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Abstract

We say that a function α(x) belongs to the set A(γ) if it has an asymptotic expansion of the form α(x) ∼ ∑∞i=0 αixγ−i as
x→ ∞, which can be differentiated term by term infinitely many times. A function f (x) is in the class B(m) if it satisfies a
linear homogeneous differential equation of the form f (x) =

∑m
k=1 pk(x) f (k)(x), with pk ∈ A(ik), ik being integers satisfying

ik ≤ k. These functions appear in many problems of applied mathematics and other scientific disciplines. They have
been shown to have many interesting properties, and their integrals

∫ ∞
0 f (x) dx, whether convergent or divergent, can be

evaluated very efficiently via the Levin–Sidi D(m)-transformation, a most effective convergence acceleration method. (In
case of divergence, these integrals are defined in some summability sense, such as Abel summability or Hadamard finite
part or a mixture of these two.) In this note, we show that if f (x) is in B(m), then so is ( f ◦ g)(x) = f (g(x)), where g(x) > 0
for all large x and g ∈ A(s), s being a positive integer. This enlarges the scope of the D(m)-transformation considerably
to include functions of complicated arguments. We demonstrate the validity of our result with an application of the D(3)

transformation to two integrals I[ f ] and I[ f ◦ g], for some f ∈ B(3) and g ∈ A(2). The Faà di Bruno formula and Bell
polynomials play a central role in our study.

Keywords: class B(m) functions, infinite-range integrals, D(m) transformation, acceleration of convergence, Abel sum,
Hadamard finite part, asymptotic expansions

1. Introduction and Main Result

The D(m) transformation is a very effective convergence acceleration tool for computing infinite-range integrals of the
form

∫ ∞
0 f (x) dx, whose integrands f (x) belong to the function class B(m), m being a positive integer. Both the D(m)

transformation and the function class B(m) were introduced by (Levin & Sidi, 1981) and studied further in (Sidi, 2003,
Chapter 5). Most special functions appearing in applied mathematics and most functions arising in different scientific and
engineering disciplines belong to the sets B(m). Since

B(1) ⊂ B(2) ⊂ B(3) ⊂ · · · ,

it is clear that, as methods of convergence acceleration, the D(m) transformations, m = 1, 2, . . . , have a very large and ever
increasing scope. To date, these transformations are the most effective means for computing infinite-range integrals—
whether convergent or divergent—of functions in the classes B(m). 1

1.1 The Function Class A(γ)

Before recalling the definition of the class B(m), we recall the definition of another function class that was introduced and
denoted A(γ) also in (Levin & Sidi, 1981). The classes A(γ) feature prominently in the definition of the class B(m), as will
be clear soon.

Definition 1.1. A function α(x) belongs to the set A(γ), where γ is complex in general, if it is infinitely differentiable for
all large x > 0 and has a Poincaré-type asymptotic expansion of the form

α(x) ∼
∞∑

i=0

αixγ−i as x→ ∞, (1.1)

and its derivatives have Poincaré-type asymptotic expansions obtained by differentiating that in (1.1) formally term by
term.

1In case of divergence, the integrals in question may have well-defined Hadamard finite parts or Abel sums, or combinations of the two, and the D(m)

transformation is capable of computing these with no difficulty. For a rigorous treatment of this aspect of the D(m) transformation with m = 1, see (Sidi,
1987, 1995, 1999, 2003).
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• If α0 , 0 in (1.1), then α(x) is said to belong to A(γ) strictly. In this case, α(x) satisfies the asymptotic equality
α(x) ∼ α0xγ as x→ ∞.

• If the asymptotic expansion in (1.1) is empty, that is, αi = 0 for all i in (1.1), then either (i)α(x) ≡ 0 or (ii)α(x) =
O(x−µ) as x → ∞ for every µ > 0, that is, α(x) tends to zero faster than any negative power of x. (An example is
α(x) = exp(−cxr), with c > 0 and r > 0.)

• If α(x) has an empty (nonempty) asymptotic expansion, we denote that by writing α ∼ 0 (α � 0).

Remarks A. The following are simple consequences of Definition 1.1. We shall make use of them later. For more, see
(Sidi, 2003, Chapter 5).

A1. A(γ) ⊃ A(γ−1) ⊃ A(γ−2) ⊃ · · · , so that if α ∈ A(γ), then, for any positive integer k, α ∈ A(γ+k) but not strictly.
Conversely, if α ∈ A(δ) but not strictly, then α ∈ A(δ−k) strictly for a unique positive integer k.

A2. If α ∈ A(γ) strictly, then α < A(γ−1).

A3. If α, β ∈ A(γ), then α ± β ∈ A(γ) as well. If α ∈ A(γ) and β ∈ A(γ+k) strictly for some positive integer k, then
α ± β ∈ A(γ+k) strictly.

A4. If α ∈ A(γ) and β ∈ A(δ), then αβ ∈ A(γ+δ).

A5. If α ∈ A(γ) and β ∈ A(δ) strictly, then α/β ∈ A(γ−δ). If α ∈ A(γ) strictly and β ∈ A(δ) strictly, then α/β ∈ A(γ−δ)

strictly. (Note that these are not true if β ∈ A(δ), but not strictly.)

