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Abstract

In this chapter, we discuss some recently obtained asymptotic expansions related to
problems in numerical analysis and approximation theory.
• We present a generalization of the Euler–Maclaurin (E–M) expansion for the trap-

ezoidal rule approximation of finite-range integrals
R b
a f ðxÞdx, when f(x) is allowed

to have arbitrary algebraic–logarithmic endpoint singularities. We also discuss
effective numerical quadrature formulas for so-called weakly singular, singular,
and hypersingular integrals, which arise in different problems of applied mathemat-
ics and engineering.

• We present a full asymptotic expansion (as the number of abscissas tends to infinity)

for Gauss–Legendre quadrature for finite-range integrals
R b
a f ðxÞdx, where f(x) is

allowed to have arbitrary algebraic–logarithmic endpoint singularities.
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• We present full asymptotic expansions, as n!∞, (i) for Legendre polynomials Pn(x),

x 2 (�1, 1), (ii) for the integral
R d
c f ðxÞPnðxÞdx,� 1< c< d< 1, and (iii) for Legendre

series coefficients en½f � ¼ ðn+ 1=2Þ
R 1
�1 f ðxÞPnðxÞdx, when f(x) has arbitrary

algebraic–logarithmic (interior and/or endpoint) singularities in [�1, 1].

1. INTRODUCTION

In many problems of science and engineering, one is confronted with

the problem of determining the asymptotic behavior of some function f(x) as

x ! a for some fixed a; typically, a ¼ 0 or a¼∞.

1. In some cases, the best one can do is to obtain an upper bound for jf(x)j as
x ! a; that is, one can have

f ðxÞ¼OðgðxÞÞ as x! a, gðxÞ a known simple function: (1)

Of course, this means that there exist fixed positive constants M, E, and
X, for which,

j f ðxÞj �M jgðxÞj 8 x2 ða� E,a+ EÞ or 8 x2 ða,a+ EÞ if a finite,

8 x2 ðX ,∞Þ if a¼∞:

�

(2)

2. In other problems, one can obtain the actual asymptotic behavior of f(x)

as x ! a in the form of an asymptotic equality, namely,

f ðxÞ� hðxÞ as x! a, hðxÞ a known simple function, (3)

which means that

lim
x!a

f ðxÞ
hðxÞ¼ 1: (4)

3. Yet in other cases, one can obtain a complete asymptotic expansion for f(x) as

x ! a that is in the form

f ðxÞ�
X∞
n¼0

cnϕnðxÞ as x! a, (5)

where cn are some constants and the functions ϕn(x) are simple known

functions such that the sequence fϕnðxÞg∞n¼0 is an asymptotic scale, namely,
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lim
x!a

ϕn+1ðxÞ
ϕnðxÞ

¼ 0, n¼ 0,1,…: (6)

(For examples, the functions ϕn(x) ¼ (x � a)n, with a finite, form an

asymptotic scale as x ! a. Similarly, the functions ϕn(x) ¼ x�n form

an asymptotic scale as x ! ∞).

By (5), we mean

f ðxÞ�
XN�1

n¼0

cnϕnðxÞ¼OðϕN ðxÞÞ as x! a: (7)

In this case, if cn ¼ 0 for 0 � n � k � 1 and ck 6¼ 0, we also have the

asymptotic equality

f ðxÞ� ckϕkðxÞ as x! a: (8)

If cn ¼ 0 for all n, then we have that limx!a f ðxÞ=ϕnðxÞ¼ 0 for all n.

(Note that the infinite series
P∞

n¼0cnϕnðxÞ may be convergent or diver-

gent and this does not present an issue we need to worry about.)

Clearly, the situation described in item 2 is more informative than that

described in item 1 since it implies the latter, and the situation described in

item 3 is more informative than that described in item 2 and implies the latter.

Our purpose in this work is to give a review of some recently obtained

complete asymptotic expansions for some commonly occurring problems aris-

ing in numerical analysis and approximation theory that have also been

observed to occur in other disciplines, such as applied mathematics and the-

oretical physics, for example.

In Section 2, we discuss the error expansion for trapezoidal rule approx-

imations of finite-range integrals
R b

a
f ðxÞdx (as the number of abscissas tends

to infinity) when f(x) is allowed to have arbitrary algebraic–logarithmic end-

point singularities in general, and present recent generalizations of the well-

known Euler–Maclaurin (E–M) expansions. We also present very effective

numerical quadrature formulas for some singular integrals that are derived

from these expansions.

In Section 3, we present the error expansion of Gauss–Legendre quad-

rature formulas for finite-range integrals
R b

a
f ðxÞdx (again, as the number of

abscissas tends to infinity), where f(x) is allowed to have arbitrary

algebraic–logarithmic endpoint singularities.

In Section 4, we discuss the asymptotic expansions as n!∞ (i) for Legen-

dre polynomials Pn(x), x2 (�1, 1), (ii) for the integral
R d

c
f ðxÞPnðxÞdx,� 1< c
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< d< 1, and (iii) for the coefficients en½ f � ¼ ðn+1=2Þ
R 1

�1
f ðxÞPnðxÞdx of the

Legendre series
P∞

n¼0en½ f �PnðxÞ of a function f(x), when f(x) has arbitrary

algebraic–logarithmic (interior and/or endpoint) singularities in [�1, 1]. These

asymptotic expansions, in addition to being of interest by themselves, can have

applications in asymptotic analyses involving Legendre expansions, such as

integral equations, numerical quadrature, and in series of spherical harmonics.

Before closing, we mention that, when computing the integralsR b

a
f ðxÞ dx, where f(x) has singularities at the endpoints x ¼ a and x ¼ b,

we can first use suitable variable transformations and apply the trapezoidal

rule or the Gauss–Legendre quadrature to the transformed integral; by this,

we can achieve very high accuracy. When f(x) has asymptotic expansions of

the types discussed in this work, some of the variable transformation can be

tuned to enable the quadrature formulas to attain accuracies that are optimal

in some asymptotic sense. We do not treat this subject here; we refer the

reader to Sidi1 and the references therein.

