar case of N = 1 provides further justification of our formulation
of ITEA as a valid vector-valued rational interpolation procedure.

Lemma 2.2 ([5, Lemma 3.2]). For N = 1, that is, when F (z) is a scalar function, Rp,k(z) from
ITEA interpolates F (z) at the points ξ1, ξ2, . . . , ξp+k when we take (q,Dm,s) ≡ Dm,s. Thus, Rp,k(z)
is simply the solution to the Cauchy-Jacobi interpolation problem in this case.

Because ITEA and IMMPE, in producing the relevantRp,k(z), differ substantially (i) in the number
of the ξi they use and (ii) in the structure of the relevant scalars ui,j , it seems that their analyses should
be different from each other. Fortunately, in this work, we are able to overcome these obstacles and
apply to ITEA the techniques used for analyzing IMMPE, following some clever adjustments.

To keep things simple, in the sequel, we adopt the notation of [7], where we treated IMMPE. In
order not to repeat the arguments of [7] unnecessarily, we will keep our treatment of ITEA short and
will refer the reader to [7] for technical details.

§3. Technical preliminaries and error formula when F (z) is a

vector-valued rational function

We start our study of ITEA for the case in which the function F (z) is a vector-valued rational function
with simple poles, namely,

F (z) =

µ∑

s=1

vs
z − zs

+ u(z), (3.1)

where u(z) is an arbitrary vector-valued polynomial, z1, . . . , zµ are distinct points in the complex plane,
and v1, . . . , vµ are some nonzero vectors in CN . An example of such functions is F (z) = (I − zA)−1b,
where I is the N ×N identity matrix, A is an arbitrary N ×N matrix and b is an N -vector. See [7,
Section 3, Example].

3.1. Technical preliminaries

The following technical tools that were used in [7] will be used throughout this work too.
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Lemma 3.1 ([7, Lemma 3.2]). Let Qi(x) =
∑i

j=0 aijx
j , with aii 6= 0, i = 0, 1 . . . , n, and let xi, i =

0, 1, . . . , n, be arbitrary complex numbers. Then
∣∣∣∣∣∣∣∣∣

Q0(x0) Q0(x1) · · · Q0(xn)
Q1(x0) Q1(x1) · · · Q1(xn)

...
...

...
Qn(x0) Qn(x1) · · · Qn(xn)

∣∣∣∣∣∣∣∣∣
=

(
n∏

i=0

aii

)
V (x0, x1, . . . , xn),

where

V (x0, x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x0 x1 · · · xn
...

...
...

xn0 xn1 · · · xnn

∣∣∣∣∣∣∣∣∣
=

∏

0≤i<j≤n

(xj − xi)

is a Vandermonde determinant.

Lemma 3.2 ([7, Lemma 3.3]). Let ωa(z) = (z − a)−1. Then ωa[ξm, . . . , ξn], the divided difference of
ωa(z) over the set of points {ξm, . . . , ξn}, is given by

ωa[ξm, . . . , ξn] = − 1

ψm,n(a)
.

This is true whether the ξi are distinct or not.

Lemma 3.3 ([7, Lemma 3.4]). Let F (z) be given as in (3.1). Let n−m > deg(u). Then the following
are true whether the ξi are distinct or not:

(i) Dm,n = F [ξm, . . . , ξn] is given as

Dm,n = −
µ∑

s=1

vs
ψm,n(zs)

.

Therefore, we also have
(
q,Dm,n

)
= −

µ∑

s=1

(q, vs)

ψm,n(zs)
.

(ii) F (z)−Gm,n(z) = ψm,n(z)F [z, ξm, . . . , ξn] is given as

F (z)−Gm,n(z) = ψm,n(z)

µ∑

s=1

vs
z − zs

1

ψm,n(zs)
. (3.2)
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3.2. Error formula

Using (2.6), (2.7) and (3.2), we can derive a determinant representation for the error F (z)− Rp,k(z)
as in the next lemma.

