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Abstract
Reduced Rank Extrapolation (RRE) is a polynomial type method used to accelerate
the convergence of sequences of vectors {xm}. It is applied successfully in different
disciplines of science and engineering in the solution of large and sparse systems
of linear and nonlinear equations of very large dimension. If s is the solution to the
system of equations x = f (x), first, a vector sequence {xm} is generated via the
fixed-point iterative scheme xm+1 = f (xm),m = 0, 1, . . . , and next, RRE is applied
to this sequence to accelerate its convergence. RRE produces approximations sn,k to s

that are of the form sn,k = ∑k
i=0 γixn+i for some scalars γi depending (nonlinearly)

on xn, xn+1, . . . , xn+k+1 and satisfying
∑k

i=0 γi = 1. The convergence properties of
RREwhen applied in conjunction with linear f (x) have been analyzed in different publi-
cations. In this work, we discuss the convergence of the sn,k obtained from RRE with
nonlinear f (x) (i) when n → ∞with fixed k, and (ii) in two so-called cyclingmodes.

Keywords Vector extrapolation methods · Minimal polynomial extrapolation
(MPE) · Reduced rank extrapolation (RRE) · Krylov subspace methods ·
Nonlinear equations · Cycling mode
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1 Introduction

Consider a system of nonlinear algebraic equations of dimensionN , which we choose
to write as

x = f (x), f : CN → C
N ; s solution, (1.1)

� Avram Sidi
asidi@cs.technion.ac.il
http://www.cs.technion.ac.il/∼asidi

1 Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

August 2019/ Published online: 20

Numerical Algorithms (2020) 84:957–982

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-019-00788-6&domain=pdf
http://www.cs.technion.ac.il/~asidi


where

x =
[
x(1), . . . , x(N)

]T
, s =

[
s(1), . . . , s(N)

]T ; x(i), s(i) scalars, (1.2)

and

f (x) = [f1(x), . . . , fN(x)]T ; fi(x) = fi

(
x(1), . . . , x(N)

)
scalar functions.

(1.3)
One immediate way of solving this system is via the fixed-point iterative scheme

xm+1 = f (xm), m = 0, 1, . . . ; for some x0, (1.4)

provided the sequence {xm} converges. Let f (x) be twice continuously differentiable
in a neighborhood of s, and let F (x) be the Jacobian matrix of f evaluated at x,
that is,

F (x) =

⎡

⎢
⎢
⎢
⎣

f1,1(x) f1,2(x) · · · f1,N (x)

f2,1(x) f2,2(x) · · · f2,N (x)
...

...
...

fN,1(x) fN,2(x) · · · fN,N(x)

⎤

⎥
⎥
⎥
⎦

; fi,j (x) = ∂fi

∂x(j)
(x). (1.5)

It is known that (see Ortega and Rheinboldt [22], for example) if ρ(F (x)), the spec-
tral radius of F (x), is such that ρ(F (s)) < 1 and if x0 is sufficiently close to s, then
the sequence {xm} converges to s. The closer ρ(F (s)) is to one, the slower is the
convergence of {xm} to s; this is the case in most practical engineering applications.

The convergence of {xm} to s can be accelerated substantially by applying to
it a vector extrapolation method. When applied to {xm}, an extrapolation method
produces approximations sn,k to s that are, either directly or indirectly, of the form

sn,k =
k∑

i=0

γi xn+i; γi some scalars,
k∑

i=0

γi = 1, (1.6)

the γi depending nonlinearly on the xm used in constructing sn,k . Let M be the num-
ber of the xm needed to construct sn,k . (Of course, M is not necessarily the same for
all vector extrapolation methods.)1

For the sake of completeness, here we mention briefly those vector extrapolation
methods that have been shown to be useful in applications.

1. Polynomial type methods: These areminimal polynomial extrapolation (MPE),
reduced rank extrapolation (RRE), modified minimal polynomial extrapolation

1It is clear that the integers n and k are chosen by the user and that M is determined by n, k, and the
extrapolation method being used.
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(MMPE), and the most recent singular value decomposition-based minimal poly-
nomial extrapolation (SVD-MPE). MPE was introduced by Cabay and Jackson
[9], RRE was introduced independently by Kaniel and Stein [18], Eddy [11], and
Mes̆ina [21].2 MMPE was introduced independently by Brezinski [6], Pugachev
[23], and Sidi, Ford, and Smith [35]. SVD-MPE is a new method by Sidi [31].

2. Epsilon algorithms: These are the scalar epsilon algorithm (SEA), the vector
epsilon algorithm (VEA), and the topological epsilon algorithm (TEA). SEA is a
method that is based entirely on the famous epsilon algorithm of Wynn [45] that
implements the transformation of Shanks [24] for scalar sequences. VEA was
introduced by Wynn [46]. TEA was introduced by Brezinski [6].

For an earlier account of the epsilon algorithms, see the book by Brezinski [7]. For
a comprehensive survey covering the developments that took place until the 1980s,
see the survey paper by Smith, Ford, and Sidi [39] and the book by Brezinski and
Redivo Zaglia [8]. For a geometric approach to the treatment of vector extrapolation
methods as these are being applied to linear systems, see Jbilou and Sadok [16]. For
a more recent review of MPE and RRE, see Sidi [30]. For a detailed and up-to-date
treatment, including development, analysis, numerical implementation, and various
applications, of all these methods, see the recent book of Sidi [33].

Numerically stable and efficient algorithms for implementing polynomial methods
have been proposed by Sidi [27], [31] for MPE, RRE, and SVD-MPE and by Jbilou
and Sadok [17] for MMPE. The epsilon algorithms are normally implemented via
their definitions, which involve recursion relations. When applied to sequences {xm}
generated via fixed-point iterative schemes from systems of linear equations, MPE,
RRE, and TEA turn out to be equivalent to known Krylov subspace methods for
linear systems. This is explored in Sidi [26]. Yet another recent paper by Sidi [32]
shows that MPE and RRE are very closely related in more than one way.

Now, all the methods mentioned above have interesting convergence and conver-
gence acceleration properties that concern the precise asymptotic behavior of the
sequences {sn,k}∞n=0, with fixed k, when the sequences {xm} are generated via fixed-
point iterative schemes from systems of linear equations; see Sidi [25], [28], Sidi,
Ford, and Smith [35], and Sidi and Bridger [34], and also Sidi [33, Chapter 6] for
the methods MPE, RRE, MMPE, and TEA, Wynn [47] and Sidi [29] for SEA, and
Graves-Morris and Saff [14] for VEA. We shall call this mode of usage of vector
extrapolation methods the n-Mode.

Unfortunately, the n-Mode convergence theories that apply to the case in which
f (x) is linear do not apply to the case in which f (x) is nonlinear. This is one of the
topics we would like to study here, RRE being the extrapolation method used. That is,
we would like to investigate the convergence properties of the sequences {sn,k}∞n=0,
with fixed k, obtained by applying RRE to {xm} generated as in (1.4), where f (x) is
nonlinear.