Finally, for simplicity of notation, in the sequel, we will write “ðh! 0Þ”
or the equivalent “ðn!∞Þ” instead of “as h! 0” or the equivalent

“as n!∞”.

2. TRAPEZOIDAL RULE APPROXIMATIONS AND
GENERALIZATIONS OF THE E–M EXPANSION

2.1 Classical E–M Expansion
We start with the well-known classical E–Mexpansion for finite-range inte-

grals I ½ f � ¼
R b

a
f ðxÞdx, where f 2C∞½a,b�, which involves the trapezoidal

rule approximation for I[f]. We summarize the subject in the following

theorem.

Theorem 1. Let

I ½ f � ¼
Z b

a

f ðxÞdx and Tn½ f � ¼ h
1

2
f ðaÞ+

Xn�1

i¼1

f ða+ihÞ+1

2
f ðbÞ

" #
, h¼ b� a

n
:

(9)

Assume that f 2C∞½a,b�. Then there holds

Tn½ f � � I ½ f �+
X∞
k¼1

B2k

ð2kÞ! f ð2k�1ÞðbÞ� f ð2k�1ÞðaÞ
h i

h2k ðh! 0Þ: (10)

Here Bs are the Bernoulli numbers.
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The following are immediate consequences of Theorem 1:

f 0ðaÞ 6¼ f 0ðbÞ ) Tn½ f �� I ½ f � � 1

12
½f 0ðbÞ� f 0ðaÞ�h2¼Oðh2Þ ðh! 0Þ:

f ð2k�1ÞðaÞ¼ f ð2k�1ÞðbÞ, 1� k�m�1 ) Tn½ f �� I ½ f � ¼Oðh2mÞ ðh! 0Þ:
f ð2k�1ÞðaÞ¼ f ð2k�1ÞðbÞ, k¼ 1,2,…) Tn½ f �� I ½ f � ¼OðhμÞ ðh! 0Þ, 8 μ> 0,

and this happens when f 2C∞ð�∞,∞Þ and is (b � a)-periodic, for

example.

The integral
R b

a
f ðxÞdx can be computed to high accuracy by applying

the Richardson extrapolation process to the sequence of trapezoidal rule

approximations fT2n ½ f �g∞n¼0 also taking into account the E–M expansion;

this method is known as the Romberg integration. All this is treated in many

numerical analysis books; see Atkinson,2 Ralston and Rabinowitz,3 and Stoer

and Bulirsch,4 for example. See also the book by Steffensen.5 For a detailed

treatment of extrapolation methods and their applications, see Sidi.6

2.2 Navot’s Generalizations of Classical E–M Expansion
The first generalizations of the E–M expansion were given by Navot,7,8

and these concern the cases in which f(x) has endpoint singularities of alge-

braic and algebraic–logarithmic types, respectively. Navot’s results were

later rederived by Lyness and Ninham9 using techniques involving gener-

alized functions. We state the result pertaining to the algebraic case in the

next theorem. We will deal with the algebraic–logarithmic case when

discussing our recent generalizations of the E–M expansions later in this

section.

Theorem 2. Let f(x) have algebraic endpoint singularities as in

f ðxÞ¼ ðx� aÞαgaðxÞ¼ ðb�xÞβgbðxÞ, ga 2C∞½a,bÞ, gb 2C∞ða,b�, (11)

and Rα,Rβ>�1 and α, β not necessarily integers. Let also

I ½ f � ¼
Z b

a

f ðxÞ dx and �Tn½ f � ¼ h
Xn�1

i¼1

f ða+ ihÞ, h¼ b� a

n
: (12)

(Note that Ť n[ f ] does not include f(a) and f(b); thus it is always defined.)
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Then there holds

�Tn½ f � � I ½ f �+
X∞
k¼0

ζð�α�kÞ
k!

gðkÞa ðaÞhα+ k+1

+
X∞
k¼0

ð�1Þk ζð�β�kÞ
k!

g
ðkÞ
b ðbÞhβ+ k+1 ðh! 0Þ: (13)

Here ζ(ω) is the Riemann zeta function.a

Note that in case α ¼ 0 ¼ β, we have ga(x) ¼ f(x) ¼ gb(x), and with the

help of the known results concerning the zeta function, namely,

ζð0Þ¼�1

2
; ζð�2mÞ¼ 0, ζð1�2mÞ¼�B2m

2m
, m¼ 1,2,…, (14)

we recover the (classical) E–M expansion of Theorem 1.

2.3 Recent Generalizations of E–M Expansions
In a recent series of papers by Sidi,10–12 the E–M expansion has been

extended to the most general case in which the integrand f(x) is infinitely

differentiable in the finite (open) interval (a, b) and is allowed to have arbi-

trary singular behavior of the algebraic–logarithmic types at the endpoints.

These results, which we summarize as Theorem 3, contain all earlier

ones as special cases, but are not contained in the latter. Before we state

them, we mention that they are valid also when the integrals
R b

a
f ðxÞ dx

are divergent hence do not exist in the regular sense, but they are defined

in the sense ofHadamard finite part (HPF). In such cases, we continue to use

the notation I[f] to denote the HFP of the (divergent) integral
R b

a
f ðxÞ dx.

Of course, the HFP of a convergent integral is equal to the actual value of

the integral.