Lemma 3.4 ([7, Lemma 3.5]). Let

∆j(z) = ψ1,j(z)
[
F (z)−Gj+1,p(z)

]
= ψ1,p(z)F [z, ξj+1, . . . , ξp], j = 0, 1, . . . (3.3)

Then the error in Rp,k(z) has the determinant representation

F (z)−Rp,k(z) =
∆(z)

Q(z)
, (3.4)

where

∆(z) =

∣∣∣∣∣∣∣∣∣∣∣

∆0(z) ∆1(z) · · · ∆k(z)
u1,0 u1,1 · · · u1,k
u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣

, Q(z) =

∣∣∣∣∣∣∣∣∣∣∣

ψ1,0(z) ψ1,1(z) · · · ψ1,k(z)
u1,0 u1,1 · · · u1,k
u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

∣∣∣∣∣∣∣∣∣∣∣

. (3.5)

We next specialize Lemma 3.3 to suit the error formula for ITEA.

Lemma 3.5. Let p > k + degu. Define

Ψp(z) ≡ ψ1,p+k(z). (3.6)

Then the following are true whether the ξi are distinct or not:

(i) Dj+1,p+i is given as

Dj+1,p+i = −
µ∑

s=1

vsψp+i+1,p+k(zs)
ψ1,j(zs)

Ψp(zs)
.

Therefore, we also have

ui,j = (q,Dj+1,p+i) = −
µ∑

s=1

αi,s
ψ1,j(zs)

Ψp(zs)
; αi,s = (q, vs)ψp+i+1,p+k(zs). (3.7)
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(ii) As for ∆j(z) in (3.3), we have

∆j(z) = ψ1,p(z)

µ∑

s=1

ê(p)s (z)
ψ1,j(zs)

Ψp(zs)
; ê(p)s (z) =

vs
z − zs

ψp+1,p+k(zs). (3.8)

Comparing Ψp(z) in (3.6), ui,j in (3.7) and ∆j(z) in (3.8) with the analogous quantities for
IMMPE in [7], we realize that they have the same algebraic structure4. Therefore, we can now apply
the techniques of [7] verbatim, subject to suitable conditions having to do with ITEA.

3.3. Algebraic structures of Q(z), ∆(z) and F (z)−Rp,k(z)

Below, we recall that Ψp(z) is as in (3.6), ui,j and αi,s are as in (3.7), and ∆j(z) and ê
(p)
s (z) are

as in (3.8). Applying theorems 3.6, 3.7 and 3.8 of [7] verbatim to Q(z), ∆(z) and F (z) − Rp,k(z),
respectively, we have the following result.

Theorem 3.6 ([7, Theorem 3.6]). Let F (z) be the vector-valued rational function in (3.1), precisely
as described in the first paragraph of this section, with the notation therein. Define

Ts1,...,sk =

∣∣∣∣∣∣∣∣∣

α1,s1 α1,s2 · · · α1,sk

α2,s1 α2,s2 · · · α2,sk
...

...
...

αk,s1 αk,s2 · · · αk,sk

∣∣∣∣∣∣∣∣∣
. (3.9)

Then, with p > k + deg(u),

Q(z) = (−1)k
∑

1≤s1<s2<···<sk≤µ

Ts1,...,skV (z, zs1 , zs2 , . . . , zsk)

[ k∏

i=1

Ψp(zsi)

]−1

. (3.10)

Theorem 3.7 ([7, Theorem 3.7]). Let F (z) be the vector-valued rational function in (3.1), precisely
as described in the first paragraph of this section, with the notation therein. With ui,j and αi,s as in

4Note that the error formula for F (z) − Rp,k(z) in case of IMMPE is precisely of the form given in (3.3)–(3.5) of
Lemma 3.4, but with different Ψp(z), ui,j , and ∆j(z); namely, (i)Ψp(z) = ψ1,p+1(z), (ii)ui,j = αi,sψ1,j(z)/Ψp(z) with