A6. If α ∈ A(γ) strictly, such that α(x) > 0 for all large x, and we define θ(x) = [α(x)]ξ, then θ ∈ A(γξ) strictly.

A7. If α ∈ A(γ) strictly and β ∈ A(k) strictly for some positive integer k, such that β(x) > 0 for all large x > 0, and we
define θ(x) = α(β(x)), then θ ∈ A(kγ) strictly.

A8. If α ∈ A(γ) (strictly) and γ , 0, then α′ ∈ A(γ−1) (strictly). If α ∈ A(0), then α′ ∈ A(−2).

Now, by the way A(γ) is defined, there may be any number of functions α(x) in A(γ) having the same asymptotic expansion.
(Concerning the uniqueness of α(x), see the last paragraph of (Sidi, 2003, Appendix A).) To avoid this, in certain places,
it is more convenient to work with subsets X(γ) of A(γ), which are defined next.

Definition 1.2. The subsets X(γ) of A(γ) are defined for all γ collectively as follows:

(i) A function α belongs to X(γ) if either α ≡ 0 or α ∈ A(γ−k) strictly for some nonnegative integer k. Thus, α ∼ 0 ⇔
α ≡ 0 now.

(ii) X(γ) is closed under addition and multiplication by scalars.

(iii) If α ∈ X(γ) and β ∈ X(δ), then αβ ∈ X(γ+δ); if, in addition, β ∈ A(δ) strictly, then α/β ∈ X(γ−δ).

(iv) If α ∈ X(γ), then α′ ∈ X(γ−1).

It is obvious that no two functions in X(γ) have the same asymptotic expansion, since if α, β ∈ X(γ), then either α ≡ β
or α − β ∈ A(γ−k) strictly for some nonnegative integer k. Thus, X(γ) does not contain functions α(x) . 0 that satisfy
α(x) = O(x−µ) as x→ ∞ for every µ > 0, such as exp(−cxs) with c, s > 0.

Functions α(x) that are given as sums of series
∑∞

i=0 αixγ−i that converge for all large x form a subset of X(γ); obviously,
such functions are of the form α(x) = xγR(x) with R(x) analytic at infinity. Thus, R(x) can be rational functions that are
bounded at infinity, for example.
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1.2 The Function Class B(m)

We now turn to the definition of the class B(m).

Definition 1.3. A function f (x) that is infinitely differentiable for all large x belongs to the set B(m) if it satisfies a linear
homogeneous ordinary differential equation of order m of the form

f (x) =
m∑

k=1

pk(x) f (k)(x), (1.2)

where either pk ∼ 0 or pk ∈ A(ik) strictly for some integer ik ≤ k, 1 ≤ k ≤ m − 1, and pm ∈ A(im) strictly for some integer
im ≤ m.

Remarks B. The following are consequences of Definition 1.1. They can be found in (Levin & Sidi, 1981) and (Sidi,
2003, Chapter 5).

B1. If f ∈ B(m), then f ∈ B(m̂) for every m̂ > m.

B2. Consequently, B(1) ⊂ B(2) ⊂ B(3) ⊂ · · · .

B3. If f ∈ B(m) with smallest m, then the differential equation (1.2) satisfied by f (x) is unique, provided the pk are
restricted (to X(k) instead of A(k)) such that either pk ≡ 0 or pk ∈ X(ik) strictly for some integer ik ≤ k, 1 ≤ k ≤ m,
and pm ∈ X(im) strictly for some integer im ≤ m. See (Sidi, 2003, p. 99, Proposition 5.1.5).

B4. If f ∈ A(γ) with γ , 0, then f ∈ B(1).

B5. If gi ∈ B(ri), i = 1, . . . , µ, then the following are true:2

• f =
∏µ

i=1 gi ∈ B(m), m ≤∏µi=1 ri.

• f =
∑µ

i=1 gi ∈ B(m), m ≤ ∑µi=1 ri.

B6. If gi ∈ B(r), i = 1, . . . , µ, and satisfy the same ordinary differential equation, then the following are true:

• f =
∏µ

i=1 gi ∈ B(m), m ≤
(

r+µ−1
µ

)
.

In particular, if g ∈ B(r), then f = (g)µ ∈ B(m), m ≤
(

r+µ−1
µ

)
.

• f =
∑µ

i=1 gi ∈ B(m), m ≤ r.

B7. If f ∈ B(m) and is integrable at infinity, then, under some additional minor conditions at x = ∞,

∫ ∞
x

f (t) dt ∼
m−1∑
k=0

xρk f (k)(x)
∞∑

i=0

βkix−i as x→ ∞, (1.3)

where ρk are integers depending only on the pk(x) and satisfy

ρk ≤ ρ̄k =

[
max

k+1≤n≤m
pn�0

(in − n)
]
+ k + 1 ≤ k + 1, k = 0, 1, . . . ,m − 1. (1.4)

This result forms the basis of the D(m) transformation of (Levin & Sidi, 1981), which has proved to be an extremely
efficient convergence accelerator for the computation of the integrals

∫ ∞
0 f (x) dx, as mentioned in the beginning of this

section.