Theorem 3. Assume that f 2C∞ða,bÞ and let

�Tn½ f � ¼ h
Xn�1

i¼1

f ða+ ihÞ, h¼ b� a

n
: (15)

a We recall that the Riemann zeta function ζ(ω) is first defined via the convergent series

ζðωÞ¼
P∞

k¼1k
�ω forRω> 1, and then continued analytically to the ω-plane. It is analytic everywhere

except at ω ¼ 1, where it has a simple pole with residue 1.
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We consider the following two cases:

1. Let f(x) have asymptotic expansions as x ! a+ and as x ! b� as in

f ðxÞ �K ðx� aÞ�1
+
X∞
s¼0

csðx� aÞγs ðx! a+ Þ

f ðxÞ �L ðb�xÞ�1
+
X∞
s¼0

dsðb�xÞδs ðx! b�Þ
(16)

where γs and δs are in general complex constants satisfying

Rγ0�Rγ1�Rγ2�⋯ ; γs 6¼�1, lim
s!∞

Rγs ¼∞,

Rδ0�Rδ1 �Rδ2�⋯ ; δs 6¼�1, lim
s!∞

Rδs ¼∞:
(17)

Assume also that the asymptotic expansions in (16) are differentiable infinitely

many times. Then

�Tn½ f � � I ½ f �+KðC� loghÞ+
X∞
s¼0

γs 62f2,4,…g

csζð�γsÞhγs +1

+LðC� loghÞ+
X∞
s¼0

δs 62f2,4,…g

dsζð�δsÞhδs +1 ðh! 0Þ: ð18Þ

Here C ¼ 0.577… is Euler’s constant.

2. More generally, let f(x) have asymptotic expansions as x! a+ and as x! b�
as in

f ðxÞ� P̂ð logðx� aÞÞðx� aÞ�1
+
X∞
s¼0

Psð logðx� aÞÞðx� aÞγs ðx! a+ Þ

f ðxÞ� Q̂ð logðb�xÞÞðb�xÞ�1
+
X∞
s¼0

Qsð logðb�xÞÞðb�xÞδs ðx! b�Þ,

(19)

where P̂ðyÞ, Ps(y), Q̂ðyÞ, and Qs(y) are arbitrary polynomials in y, and γs and
δs are in general complex satisfying

Rγ0�Rγ1�Rγ2�⋯ ; γs 6¼�1, lim
s!∞

Rγs ¼∞,

Rδ0�Rδ1�Rδ2�⋯ ; δs 6¼�1, lim
s!∞

Rδs¼∞,
(20)
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such that

Rγs+1 ¼Rγs ) degPs+1� degPs and

Rδs+1 ¼Rδs ) degQs+1� degQs:
(21)

Assume also that the asymptotic expansions in (19) are differentiable infinitely

many times. Let

Dω� d=dω; P̂ðyÞ¼
X̂p

i¼0

ĉiy
i, Q̂ðyÞ¼

X̂q

i¼0

d̂ iy
i: (22)

Then

�Tn½ f � � I ½ f �+
X̂p

i¼0

X̂p

r¼i

r

i

� �
ĉrσr�i

" #
ð loghÞi�

X̂p

i¼0

ĉi
ð loghÞi+1

i+1

+
X∞
s¼0

PsðDγsÞ ζð�γsÞ hγs +1
� �

+
X∞
s¼0

QsðDδsÞ ζð�δsÞ hδs +1
� �

+
X̂q

i¼0

X̂q

r¼i

r

i

� �
d̂ rσr�i

" #
ð loghÞi�

X̂q

i¼0

d̂ i
ð loghÞi+1

i+1
ðh! 0Þ:

(23)

Here, σi are Stieltjes numbers defined via

σi¼ lim
n!∞

Xn
k¼1

ð logkÞi

k
�ð lognÞi+1

i+1

" #
, i¼ 0,1,…:

Remark

1. By the asymptotic expansions in (16) and (19) being differentiable infi-

nitely many times we mean that, for each integer k¼ 1, 2,…, f (k)(x), the

k-th derivative of f(x), has asymptotic expansions as x! a+ and as x! b�
that are obtained by differentiating those in (16) and (19) formally term

by term.

2. The function f(x) in Theorem 1 is contained in part 1 of Theorem 3 as

follows: Being in C∞½a,b�, f(x) has Taylor series expansions at x ¼ a and

x ¼ b and we have γs ¼ δs ¼ s and cs ¼ f (s)(a)/s! and ds ¼ (�1)sf (s)(b)/s!,

s ¼ 0, 1, …. In addition, these Taylor series are differentiable infinitely

many times.b

b If f 2C∞½a� E,a+ E� for some E > 0, then its Taylor series
P∞

s¼0

f ðsÞðaÞ
s!

ðx� aÞs is differentiable infi-
nitely many times whether it converges or diverges.
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3. Similarly, the function f(x) in Theorem 2 is contained in part 1 of

Theorem 3 as follows: γs ¼ s + α, δs ¼ s + β, and cs ¼ gðsÞa ðaÞ=s!,
ds ¼ð�1ÞsgðsÞb ðbÞ=s!, s ¼ 0, 1, ….

4. The function f ðxÞ¼ gðxÞðx� aÞα logðx� aÞ with g2C∞½a,b� (consid-
ered in Ref. 8) is contained in part 2 of Theorem 3 as follows: γs ¼
s + α, δs ¼ s and Ps(y)¼ [g(s)(a)/s!]y,Qs(y) ¼ (�1)sf (s)(b)/s!, s¼ 0, 1,….

5. The singular terms K(x�a)�1 and L(b�x)�1 in (16) and

P̂ð logðx� aÞÞðx� aÞ�1
and Q̂ð logðb�xÞÞðb�xÞ�1

in (19) are not pre-

sent in any of the earlier generalizations of the E–M expansion. (These

were treated in Refs. 11 and 12 for the first time.)

6. I[f] is the exact value of the integral
R b

a
f ðxÞ dx when this converges; it is

the HFP of
R b

a
f ðxÞ dx otherwise. Here are a few examples relevant to us:

uðxÞ¼ ðx� aÞω, ω 6¼�1 ) I ½u� ¼ ðb� aÞω+1

ω+1
,

uðxÞ¼ ðx� aÞ�1 ) I ½u� ¼ logðb� aÞ,

uðxÞ¼ ð logðx� aÞÞiðx� aÞω, ω 6¼�1 ) I ½u� ¼ di

dωi

ðb� aÞω+1

ω+1
,

uðxÞ¼ ð logðx� aÞÞiðx� aÞ�1 ) I ½u� ¼ ½ logðb� aÞ�i+1

i+1
:

I[u] is the exact integral
R b

a
uðxÞ dx ifRω>�1, it is the HFP of

R b

a
uðxÞ dx

otherwise.