αi,s = (qi, vs) and (iii)∆j(z) = ψ1,p(z)
∑µ

s=1 ê
(p)
s (z)ψ1,j (zs)/Ψp(zs) with ê

(p)
s (z) = vs(zs − ξp+1)/(z − zs). See [7].
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(3.7), and ê
(p)
s (z) as in (3.8), define

T̂ (p)
s0,s1,...,sk

(z) =

∣∣∣∣∣∣∣∣∣∣∣

ê
(p)
s0 (z) ê

(p)
s1 (z) · · · ê

(p)
sk (z)

α1,s0 α1,s1 · · · α1,sk

α2,s0 α2,s1 · · · α2,sk
...

...
...

αk,s0 αk,s1 · · · αk,sk

∣∣∣∣∣∣∣∣∣∣∣

. (3.11)

Then, with p > k + deg(u), we have

∆(z) = (−1)kψ1,p(z)
∑

1≤s0<s1<···<sk≤µ

T̂ (p)
s0,s1,...,sk

(z)V (zs0 , zs1 , . . . , zsk)

[ k∏

i=0

Ψp(zsi)

]−1

. (3.12)

Finally, combining (3.10) and (3.12) in (3.4), we obtain a simple and elegant expression for F (z)−
Rp,k(z). This is the subject of the following theorem.

Theorem 3.8 ([7, Theorem 3.8]). For the error in Rp,k(z), with p > k+deg(u), we have the closed-
form expression

F (z)−Rp,k(z) = ψ1,p(z)

∑

1≤s0<s1<···<sk≤µ

T̂ (p)
s0,s1,...,sk

(z)V (zs0 , zs1 , . . . , zsk)

[ k∏

i=0

Ψp(zsi)

]−1

∑

1≤s1<s2<···<sk≤µ

Ts1,s2,...,skV (z, zs1 , zs2 , . . . , zsk)

[ k∏

i=1

Ψp(zsi)

]−1
. (3.13)

Remark 3.9. When k = µ in Theorem 3.8, the summation in the numerator on the right-hand side
of (3.13) is empty. Thus, this theorem provides an independent proof of the reproducing property of
ITEA when F (z) has only simple poles.

§4. Preliminaries for convergence theory

Let E be a closed and bounded set in the z-plane, whose complement K, including the point at
infinity, has a classical Green’s function g(z) with a pole at infinity, which is continuous on ∂E, the
boundary of E, and is zero on ∂E. For each σ, let Γσ be the locus g(z) = logσ, and let Eσ denote
the interior of Γσ. Then E1 is the interior of E and, for 1 < σ < σ′, there holds E ⊂ Eσ ⊂ Eσ′ .
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For each p ∈ {1, 2, . . .}, let
Ξp =

{
ξ
(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
p+k

}

be the set of interpolation points used in constructing the ITEA interpolant Rp,k(z)
5. Assume that

the sets Ξp are such that ξ
(p)
i have no limit points in K and

lim
p→∞

∣∣∣∣
p+k∏

i=1

(
z − ξ

(p)
i

)∣∣∣∣
1/p

= κΦ(z); κ = cap (E), Φ(z) = exp[g(z)], (4.1)

uniformly in z on every compact subset of K, where cap(E) is the logarithmic capacity of E defined
by

cap (E) = lim
n→∞

(
min
r∈Pn

max
z∈E

|r(z)|
)1/n

; Pn =
{
r(z) : r ∈ Πn and monic

}
.

Such sequences
{
ξ
(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
p+k

}
, p = 1, 2, . . . , exist (see Walsh [12, p. 74]). Note that, in terms

of Φ(z), the locus Γσ is defined by Φ(z) = σ for σ > 1, while ∂E = Γ1 is simply the locus Φ(z) = 1.