By Remarks B1, B2, B5, and B6, it is clear that the classes B(m) contain an ever increasing number of functions with
varying behavior (oscillatory or nonoscillatory or combinations of the two), and this implies that the D(m) transformation
is a comprehensive convergence acceleration method with ever increasing scope.

Finally, we would like to mention again that most special functions that appear in scientific and engineering applications
belong to one of the classes B(m).

2The assertions made in Remarks B5 and B6 are proved in (Sidi, 2003, pp. 107–109, Heuristics 5.4.1–5.4.3) by relaxing the definition of B(m) by
assuming that the pk(x) are in some A(ik), with no restrictions on the integers ik , and by making some additional assumptions. Examples suggest that
f ∈ B(m) precisely as in Definition 1.3, however.
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1.3 Main Results

In this note, we continue our exploration of the properties of the classes B(m). Analogous to what happens to the sum f +g
and the product f g of two functions f and g, discussed in Remarks B5 and B6 above, we wish to explore what happens
to their composition. Specifically, we address the following question: If f (x) is in B(m), then what can be said about
( f ◦ g)(x) = f (g(x))? Under what conditions on g(x) is f ◦ g ∈ B(m̃) for some m̃? We answer this question in Theorem 1.5,
which follows as a corollary from Theorem 1.4; both theorems are the main results of this note. We provide the proofs of
these theorems in the next section, where we make repeated use of Remarks A1–A8 without mentioning them. Finally,
to keep the proofs simpler, we replace the sets A(γ) by their subsets X(γ), even though the assertions of Theorems 1.4 and
1.5 are true with the sets A(γ). We also note that the Faà di Bruno formula and Bell polynomials play a central role in our
proof.

Theorem 1.4. Let f (x) be a solution to the linear homogeneous differential equation of order m

f (x) =
m∑

k=1

pk(x) f (k)(x), (1.5)

such that either pk ≡ 0 or pk ∈ X(ik) strictly for some integer ik, 1 ≤ k ≤ m − 1, and pm ∈ X(im) strictly for some integer im.
Let also g ∈ X(s) strictly for some positive integer s, such that limx→∞ g(x) = +∞. Then ϕ(x) ≡ f (g(x)) satisfies a linear
homogeneous differential equation of order m of the form

ϕ(x) =
m∑

k=1

πk(x)ϕ(k)(x), (1.6)

where the πk are determined by the pk and are such that either πk ≡ 0 or πk ∈ X(rk) strictly for some integer rk, 1 ≤ k ≤
m − 1, and πm ∈ X(rm) strictly for some integer rm. Actually, we have

rm = s(im − m) + m, (1.7)

and

rk ≤ max{s(ik − k), rk+1 − (k + 1), rk+2 − (k + 2), . . . , rm − m} + k,

if πk . 0, k = m − 1,m − 2, . . . , 2, 1. (1.8)

(Note: On the right-hand side of the inequality in (1.8), s(ik − k) is absent when pk ≡ 0, and rn − n is absent when πn ≡ 0
for n ∈ {k + 1, k + 2, . . . ,m − 1}.) In addition,

rk ≤ max
k≤n≤m
pn.0

[s(in − n)] + k, k = 1, . . . ,m. (1.9)

(The explicit expression for πm is given in (2.16). The rest of the πk are given by the recursion relation in (2.18).)

Theorem 1.5. Let f (x) be in B(m) and let g(x) be in X(s) strictly for some positive integer s, such that limx→∞ g(x) = +∞.
Then ϕ(x) ≡ f (g(x)) is also in B(m).3

Clearly, Theorem 1.5 expands considerably the scope of the class B(m), hence the scope of the D(m) transformation, to
include functions of complicated arguments, in the following sense: If the D(m) transformation accelerates the convergence
of the integral

∫ ∞
0 f (x) dx, it also accelerates the convergence of the integral

∫ ∞
0 f (g(x)) dx. More generally, the D(m′)

transformation, for some m′, accelerates the convergence of the integral
∫ ∞

0 h(x) f (g(x)) dx when g ∈ X(s) strictly for some
positive integer s and h(x) is an arbitrary function in B(r) for some r. (This follows from Remark B5 with m′ ≤ m + r.)

In Section 3, we demonstrate the validity of our result with an application of the D(3) transformation to two integrals I[ f ]
and I[ f ◦ g], for some f ∈ B(3) and g ∈ A(2).

In Section 4, we show via an example that f ∈ B(m) with minimal m does not necessarily mean that m is minimal also for
ϕ(x) even though ϕ ∈ B(m) too by Theorem 1.5 .

3In words, the class B(m) is closed under the composition f ◦ g when g ∈ X(s) such that s > 0 is an integer and limx→∞ g(x) = +∞.
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2. Proof of Main Results

2.1 Preliminaries

First, we note that, being in X(s), g(x) has an asymptotic expansion of the form

g(x) ∼
∞∑

n=0

gnxs−n as x→ ∞ and g0 > 0, (2.1)

from which, we also have that

g(x) =
s∑

n=0

gnxs−n + O(x−1) as x→ ∞, (2.2)

meaning that g(x) is a polynomial of degree s or behaves like one as x→ ∞.

