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Abstract
In a recent work, we developed three new compact numerical quadrature for-
mulas for finite-range periodic supersingular integrals I[f ] =

∫
= b
a f (x) dx , where 

f (x) = g(x)/(x− t)3, assuming that g ∈ C∞[a, b] and f(x) is T-periodic, T = b − a . 
With h = T∕n , these numerical quadrature formulas read 

We also showed that these formulas have spectral accuracy; that is, 

In the present work, we continue our study of these formulas for the special case in 
which f (x) =

cos
�(x−t)

T

sin3
�(x−t)

T

u(x) , where u(x) is in C∞(ℝ) and is T-periodic. Actually, we 

prove that T̂ (s)
n
[f ] , s = 0, 1, 2, are exact for a class of singular integrals involving 

T-periodic trigonometric polynomials of degree at most n − 1 ; that is, 

T̂ (0)
n
[f ] = h

n−1∑

j=1

f (t + jh) −
�2

3
g�(t) h−1 +

1

6
g���(t) h,

T̂ (1)
n
[f ] = h

n∑

j=1

f (t + jh − h∕2) − �2 g�(t) h−1,

T̂ (2)
n
[f ] = 2h

n∑

j=1

f (t + jh − h∕2) −
h

2

2n∑

j=1

f (t + jh∕2 − h∕4).

�T (s)
n
[f ] − I[f ] = o(n−𝜇) as n → ∞ ∀𝜇 > 0.
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We also prove that, when u(z) is analytic in a strip ||Im z|| < 𝜎 of the complex z-plane, 
the errors in all three T̂ (s)

n
[f ] are O(e−2n��∕T ) as n → ∞ , for all practical purposes.

Keywords Hadamard Finite Part · Supersingular integrals · Numerical quadrature · 
Trapezoidal rule · Periodic integrands

Mathematics Subject Classification 41A55 · 65B15 · 65D30 · 65D32

1  Introduction and background

Let

∫= b

a
f (x) dx denotes the Hadamard Finite Part (HFP) of the supersingular integral 

∫ b

a
f (x) dx , which does not exist in the regular sense due to the term (x − t)−3.
In the recent work [6], the author developed three new trapezoidal-like numerical 

quadrature formulas T̂ (s)
n
[f ], s = 0, 1, 2, for the HFP integrals in (1.1) that have excellent 

convergence properties for functions f(x) that are such that

With h = T∕n , these formulas read

Theorem  5.1 in [6] states that, provided f(x) is as in (1.1)–(1.2), T̂ (s)
n
[f ] → I[f ] as 

n → ∞ with spectral accuracy; that is,

T̂ (s)
n
[f ] = I[f ] when f (x) =

cos
�(x−t)

T

sin3
�(x−t)

T

n−1∑

m=−(n−1)

cm exp(i2m�x∕T).

(1.1)I[f ] = ∫=
b

a

f (x) dx, f (x) =
g(x)

(x − t)3
, g ∈ C∞[a, b], t ∈ (a, b) fixed.

(1.2)f (x) T-periodic, f ∈ C∞(ℝt), T = b − a, ℝt = ℝ ⧵ {t ± kT}∞
k=0

.

(1.3)T̂ (0)
n
[f ] = h

n−1∑

j=1

f (t + jh) −
�2

3
g�(t) h−1 +

1

6
g���(t) h,

(1.4)T̂ (1)
n
[f ] = h

n∑

j=1

f (t + jh − h∕2) − �2 g�(t) h−1,

(1.5)T̂ (2)
n
[f ] = 2h

n∑

j=1

f (t + jh − h∕2) −
h

2

2n∑

j=1

f (t + jh∕2 − h∕4).

(1.6)�T (s)
n
[f ] − I[f ] = o(n−𝜇) as n → ∞ ∀𝜇 > 0.
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These quadrature formulas are obtained by manipulating a generalization of the 
Euler–Maclaurin expansion derived by the author in [4, Theorem  2.3], which we 
give in the next theorem.

Theorem 1.1 Let u(x) be such that u ∈ C∞(a, b) and has the asymptotic expansions

(The �s are distinct and arbitrary and so are the �s .) Assume also that these asymp-
totic expansions can be differentiated infinitely many times. Let also h = (b − a)∕n , 
for n = 1,2,.... Then, as n → ∞ , there holds

Here �(z) is the Riemann Zeta function and C = 0.577⋯ is Euler’s constant.