2The approaches of [18] and [21] to RRE are almost identical, in the sense that sn,k = ∑k
i=0 γi xn+i in

[21], while sn,k = ∑k
i=0 γi xn+i+1 in [18], the γi being the same for both. The approaches of [11] and

[21] are completely different, however; their equivalence was proved in the review paper of Smith, Ford,
and Sidi [39].
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The numerical implementations of polynomial extrapolation methods and of
epsilon algorithms, when generating the vectors sn,k , necessitate the keeping of resp.
k + 2 and 2k + 1 vectors in core memory simultaneously. In case we would like to
increase k to improve the quality of the sn,k , this may pose a serious problem when
we are dealing with very high dimensional vectors, which is the case in most large
scale applications. Within the context described via (1.1)–(1.4) in the first paragraph
of this section, it is best to apply vector extrapolation methods in the so-called cycling
mode, and this has been the usual practice. This mode of usage of vector extrapo-
lation methods, which we shall call the C-Mode, can be described via the following
steps:

C-Mode

C0. Choose integers n ≥ 0 and k ≥ 1 and an initial vector x0.
C1. Compute the vectors x1, x2, . . . , xM [via xm+1 = f (xm)].3

C2. Apply the extrapolation method to the vectors xn, xn+1, . . . , xM , and compute
sn,k .

C3. If sn,k satisfies the accuracy test, stop.
Otherwise, set x0 = sn,k and go to step C1.

We call each application of steps C1–C3 a cycle and denote by s(r) the sn,k computed
in the rth cycle. We will also denote the initial vector x0 in step C0 by s(0). Under
suitable conditions, it has been shown rigorously for MPE and RRE that the sequence
{s(r)}∞r=0 has very good convergence properties when f (x) is linear. See [36], [37].
See also [33, Chapter 7]. The case in which f (x) is nonlinear has proved to be
complicated and has not been resolved till the present.

In some cases, RRE stalls if applied in the C-Mode with n = 0, in the sense that it
takes too many iterations until one sees meaningful convergence; in such cases, even
a moderate n > 0 can be very helpful to accelerate convergence effectively. See the
numerical examples in [36], [37].

A different cycling procedure involving the minimal polynomial of the (con-
stant) Jacobian matrix F (s) with respect to a nonzero vector4 has been considered
in various publications. The description of this procedure, which we shall call the
MC-Mode, is as follows:

MC-Mode

MC0. Choose an integer n ≥ 0 and an initial vector x0.

3Note that M = n + k + 1 for MPE, RRE, MMPE, and SVD-MPE, while M = n + 2k for SEA, VEA,
and TEA.
4Given a nonzero vector u ∈ C

N , the monic polynomial P(λ) is said to be a minimal polynomial of the
matrix T ∈ C

N×N with respect to u if P(T )u = 0 and if P(λ) has smallest degree.
The polynomial P(λ) exists and is unique. Moreover, if P1(T )u = 0 for some polynomial P1(λ) with

degP1 > degP , then P(λ) divides P1(λ). In particular, P(λ) divides the minimal polynomial of T , which
in turn divides the characteristic polynomial of T . [Thus, the degree of P(λ) is at most N and its zeros are
some or all of the eigenvalues of T .]
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MC1. Compute the vectors x1, x2, . . . , xM [via xm+1 = f (xm)], M being
as explained in footnote3, with k there being the degree of the minimal
polynomial of F (s) with respect to εn = xn − s.5

MC2. Apply the extrapolation method to the vectors xn, xn+1, . . . , xM , and com-
pute sn,k .

MC3. If sn,k satisfies the accuracy test, stop.
Otherwise, set x0 = sn,k and go to step MC1.

As before, we call each application of steps MC1–MC3 a cycle and denote by s(r)

the sn,k computed in the rth cycle.6 We will also denote the initial vector x0 in step
MC0 by s(0). It is observed in many numerical examples that the sequence {s(r)}∞r=0
converges quadratically to the solution s of the system x = f (x) when f (x) is non-
linear.7 The first papers dealing with this topic (that is the MC-Mode with s0,k only)
are those by Brezinski [4], [5], Gekeler [12], and Skelboe [38]. Of these, [4], [5],
and [12] consider the application of the epsilon algorithms, while [38] also considers
the application of MPE and RRE. The quadratic convergence proofs in all of these
papers have a gap in that they all end up with the relation

‖s(r+1) − s‖2 ≤ Kr‖s(r) − s‖22,
from which they conclude that {s(r)}∞r=0 converges quadratically. However, Kr is a
scalar that depends on r through s(r), and the proofs do not show how it depends on
r . In particular, they do not show whether Kr is bounded in r or how it grows with r

if it is not bounded. This gap was disclosed in the review paper of Smith, Ford, and
Sidi [39].

A more recent paper by Jbilou and Sadok [15] deals with the same MC-Mode
cycling via MPE and RRE. Yet another paper by Le Ferrand [20] treats TEA. Both
these works provide proofs of quadratic convergence by imposing some global con-
ditions on the whole sequence {s(r)}∞r=0 as well as on f (x). (See also Laurens and
Le Ferrand [19].)

In this work, we present a new convergence study of RRE when it is being applied
to nonlinear systems. Specifically, we treat the convergence of RRE (i) in the n-Mode,
and (ii) in the two cycling modes mentioned above. By making a global assumption,
we are able to prove convergence in all cases. We can justify heuristically the plau-
sibility of this assumption; we do not have a rigorous justification for it, however.
This difficulty is inherent to all studies. We explore the source of this difficulty here.
It must be mentioned that the difficulties that exist in the previous papers mentioned
above are similar to ours, although they take different forms. Whether and how we
can circumvent these difficulties is not clear at this time.

5It is clear that to apply any of the extrapolation methods in this mode, one needs to know the matrix F (s),
for which one also needs to know the solution s.
6Note that k is not necessarily fixed in this mode of cycling; it may vary from one cycle to the next. It
always satisfies k ≤ N , however.
7Quadratic convergence is relevant only when f (x) is nonlinear. When f (x) is linear, that is, f (x) =
T x + d , where T is a fixed N × N matrix and d is a fixed vector, hence F (s) = T , the solution s is
obtained already at the end of step MC2 of the first cycle, that is, we have s(1) = s. Therefore, there is
nothing to analyze when f (x) is linear.
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The plan of this paper is as follows: In Section 2, we give a brief description of
RRE, which is needed throughout. In Section 3, we derive a formula for the error
vector sn,k − s when the vectors xm are generated via (1.4) with a nonlinear f (x).
In Section 4, we use this error formula to derive an upper bound on ‖sn,k − s‖. In
Section 5, we complete the convergence studies of RRE in the different modes men-
tioned above. We mention that our results concerning the convergence of RRE in the
n-Mode and the C-Mode are the first ones in the literature of extrapolation methods.
In our study, we make much use of the results presented in Sidi [26] throughout these
studies. In Section 6, we discuss the nature of the problem/difficulty mentioned above
and compare our global assumption with that of [15]. In the appendix, we review
some known theorems concerning Moore–Penrose generalized inverses of perturbed
matrices, which we use in Section 4. (For generalized inverses, see Ben-Israel and
Greville [3] and Campbell and Meyer [10], for example.)

Throughout this work, we will use lowercase boldface italic letters to denote
vectors and we will use uppercase boldface italic letters to denote matrices.

Finally, we mention that in our study of RRE, we employ two different vector
norms:

(i) The standard l2 vector norm defined via ‖z‖2 = √
z∗z and the matrix norm

induced by it, namely, ‖A‖2 = σmax(A), where σmax(A) is the largest singular
value of the matrix A.

(ii) The G norm defined via ‖z‖ = ‖Gz‖2 and the matrix norm ‖A‖ induced by
it, where G = I − F (s). Note that G is nonsingular since F (s) does not have
unity as an eigenvalue; therefore, the G norm is a true vector norm.

Of course, the two vector norms are equivalent and we have

1

‖G−1‖2
‖z‖2 ≤ ‖z‖ ≤ ‖G‖2 ‖z‖2. (1.7)

When A is an N × N (square) matrix, we have ‖A‖ = ‖GAG−1‖2. We make
extensive use of these connections between the two norms, ‖ · ‖ and ‖ · ‖2, in the
sequel.