Thus, using the notation

[a]0 = 1 and [a]i =

i−1∏
j=0

(a − j), i = 1, 2, . . . ,

we also have that

g(i)(x) ∼
∞∑

n=0

gi[s − n]ixs−n−i as x→ ∞, i = 1, 2, . . . ,

from which,
g(i)(x) ∼ [s]ig0xs−i as x→ ∞, i = 0, 1, 2, . . . , s,

and, since (
∑s

n=0 gnxs−n)(i) = 0 for i ≥ s + 1,

g(i)(x) ∼ [−µ]igs+µx−µ−i as x→ ∞, i = s + 1, s + 2, . . . ,

where gs+µ, µ ≥ 1, is the first nonzero gs+ j with j ≥ 1, assuming that g(i) . 0. Of course,

gs+ j = 0, j = 1, 2, . . . , ⇒ g(i)(x) ≡ 0, i = s + 1, s + 2, . . . ,

and this can occur when g(x) =
∑s

n=0 gnxs−n, for example, in which case, g(i)(x) ≡ 0 for i = s + 1, s + 2, . . . .

Summarizing, we have

g(i)(x) > 0 for all large x, g(i) ∈ X(τi) strictly, τi = s − i, i = 0, 1, . . . , s, (2.3)

and

either g(i) ∈ X(τi) strictly, τi = −µ − i < s − i, i = s + 1, s + 2, . . . ,

or g(i)(x) ≡ 0, i = s + 1, s + 2, . . . . (2.4)

Clearly,
τi ≤ s − i, s = 0, 1, . . . . (2.5)

Next, it is clear that we need to prove that ϕ(x) = f (g(x)) satisfies (1.6), with πk ∈ X(rk) for some integer rk when πk . 0.
Replacing x by g(x) throughout the differential equation (1.5) satisfied by f (x), we have

f (g(x)) =
m∑

k=1

pk(g(x)) f (k)(g(x)), (2.6)

and this is the starting point of our proof and is most important. Here, we emphasize that f (k)(g(x)) stands for the kth
derivative of f with respect to its argument, evaluated at g(x); that is, f (k)(g(x)) = [ dk

dtk f (t)]|t=g(x). Thus, f (k)(g(x)) does not
stand for the kth derivative of ϕ(x) = f (g(x)) with respect to x.

Whenever convenient, in the sequel, we write pk, πk, and g(i) instead of pk(x), πk(x), and g(i)(x), respectively, for short.
Thus, pk(g) and f (k)(g) stand for pk(g(x)) and f (k)(g(x)), respectively.

2.2 Special Cases

Before embarking on the proof for arbitrary m, we look at the simple but instructive cases involving m = 1, 2.
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2.2.1 The Case m = 1

Here we consider two different cases.

• The case f ∈ A(γ) strictly, γ , 0:
In this case ϕ(x) ≡ ( f ◦ g)(x) = f (g(x)) satisfies the identity

ϕ(x) = π1(x)ϕ′(x), π1(x) =
ϕ(x)
ϕ′(x)

=
f (g(x))

f ′(g(x))g′(x)
.

Because f ∈ A(γ) and γ , 0, we have that f ′ ∈ A(γ−1) strictly. Consequently, f (g(x)) ∈ A(sγ) and f ′(g(x)) ∈ A(s(γ−1)).
This implies that π1 ∈ A(r1) strictly, where

r1 = sγ − [s(γ − 1) + (s − 1)] = 1.

Thus, ( f ◦ g) ∈ B(1).

• The general case of f (x) = p1(x) f ′(x):
In this case, f (x) = p1(x) f ′(x), p1 ∈ A(i1) strictly, with i1 an integer. Replacing x by g(x), this differential equation
becomes

f (g(x)) = p1(g(x)) f ′(g(x)) ⇒ p1(g(x)) =
f (g(x))
f ′(g(x))

.

Now, ϕ(x) ≡ ( f ◦ g)(x) = f (g(x)) satisfies

ϕ(x) = π1(x)ϕ′(x), π1(x) =
ϕ(x)
ϕ′(x)

=
f (g(x))

f ′(g(x))g′(x)
=

p1(g(x))
g′(x)

.

Therefore, by the fact that p1(g(x)) ∈ A(si1) strictly, we have that π1 ∈ A(r1) strictly, where

r1 = si1 − (s − 1) = s(i1 − 1) + 1.

Now, when i1 ≤ 1, we have that f ∈ B(1). In this case, r1 ≤ 1, which implies that ( f ◦ g) ∈ B(1) too.

2.2.2 The Case m = 2

With ϕ(x) = f (g(x)), we have

ϕ′(x) = f ′(g(x))g′(x), ϕ′′(x) = f ′′(g(x))(g′(x))2 + f ′(g(x))g′′(x).

Substituting these in (1.6), we obtain

f (g(x)) = π1(x)[ f ′(g(x))g′(x)] + π2(x)[ f ′′(g(x))(g′(x))2 + f ′(g(x))g′′(x)],

which, upon rearranging, becomes

f (g(x)) = [π1(x)g′(x) + π2(x)g′′(x)] f ′(g(x)) + [π2(x)(g′(x))2] f ′′(g(x)).