Note. When K = L = 0 and Re 𝛾0 > −1 , Re 𝛿0 > −1 , ∫ b

a
u(x) dx exists as a regu-

lar integral, hence ∫= b

a
u(x) dx = ∫ b

a
u(x) dx . Otherwise, ∫ b

a
u(x) dx is not defined in 

the regular sense, but its HFP ∫= b

a
u(x) dx is well-defined.

Supersingular integrals arise in different areas of science and engineering, and 
several numerical quadrature formulas for computing them exist in the literature. 
We do not intend to review them here; instead, we refer the reader to the bibliog-
raphy of [6] for some of the related literature.

The main purpose of this work is two-fold: (i)  to explore the exactness prop-
erties of the quadrature formulas T̂ (s)

n
[f ] and (ii)  to expand on the convergence 

properties of the T̂ (s)
n
[f ] when f(z) is T-periodic and analytic in a strip of the com-

plex z-plane that includes the real axis, with poles of order three at x = t + kT  , 
k = 0,±1,±2,… ; we aim at improving and refining (1.6) considerably.

The integrands we will be working with in the sequel are of the special form

u(x) ∼ K(x − a)−1 +

∞∑

s=0

cs (x − a)�s as x → a+,

u(x) ∼ L(b − x)−1 +

∞∑

s=0

ds (b − x)�s as x → b−,

�s ≠ −1 ∀s; Re �0 ≤ Re �1 ≤ Re �2 ≤ ⋯ ; lim
s→∞

Re �s = +∞,

�s ≠ −1 ∀s; Re �0 ≤ Re �1 ≤ Re �2 ≤ ⋯ ; lim
s→∞

Re �s = +∞.

h

n−1∑

j=1

u(a + jh) ∼ ∫=
b

a

u(x) dx + K(C − log h) +

∞∑

s = 0

�s ∉ {2, 4, 6,…}

cs �(−�s) h
�s+1

+ L(C − log h) +

∞∑

s = 0

�s ∉ {2, 4, 6,…}

ds �(−�s) h
�s+1 .
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Such integrands arise naturally when computing Cauchy transforms on the unit cir-
cle, for example. Throughout this work, we treat t as a fixed parameter and not as a 
variable.

The paper is organized as follows: In Sect. 2, we provide the statements of three 
theorems that concern the exactness properties of the quadrature formulas T̂ (s)

n
[f ] . 

Of these, Theorem 2.2 provides the eigenvalues �m and eigenfunctions em(x) of the 
kernel G(t, x), in the sense that

The proof of this theorem is given Sect. 3. Theorems 2.3 and 2.4 concern the action 
of the quadrature formulas T̂ (s)

n
[f ] on the eigenfunctions of G(t, x) and show that they 

preserve some of the eigenvalues. The proofs of these theorems are given in Sect. 4. 
In Sect. 5, we develop the subject of the convergence of the quadrature formulas as 
they are applied to T-periodic integrands f (x) = G(t, x)u(x) when u(z) is also ana-
lytic in a strip of the complex z-plane that contains the real axis. The main result of 
this development is stated as Theorem 5.2, whose proof is given in Sect. 6.

2  Exactness property of the T̂ (s)
n [f ]

It is well-known that the trapezoidal rule for regular integrals has an interesting 
exactness property, as stated in Theorem 2.1:

Theorem 2.1 Let I[f ] = ∫ b

a
f (x) dx be a regular integral. Then the trapezoidal rule 

approximation for I[f], namely,

is exact when f(x) is a trigonometric polynomial of degree at most n − 1 with period 
T = b − a . That is,

We showed in [5, Theorems 5.1 and 10.1] that the numerical quadrature formu-
las developed there for periodic Cauchy Principal Value integrals and hypersingular 
integrals, when applied to ∫= b

a
cot

�(x−t)

T
u(x) dx and ∫= b

a
csc2

�(x−t)

T
u(x) dx , respectively, 

(1.7)f (x) = G(t, x)u(x), G(t, x) ≡ cos
�(x−t)

T

sin3
�(x−t)

T

, u ∈ C∞[a, b].

∫=
T

0

G(t, x)em(x) dx = �mem(t), m = 0,±1,±2,… .