2 Description of RRE

Consider the system of equations given in (1.1)–(1.3), and let the sequence {xm} be
generated via the fixed-point iterative scheme in (1.4).

Define the first and second order differences of the xm as in

um = xm+1 − xm, wm = um+1 − um = xm+2 − 2xm+1 + xm, m = 0, 1, . . . ,
(2.1)

and, for some fixed n ≥ 0, form the N × (j + 1) matrices

U j = [un | un+1 | · · · | un+j ], W j = [wn | wn+1 | · · · | wn+j ], j = 0, 1, . . . .
(2.2)
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Then the γi in (1.6) for RRE are the solution to the constrained standard l2
minimization problem

min
γ0,γ1,...,γk

∥
∥
∥
∥
∥

k∑

i=0

γiun+i

∥
∥
∥
∥
∥
2

subject to
k∑

i=0

γi = 1, (2.3)

which can also be expressed in matrix terms as

min
γ

‖U kγ ‖2 subject to
k∑

i=0

γi = 1; γ = [γ0, γ1, . . . , γk]T ∈ C
k+1. (2.4)

Then, with the solution γ of this problem, the RRE approximation sn,k is given as in

sn,k =
k∑

i=0

γi xn+i . (2.5)

Noting that

xn+m = xn +
m−1∑

j=0

un+j , un+m = un +
m−1∑

j=0

wn+j , m = 0, 1, . . . ,

we can reexpress sn,k and U kγ as

sn,k = xn+
k−1∑

j=0

ξj un+j = xn+U k−1ξ , U kγ = un+
k−1∑

j=0

ξjwn+j = un+W k−1ξ ,

(2.6)
where

ξ = [ξ0, ξ1, . . . , ξk−1]T ∈ C
k; ξj =

k∑

i=j+1

γi, j = 0, 1, . . . , k − 1. (2.7)

The (constrained) minimization problem for the vector γ in (2.4) can now be replaced
by the following (unconstrained) minimization problem for the vector ξ in (2.6):

min
ξ

‖un + W k−1ξ‖2, ξ = [ξ0, ξ1, . . . , ξk−1]T ∈ C
k . (2.8)

Now, the solution to this problem (for ξ ) is simply −W+
k−1un, where K+ stands for

the Moore–Penrose generalized inverse of the matrix K . Upon substituting this into
(2.6), we obtain

(2.9)

We will be making use of this representation of sn,k in the sequel. For the above
developments, see Sidi [25].
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3 An error formula for RRE

3.1 RRE on the linear system x = s + F(s)(x − s)

Let us now consider the linear system

x = f̃ (x), f̃ (x) = s + F (s)(x − s), (3.1)

where F (s) is the Jacobian matrix of f evaluated at s, as given in (1.5). Note that
f̃ (x) is simply the linear part of the Taylor series of f (x) in (1.1) about s. Clearly, s
is the solution to (3.1) since f̃ (s) = s.

With the vectors x0, x1, . . . , xn generated nonlinearly as in (1.4) of the preceding
section, let

x̃n = xn and x̃m+1 = f̃ (x̃m), m = n, n + 1, . . . . (3.2)

Following this, define

ε̃m = x̃m−s, ũm = x̃m+1−x̃m, w̃m = ũm+1−ũm, m = n, n+1, . . . , (3.3)

Ũ j = [ ũn | ũn+1 | · · · | ũn+j ], W̃ j = [ w̃n | w̃n+1 | · · · | w̃n+j ], j = 0, 1, . . . .
(3.4)

Then, by (2.9), the vector s̃n,k produced by applying RRE to the sequence {x̃m} is

(3.5)

Upon subtracting s from both sides of this equality and invoking ε̃n = x̃n − s, we
obtain the error formula

(3.6)

The error s̃n,k−s has been studied in detail in [25], [28], [34], [36]; for a summary,
see [33, Chapters 6,7].8

The following result from [26, Theorem 4.2] concerning the application of RRE
to vector sequences from fixed-point iteration of linear systems will be crucial in our
analysis of RRE concerning nonlinear systems in Section 5.

Theorem 3.1 Denote F̃ = F (s) for short; thus G = I − F̃ . Then the vector s̃n,k is
the solution to the optimization problem

‖s̃n,k − s‖ = ‖G(s̃n,k − s)‖2 = min
g∈P̃k

‖g(F̃ )G(x̃n − s)‖2,

P̃k =
⎧
⎨

⎩
g(z) =

k∑

j=0

αjz
j : g(1) = 1

⎫
⎬

⎭
. (3.7)

8See also Sidi and Shapira [37] concerning a modified version of restarted GMRES with prior Richardson
iterations, that is very closely related to RRE.
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Remarks

1. If k is the degree of the minimal polynomial of F (s) with respect to the vector
ε̃n, then s̃n,k = s, the solution to (3.1). See footnote7.

2. Concerning Theorem 3.1, note that the vector G(y − s) is simply the residual of
the vector y for the linear system x = f̃ (x) because

G(y − s) = y − f̃ (y),

and also

y − f̃ (y) = 0 ⇔ y = s, since G is nonsingular .

Thus, what Theorem 3.1 means is that ‖G(s̃n,k −s)‖2, the l2 norm of the residual
vector of s̃n,k = ∑k

i=0γ̃i x̃n+i subject to
∑k

i=0γ̃i = 1, is the smallest of all the l2

norms of the residuals of the vectors
∑k

i=0αi x̃n+i subject to
∑k

i=0αi = 1. Here
we also recall that x̃n = xn by (3.2).

3.2 RRE on the nonlinear system x = f (x)

In the Introduction, we assumed that f (x) is twice continuously differentiable in a
neighborhood of the solution s. We also assumed that ρ(F̃ ) < 1, where we recall
F̃ = F (s), thus ensuring the convergence of the sequence {xm} to s. We now assume,
in addition, that ‖F̃‖2 < 1 too and define the ball B(s, δ) containing s in its interior via

B(s, δ) = {x : ‖x − s‖ ≡ ‖G(x − s)‖2 ≤ δ}. (3.8)

Clearly, B(s, δ) is a convex set. In addition, we assume f (x) is twice continuously
differentiable in B(s, δ).

Lemma 3.2 For all δ sufficiently small, there exists a positive constant L < 1
independent of δ, such that

‖xm+1 − s‖ ≤ L‖xm − s‖, m = 0, 1, . . . , provided x0 ∈ B(s, δ). (3.9)

Consequently, the whole sequence {xm} is in B(s, δ) and converges to s.

Proof We begin with the following result that follows from Ortega and Rheinboldt
[22, p. 69]:

f (x) − f (s) =
∫ 1

0
F (s + t (x − s))(x − s) dt provided x ∈ B(s, δ).

It is important to note that s + t (x − s), with t ∈ [0, 1], is a convex combination of
x and s hence is also in B(s, δ). Multiplying both sides of this equality on the left by
G, we obtain

G[f (x) − f (s)] =
∫ 1

0
[GF (s + t (x − s))G−1] [G(x − s)] dt,
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which, upon taking l2 norms on both sides and invoking the known fact that
∥
∥
∥
∥

∫ b

a

u(ξ) dξ

∥
∥
∥
∥
2

≤
∫ b

a

‖u(ξ)‖2 dξ, u(ξ) ∈ C
N,

gives

‖G[f (x) − f (s)]‖2 ≤
∫ 1

0
‖GF (s + t (x − s))G−1‖2 ‖G(x − s)‖2 dt .