Comparing this with (2.6), we identify the following equations for π1 and π2:

p1(g(x)) = π1(x)g′(x) + π2(x)g′′(x)

p2(g(x)) = π2(x)(g′(x))2.

Since s > 0, g′ ∈ X(s−1) strictly, and positive for all large x. Therefore,

π2 =
p2(g)
(g′)2 ∈ X(r2) strictly, r2 = si2 − 2(s − 1) = s(i2 − 2) + 2.

Next,

π1 =
p1(g)

g′
− π2g′′

g′
∈ X(r1) strictly if π1 . 0,

and since p1(g)/g′ ∈ X(si1−(s−1)) strictly and π2g′′/g′ ∈ X(r2+(s−2)−(s−1)), we also have

r1 ≤ max{si1 − (s − 1), r2 + (s − 2) − (s − 1)}
= max{s(i1 − 1), r2 − 2} + 1
= max{s(i1 − 1), s(i2 − 2)} + 1.

Note that if p1 ≡ 0, the term s(i1 − 1) is absent throughout.
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2.3 The Case of Arbitrary m

We prove Theorem 1.4 first. We start with (2.6). By the Faà di Bruno formula (see (Faà di Bruno, 1855, 1857)) for
differentiation of f ◦ g, we have

ϕ(n)(x) =
dn

dxn f (g(x)) =
n∑

k=1

Bn,k(g′(x), g′′(x), . . . , g(n−k+1)(x)) f (k)(g(x)), (2.7)

where Bn,k(y1, y2, . . . , yn−k+1) is the Bell polynomial (see (Bell, 1934)) defined as in

Bn,k(y1, y2, . . . , yn−k+1) =
∑ n!∏n−k+1

i=1 ( ji!)

n−k+1∏
i=1

(yi

i!

) ji
, (2.8)

the summation being on the nonnegative integers j1, j2, . . . , jn−k+1 such that

n−k+1∑
i=1

ji = k and
n−k+1∑

i=1

i ji = n. (2.9)

(The simplest of these polynomials are Bn,1(y1, . . . , yn) = yn and Bn,n(y1) = yn
1.)

For a detailed treatment of the Faà di Bruno formula and related topics, see the excellent review by (Johnson, 2002). See
also (Roman, 1980), for example. For Bell polynomials, see also (Roman,1984).

Now, if the conjecture in (1.6) is true, then substituting (2.7) in (1.6), we must have

f (g(x)) =
m∑

n=1

πn(x)
[ n∑

k=1

Bn,k(g′(x), g′′(x), . . . , g(n−k+1)(x)) f (k)(g(x))
]
, (2.10)

which, upon changing the order of summation, becomes

f (g(x)) =
m∑

k=1

[ m∑
n=k

πn(x)Bn,k(g′(x), g′′(x), . . . , g(n−k+1)(x))
]

f (k)(g(x)). (2.11)

Comparing (2.11) with (2.6), we realize that the equalities

pk(g(x)) =
m∑

n=k

πn(x)Bn,k(g′(x), g′′(x), . . . , g(n−k+1)(x)), k = 1, . . . ,m, (2.12)

must hold. Clearly, this is an m-dimensional upper triangular system of linear equations for π1(x), . . . , πm(x), provided the
latter exist. The diagonal of the matrix of this system is

[B1,1(g′(x)), B2,2(g′(x)), . . . , Bm,m(g′(x))].

By the fact that Bn,n(y1) = yn
1, and writing g(i) instead of g(i)(x) for short, we have

[B1,1(g′), B2,2(g′), . . . , Bm,m(g′)] = [(g′)1, (g′)2, . . . , (g′)m].

Since g′(x) > 0 for all large x, this diagonal is positive, hence the linear system in (2.12) has a unique solution for
π1(x), . . . , πm(x). With the existence of the πk established, we now need to show that, πk ∈ X(rk) strictly for some integer
rk when πk . 0. We achieve this goal by induction on k, in the order k = m,m − 1, . . . , 2, 1.

To be able to proceed, we need to analyze Bn,k(g′, g′′, . . . , g(n−k+1)). By (2.8),

Bn,k(g′, g′′, . . . , g(n−k+1)) =
∑ n!∏n−k+1

i=1 ( ji!)

n−k+1∏
i=1

(g(i)

i!

) ji
, (2.13)

the summation being on the nonnegative integers j1, j2, . . . , jn−k+1 subject to the constraints in (2.9), and by (2.3) and
(2.4), when g(i) . 0, 1 ≤ i ≤ n − k + 1,

n−k+1∏
i=1

(g(i)) ji ∈ X(σ( j1,..., jn−k+1)), σ( j1, . . . , jn−k+1) =
n−k+1∑

i=1

τi ji.
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Upon invoking (2.5), this gives

σ( j1, . . . , jn−k+1) ≤ σ( j1, . . . , jn−k+1) =
n−k+1∑

i=1

(s − i) ji.