(2.1)Qn[f ] = h

[
1

2
f (a) +

n−1∑

j=1

f (a + jh) +
1

2
f (b)

]

; h =
b − a

n
, n integer,

(2.2)Qn[f ] = I[f ] ∀ f (x) =

n−1∑

m=−(n−1)

cme
i 2m�x∕T .
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also enjoy interesting exactness properties when u(x) is a trigonometric polynomial 
of period T = b − a.

Here we show that each of the numerical quadrature formulas T̂ (s)
n
[f ] given 

in (1.3)–(1.5) for supersingular integrals I[f] with T-periodic f(x), enjoy similar 
exactness properties as described in Theorems 2.2 and 2.3, which form two of the 
main results of this work.

Theorem 2.2 Let G(t, x) be as in (1.7). With T = b − a , let

Then the supersingular integral I[fm] = ∫= b

a
fm(x) dx satisfies

[Note that fm(x) is T-periodic and has a supersingularity of the form (x − t)−3 at 
x = t.]

Remark Observe that this theorem actually states that em(x) in (2.3) are actually 
eigenfunctions of the kernel G(t, x) = cos

�(x−t)

T
∕sin3

�(x−t)

T
 with corresponding eigen-

values �m = −i sgn(m)2Tm2 , m = 0,±1,±2,… , which we alluded to in Sect. 1.

Theorem  2.3 With em(x) and fm(x) as in Theorem  2.2, the quadrature formulas 
T̂ (s)
n
[fm] satisfy the following:

where Bm,n are defined as follows:

1. For m = 0 , we have B0,n = 0 . For arbitrary m, there holds B−m,n = −Bm,n.

2. Given m ≥ 0 , let k and r be (unique) integers, k ≥ 0 and 0 ≤ r ≤ n − 1 , such that 
m = kn + r . Then 

3. Thus, ||Bm,n
|| ≤ max0≤i≤n−1 ||Bi,n

|| independent of m, hence {Bm,n}
∞
m=−∞

 is a bounded 
sequence for each fixed n.

(2.3)em(x) = ei2m�x∕T , fm(x) = G(t, x)em(x), m = 0,±1,±2,… .

(2.4)I[fm] = −i sgn(m)2Tm2em(t), m = 0,±1,±2,… .

(2.5)T̂ (0)
n
[fm] = i

T

n

(

Bm,n −
2

3
mn2 −

4

3
m3

)

em(t),

(2.6)T̂ (1)
n
[fm] = i

T

n

(
[Bm,2n − Bm,n] − 2mn2

)
em(t),

(2.7)T̂ (2)
n
[fm] = i

T

n

(
2[Bm,2n − Bm,n] −

1

2
[Bm,4n − Bm,2n]

)
em(t),

(2.8)Bm,n = Bkn+r,n = Br,n =
2

3
rn2 − 2r2n +

4

3
r3.
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Theorem 2.4 All three quadrature formulas T̂ (s)
n
[f ] possess the exactness property 

that

hence that

We provide the proofs of these theorems in the next two sections.

3  Proof of Theorem 2.2

We start by noting that

Making the variable transformation y = 2�(x − t)∕T  in the integral inside the square 
brackets, and using the fact that the transformed integrand is 2�-periodic, we obtain

Next,

and since ∫= �

−�
[cos(

1

2
y)∕sin3(

1

2
y)] cos(my) dy = 0 due to its integrand being odd, it 

follows that

Therefore, it is sufficient to study Am only for nonnegative m, and this is what we do 
in the sequel.

Now,

(2.9)T̂ (s)
n
[fm] = I[fm], m = 0,±1,… ,±(n − 1),

(2.10)T̂ (s)
n
[f ] = I[f ], f (x) =

cos
�(x−t)

T

sin3
�(x−t)

T

u(x) ∀ u(x) =

n−1∑

m=−(n−1)

cme
i 2m�x∕T .

I[fm] =

[

∫=
b

a

cos
�(x−t)

T

sin3
�(x−t)

T

ei 2m�(x−t)∕Tdx

]

ei 2m�t∕T .

(3.1)I[fm] =
T

2�
Ame

i 2m�t∕T , Am = ∫=
�

−�

cos(
1

2
y)

sin3(
1

2
y)

eimy dy.