Finally, invoking in this last inequality ‖Gz‖2 = ‖z‖ and the fact that ‖GAG−1‖2 =
‖A‖, we obtain

‖f (x) − f (s)‖ ≤
(∫ 1

0
‖F (s + t (x − s))‖dt

)

‖x − s‖

≤
[

max
0≤t≤1

‖F (s + t (x − s))‖
]

‖x − s‖

≤
[

max
z∈B(s,δ)

‖F (z)‖
]

‖x − s‖. (3.10)

Now, by the fact that f (x) is twice differentiable in B(s, δ), it follows that

F (x) = F (s + (x − s)) = F (s) + �(x − s), (3.11)

where the matrix �(x − s) satisfies

‖�(x − s)‖ ≤ α‖x − s‖ for some α > 0 independent of x ∈ B(s, δ). (3.12)

Taking norms on both sides of (3.11), realizing that ‖F (s)‖ = ‖F (s)‖2 because F (s)

and G = I − F (s) commute, and invoking x ∈ B(s, δ), we have

‖F (x)‖ ≤ ‖F (s)‖2 + α‖x − s‖ ≤ ‖F (s)‖2 + αδ ∀ x ∈ B(s, δ). (3.13)

Since we have assumed that ‖F (s)‖2 < 1, we can choose δ sufficiently small to
cause

max
x∈B(s,δ)

‖F (x)‖ = L < 1. (3.14)

With this, (3.10) becomes

‖f (x) − f (s)‖ ≤ L‖x − s‖ ∀ x ∈ B(s, δ). (3.15)

The proof of (3.9) for the sequence {xm} can now be carried out by letting x = xm in
(3.15), recalling that f (xm) = xm+1 and f (s) = s, and then proceeding by induction
on m.

In the sequel, we adopt the shorthand notation

εm = xm − s, m = 0, 1, . . . ; F̃ = F (s). (3.16)

We also make use of the fact that ‖F̃‖ ≤ L < 1, which follows from (3.14), and,
along with (3.9), guarantees that the sequence {‖εm‖} decreases monotonically and
converges to zero.
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Expanding f (x) in a Taylor series about the solution s and using the fact that
f (s) = s and f ∈ C2(B(s, δ)), we have

f (x) = s + F̃ · (x − s) + μ(x − s), (3.17)

where

‖μ(x − s)‖ ≤ a ‖x − s‖2 ∀ x ∈ B(s, δ), for some a > 0. (3.18)

Consequently,

xm+1 = f (xm) = s + F̃ εm + μ(εm) ⇒ εm+1 = F̃ εm + μ(εm). (3.19)

Then, by induction,

εn+i = F̃ iεn +
i−1∑

j=0

F̃ i−j−1μ(εn+j ), i = 0, 1, 2, . . . . (3.20)

Lemma 3.3 The vectors εm, um, and wm satisfy

εn+i = F̃ iεn + ε̌n+i; ‖ε̌n+i‖ ≤ Ci‖εn‖2, Ci = a
1 − Li

1 − L
Li−1, (3.21)

un+i = (F̃ − I )F̃ iεn + ǔn+i; ‖ǔn+i‖ ≤ Di‖εn‖2, Di = Ci + Ci+1, (3.22)

wn+i = (F̃ − I )2F̃ iεn + w̌n+i; ‖w̌n+i‖ ≤ Ei‖εn‖2, Ei = Ci + 2Ci+1 + Ci+2.
(3.23)

Remark Note that C0 = 0 and C1 = a by (3.21). Therefore, D0 = a by (3.22).

Proof We start by noting that, by (3.20),

ε̌n+i =
i−1∑

j=0

F̃ i−j−1μ(εn+j ),

which, upon taking norms and invoking ‖F̃‖ ≤ L and (3.18), gives

‖ε̌n+i‖ ≤
i−1∑

j=0

‖F̃ i−j−1‖ ‖μ(εn+j )‖ ≤
i−1∑

j=0

Li−j−1 a (Lj‖εn‖)2

= a

⎛

⎝
i−1∑

j=0

Li+j−1

⎞

⎠ ‖εn‖2,

from which (3.21) follows.
The proofs of (3.22)–(3.23) follow from (3.21) and the observation that

ǔm = ε̌m+1 − ε̌m and w̌m = ε̌m+2 − 2ε̌m+1 + ε̌m.

We leave the details to the reader.

Let us now go back to the linear system x = f̃ (x) in (3.1), recalling that F (s) =
F̃ . As already explained, f̃ (x) is simply the linear part of the Taylor series of f (x)
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about s, obtained from (3.17) by letting μ(y) ≡ 0 there. In addition, f̃ (s) = s,
that is, s is the solution to x = f̃ (x), as well as x = f (x). Let us now note that
μ(y) ≡ 0 also implies that ε̌m = 0, ǔm = 0, and w̌m = 0 in (3.21), (3.22), and (3.23),
respectively. Recalling also that ε̃n = εn, we finally realize that, for i = 0, 1, . . . ,

ε̃n+i = F̃ i ε̃n = F̃ iεn, ũn+i = F̃ i ũn = (F̃ − I )F̃ iεn,

w̃n+i = F̃ iw̃n = (F̃ − I )2F̃ iεn; (3.24)

consequently,

un+i = ũn+i + ǔn+i , wn+i = w̃n+i + w̌n+i . (3.25)

As a result of all this, we have

U k−1 = Ũ k−1 + Ǔ k−1, Ǔ k−1 = [ ǔn | ǔn+1 | · · · | ǔn+k−1 ] (3.26)

and

W k−1 = W̃ k−1 + W̌ k−1, W̌ k−1 = [ w̌n | w̌n+1 | · · · | w̌n+k−1 ], (3.27)

with U j and W j as in (2.2). For simplicity of notation, in what follows, we drop the
subscript k − 1 from the matrices U k−1, W k−1, Ũ k−1, W̃ k−1, etc. With these, (2.9)
becomes

sn,k = xn − UW+un

= xn − (Ũ + Ǔ)(W̃ + W̌ )+(ũn + ǔn). (3.28)

Letting also

H = W+ − W̃+ = (W̃ + W̌ )+ − W̃+, (3.29)

we rewrite (3.28) in the form

sn,k = xn − (Ũ + Ǔ)(W̃+ + H )(ũn + ǔn). (3.30)

Next, opening the parentheses in (3.30), we obtain the equality

sn,k = xn − ŨW̃+ũn − ŨW̃+ǔn − (ŨH + ǓW̃+ + ǓH )(ũn + ǔn). (3.31)

Now, by the fact that xn = x̃n and by (3.5), we have that xn − ŨW̃+ũn = s̃n,k in
this equality. Next, we invoke un = ũn + ǔn and U = Ũ + Ǔ again, and obtain
a convenient representation of sn,k and the error in it. We summarize all this in the
following lemma.

Lemma 3.4 Let

šn,k = −ŨW̃+ǔn − (UH + ǓW̃+)un. (3.32)

Then, sn,k is given by the equality

sn,k = s̃n,k + šn,k . (3.33)

Subtracting s from both sides of this equality, we also obtain the error formula

sn,k − s = (s̃n,k − s) + šn,k . (3.34)
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4 Derivation of upper bounds for ‖sn,k − s‖
4.1 Preliminaries

We now turn to the study of sn,k − s. Multiplying both sides of (3.34) on the left by
G and taking l2 norms, and also invoking ‖z‖2 ≤ ‖G−1‖2 ‖z‖, we obtain
‖sn,k − s‖ ≤ ‖s̃n,k − s‖ + ‖šn,k‖,

‖šn,k‖
‖G−1‖2

≤ ‖GŨ‖2 ‖W̃+‖2 ‖ǔn‖+‖GU‖2 ‖H‖2 ‖un‖+‖GǓ‖2 ‖W̃+‖2 ‖un‖. (4.1)

Thus, we need to study the behavior of each one of the terms in this bound. We begin
with the following lemma.