7. If RðyÞ¼
Pr

i¼0eiy
i and Dω � d/dω, then RðDωÞ¼

Pr
i¼0eiD

i
ω is a linear

differential operator of order r; therefore, for any function g that is

sufficiently differentiable as a function of ω, we have RðDωÞg�Pr
i¼0eiðDi

ωgÞ¼
Pr

i¼0eiðdig=dωiÞ. Thus

RðDωÞ ζð�ωÞhω+1
� �

¼ hω+1W ð loghÞ, W ðyÞ polynomial of degree r in y:

As a result, the term PsðDγsÞ ζð�γsÞ hγs +1
� �

in (23) is simply the product

of hγs +1 and a polynomial in loghwhose degree is precisely deg Ps. Sim-

ilarly, for QsðDδsÞ ζð�δsÞ hδs +1
� �

.

8. Note that with f(x) as in part 1 of Theorem 3 and K ¼ L ¼ 0, when

γ0,δ0 62+, we have at worst �Tn½ f �� I ½ f � ¼Oðn�ðα+1ÞÞ as n!∞,

where α¼ minfRγ0,Rδ0g.
We would like to emphasize that these remarks about Theorem 3 are

relevant to Theorems 6 and 9 that we state in the sequel.
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2.4 Applications to Computation of Singular Integrals
E–M expansions and their generalizations have been very useful in the

development of numerical quadrature formulas of high accuracy for

numerical computation of integrals
R b

a
f ðxÞ dx, where f (x) has a singularity

at x ¼ t 2 (a, b), which may be algebraic and/or logarithmic, such that

f (x) may or may not be integrable through x¼ t. Commonly occurring cases

are those for which

f ðxÞ¼ gðxÞ log jx� tj+ g
�ðxÞ, (24)

f ðxÞ¼ gðxÞ
ðx� tÞm , m¼ 1,2…, (25)

f ðxÞ¼ gðxÞ
jx� tjβ

, β� 1 arbitrary, (26)

g(x) and egðxÞ being well behaved in (a, b). The first case involving log jx� tj
arises in so-called weakly singular Fredholm integral equations; the integralR b

a
f ðxÞ dx exists in the regular sense in this case. The second case with

m ¼ 1 and m¼ 2 arises in so-called singular and hypersingular Fredholm inte-

gral equations: (i) whenm¼ 1,
R b

a
f ðxÞ dx diverges but exists as aCauchy prin-

cipal value integral, and (ii) when m ¼ 2,
R b

a
f ðxÞ dx diverges but exists as an

HPF integral and is also called a hypersingular integral.

By manipulating the relevant generalized E–M expansions in suitable

ways, numerical quadrature formulas for all these cases were developed and

analyzed in the papers by Sidi and Israeli13 and Sidi.14–17 We do not go into

the construction of these formulas here. We mention only the methods that

were designed for functions f(x) that are periodic with period T ¼ b � a and

are infinitely differentiable for all x except x¼ t� kT, k¼ 0, 1, 2,…. Letting

h ¼ (b � a)/n, we define the numerical quadrature formulas Qn[f] as follows:

• For f(x) as in (24),

Qn½ f � ¼ h
Xn�1

j¼1

f ðt + jhÞ+ g
�ðtÞh+ gðtÞh log h

2π

� �
,

and we have the asymptotic expansion

Qn½ f � � I ½ f �+
X∞
k¼1

wkh
2k+1 ðh! 0Þ; wk¼�2

ζ0ð�2kÞ
ð2kÞ! gð2kÞðtÞ:
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Thus, Qn[f] � I[f] � w1h
3 as h ! 0. We can now apply the Richardson

extrapolation process to a sequence fQni ½ f �g
∞
i¼0 with ni ¼ n02

i, i ¼ 0, 1,

…, and some arbitrary n0, for example, and obtain highly accurate

approximations to I[f].

• For f(x) as in (25) with m ¼ 1,

Qn½ f � ¼ h
Xn
j¼1

f ðt+ jh�h=2Þ,

and we have

Qn½ f �� I ½ f � ¼OðhμÞ ðh! 0Þ, 8 μ> 0,

which means that the error tends to zero faster than every positive

power of h.

• For f(x) as in (25) with m ¼ 2,

Qn½ f � ¼ h
Xn
j¼1

f ðt + jh�h=2Þ�π2gðtÞh�1,

and we have

Qn½ f �� I ½ f � ¼OðhμÞ ðh! 0Þ, 8 μ> 0,

which means that the error tends to zero faster than every positive

power of h.

All three numerical quadrature formulas are used in the numerical solution

of Fredholm integral equations mentioned above.

2.5 Further Remarks on E–M Expansion and Generalizations
1. The asymptotic expansions described in Theorems 1–3 concern the trap-

ezoidal rule approximations Tn[f] and �Tn½ f � for
R b

a
f ðxÞ dx. Similar but

more general versions of these theorems that concern the so-called offset

trapezoidal rule approximations that are defined as in

eTn½ f � ¼ h
Xn�1

j¼0

f ðt+ jh+ θhÞ, h¼ b� a

n
, θ2 ½0,1�,

have been considered in Refs. 5 (in connection with Theorem 1), 7–9
(in connection with Theorem 2), and 10–12 (in connection with

Theorem 3). The cases we have mentioned in this work are precisely

those corresponding to θ ¼ 1. θ ¼ 1/2 gives rise to midpoint rule
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approximations. Since the statements of the theorems for arbitrary θ are

more involved, we do not discuss them here and refer the reader to the

original works.