Am = ∫=
�

−�

cos(
1

2
y)

sin3(
1

2
y)

cos(my) dy + i∫=
�

−�

cos(
1

2
y)

sin3(
1

2
y)

sin(my) dy,

(3.2)Am = i∫=
�

−�

cos(
1

2
y)

sin3(
1

2
y)

sin(my) dy ⇒ A0 = 0, A−m = −Am.

sin[(m + 1)y] + sin[(m − 1)y] = 2 sin(my) cos y

= 2
[
1 − 2 sin2

(
1

2
y
)]

sin(my),
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from which, by multiplying by cos( 1
2
y)∕ sin3(

1

2
y) , we obtain the identity

Upon integrating both sides of this identity over (−�,�) and invoking (3.2), we 
obtain

[Note that the integral on the right-hand side of (3.4) is defined in the regular sense.] 
By making the variable transformation y = 2z in this integral, and invoking [2, p. 
391, formula 3.612(7)], we obtain

Substituting this in (3.4), we obtain the following linear nonhomogeneous three-
term recursion relation for the Am:

It is easy to see that the general solution of this recursion relation for Am is of the 
form

First, A0 = 0 by (3.2); this gives � = 0 . Next, letting m = 1 in the integral represen-
tation of Am in (3.2), and simplifying the integrand, we obtain

which, by the fact that (see [5, Appendix A], for example) ∫=�

−�
csc2(

1

2
y) dy = 0, 

gives A1 = −4�i, which in turn implies � = 0 . Consequently, taking into account 
that A−m = −Am , we have

which, upon substituting into (3.1), gives (2.4).

(3.3)

cos
(

1

2
y
)

sin3
(

1

2
y
)
(
sin[(m + 1)y] − 2 sin(my) + sin[(m − 1)y]

)

= −4 cot
(

1

2
y
)
sin(my).

(3.4)Am+1 − 2Am + Am−1 = −4i∫
�

−�

cot(
1

2
y) sin(my) dy.

∫
�

−�

cot(
1

2
y) sin(my) dy = 4∫

�∕2

0

cos z
sin(2mz)

sin z
dz = 2�, m = 1, 2,… .

Am+1 − 2Am + Am−1 = −8�i, m = 1, 2,… .

Am = � + �m − i4�m2, � and � constants to be determined.

A1 = i∫=
�

−�

cos(
1

2
y)

sin3(
1

2
y)

sin y dy = 2i∫=
�

−�

[
1

sin2(
1

2
y)

− 1

]

dy,

Am = −i sgn(m) 4�m2, m = 0,±1,±2,… ,
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4  Proofs of Theorems  2.3 and 2.4

4.1  Preliminaries

By the fact that g(x) = (x − t)3f (x) in (1.1), we realize that we must first address the 
issue of determining g(x) and its first three derivatives at x = t when f(x) is of the 
form,

We achieve this by expanding g(x) in a Taylor series about x = t . We start by real-
izing that

Using this in (4.1) and also expanding u(x) about x = t , we obtain

which implies that

Next, letting

we rewrite (1.3)–(1.5) in the form (see [6, Section 4])

This suggests that we can unify and shorten the proofs for the three T̂ (s)
n
[fm] since we 

only have to analyze T̃n[fm] in detail. We do this in Theorem 4.1 that follows.

(4.1)f (x) =
cos

�(x−t)

T

sin3
�(x−t)

T

u(x) ⇒ g(x) = (x − t)3
cos

�(x−t)

T

sin3
�(x−t)

T

u(x).

cos z

sin3 z
=

1

z3

1 −
1

2
z2 + O

(
z4
)

1 −
1

2
z2 + O

(
z4
) =

1

z3

[
1 + O

(
z4
)]

as z → 0.

g(x) =

(
T

�

)3
[

3∑

i=0

u(i)(t)

i!
(x − t)i + O

(
(x − t)4

)
]

as x → t,

(4.2)g(i)(t) =

(
T

�

)3

u(i)(t), i = 0, 1, 2, 3.