Recalling that
∏p+k

i=1

(
z − ξ

(p)
i

)
= Ψp(z) (see (3.6)), we can write (4.1) also as

lim
p→∞

∣∣Ψp(z)
∣∣1/p = κΦ(z), (4.2)

uniformly in z on every compact subset of K 6.
It is clear that

z′ ∈ Γσ′ , z′′ ∈ Γσ′′ and 1 < σ′ < σ′′ ⇒ 1 < Φ(z′) < Φ(z′′). (4.3)

§5. Convergence theory for vector-valued rational F (z) with

simple poles

In this section, we provide a convergence theory, in case F (z) is a vector-valued rational function with
simple poles as in (3.1), for the sequences {Rp,k(z)}∞p=1 with k < µ and fixed7. Recall that the sets Ξp

5Thus, we are now allowing the interpolation points defining Rp,k(z) to vary with p.
6Note that the definition of Φ(z) for ITEA given in (4.1) and (4.2) is of the same form as the definition of Φ(z)

for IMMPE, but the two differ; for IMMPE, limp→∞

∣∣∏p+1
i=1

(
z − ξ

(p)
i

)∣∣1/p = limp→∞

∣∣Ψp(z)
∣∣1/p = κΦ(z), where

κ = cap(E) as usual.
7Note that by the reproducing property mentioned in Section 1, for k = µ, Rp,k(z) = F (z) for all p ≥ p0, where

p0 − 1 is the degree of the numerator of F (z). Thus, there is nothing to prove for the case k = µ.
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of points of interpolation that define the approximations Rp,k(z) are allowed to vary with p. Also, as
we will let p→ ∞ in our analysis, the condition that p > k +deg(u), which is necessary for theorems
3.6, 3.7 and 3.8, is satisfied for all large p.

We continue to use the notation of the preceding sections. We now turn to F (z) in (3.1). We
assume that F (z) is analytic in E. This implies that its poles z1, . . . , zµ are all in K, the complement
of E. Now we order the poles of F (z) such that

Φ(z1) ≤ Φ(z2) ≤ · · · ≤ Φ(zµ). (5.1)

By (4.3), if z′ and z′′ are two different poles of F (z) and Φ(z′) < Φ(z′′), then z′ and z′′ lie on two
different loci Γσ′ and Γσ′′ . In addition, σ′ < σ′′, that is, the set Eσ′ is in the interior of Eσ′′ .

5.1. Convergence analysis for Vp,k(z)

We now state a König-type convergence theorem for Vp,k(z) and another theorem concerning its zeros.
Since all our results eventually rely on the assumption that T1,2,...,k 6= 0, we start by exploring the
minimal conditions under which this assumption may hold for ITEA.

Lemma 5.1. The determinant Ts1,...,sk defined in (3.9) is actually of the form

Ts1,...,sk = (−1)k(k−1)/2V (zs1 , . . . , zsk)

k∏

i=1

(q, vsi). (5.2)

Proof. Invoking αi,s = (q, vs)ψp+i+1,p+k(zs) (see (3.7)) in (3.9) and letting βi = (q, vi) for simplicity
of notation, we have

Ts1,...,sk =

∣∣∣∣∣∣∣∣∣

βs1ψp+2,p+k(zs1) βs2ψp+2,p+k(zs2) · · · βskψp+2,p+k(zsk )
βs1ψp+3,p+k(zs1) βs2ψp+3,p+k(zs2) · · · βskψp+3,p+k(zsk )

...
...

...
βs1ψp+k+1,p+k(zs1) βs2ψp+k+1,p+k(zs2) · · · βskψp+k+1,p+k(zsk )

∣∣∣∣∣∣∣∣∣
, (5.3)

which, upon factoring out βs1 , . . . , βsk , becomes

Ts1,...,sk = T ′
s1,...,sk

k∏

i=1

βsi , (5.4)
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where

T ′
s1,...,sk =

∣∣∣∣∣∣∣∣∣

ψp+2,p+k(zs1) ψp+2,p+k(zs2) · · · ψp+2,p+k(zsk)
ψp+3,p+k(zs1) ψp+3,p+k(zs2) · · · ψp+3,p+k(zsk)

...
...