2. An important and interesting point to note concerning the asymptotic

expansions given in all these sources is that, provided f(x) is infinitely dif-

ferentiable in the open interval (a, b) [i.e., f 2C∞ða,bÞ], they are all deter-

mined completely by the asymptotic expansions of f(x) as x ! a + and

x ! b �; nothing else is needed. This conclusion is valid for all our

developments in the next sections too.

3. ERROR EXPANSIONS FOR GAUSS–LEGENDRE
QUADRATURE

In the preceding section we were concerned with the trapezoidal rule

approximations or their modifications to finite-range integrals with or with-

out endpoint singularities of algebraic–logarithmic types. We now turn to

their approximation by the Gauss–Legendre quadrature. For convenience

of notation, we will consider integrals on the (standard) interval (�1, 1).

We also assume that these integrals exist in the regular sense. Thus the inte-

gral I[f] of f(x) and the corresponding n-point Gauss–Legendre quadrature

formula are

I ½ f � ¼
Z 1

�1

f ðxÞ dx and Gn½ f � ¼
Xn
i¼1

wnif ðxniÞ, (27)

where xni are the abscissas [i.e., the zeros of Pn(x), the n-th Legendre poly-

nomial] and wni are the corresponding weights. Recall that the xni are all in

the open interval (�1, 1). This guarantees thatGn[f] is well defined when f(x)

is continuous on (�1, 1) no matter how f(x) behaves at x ¼ �1. The func-

tions f(x) we consider have this property.

It is known that if f 2C∞½�1,1�, then the errorGn[f]� I[f] tends to zero

as n!∞ faster than all negative powers of n, that is,Gn[f]� I[f]¼ o(n�μ) as

n!∞ for every μ > 0. In particular, when f(z) is analytic in an open set

of the z-plane that contains the interval [�1, 1] in its interior, there holds

Gn[f] � I[f] ¼ O(e�σn) as n!∞ for some σ > 0; see Davis and Rabinowitz

[Ref. 18, p. 312].

When f(x) has integrable endpoint singularities, however, the error tends

to zero slowly, its rate of decay depending on the strength of the singularities.

For example, when f(x) ¼ (1�x)αg(x), with Rα>�1 but α6¼0, 1, …, and
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g2C∞½�1,1�, it is known that the error is O(n�2α�2) as n!∞; see Davis

and Rabinowitz [Ref. 18, p. 313]. A complete asymptotic expansion for

Gn[f] for this case was first derived by Verlinden in Ref. 19, theorem 1,

by imposing on f(z) some analyticity conditions. This expansion is

reproduced in Theorem 4 that follows.

Theorem 4. Let f(x) ¼ (1�x)αg(x), with Rα>�1 but α6¼0, 1, …, and g(z)

analytic in an open set that contains the interval [�1, 1] in its interior. Then Gn[f]

has the asymptotic expansion

Gn½ f � � I ½ f �+
X∞
k¼1

akh
α+ k ðn!∞Þ; h¼ðn+1=2Þ�2: (28)

Here, ak are some constants independent of n.

Verlinden also considers Gn[f] for a more general case involving an

algebraic–logarithmic endpoint singularity, namely, f ðxÞ¼ logð1�xÞ
ð1�xÞαgðxÞ, and shows that the asymptotic expansion of Gn[f] in this case

is obtained by differentiating that of Theorem 4 with respect to α term

by term.

We now apply Verlinden’s theorem (Theorem 4) with g(x) � 1.

Theorem 5. Let f �ω ðxÞ¼ ð1�xÞω, Rω>�1, but ω not an integer. Then

I[f ω
+] ¼ I[f ω

�] ¼ 2ω+1/(ω + 1) and Gn[f ω
+] ¼ Gn[f ω

�] and

Gn½ f �ω � � I ½ f �ω �+
X∞
k¼1

ukðωÞhω+ k ðn!∞Þ, (29)

for some functions uk(ω) that are analytic in ω for Rω>�1.c The uk(ω) are the
same for both f ω

+(x) and f ω
�(x). If ω is a nonnegative integer, then Gn½ f �ω � ¼

I ½ f �ω � for n � (ω + 1)/2 and uk(ω) ¼ 0 for all k � 1.d

In Theorem 6 that we state next we consider functions f(x) that have

arbitrary algebraic–logarithmic endpoint singularities at one or both end-

points � 1 that are basically as those in Theorem 3, without any analyticity

assumption being made. Thus the class of functions we consider is much

more general than that considered in Ref. 19 and contains the latter as a sub-

class. This theorem is due to Sidi,20 and its proof makes use of Theorem 5.

c So far, no simple expression for the functions uk(ω) is known.
d This follows from the fact that Gn[f] ¼ I[f] for all functions f(x) that are polynomials of degree at most

2n � 1.
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Theorem 6. Assume that f 2C∞ð�1,1Þ and let h¼ (n+1/2)�2 as before, and

define +¼f0,1,2,…g. Let the functions uk(ω) be precisely those that appear in
Theorem 5. We consider the following two cases:

1. Let f(x) have asymptotic expansions as x !�1 (from the right) and as x ! 1

(from the left) as in

f ðxÞ�
X∞
s¼0

csð1+ xÞγs ðx!�1+ Þ,

f ðxÞ�
X∞
s¼0

dsð1�xÞδs ðx! 1�Þ,
(30)

where γs and δs are in general complex and satisfy

�1<Rγ0�Rγ1�Rγ2�⋯ ; lim
s!∞

Rγs ¼ +∞,

�1<Rδ0�Rδ1�Rδ2�⋯ ; lim
s!∞

Rδs ¼ +∞:
(31)

Assume also that the asymptotic expansions in (30) are differentiable infinitely

many times. Then

Gn½ f � � I ½ f � +
X∞

s¼ 0
γs 62+

cs
X∞
k¼1

ukðγsÞhγs + k

+
X∞

s¼ 0
δs 62+

ds
X∞
k¼1

ukðδsÞhδs + k ðn!∞Þ: (32)