Lemma 4.1 The following are true:

‖GU‖2 ≤ K1‖εn‖, ‖GŨ‖2 ≤ K2‖εn‖, ‖GǓ‖2 ≤ K3‖εn‖2, (4.2)

‖W‖2 ≤ K ′
1‖εn‖, ‖W̃‖2 ≤ K ′

2‖εn‖, ‖W̌‖2 ≤ K ′
3‖εn‖2, (4.3)

with Ki , K ′
i , i = 1, 2, 3, positive constants independent of k and n.

Proof To achieve the proof, we make use of (3.21)–(3.24) and

‖um‖ ≤ (1 + L)‖εm‖ and ‖wm‖ ≤ (1 + L)2‖εm‖,
‖ũm‖ ≤ (1 + L)‖εm‖ and ‖w̃m‖ ≤ (1 + L)2‖εm‖. (4.4)

We prove the validity of the bound on ‖GU‖2 only; the others can be proved in
exactly the same way.

We start by analyzing ‖GU‖F , the Frobenius norm of GU . Noting that

GU = [ Gun | Gun+1 | · · · | Gun+k−1 ],
we have

‖GU‖2F =
k−1∑

j=0

‖Gun+j‖22 =
k−1∑

j=0

‖un+j‖2 ≤
k−1∑

j=0

[(1 + L)‖εn+j‖]2 by (4.4)

≤ (1 + L)2
k−1∑

j=0

(Lj‖εn‖)2 by (3.9)

= 1 + L

1 − L
(1 − L2k)‖εn‖2

<
1 + L

1 − L
‖εn‖2.

The result ‖GU‖2 ≤ K1‖εn‖, with K1 = √
(1 + L)/(1 − L), now follows by

invoking ‖GU‖2 ≤ ‖GU‖F .9

9Recall that, for any matrix K with rank(K) = r , we have ‖K‖2 ≤ ‖K‖F ≤ r‖K‖2. See Golub and Van
Loan [13].
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4.2 Upper bounds for ‖W̃+‖2 and ‖H‖2
Next, by Theorem A.3 in the Appendix, we can bound ‖H‖2 as in

‖H‖2 ≤ √
2




1 − 

‖W̃+‖2 provided 
 = ‖W̃+‖2 ‖W̌‖2 < 1. (4.5)

We realize that all we need is a suitable upper bound on ‖W̃+‖2 since we already
have an upper bound on ‖W̌‖2 from (4.13). We turn to this issue next.

Now, by (3.4) and (3.24), we have

W̃ = [ (F̃ − I )2εn | (F̃ − I )2F̃ εn | · · · | (F̃ − I )2F̃ k−1εn ], (4.6)

which can be written in the form

W̃ = ‖εn‖2
◦
W ,

◦
W = RS(en), (4.7)

where

R = (F̃ − I )2 = G2, S(y) = [ y | F̃ y | · · · | F̃ k−1y ], en = εn

‖εn‖2 . (4.8)

[Note that the columns of S(y) span the Krylov subspace Kk(F̃ ; y) =
span{y, F̃ y, . . . , F̃ k−1y}.] First, R is N × N , constant, and nonsingular since G is.
Next, we recall that k is at most the degree of the minimal polynomial of F̃ with
respect to the vector εn, which implies that the vectors F̃ iεn, i = 0, 1, . . . , k −1, are
linearly independent and, therefore, rank(S(en)) = k. As a result, rank(W̃ ) = k =
rank(

◦
W ) since R is nonsingular. By the fact that (aK)+ = a−1K+ for every nonzero

scalar a ∈ C, and by Theorem A.1 in the Appendix, we thus have

W̃+ = 1

‖εn‖2
◦
W+ ⇒ ‖W̃+‖2 = 1

‖εn‖2 ‖ ◦
W+‖2 (4.9)

and

‖ ◦
W+‖2 ≤ ‖R−1‖2 ‖S(en)

+‖2. (4.10)

We need to bound only ‖S(en)
+‖2 uniformly (i) for all n = 1, 2, . . . in the n-Mode,

and (ii) for all unit vectors e
(r)
n = ε

(r)
n /‖ε(r)

n ‖2 arising in the different cycles of the
C-Mode and the MC-Mode. Unfortunately, we are not able to prove the existence of
such uniform bounds. In what follows, concerning the application of RRE in the n-
Mode and in two cycling modes, we assume that, at each step of the different modes
of usage of RRE, ‖S(en)

+‖2 is bounded uniformly throughout, that is, we assume
that, for some constant η̃ > 0,

‖S(en)
+‖2 ≤ η̃. (4.11)

Combining (4.9)–(4.11) and invoking also ‖εn‖ ≤ ‖G‖2 ‖εn‖2, we obtain

(4.12)

We shall comment on this assumption concerning the uniform upper bound for
‖S(en)

+‖2 in Section 6.
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The first thing to do now is to guarantee that 
 = ‖W̃+‖2 ‖W̌‖2 < 1 in (4.5) is
satisfied under the assumption in (4.12) concerning ‖W̃+‖2. By (4.12) and (4.3) and
the fact that ‖ε0‖ ≤ δ since x0 ∈ B(s, δ), we have


 ≤ K ′
3η‖εn‖ ≤ K ′

3ηLn‖ε0‖ ≤ K ′
3ηLnδ. (4.13)

Clearly, by making δ sufficiently small, we can make the upper bound on 
 smaller
than one. The closer δ is to zero, the closer x0 is to s. This is precisely what is needed
in order to develop a local convergence theory for any extrapolation method.

Next, by (4.5), (4.12), and (4.13),

‖H‖2 ≤ λn, λn = √
2

K ′
3η

2

1 − K ′
3η‖εn‖ . (4.14)

As we will show later, εn is bounded in all three modes (n-Mode, C-Mode, and
MC-Mode) we study here, which implies that λn is bounded too.

Remark Before proceeding further, we would like to discuss an interesting conse-
quence of the global assumption we have made concerning W̃+. By (4.12) and (4.14)
and also by (3.29), namely, that W+ = W̃+ + H , we have

‖W+‖2 ≤ ‖W̃+‖2 + ‖H‖2 ≤ η

‖εn‖ + λn.

As a result, the vector ξ = −W+un defined via (2.8), satisfies

‖ξ‖2 ≤ ‖W+‖2 ‖un‖2 ≤ (1 + L)(η + λn‖G−1‖2 ‖εn‖).

Here we have made use of (4.4) too. Since ‖εn‖ and λn are bounded, so is λn‖εn‖,
in all three modes. This implies that ξ is bounded, which causes γ in (2.3)–(2.5)
to be bounded as well. This can be seen by expressing the γi in terms of the ξi by
employing (2.7) as in

γ0 = 1 − ξ0; γi = ξi−1 − ξi, i = 1, . . . , k − 1; γk = ξk−1.