...
ψp+k+1,p+k(zs1) ψp+k+1,p+k(zs2) · · · ψp+k+1,p+k(zsk)

∣∣∣∣∣∣∣∣∣
. (5.5)

Now, ψp+i+1,p+k(z) is a monic polynomial of degree k − i, i = 1, . . . , k. Therefore, after permuting
the rows of the determinant T ′

s1,...,sk
suitably, we can apply Lemma 3.1 and obtain

T ′
s1,...,sk

= (−1)k(k−1)/2V (zs1 , . . . , zsk ).

This completes the proof. �

Remark 5.2. Judging from (5.3)–(5.5), we may be led to believe that Ts1,...,sk is actually a function
of p. The result in (5.2) shows that it is independent of p, and this is quite surprising. In addition,
the fact that Ts1,...,sk is independent of p makes the rest of the proofs possible.

Theorem 5.3 that follows concerns the convergence of Vp,k(z) as p→ ∞.

Theorem 5.3 ([7, Theorem 5.1]). Assume

Φ(zk) < Φ(zk+1) = · · · = Φ(zk+r) < Φ(zk+r+1), (5.6)

in addition to (5.1). In case k + r = µ, we define Φ(zk+r+1) = ∞. Assume also that

k∏

i=1

(q, vi) 6= 0.

Consequently,

T1,...,k 6= 0 (5.7)

and there holds

Q(z) = (−1)kT1,...,kV (z, z1, . . . , zk)

[ k∏

i=1

Ψp(zi)

]−1[
1 +O

(
Ψp(zk)

Ψ̃p,k

)]
as p→ ∞,
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uniformly in every compact subset of C \ {z1, z2, . . . , zk}, where
∣∣Ψ̃p,k

∣∣ = min
1≤j≤r

∣∣Ψp(zk+j)
∣∣. (5.8)

Thus, with the normalization that ck = 1, and letting

S(z) =

k∏

i=1

(z − zi),

there holds

Vp,k(z)− S(z) = O

(
Ψp(zk)

Ψ̃p,k

)
as p→ ∞,

from which we also have

lim sup
p→∞

∣∣Vp,k(z)− S(z)
∣∣1/p ≤ Φ(zk)

Φ(zk+1)
.

Theorem 5.3 implies that Vp,k(z) has precisely k zeros that tend to those of S(z). Let us denote

the zeros of Vp,k(z) by z
(p)
m , m = 1, . . . , k. Then limp→∞ z

(p)
m = zm, m = 1, . . . , k. In the next theorem,

we provide the rate of convergence of each of these zeros.

Theorem 5.4 ([7, Theorem 5.2]). Under the conditions of Theorem 5.3, there holds

z(p)m − zm = O

(
Ψp(zm)

Ψ̃p,k

)
as p→ ∞,

with Ψ̃p,k as in (5.8). From this, it follows that

lim sup
p→∞

∣∣z(p)m − zm
∣∣1/p ≤ Φ(zm)

Φ(zk+1)
, m = 1, . . . , k.

In case r = 1 in (5.6), that is,

Φ(zk) < Φ(zk+1) < Φ(zk+2),

and assuming that T1,...,m−1,m+1,...,k+1 6= 0, we have the more refined result

z(p)m − zm ∼ Cm
Ψp(zm)

Ψp(zk+1)
as p→ ∞,



A de Montessus type convergence study for a interpolation procedure of epsilon class 99

Cm = (−1)k−mT1,...,m−1,m+1,...,k+1

T1,...,k
(zk+1 − zm)

k∏

i=1
i6=m

zk+1 − zi
zm − zi

.

5.2. Convergence analysis for Rp,k(z)

We now develop a de Montessus type convergence theory for the Rp,k(z); that is, we analyze the error
F (z)−Rp,k(z) as p→ ∞ with k being held fixed.