2. More generally, let f(x) have asymptotic expansions as x!�1 (from the left) and

as x ! 1 (from the right) as in

f ðxÞ�
X∞
s¼0

Psð logð1+ xÞÞð1+ xÞγs ðx!�1+ Þ,

f ðxÞ�
X∞
s¼0

Qsð logð1�xÞÞð1�xÞδs ðx! 1�Þ,
(33)

where Ps(y) and Qs(y) are arbitrary polynomials in y, and γs and δs are in general
complex and satisfy

�1<Rγ0�Rγ1�Rγ2�⋯ ; lim
s!∞

Rγs ¼ +∞,

�1<Rδ0�Rδ1�Rδ2�⋯ ; lim
s!∞

Rδs ¼ +∞,
(34)
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such that

Rγs+1¼Rγs ) deg Ps+1� deg Ps and

Rδs+1¼Rδs ) degQs+1� degQs:
(35)

Assume also that the asymptotic expansions in (33) are differentiable infinitely

many times. Then

Gn½ f � � I ½ f � +
X∞
s¼0

X∞
k¼1

PsðDγsÞ½ukðγsÞh
γs + k�

+
X∞
s¼0

X∞
k¼1

QsðDδsÞ½ukðδsÞhδs + k� ðn!∞Þ: (36)

For the precise meaning of the terms PsðDγsÞ½ukðγsÞhγs + k� and

QsðDδsÞ½ukðδsÞhδs + k�, we refer the reader to Remark 7 following the state-

ment of Theorem 3.

Note that, with f(x) as in part 1 of Theorem 6, when γ0,δ0 62+, we have

at worstGn[ f ]� I[ f ]¼O(n�2(α+1)) as n!∞, where α¼ minfRγ0,Rδ0g.
When f(x) is infinitely differentiable in the (closed) interval [�1, 1],

then f(x) is precisely of the form described in (30) with the γs and δs in
+, which implies that uk(γs) ¼ 0 and uk(δs) ¼ 0 for all k ¼ 1, 2, …. That

is, the asymptotic expansion in (32) is empty; therefore, Gn[ f ] � I[ f ] ¼
O(n�μ) as n!∞ for every μ> 0. This means that the error inGn[ f ] tends

to zero faster than every negative power of n, which is a known result men-

tioned also above.

As is the case concerning the E–M expansion and all of its generaliza-

tions, an important and interesting point to note concerning the asymptotic

expansions given in all these sources is that, provided f(x) is infinitely differen-

tiable in the open interval (�1, 1) [i.e., f 2C∞ð�1,1Þ], they are all determined

completely by the asymptotic expansions of f(x) as x !�1 + and x ! 1 �;

nothing else is needed.

4. ASYMPTOTICS OF LEGENDRE POLYNOMIALS AND
LEGENDRE SERIES COEFFICIENTS

Orthogonal polynomial expansions of functions appear in most

branches of science and engineering and their partial sums serve as approx-

imations to the functions involved. Of course, the quality of these
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approximations depends on the behavior of the coefficients in these expan-

sions, and the behavior of the coefficients is determined by the smoothness

properties of the functions being approximated. Here we are concerned

with Legendre polynomial expansions on the interval (�1, 1) specifically.

As usual, Pn(x) is the n-th Legendre polynomial standardized such that

Pn(1) ¼ 1, so that

Z 1

�1

PmðxÞPnðxÞdx¼
1

n+1=2
δm,n, m,n¼ 0,1,…: (37)

4.1 Asymptotics of Legendre Polynomials and Related
Integrals

We begin with the asymptotic analysis of Legendre polynomials in the open

interval (�1, 1). It is known that, for large n and for x 2 (�1, 1), the Legen-

dre polynomial Pn(x) behaves like a trigonometric function, as in

PnðcosθÞ¼
2

πn sinθ

� �1=2

sin nθ+
θ

2
+
π

4

� �

+O n�3=2
� �

ðn!∞Þ, x¼ cosθ:

(38)

The following complete asymptotic expansion is given in Sidi [Ref. 21, the-

orem 3.2]:

Theorem 7. There exist analytic functions ϕk(z) that are regular for jzj ¼ 1,

z 6¼ � 1, such that, with n̂¼ n+1=2 and arbitrary fixed E 2 (0, π/2),

PnðcosθÞ�R ein̂θ
X∞
k¼0

ϕkðeiθÞ
n̂k+1=2

( )
ðn!∞Þ, uniformly for E� θ� π� E:

(39)

That is, for each p ¼ 0, 1, …, and for 0 < θ < π, there holds

PnðcosθÞ¼R ein̂θ
Xp�1

k¼0

ϕkðeiθÞ
n̂k+1=2

+Rp,nðθÞ
" #( )

, (40)

where

Rp,nðθÞ¼O n̂�p�1=2
� �

ðn!∞Þ, uniformly for E� θ� π� E: (41)

Actually, with Dθ ¼ d/dθ, we have
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ϕkðeiθÞ¼ ð�1Þk 2

π1=2
�1=2

k

� �
eiðθ�πÞ=2Xk

s¼0

k

s

� �
B
ð1=2Þ
k�s 	 ð i

2
DθÞs ð1� ei2θÞ�1=2

h i� 	

¼ð�1Þk 2

π1=2
�1=2

k

� �
eiðθ�πÞ=2Bð1=2Þ

k

i

2
Dθ

� �
ð1� ei2θÞ�1=2
h i

:

(42)

Here BðσÞ
s and BðσÞ

s ðuÞ are generalized Bernoulli numbers and polynomials.e
It is easy to see that (38) is obtained from the first (k ¼ 0) term of the

summation in (40).

An expansion of the form similar to that in (40) is given in Szegő [Ref.

23, p. 196, theorem 8.21.9], and this expansion involves the powers n�k�1/2

and does not provide the coefficients ϕk(z) explicitly. This should be com-

pared with our expansion in (40) that involves the powers (n+1/2)�k�1/2,

for which the ϕk(z) are given explicitly.