Thus, we have globally

Interestingly, this is analogous to the global assumption made by Toth and Kelly
[41] in the convergence analysis of the acceleration method of Anderson [1]. Note
that, when applied to linear systems, Anderson acceleration is equivalent to GMRES
(see Walker and Ni [43]), which is equivalent to RRE applied to linear systems (see
Sidi [26]).
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4.3 Upper bound for ‖sn,k − s‖

With the different matrices in (4.1) bounded as above, we turn to sn,k − s. By (4.2),
(4.3), (4.4), and (4.12), we have

‖GŨ‖2 ‖W̃+‖2 ‖ǔn‖ ≤ K2ηD0‖εn‖2, (4.15)

‖GU‖2 ‖H‖2 ‖un‖ ≤ K1λn(1 + L) ‖εn‖2, (4.16)

‖GǓ‖2 ‖W̃+‖2 ‖un‖ ≤ K3η(1 + L) ‖εn‖2. (4.17)

Substituting these into (4.1), we obtain

‖šn,k‖ ≤ τn ‖εn‖2, τn = [K2ηD0 + (K1λn + K3η)(1 + L)] ‖G−1‖2, (4.18)

and this leads to the bound on ‖sn,k − s‖ in the next lemma:

Lemma 4.2 The norm of the error vector sn,k − s can be bounded as in

‖sn,k−s‖ ≤ ‖s̃n,k−s‖+τn ‖εn‖2, τn = [K2ηD0+(K1λn+K3η)(1+L)] ‖G−1‖2.
(4.19)

Remark Note that, by (4.14) and (4.19), limn→∞ τn is finite since limn→∞ λn is
finite. Therefore, ‖sn,k − s‖ cannot be smaller than ‖šn,k‖ ≤ τn‖εn‖2, even though
‖s̃n,k − s‖ may be smaller. In other words, the term ‖šn,k‖ limits the accuracy of sn,k

as an approximation to s.

5 Convergence analysis

5.1 Preliminaries

We start by studying the term ‖s̃n,k − s‖. We recall that s̃n,k is the vector obtained
by applying RRE to the vectors x̃m, m = n, n + 1, . . . , n + k, with x̃n = xn, as
described in Section 3.1. Our study will be based on the developments of [26, 36],
and [33, Chapters 6,7].

We first have

‖s̃n,k − s‖ = ‖G(s̃n,k − s)‖2 = min
g∈P̃k

‖g(F̃ )G(x̃n − s)‖2 by Theorem 3.1

= min
g∈P̃k

‖g(F̃ )G(xn − s)‖2 because x̃n = xn

≤
[

min
g∈P̃k

‖g(F̃ )‖2
]

‖G(xn − s)‖2
= θk‖εn‖, (5.1)

recalling that xn − s = εn and defining

θk = min
g∈P̃k

‖g(F̃ )‖2. (5.2)
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(Note that θk depends only on F̃ and k.) Of course, we also have

θk ≤ ‖g(F̃ )‖2 ∀ g ∈ P̃k . (5.3)

We now would like to bound θk appropriately. Choosing g(z) = zk in (5.3), we
obtain,

θk = min
g∈P̃k

‖g(F̃ )‖2 ≤ ‖F̃ k‖2 ≤ ‖F̃‖k
2 ≤ Lk, at worst. (5.4)10

With all these developments, (5.1) and (4.18) together give the result in the next
lemma:

Lemma 5.1 The error vector sn,k − s satisfies

‖sn,k − s‖ ≤ θk‖εn‖ + τn‖εn‖2. (5.5)

Remark By choosing g(z) ∈ P̃k suitably, upper bounds on θk that are smaller than
Lk can be given for different cases. We give such bounds for two such cases here.
For additional cases involving orthogonal polynomials, such as Jacobi polynomials,
we refer the reader to Sidi and Shapira [36].

• If the hermitian part of G = I − F̃ , namely, the matrix GH = 1
2 (G + G∗), is

positive definite, then
θk ≤ (1 − ν2/σ 2)k/2,

where σ is the largest singular value of G and ν is the smallest eigenvalue of
GH . Of course, 0 < ν < σ . See [26].

• If F̃ is hermitian with eigenvalues in the (real) interval [α, β], −1 < α < β < 1,
then

θk ≤ 1

Tk

(
2−α−β
β−α

) < 2

(√
κ − 1√
κ + 1

)k

, κ = 1 − α

1 − β
> 1.

Here Tk(z) is the Chebyshev polynomial of the first kind of degree k. (See
Varga [42, Chapter 5], for example.) Note that, in this case, θk < Lk , with
L = max(|α|, |β|) < 1.

5.1.1 Main assumptions

Before delving into the local convergence analyses of the different modes of usage
of RRE, we would like to summarize the assumptions we have made so far. We will
be referring to them in the statements of our (local) convergence theorems below.

A1. f ∈ C2(B(s, δ)) for some δ > 0. (We can assume δ to be as small as needed
in our proofs.)

A2. ‖F̃‖ ≤ maxx∈B(s,δ) ‖F (x)‖ = L < 1, which also implies that ρ(F̃ ) ≤ L.

10Clearly, g(z) = zk is in P̃k and θk < 1 since L < 1. Next, in general, the polynomial g(z) that gives the
optimum in (5.4) is different from zk . Thus, generally speaking, θk < Lk
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A3. The very first vector x0, with which we start any of the modes, is in B(s, δ).
Thus, ‖x0 − s‖ < δ.

A4. ‖W̃+‖ ≤ η/‖εn‖ for every n in the n-Mode and for every cycle in the C-Mode
and the MC-Mode. (η > 0 is fixed.)

5.2 Convergence in n-Mode

We recall that, in the n-Mode, we are applying RRE, with k ≥ 1 fixed throughout,
to the infinite sequence {xm} that is generated as in (1.4). (That is, no cycling is
involved.)

Theorem 5.2 Under the assumptions A1–A4, RRE converges in the n-Mode. Actu-
ally, we have

lim sup
n→∞

‖sn,k − s‖
‖εn‖ ≤ θk < 1. (5.6)

Proof Since limn→∞ ‖εn‖ = 0 and limn→∞ τn < ∞, it is clear from Lemma 5.1
that limn→∞ ‖sn,k − s‖ = 0, hence limn→∞ sn,k = s.

Next, again by Lemma 5.1, we have

‖sn,k − s‖
‖εn‖ ≤ θk + τn‖εn‖.

Taking the limsup as n → ∞ of both sides and recalling again that limn→∞ τn < ∞
and limn→∞ ‖εn‖ = 0, the result in (5.6) follows.

Remark Let us also rewrite (4.19) as

‖sn,k − s‖ = O(ψn) as n → ∞; ψn = max{‖s̃n,k − s‖, ‖εn‖2}. (5.7)

This is possible since limn→∞ τn is finite. It is thus clear that ‖sn,k − s‖ cannot be
less than O(‖εn‖2) = O(L2n) ≈ O(ρ(F̃ )2n) as n → ∞, no matter what ‖s̃n,k − s‖
is. [See the remark following (4.19).]

5.3 Convergence in C-Mode cycling

In C-Mode cycling, we keep n ≥ 0 and k ≥ 1 fixed throughout, k always being
assumed to be less than the degree of the minimal polynomial of F̃ with respect to
the vector εn in every cycle.