Of course, this also means that

n−k+1∏
i=1

(g(i)) ji ∈ X(σ( j1,..., jn−k+1))

strictly, if n − k + 1 ≤ s, by (2.3)
not strictly, otherwise, by (2.4).

At first sight, σ( j1, . . . , jn−k+1) seems to depend on j1, . . . , jn−k+1. This is not so, however. In fact, on account of the
constraints in (2.9), σ( j1, . . . , jn−k+1) depends only on n and k:

σ( j1, . . . , jn−k+1) = s
n−k+1∑

i=1

ji −
n−k+1∑

i=1

i ji = sk − n.

Consequently, because all the terms in the summation on the right-hand side of (2.13) are in X(sk−n), we have

Ln,k ≡ Bn,k(g′, g′′, . . . , g(n−k+1)) ∈ X(sk−n), but not necessarily strictly.4 (2.14)

By the fact that Bk,k(g′) = (g′)k, however, we have

Lk,k ∈ X(sk−k) strictly. (2.15)

We now start the induction with πm, which we obtain from the last of the equations in (2.12). Thus,

πmBm,m(g′) = pm(g) ⇒ πm =
pm(g)

Bm,m(g′)
=

pm(g)
(g′)m . (2.16)

By the fact that pm(g) ∈ X(sim) strictly and (g′)m ∈ X((s−1)m) strictly, it is clear that πm . 0 and

πm ∈ X(rm) strictly, rm = sim − m(s − 1) = s(im − m) + m. (2.17)

We have thus shown the validity of our assertion for πm.

We now continue by induction on k. Let us assume that the assertion is true also for πm−1, πm−2, . . . , πk+1, namely, πn ∈ X(rn)

strictly for some integer rn if πn . 0, n ∈ {m − 1,m − 2, . . . , k + 2, k + 1}. The proof will be complete if we show that
πk ∈ X(rk) strictly for some integer rk if πk . 0. Solving (2.12), namely, pk(g) =

∑m
n=k πnLn,k, for πk, we obtain

πk =
pk(g)
Lk,k

−
m∑

n=k+1

πn
Ln,k

Lk,k
. (2.18)

First, Lk,k ∈ X(sk−k) strictly, and pk(g) ∈ X(sik) strictly when pk . 0; therefore, if pk . 0,

pk(g)
Lk,k

∈ X(µk) strictly, µk = sik − (sk − k) = s(ik − k) + k. (2.19)

If pk ≡ 0, then pk(g) ≡ 0 too, and, therefore, pk(g)/Lk,k ≡ 0.

Next, for n = k + 1, k + 2, . . . ,m, by (2.14) and (2.15) and the induction hypothesis, if πn . 0,

πn
Ln,k

Lk,k
∈ X(νn,k) strictly, νn,k ≤ rn + (sk − n) − (sk − k) = (rn − n) + k. (2.20)

If πn ≡ 0, then πnLn,k/Lk,k ≡ 0 too.

4Note that, in our study, we need only be concerned with g(i) for i = 1, . . . ,m. (i) When s < m, because of (2.4), not all products
∏n−k+1

i=1 (g(i)) ji are
in X(σ( j1 ,..., jn−k+1)) strictly (some of them may even be zero identically), and this results in (2.14). (ii) When s ≥ m, however, on account of (2.3), the
products

∏n−k+1
i=1 (g(i)) ji are all positive and in X(σ( j1 ,..., jn−k+1)) strictly. Therefore, Ln,k are all positive and in X(sk−n) strictly.
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Combining (2.19) and (2.20) in (2.18), when πk . 0, we have

πk ∈ X(rk) strictly, rk ≤ max{µk, νk+1,k, νk+2,k, . . . , νm,k}.5 (2.21)

This completes the induction step.

By the fact that µk − k = s(ik − k) and νn,k − k ≤ rn − n, the equality for rk in (2.21) is identical to that in (1.8). Finally, the
proof of the inequality in (1.9) can now be achieved by induction on k, in the order k = m,m − 1, . . . , 2, 1. This completes
the proof of Theorem 1.4.

Theorem 1.5 is a straightforward corollary of Theorem 1.4, since f ∈ B(m) means that f (x) is exactly as in Theorem 1.4,
with ik ≤ k (equivalently, ik − k ≤ 0), for each k. Invoking this in (1.7)–(1.9), the proof of Theorem 1.5 is completed.

3. The D(m) Transformation and an Application

3.1 The D(m) Transformation

The D(m) transformation for computing infinite-range integrals of the form I[ f ] =
∫ ∞

0 f (t) dt is defined as follows:
1. Choose a sequence {xl}∞l=−1, such that

0 = x−1 < x0 < x1 < x2 < · · · , lim
l→∞

xl = ∞.

2. Define F(x) =
∫ x

0 f (t) dt and compute F(xl), l = 0, 1, . . . . This is best achieved by computing the integrals χi =∫ xi

xi−1
f (t) dt, i = 0, 1, . . . , numerically (preferably by a low order Gaussian quadrature formula), and forming F(xl) =∑l

i=0 χi.