The next theorem concerns the asymptotics of integrals of the formR d

c
f ðxÞPnðxÞ dxwith� 1< c< d< 1 and it is given in Ref. 21, theorem 4.2.

Theorem 8. Let � 1 < c < d < 1, and assume that f 2C∞ðc,dÞ. Let
α¼ cos�1d and β¼ cos�1c; clearly 0 < α < β < π. Assume that, as x ! c+

and as x ! d�, f(x) is such that FðθÞ¼ sinθ 	 f ðcosθÞ has the asymptotic

expansions

FðθÞ�
X∞
s¼0

Usðθ�αÞρs ðθ! α+ Þ; α¼ cos�1d> 0,

FðθÞ�
X∞
s¼0

Vsðβ�θÞσs ðθ! β�Þ; β¼ cos�1c< π,

(43)

where

�1<Rρ0�Rρ1�Rρ2 �⋯ ; lim
s!∞

Rρs ¼∞,

�1<Rσ0�Rσ1�Rσ2 �⋯ ; lim
s!∞

Rσs ¼∞,
(44)

e The generalized Bernoulli polynomials BðσÞ
s ðuÞ are defined via (see, for example, Andrews et al.

[Ref. 22, p. 615])
t

et �1

� �σ

eut ¼
X∞
s¼0

BðσÞ
s ðuÞ t

s

s!
, jtj< 2π:

They satisfy BðσÞ
s ðσ�uÞ¼ ð�1ÞsBðσÞ

s ðuÞ; hence BðσÞ
s ðσ=2Þ¼ 0 for s ¼ 1, 3, 5, …. BðσÞ

s ð0Þ are called the

generalized Bernoulli numbers and are denoted by BðσÞ
s . Note that B

ðσÞ
0 ¼ 1 for all σ. In addition,

B
ðσÞ
k ðuÞ¼

Pk
s¼0

k

s

� �
B
ðσÞ
k�su

s for all k.
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and Us and Vs are nonzero constants. Assume also that these asymptotic expansions

can be differentiated termwise an infinite number of times.With the functions ϕk(z) as

in Theorem 7, for arbitrary θ 2 [α, β], let

ϕkjðθÞ¼
1

j!

dj

dθj
ϕkðeiθÞ, j,k¼ 0,1,…, (45)

and

Gð+ Þ
μ ðθ;ωÞ¼ 1

2

X

j,k�0

j+ k¼μ

iω+ j+1 ϕkjðθÞ Γðω+ j+1Þ,

Ĝ
ð+ Þ
μ ðθ;ωÞ¼ 1

2

X

j,k�0

j+ k¼μ

ð�iÞω+ j+1 ϕkjðθÞ Γðω+ j+1Þ,

Gð�Þ
μ ðθ;ωÞ¼ 1

2

X

j,k�0

j+ k¼μ

ð�1Þj ð�iÞω+ j+1 ϕkjðθÞ Γðω+ j+1Þ,

Ĝ
ð�Þ
μ ðθ;ωÞ¼ 1

2

X

j,k�0

j+ k¼μ

ð�1Þj iω+ j+1 ϕkjðθÞ Γðω+ j+1Þ:

(46)

Then, with n̂¼ n+1=2, as n!∞,

Z d

c

f ðxÞPnðxÞ dx� ein̂α
X∞
s¼0

Us

X∞
μ¼0

Gð+ Þ
μ ðα; ρsÞ
n̂ρs + μ+3=2

+ e�in̂α
X∞
s¼0

Us

X∞
μ¼0

Ĝ
ð+ Þ
μ ðα; ρsÞ
n̂ρs + μ+3=2

+ ein̂β
X∞
s¼0

Vs

X∞
μ¼0

Gð�Þ
μ ðβ; σsÞ

n̂σs + μ+3=2
+ e�in̂β

X∞
s¼0

Vs

X∞
μ¼0

Ĝ
ð�Þ
μ ðβ; σsÞ

n̂σs + μ+3=2
:

(47)

Note again that the asymptotic expansion in (47) is determined

completely by the asymptotic expansions in (43), nothing else being needed.

In addition, it is the sum of four asymptotic expansions that are multiplied by

cosnα, sinnα, cosnβ, and sinnβ.

4.2 Asymptotics of Legendre Series Coefficients
Let

P∞
n¼0en½ f �PnðxÞ be the Legendre series of the function f(x) on (�1, 1),

where
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en½ f � ¼ ðn+1=2Þ
Z 1

�1

PnðxÞf ðxÞ dx, n¼ 0,1,…: (48)

It is known that when f(x) and j f(x)j2 are integrable on (�1, 1), we have

(see, for example, Szegő23 or Freud24),

en½ f � ¼ oð ffiffiffi
n

p Þ ðn!∞Þ: (49)

When f 2 Cr[�1, 1] for some integer r � 0, then (see Sidi25, Introduction)

en½ f � ¼O n�r +1=2ωf ðrÞ ð2=nÞ
� �

ðn!∞Þ, (50)

where ωg(δ) stands for the modulus of continuity of g(x) on [�1, 1]. (For

moduli of continuity, see, for example, Davis [Ref. 26, pp. 7–8], or Lorentz
[Ref. 27, pp. 43–46].) Clearly, when f(x) is continuously differentiable only r
times on [�1, 1], the best we can say about en[f] is (50), and that the smaller r

is, the slower the convergence of the series to f(x) becomes. Of course, nei-

ther (49) nor (50) give us the best possible information about the behavior of

en[f] as n!∞.