Theorem 5.3 Under the assumptions A1–A4, RRE converges linearly in the C-Mode.
Actually, we have

lim sup
r→∞

‖s(r+1)
n,k − s‖

‖s(r)
n,k − s‖

≤ θkL
n < 1. (5.8)
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Proof We start by observing that, by Lemma 3.2, there holds ‖εn‖ ≤ Ln‖ε0‖. With
this, (5.5) becomes

‖sn,k − s‖ ≤
(
θkL

n + τnL
2n‖ε0‖

)
‖ε0‖. (5.9)

Let us now denote the vectors xm, εm = xm − s, and sn,k used/computed in cycle
i by x

(i)
m , ε

(i)
m , and s

(i)
n,k , respectively, and rewrite (5.9) that is relevant to the cycle

(r + 1) as

‖s(r+1)
n,k − s‖ ≤

(
θkL

n + τnL
2n‖ε(r+1)

0 ‖
)

‖ε(r+1)
0 ‖. (5.10)

Let us also recall that, in the C-Mode, x
(r+1)
0 = s

(r)
n,k , and hence ε

(r+1)
0 = s

(r)
n,k − s.

With these, (5.10) becomes

‖s(r+1)
n,k − s‖ ≤ μr‖s(r)

n,k − s‖, μr = θkL
n + τnL

2n‖s(r)
n,k − s‖. (5.11)

We now show by induction that for each r , s(r)
n,k is in the ball B(s, δ) and tends to s as

r → ∞, provided x0 in step C0 of C-Mode cycling is sufficiently close to s.
For r = 0, we have x0 = s

(0)
n,k ∈ B(s, δ) by choice; therefore,

μ0 ≤ θkL
n + τnL

2nδ.

Since θkL
n < 1, we can forceμ0 < 1 by choosing δ sufficiently small or by choosing

s
(0)
n,k sufficiently close to s. This, in turn, forces

‖s(1)
n,k − s‖ ≤ μ0‖s(0)

n,k − s‖ ≤ μ0δ < δ ⇒ s
(1)
n,k ∈ B(s, δ).

Continuing by induction on r , we see that μr+1 < μr , ‖s(r+1)
n,k − s‖ < ‖s(r)

n,k − s‖,
hence s

(r+1)
n,k ∈ B(s, δ) since s

(r)
n,k ∈ B(s, δ). We also have limr→∞ ‖s(r)

n,k − s‖ = 0,

hence limr→∞ s
(r)
n,k = s. With the convergence of {s(r)

n,k}∞r=0 to s established, let us
now rewrite (5.11) as

‖s(r+1)
n,k − s‖

‖s(r)
n,k − s‖

≤ μr . (5.12)

Taking the limsup as r → ∞ on both sides of this inequality, we obtain (5.8).

5.4 Convergence in MC-Mode cycling

We recall that in MC-Mode cycling, we keep n fixed while k = kr is the degree of
the minimal polynomial of F̃ with respect to εn in the rth cycle.

Theorem 5.4 Under the assumptions A1–A4, RRE converges quadratically in the
MC-Mode. Actually, we have

lim sup
r→∞

‖s(r+1)
n,kr+1

− s‖
‖s(r)

n,kr
− s‖2

≤ τnL
2n. (5.13)
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Proof We start by noting that s̃n,kr = s in each cycle, as mentioned at the end of
Section 3.1. Thus, (4.19) becomes

‖sn,k − s‖ ≤ τn‖εn‖2. (5.14)

Proceeding precisely as in the proof of Theorem 5.3 concerning the C-Mode cycling,
we next obtain

‖sn,k − s‖ ≤ τnL
2n‖ε0‖2. (5.15)

As in the case of the C-Mode, noting that ε
(r+1)
0 = s

(r)
n,kr

− s, we write (5.15) in the
MC-Mode as

‖s(r+1)
n,kr+1

−s‖ ≤ τnL
2n‖s(r)

n,kr
−s‖2 = φr ‖s(r)

n,kr
−s‖, φr = τnL

2n‖s(r)
n,kr

−s‖. (5.16)
We now show, by induction on r , that s

(r)
n,kr

is in the ball B(s, δ) and tends to s as
r → ∞, provided x0 in step MC0 of MC-Mode is sufficiently close to s.

For r = 0, we have x0 = s
(0)
n,k0

∈ B(s, δ) by choice; therefore,

φ0 ≤ τnL
2nδ ⇒ φ0 < 1 provided δ sufficiently small.

This implies that ‖s(1)
n,k1

− s‖ < ‖s(0)
n,k0

− s‖; therefore, s(1)
n,k1

∈ B(s, δ). In addition,
we also have φ1 < φ0. Continuing by induction on r , we see that φr < φr−1 < 1
hence ‖s(r+1)

n,kr+1
− s‖ < ‖s(r)

n,kr
− s‖, which implies that s(r+1)

n,kr+1
∈ B(s, δ) since s

(r)
n,kr

∈
B(s, δ), and that limr→∞ ‖s(r)

n,kr
− s‖ = 0, meaning that limr→∞ s

(r)
n,kr

= s. With the

convergence of {s(r)
n,k}∞r=0 to s established, let us now rewrite (5.16) as

‖s(r+1)
n,kr+1

− s‖
‖s(r)

n,kr
− s‖2

≤ τnL
2n. (5.17)

Taking the limsup as r → ∞ on both sides of this inequality, we obtain (5.13). Thus,
the convergence of the sequence {s(r)

n,kr
}∞r=0 is quadratic.

6 Remarks on ‖S(en)+‖2
Let us observe that S(y) can be written as the product of two matrices as

S(y) = PQ(y), (6.1)

where P ∈ C
N×kN and Q(y) ∈ C

kN×k are given as

P = [ I | F̃ | · · · | F̃ k−1 ]; Q(y) =

⎡

⎢
⎢
⎢
⎣

y 0 · · · 0
0 y · · · 0
...

. . .
...

0 0 · · · y

⎤

⎥
⎥
⎥
⎦

, y ∈ C
k . (6.2)

Clearly, P is a constant matrix and has full row rank, while Q(y) has full column
rank for all nonzero y, that is,

rank(P ) = N, rank(Q(y)) = k ∀ y �= 0. (6.3)
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Before going on, we recall that if K ∈ C
m×k with rank(K) = k, then it has k

nonzero singular values, which we order such that

σ1(K) ≥ σ2(K) ≥ · · · ≥ σk(K) > 0,

and

σk(K) = min
z∈Ck, ‖z‖2=1

‖Kz‖2 and ‖K+‖2 = 1/σk(K).

Now, P has N positive singular values, and therefore

‖P +‖2 = 1/σN(P ).

Next, Q(y) is unitary when ‖y‖ = 1, in the sense that

Q(y)∗Q(y) = I k×k ∀ y ∈ C
k, ‖y‖2 = 1, (6.4)

hence so is Q(en) since ‖en‖2 = 1. As a result Q(y)+ = Q(y)∗ and Q(y) has k

singular values, all equal to one, for all y, ‖y‖2 = 1. Consequently,

‖Q(y)+‖2 = 1 ∀ y ∈ C
k, ‖y‖2 = 1. (6.5)

Despite these interesting facts—that ‖P +‖2 is fixed and that ‖Q(e
(r)
n )+‖2 = 1

throughout the cycling process—we are not able to prove that ‖S(e
(r)
n )+‖2 =

‖[PQ(e
(r)
n )]+‖2 ≤ α for some fixed α > 0, for all r = 0, 1, . . . , where e

(r)
n =

ε
(r)
n /‖ε(r)

n ‖2 in the rth cycle.
For example, (A.3) in the appendix, which would be extremely useful if applica-

ble, does not apply to S(y). If it did, then we would have S(y)+ = Q(y)∗P + hence
‖S(y)+‖2 ≤ ‖P +‖2, very conveniently.