3. Let n = (n1, n2, . . . , nm), where n1, n2, . . . , nm are nonnegative integers, and solve the (N + 1)-dimensional linear system
(N =

∑m
k=1 nk)

F(xl) = D(m, j)
n +

m∑
k=1

xρk−1
l f (k−1)(xl)

nk−1∑
i=0

β̄ki

xi
l

, j ≤ l ≤ j +
m∑

k=1

nk, (3.1)

for D(m, j)
n , which is the approximation to I[ f ]. Here ρk are as in (1.3) and (1.4), and β̄k,i are additional auxiliary unknowns,

which are not of interest.

In case the ρk are not known but the ik are known, the ρk in (3.1) can be replaced by their upper bounds ρ̄k given in (1.4).
If the ik too are not known, we can replace the ρk by their ultimate upper bounds k + 1 given again in (1.4). Thus, the
user-friendly version of the D(m) transformation is now defined as in

F(xl) = D(m, j)
n +

m∑
k=1

xk
l f (k−1)(xl)

nk−1∑
i=0

β̄ki

xi
l

, j ≤ l ≤ j +
m∑

k=1

nk. (3.2)

From the way the user-friendly version of the D(m) transformation is defined as in (3.2), it is clear that we need not know
anything about the differential equation satisfied by f (x). First, an upper bound for the order of the differential equation
can be taken as m, as suggested by Remarks B5 and B6. (In most cases, we can determine the smallest m quite easily.)
Next, we need to be able to compute f (i)(x), i = 0, 1, . . . ,m − 1. Finally, since the xl are at our disposal, we can choose
them appropriately to ensure excellent convergence rates.

When f ∈ B(m), the sequences of approximations {D(m, j)
(ν,ν,...,ν)}∞ν=0, with fixed j (in particular, with j = 0), have the best

convergence properties. These sequences can be computed very efficiently by applying the W(m) algorithm of (Ford &
Sidi, 1987).6 (For m = 1, the W(m) algorithm reduces to the W algorithm of (Sidi, 1982).)

Note that, for determining D(m, j)
n , we need as input the finite-range integrals F(xl), j ≤ l ≤ j + N. In case I[ f ] exists

as a regular improper integral, F(x j+N) is naturally the best available approximation to I[ f ] out of the integrals F(xl),

5On the right-hand side of the equality for rk in (2.21), µk is absent when pk ≡ 0, and rn − n is absent when πn ≡ 0 for n ∈ {k + 1, k + 2, . . . ,m − 1}.
6The W(m) algorithm, when used for implementing the user-friendly D(m) transformation defined via the linear systems in (3.2), is designed to

compute the sequences {A( j)
N }
∞
N=0 recursively, via the solutions of

F(xl) = A( j)
N +

m∑
k=1

xk
l f (k−1)(xl)

⌊(N−k)/m⌋∑
i=0

β̄ki

xi
l

, j ≤ l ≤ j + N.

Then {D(m, j)
(ν,ν,...,ν)}

∞
ν=0 is a proper subsequence of {A( j)

N }
∞
N=0. In fact, A( j)

mν = D(m, j)
(ν,ν,...,ν), ν = 0, 1, . . . , with A( j)

0 = D(m, j)
(0,0,...,0) = F(x j). See (Sidi, 2003, Section

7.3, p. 165).
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j ≤ l ≤ j+N. Therefore, it is instructive to compare the accuracy of D(m, j)
n with that of F(x j+N). It is always observed that

the accuracy of D(m, j)
n is much higher than that of F(x j+N). (See the example that follows.)

3.2 An Example

We would like to apply the D(m) transformation to the integrals I[ f ] and I[ϕ] (with g(x) = x2), where

f (x) =
sin2 x

x2 and ϕ(x) = f (x2) =
sin2 x2

x4 .

We have (see (Gradshteyn & Ryzhik, 1980, formulas 3.821.9 and 3.852.3))

I[ f ] =
π

2
and I[ϕ] =

2
√
π

3
.

Now f ∈ B(3) since

f (x) =
3∑

k=1

pk(x) f (k)(x); p1(x) = −2x2 + 3
4x

, p2(x) = −3
4
, p3(x) = − x

8
,

with pk ∈ A(ik) strictly,
i1 = 1, i2 = 0, i3 = 1.

(Note that pk ∈ X(ik) strictly as well.)

By Theorem 1.5, ϕ ∈ B(3) too, because

ϕ(x) =
3∑

k=1

πk(x) f (k)(x); π1(x) = −16x4 + 15
64x3 , π2(x) = − 9

64x2 , π3(x) = − 1
64x
,

with πk ∈ A(rk) strictly,
r1 = 1, r2 = −2, r3 = −1.

Letting s = 2 in Theorem 1.5, we see that the rk are consistent with (1.7)–(1.9). The πk are obtained from

π3(g′)3 = p3(g), π2(g′)2 + 3π3g′g′′ = p2(g), π1g′ + π2g′′ + π3g′′′ = p1(g).

(Note that πk ∈ X(rk) strictly as well.)