From (50), it is easy to see that when f 2C∞½�1,1�, en[f] satisfies (51) for
every r> 0, and this implies that en[f] tends to zero as n!∞ faster than every

negative power of n, that is,

en½ f � ¼Oðn�μÞ ðn!∞Þ, 8 μ> 0: (51)

In particular, when f(z) is analytic in an open set of the z-plane that contains

the interval [�1, 1] in its interior, there holds

en½ f � ¼Oðe�σnÞ ðn!∞Þ, for some σ> 0: (52)

4.2.1 Asymptotics of en[f] in Presence of Endpoint Singularities
We now turn to functions f(x) that are infinitely differentiable in the (open)

interval (�1, 1) but can have regular or general singular behavior at one or

both of the endpoints x ¼ �1 as described in Theorem 6. In Theorem 10,

we present a complete asymptotic expansion as n!∞ for en[f] that is derived

in Sidi.25

We begin with the following result that is analogous to Theorem 5. See

Sidi [Ref. 25, theorem 2.1].

Theorem 9. Let f �ω ðxÞ¼ ð1�xÞω, Rω>�1, but ω not an integer. Then

ð�1Þnen½ f +ω � ¼ en½ f �ω � ¼ 2ωð2n+1Þð�ωÞn=ðω+1Þn+1, n¼ 0,1,…,

(53)
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and

ð�1Þnen½ f +ω � ¼ en½ f �ω � �
X∞
k¼1

vkðωÞhω+ k+1=2 ðn!∞Þ; h¼ðn+1=2Þ�2
,

(54)

for some functions vk(ω) that are analytic in ω for Rω>�1 that are given as in

vkðωÞ¼ 2ω+1Γð1+ωÞ
Γð�ωÞ

B
ðσÞ
2k ðσ=2Þ
ð2kÞ!

Γð2k+2ω+2Þ
Γð2ω+2Þ ,

k¼ 0,1,…, σ¼�2ω�1: ð55Þ

Here BðσÞ
s ðuÞ is the s-th generalized Bernoulli polynomial. When ω2+, there

holds vk(ω) ¼ 0 for each k ¼ 0, 1, …; in this case, we also have en½ f �ω � ¼ 0 for

all n > ω.
In Theorem 10, we use the notation of Theorem 6.

Theorem 10. Assume that f 2C∞ð�1,1Þ and h ¼ (n+1/2)�2, and define

+¼f0,1,2,…g. Let the functions vk(ω) be precisely those that appear in

Theorem 9. We consider the following two cases:

1. Let f(x) have asymptotic expansions as x!�1 and as x! 1 precisely as in (30)

and (31) of Theorem 6, and assume that these asymptotic expansions are infi-

nitely differentiable. Then

en½ f � �
X∞

s¼ 0
γs 62+

cs
X∞
k¼1

vkðγsÞhγs + k+1=2

+ð�1Þn
X∞

s¼ 0
δs 62+

ds
X∞
k¼1

vkðδsÞhδs + k+1=2 ðn!∞Þ: (56)

2. More generally, let f(x) have asymptotic expansions as x !�1 and as x ! 1

precisely as in (33)–(35) of Theorem 6, and assume that these asymptotic expan-

sions are infinitely differentiable. Then

en½ f � �
X∞
s¼0

X∞
k¼1

PsðDγsÞ½vkðγsÞh
γs + k+1=2�

+ð�1Þn
X∞
s¼0

X∞
k¼1

QsðDδsÞ½vkðδsÞhδs + k+1=2� ðn!∞Þ: (57)
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For the precise meaning of the terms PsðDγsÞ½vkðγsÞhγs + k� and

QsðDδsÞ½vkðδsÞhδs + k�, we refer the reader to Remark 7 following the state-

ment of Theorem 3.

Note that, with f(x) as in part 1 of Theorem 10, when γ0,δ0 62+,

we have at worst en[ f ] ¼ O(n�2(α+1)) as n!∞, where α¼ min

fRγ0,Rδ0g.

4.2.2 Asymptotics of en[f] in Presence of Interior and Endpoint
Singularities

Theorem 10 can be extended to situations in which f(x) has a number of

singularities in the (open) interval (�1, 1). This problem has been treated

in detail in Sidi21 by assuming algebraic singularities. Since this treatment

is complicated, we will be content with a brief description of the assump-

tions and a sketch of the results.

Let us assume first that f(x) has asymptotic expansions at x¼�1 as given

in (30). Let us assume also that f(x) has algebraic singularities in (�1, 1) at the

points x1> x2>⋯> xm and that f 2C∞ð�1,1Þ everywhere else in (�1, 1).

Let us also assume that f(x) has asymptotic expansions as x ! xr �, that is,

as x ! xr from the right and from the left, of the forms

f ðxÞ�
X∞
s¼0

W ð�Þ
rs jx�xr jδ

ð�Þ
rs ðx! xr�Þ, (58)

and let us allow these expansions to be different. Making the change of var-

iable x¼ cosθ in (48), we can express en[f] in the form

en½ f � ¼ ðn+1=2Þ
Z π

0

FðθÞPnðcosθÞ dθ; FðθÞ¼ sinθ 	 f ðcosθÞ: (59)

Then F 2C∞ð0,πÞ except at θ1< θ2<⋯< θm, where θr ¼ cos�1xr , r¼ 1,

…, m, and it has asymptotic expansions as θ ! θr �, of the form

FðθÞ�
X∞
s¼0

T
ð�Þ
rs jθ�θr jγ

ð�Þ
rs ðθ! θr�Þ, (60)

where the γð�Þ
rs satisfy

�1<Rγð�Þ
r0 �Rγð�Þ

r1 �Rγð�Þ
r2 ⋯ ; lim

s! ∞
Rγð�Þ

rs ¼ 0: (61)

Note that γð�Þ
rs are determined by the δð�Þ

rs . The asymptotic expansion of en[f]

can be obtained by using Theorems 8 and 10 and so-called neutralizing
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functions. We do not go into any detail here and refer the reader to Sidi

[Ref. 21, theorem 4.2]. We only mention that each singular point θ ¼ θr
contributes two asymptotic expansions in powers of n̂¼ n+1=2, one mul-

tiplied by ein̂θr and the other multiplied by e�in̂θr . The contribution from the

endpoints x ¼ �1 is precisely that given in Theorem 9. See Ref. 21 for

details.
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