We might think that Theorem A.4 in the Appendix would apply to the n-Mode and
C-Mode (it does not necessarily apply to the MC-Mode since the rank(S(e

(r)
n )) = kr

may vary with r), but this too is problematic. Theorem A.4 requires the following:

• In the n-Mode, the sequence {en}∞n=0, where en = εn/‖εn‖2, must have a limit
e∞ such that rank(S(e∞)) = k. It is obvious from (3.20)–(3.21) that it is very
difficult to determine whether such a vector e∞ exists when f (x) is nonlinear.11

• In the C-Mode, the sequence {e(r)
n }∞r=0, where e

(r)
n = ε

(r)
n /‖ε(r)

n ‖2, must have a

limit e(∞)
n such that rank(S(e

(∞)
n )) = k. It is obvious again from (3.20)–(3.21) that

it is very difficult to ascertain whether such a limit exists when f (x) is nonlinear.

A different approach to the issue, for the C-Mode, would be as follows: Since
S(e

(r)
n ) has full column rank, ‖S(e

(r)
n )+‖2 = 1/σk(S(e

(r)
n )) > 0 for every r =

1, 2, . . .. Defining the vector ζ (y) ∈ C
k , ‖ζ (y)‖2 = 1, via

min
z∈Ck, ‖z‖2=1

‖S(y)z‖2 = ‖S(y)ζ (y)‖2, (6.6)

11For the linear system x = f̃ (x), we have εn+1 = F̃ εn, n = 0, 1, . . . , as power iterations. Thus, in
some cases, e∞ = limn→∞ en exists and is an eigenvector of F̃ , hence causes rank(S(e∞)) = 1 at most.
Clearly, this is a problem when rank(S(en)) = k > 1, for n = 0, 1, . . ..
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we thus have

σk(S(e(r)
n )) = min

z∈Ck, ‖z‖2=1
‖S(e(r)

n )z‖2 = ‖S(e(r)
n )ζ (e(r)

n )‖2 > 0 ∀ r = 1, 2, . . . ,

(6.7)
from which, we obtain

σk(S(e(r)
n )) ≥ lim inf

r→∞ ‖S(e(r)
n )ζ (e(r)

n )‖2 = α ≥ 0. (6.8)

Clearly, α is independent of r . Now, if we can show that α > 0, we will have shown
that ‖S(en)

+‖2 ≤ 1/α, hence that ‖S(en)
+‖2 is bounded uniformly throughout the

cycling process. Unfortunately, this does not seem to be the case in general; the best
we can say is that α ≥ 0.

Thus, even though σk(S(e
(r)
n )) > 0 for r = 0, 1, . . . , it seems we cannot guarantee

the existence of a fixed positive constant α̃ such that, when applying RRE in the
cycling mode, σk(S(e

(r)
n )) ≥ α̃ uniformly in every cycle. Therefore, we can only

assume that such a constant exists for the C-Mode cycling process being studied, for
which k is fixed throughout, namely,

(6.9)

where kr is the degree of the minimal polynomial of F̃ with respect to e
(r)
n .

As for the MC-Mode cycling process, we can, similarly, only assume that

(6.10)

(This is reasonable because there are only finitely many kr as 1 ≤ kr ≤ N .) Precisely
(6.9) and (6.10) are what we have assumed in (4.11).

Finally, we note that the global condition in (4.12) we have imposed on the three
modes for RRE discussed in this work is formulated in terms of F̃ , the Jacobian
matrix of f (x) at the solution s only, and it concerns sn,k with arbitrary n. This
should be contrasted with the global condition introduced in [15] for the MC-Mode
only that is formulated in terms of f (x), and concerns s0,k . Denoting the xi and
the ui = xi+1 − xi generated at the rth cycle by x

(r)
i and u

(r)
i , respectively, with

x
(r)
0 = s

(r−1)
0,kr−1

, the condition of [15] reads as follows:

√
det(Y ∗

r Y r ) ≥ α > 0 ∀ r; Y r = [û(r)
0 | û(r)

1 | · · · | û(r)
kr−1 ], û

(r)
i = u

(r)
i /‖u(r)

i ‖2.
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Appendix : Some properties of Moore–Penrose inverses

First , we recall the well-known facts

A ∈ C
m×n, rank(A) = n ⇒ A+ = (A∗A)−1A∗ ⇒ A+A = In×n,

(A.1)

A ∈ C
m×n, rank(A) = m ⇒ A+ = A∗(AA∗)−1 ⇒ AA+ = Im×m,

(A.2)
and

A ∈ C
m×n, B ∈ C

n×p, rank(A) = rank(B) = n ⇒ (AB)+ = B+A+.
(A.3)

The following theorems on Moore–Penrose inverses of perturbed matrices can be
found in Ben-Israel and Greville [2], Wedin [44], and Stewart [40]. Here we give
independent proofs of two of them.

Remark For convenience of notation, throughout this appendix only, we will use ‖·‖
to denote the l2 norm. (Thus, ‖ · ‖ here does not stand for the G norm we have used
in Sections 1–6.)

Theorem A.1 Let A ∈ C
m×n, rank(A) = n, and let G ∈ C

m×m be nonsingular and
define B = GA. Then rank(B) = n too, and

‖B+‖ ≤ ‖G−1‖‖A+‖.

Proof That rank(B) = n is clear since G is nonsingular. Starting now with A =
G−1B, we first have

Ax = G−1(Bx) ⇒ ‖Ax‖ ≤ ‖G−1‖ ‖Bx‖ ∀ x ∈ C
n, ‖x‖ = 1.

Let x′ and x′′, with ‖x′‖ = 1 and ‖x′′‖ = 1, be such that

σmin(A) = min‖x‖=1
‖Ax‖ = ‖Ax′‖ and σmin(B) = min‖x‖=1

‖Bx‖ = ‖Bx′′‖,

where σmin(K) denotes the smallest singular value of a matrix K . Then

σmin(A) = ‖Ax′‖ ≤ ‖Ax′′‖ ≤ ‖G−1‖ ‖Bx′′‖ = ‖G−1‖ σmin(B).

The result follows by recalling that ‖K+‖ = 1/σmin(K) when K has full column
rank, which implies that σmin(K) > 0.

Theorem A.2 Let A ∈ C
m×n and (A + E) ∈ C

m×n, m ≥ n, such that rank(A) = n

and ‖EA+‖ < 1. Then

‖(A + E)+‖ ≤ ‖A+‖
1 − ‖EA+‖ .
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If 
 = ‖E‖ ‖A+‖ < 1 in addition, then this result can be expressed as

‖(A + E)+‖ ≤ 1

1 − 

‖A+‖.

Proof First, because A is of full column rank, we have that A+A = In×n.
Consequently,

A + E = (I + EA+)A.

Since ‖EA+‖ < 1 by assumption, the matrix G = I +EA+ is nonsingular. The first
result now follows from Theorem A.1 and by the fact that ‖G−1‖ ≤ 1/(1−‖EA+‖).
The second result follows by invoking ‖EA+‖ ≤ ‖E‖ ‖A+‖ = 
 and the additional
assumption that 
 < 1.

Theorem A.3 Let A and E be as in Theorem A.2, 
 = ‖E‖ ‖A+‖ < 1, and let
H = (A + E)+ − A+. Then

‖H‖ ≤ √
2




1 − 

‖A+‖.

Proof By Wedin [44, Theorem 4.1], there holds

‖H‖ ≤ √
2 ‖(A + E)+‖ ‖A+‖ ‖E‖.

Invoking now Theorem A.2, the result follows.

The following theorem is due to Stewart [40].

Theorem A.4 Let A1, A2, . . . , and A be such that limn→∞ An = A. Then
limn→∞ A+

n = A+ if and only if rank(An) = rank(A), n ≥ n0, for some integer n0.
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