We have applied the user-friendly version of the D(m) transformation (as defined in (3.2)), with m = 3, to I[ f ] with
xl = 1.6(l+ 1) and to I[ϕ] with xl =

√
1.6(l + 1), l = 0, 1, . . . . The results of these computations are given in Table 3.1. In

this table, we compare the errors in D(3,0)
(ν,ν,ν)[ f ] with the corresponding errors in F(x3ν). Similarly, we compare the errors

in D(3,0)
(ν,ν,ν)[ϕ] with the corresponding errors in Φ(x3ν). (As before, F(x) =

∫ x
0 f (t) dt and, similarly, Φ(x) =

∫ x
0 ϕ(t) dt.) This

comparison demonstrates very clearly the power of the D(m) transformation as a convergence accelerator.

Remark: An interesting thing to note in the numerical results shown in Table 3.1 is that the D(3) transformation performs
practically with equal efficiency on (i)

∫ ∞
0 f (x)dx with xl = 1.6(l + 1) and on (ii)

∫ ∞
0 f (x2)dx with xl =

√
1.6(l + 1).

Computations we have performed with different examples seem to indicate that this is a general phenomenon; namely, if
the D(m) transformation performs in a certain way on an integral

∫ ∞
0 f (x)dx with xl = ξ(l), for some ξ(l), then it performs

practically in the same way on the integral
∫ ∞

0 f (g(x))dx, where g ∈ A(s), with xl as the largest sth root of the equation
g(x) = ξ(l). This applies also to integrals of the form

∫ ∞
0 f (g(x))h(x)dx, where h(x) is an arbitrary function in A(γ) for

some γ, as well as
∫ ∞

0 f (g(x))dx.

4. A Further Development

While reviewing the class B(m) in Section 1, we mentioned that if the degree m of the differential equation (1.2) is minimal,
then the differential equation is unique. In view of Theorem 1.4, we might be led to think that m is also the minimal
degree of the differential equation (1.6) satisfied by ϕ(x) = f (g(x)). In other words, it might sound plausible that if m
is the smallest integer for which f ∈ B(m), then m is the smallest integer for which ϕ ∈ B(m) as well. We show via an
example that this is not always the case; that is, it is possible that ϕ ∈ B(m̂) for some m̂ < m. Note that Theorem 1.4 does
not contradict this since, by Remark B1, ϕ ∈ B(m̂) implies ϕ ∈ B(µ) for every µ > m̂, thus for µ = m in particular.

10



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 1; 2019

Table 3.1. Results from the D(3) transformation applied to (i) I[ f ] =
∫ ∞

0 f (x) dx with xl = 1.6(l + 1) and
(ii) I[ϕ] =

∫ ∞
0 ϕ(x) dx with xl =

√
1.6(l + 1), where f (x) = (sin x/x)2 and ϕ(x) = f (x2). We have defined

F(x) =
∫ x

0 f (t) dt and Φ(x) =
∫ x

0 ϕ(t) dt.

ν |F(x3ν) − I[ f ]| |D(3,0)
(ν,ν,ν)[ f ] − I[ f ]| |Φ(x3ν) − I[ϕ]| |D(3,0)

(ν,ν,ν)[ϕ] − I[ϕ]|
0 3.44D − 01 3.44D − 01 9.64D − 02 9.64D − 02
1 7.86D − 02 7.06D − 02 1.03D − 02 7.06D − 03
2 4.40D − 02 6.96D − 03 4.36D − 03 8.89D − 04
3 3.17D − 02 1.69D − 04 2.66D − 03 8.63D − 07
4 2.37D − 02 5.70D − 07 1.72D − 03 1.88D − 06
5 1.98D − 02 2.48D − 07 1.32D − 03 5.73D − 08
6 1.62D − 02 1.32D − 08 9.73D − 04 9.57D − 09
7 1.44D − 02 1.04D − 10 8.14D − 04 4.62D − 11
8 1.23D − 02 7.15D − 11 6.47D − 04 1.65D − 10
9 1.13D − 02 3.88D − 12 5.65D − 04 1.09D − 11

10 9.98D − 03 4.83D − 13 4.70D − 04 3.58D − 13

Consider the function f (x) = 1/(
√

x+1)3. Now f < B(1). If f (x) were in B(1), then we would have f (x) = p1(x) f ′(x) with
p1 ∈ A(i1) for some integer i1 ≤ 1. But

p1(x) =
f (x)
f ′(x)

= −2
3

(x +
√

x) < A(γ) for any γ.

It is true, however, that f ∈ B(2). To see this, we observe that

f (x) =
( √x − 1

x − 1

)3
= f1(x) + f2(x),

where

f1(x) =
√

x(x + 3)
(x − 1)3 , f2(x) = − 3x + 1

(x − 1)3 .

Now, f1 ∈ A(−3/2), while f2 ∈ A(−2), hence, by Remark B4, f1 ∈ B(1) and f2 ∈ B(1). By Remark B5, f = f1 + f2 ∈ B(2)

since we have already seen that f < B(1).

Let us now turn to ϕ(x) = f (g(x)) with g(x) = x2. We have ϕ(x) = 1/(x + 1)3. Clearly, ϕ ∈ A(−3), hence ϕ ∈ B(1) by
Remark B4.
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Faà di Bruno, C. F. (1857). Note sur un nouvelle formule de calcul différentiel. Quart. J. Pure Appl. Math., 1, 359–360.
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