We start by showing that the vectors T̂
(p)
s0,s1,...,sk(z) are (i) meromorphic in z with simple poles at

the zi and (ii) bounded for all large p. This is the subject of the lemma that follows.

Lemma 5.5. For z 6∈ {zs0 , zs1 . . . , zsk}, T̂ (p)
s0,s1,...,sk (z) is analytic in z and bounded for all large p.

Proof. Expanding the vector-valued determinant in (3.11) with respect to its first row, we obtain

T̂ (p)
s0,s1,...,sk(z) =

k∑

j=0

Ej ê
(p)
sj (z),

where

Ej = (−1)jTs0,...,sj−1,sj+1,...,sk , ê(p)sj (z) =
vsj

z − zsj

p+k∏

i=p+1

(zsj − ξ
(p)
i ), j = 0, 1, . . . , k.

By Lemma 5.1, Ej are all scalars independent of p. In addition, ê
(p)
sj (z) are bounded in p since

ξ
(p)
p+1, . . . , ξ

(p)
p+k are bounded due to the assumption that the ξ

(p)
i have no limit points in K, and k is a

fixed integer. This completes the proof. �

We make use of Lemma 5.5 in the proof of Theorem 5.6 that follows. Throughout the rest of this
work, ‖Y ‖ denotes the vector norm of Y ∈ CN .

Theorem 5.6 ([7, Theorem 5.3]). Under the conditions of Theorem 5.3, Rp,k(z) exists and is unique
and satisfies

F (z)−Rp,k(z) = O

(
Ψp(z)

Ψ̃p,k

)
as p→ ∞,
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uniformly on every compact subset of C\{z1, . . . , zµ}, with Ψ̃p,k as defined in (5.8). From this, it also
follows that

lim sup
p→∞

∥∥F (z)−Rp,k(z)
∥∥1/p ≤ Φ(z)

Φ(zk+1)
, z ∈ K̃ = K \ {z1, . . . , zµ},

uniformly on each compact subset of K̃, and

lim sup
p→∞

∥∥F (z)−Rp,k(z)
∥∥1/p ≤ 1

Φ(zk+1)
, z ∈ E,

uniformly on E. Thus, uniform convergence takes place for z in any compact subset of the set K̃k,
where

K̃k = int Γσk
\ {z1, . . . , zk}; σk = Φ(zk+1).

When r = 1 in (5.6), that is, when

Φ(zk) < Φ(zk+1) < Φ(zk+2),

and T̂
(p)
1,...,k+1(z) 6= 0 in addition to (5.7), we have the more refined result

F (z)−Rp,k(z) ∼ Bp(z)
ψ1,p(z)

Ψp(zk+1)
as p→ ∞, Bp(z) = (−1)k

T̂
(p)
1,...,k+1(z)

T1,...,k

k∏

i=1

zk+1 − zi
z − zi

,

and Bp(z) is bounded for all large p.

§6. Convergence theory for general vector-valued meromor-
phic F (z) with simple poles

Let the sets of interpolation points {ξ(p)1 , . . . , ξ
(p)
p+k} be as in the preceding section. We now turn to the

convergence analysis of Rp,k(z) as p→ ∞, when the function F (z) is analytic in E and meromorphic
in Eρ = int Γρ, where Γρ, as before, is the locus Φ(z) = ρ for some ρ > 1. Assume that F (z) has µ
simple poles z1, . . . , zµ in Eρ. Thus, F (z) has the following form:

F (z) =

µ∑

s=1

vs
z − zs

+Θ(z), (6.1)
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Θ(z) being analytic in Eρ.
The treatment of this case is based entirely on that of the preceding section, the differences being

minor. Note that the polynomial u(z) of (3.1) is now replaced by Θ(z) in (6.1). Previously, we had
u[ξm, . . . , ξn] = 0 for all large n −m, as a consequence of which, we had (3.7) for ui,j and (3.8) for
∆j(z). Instead of these, we now have

ui,j = −
µ∑

s=1

αi,s
ψ1,j(zs)

Ψp(zs)
+
(
q,Θ[ξj+1, . . . , ξp+i]

)
, (6.2)

with αi,s as in (3.7), and

∆j(z) = ψ1,p(z)

( µ∑

s=1

ê(p)s (z)
ψ1,j(zs)

Ψp(zs)
+ Θ[z, ξj+1, . . . , ξp]

)
, (6.3)

with ê
(p)
s (z) as in (3.8).

It is clear that the treatment of the general meromorphic F (z) with simple poles will be the same
as that of the rational F (z) with simple poles provided the contributions from Θ(z) to ui,j and ∆j(z),
as p→ ∞, are negligible compared to the rest of the terms in (6.2) and (6.3). This is indeed the case,
as is shown in [7, Lemma 6.1]:

Lemma 6.1 ([7, Lemma 6.1]). With F (z) as in the first paragraph, there holds

lim sup
p→∞

∥∥Θ[ξ
(p)
j+1, . . . , ξ

(p)
p+i]

∥∥1/p ≤ 1

κρ
.

There also holds

lim sup
p→∞

∥∥Θ[z, ξ
(p)
j+1, . . . , ξ

(p)
p ]
∥∥1/p ≤ 1

κρ
,

uniformly in every compact subset of Eρ. These hold for all i ≤ k and j ≤ k.

With this information, we can now prove convergence results for Vn,k(z) and F (z) − Rp,k(z) for
general meromorphic F (z). We recall that the poles z1, . . . , zµ of F (z) are ordered such that

Φ(z1) ≤ Φ(z2) ≤ · · · ≤ Φ(zµ) ≤ ρ. (6.4)

We also adopt the notation of theorems 5.3, 5.4 and 5.6.
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Theorem 6.2 ([7, Theorem 6.2]).

(i)When k < µ, assume that

Φ(zk) < Φ(zk+1) = · · · = Φ(zk+r) <

{
Φ(zk+r+1), if k + r < µ,

ρ, if k + r = µ,

in addition to (6.4). Assume also that

k∏

i=1

(q, vi) 6= 0.

Consequently,

T1,...,k 6= 0.

Then, all the results of Theorem 5.3 hold.

(ii) When k = µ,

lim sup
p→∞

∣∣Vp,k(z)− S(z)
∣∣1/p ≤ Φ(zk)

ρ
,

uniformly on every compact subset of C \ {z1, . . . , zµ}.

Theorem 6.2 implies that Vp,k(z) has precisely k zeros that tend to those of S(z). Let us denote

the zeros of Vp,k(z) by z
(p)
m , m = 1, . . . , k. Then limp→∞ z

(p)
m = zm, m = 1, . . . , k. In the next theorem,

we provide the rate of convergence of each of these zeros.

Theorem 6.3 ([7, Theorem 6.3]). Assume the conditions of Theorem 5.4.

(i)When k < µ, all the results of Theorem 5.4 hold.

(ii)When k = µ,

lim sup
p→∞

∣∣z(p)m − zm
∣∣1/p ≤ Φ(zm)

ρ
, m = 1, . . . , k.

Our next and last result concerns the convergence of Rp,k(z).
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Theorem 6.4 ([7, Theorem 6.4]). Assume the conditions of Theorem 5.6. Then Rp,k(z) exists and
is unique.

(i)When k < µ, all the results of Theorem 5.6 hold with K̃ = Eρ \ {z1, . . . , zµ}.
(ii)When k = µ, there holds

lim sup
p→∞

∥∥F (z)−Rp,k(z)
∥∥1/p ≤ Φ(z)

ρ
, z ∈ K̃ = Eρ \ {z1, . . . , zµ},

uniformly on each compact subset of K̃, and

lim sup
p→∞

∥∥F (z)−Rp,k(z)
∥∥1/p ≤ 1

ρ
, z ∈ E,

uniformly on E.
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