(4.3)T̃n[f ] = h

n−1∑

j=1

f (t + jh),

(4.4)T̂ (0)
n
[f ] = T̃n[f ] −

�2

3
g�(t) h−1 +

1

6
g���(t) h,

(4.5)T̂ (1)
n
[f ] = (2T̃2n[f ] − T̃n[f ]) − �2 g�(t) h−1,

(4.6)T̂ (2)
n
[f ] = 2(2T̃2n[f ] − T̃n[f ]) − (2T̃4n[f ] − T̃2n[f ]).
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4.2  Analysis of T̃n[fm]

Theorem 4.1 T̃n[fm] satisfies

where Bm,n has the following properties:

where k and r are unique integers for which ||m|| = kn + r.

Proof We start by observing that, by (4.3),

Now

Because yn−j = 2� − yj , j = 1,… , n − 1, we have

and since 
∑n−1

j=1
wn−j =

∑n−1

j=1
wj , we have

As a result,

(4.7)T̃n[fm] =

(

i
T

n
Bm,n

)

em(t), m = 0,±1,±2,… ,

(4.8)B−m,n = −Bm,n ∀m ⇒ B0,n = 0,

(4.9)Bm,n =
2

3
mn2 − 2m2n +

4

3
m3, m = 1,… n − 1,

(4.10)Bm,n = sgn(m)Bkn+r,n = sgn(m)Br,n ∀m; k ≥ 0, r ∈ {0, 1,… , n − 1},

(4.11)

T̃n[fm] = i
T

n
Bm,n, Bm,n = −i

n−1∑

j=1

cos
(

1

2
yj

)

sin3
(

1

2
yj

) eimyj , yj =
2j�

n
, j = 1, 2,… .

Bm,n = −i

n−1∑

j=1

cos
(

1

2
yj

)

sin3
(

1

2
yj

) cos(myj) +

n−1∑

j=1

cos
(

1

2
yj

)

sin3
(

1

2
yj

) sin(myj).

cos
(

1

2
yn−j

)

sin3
(

1

2
yn−j

) cos(myn−j) = −
cos

(
1

2
yj

)

sin3
(

1

2
yj

) cos(myj), j = 1,… , n − 1,

n−1∑

j=1

cos
(

1

2
yj

)

sin3
(

1

2
yj

) cos(myj) = 0.
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hence (4.8) is proved. Therefore, it is sufficient to study Bm,n only for positive m.
Next, for every m ≥ 0 , there exist unique integers k and r, k ≥ 0 and 0 ≤ r ≤ n − 1 , 

such that m = nk + r . (Thus, k = 0 and r = m for 0 ≤ m ≤ n − 1 , while k = 1 and 
r = 0 for m = n .) By the fact that

we realize that

which, upon combining with (4.12), results in (4.10). Thus, we need to concern our-
selves only with 1 ≤ m ≤ n − 1 since k = 0 and r = m in such a case, and this is what 
we do in the sequel.

We start by deriving a recursion relation for the Bm,n analogous to that for the Am 
given in (3.4). Replacing y in (3.3) by yj and summing over j, we obtain

To determine Cm,n , we proceed as follows: First,

Dividing both sides of this identity by sin( 1
2
y) , replacing y by yj , and summing over 

j, we obtain

Now,

since ei2m�∕n ≠ 1 for m = 1,… , n − 1. Upon also defining

(4.12)Bm,n =

n−1∑

j=1

cos
(

1

2
yj

)

sin3
(

1

2
yj

) sin(myj) ⇒ B0,n = 0, B−m,n = −Bm,n,

sin[(kn + r)yj] = sin(2kj� + ryj) = sin(ryj), r = 0,… , n − 1,

(4.13)Bm,n = Bkn+r,n = Br,n when m ≥ 0,

(4.14)Bm+1,n − 2Bm,n + Bm−1,n = −4Cm,n, Cm,n =

n−1∑

j=1

cot
(

1

2
yj

)
sin(myj).

(4.15)sin
(
my ±

1

2
y
)
= sin(my) cos

(
1

2
y
)
± cos(my) sin

(
1

2
y
)
.

(4.16)
n−1∑

j=1

sin
(
myj ±

1

2
yj

)

sin
(

1

2
yj

) = Cm,n ±

n−1∑

j=1

cos(myj).

n−1∑

j=1

cos(myj) = Re

n−1∑

j=1

eimyj = Re

n−1∑

j=1

(
ei2m�∕n

)j
= −1, m = 1,… , n − 1,

Dk,n =

n−1∑

j=1

sin
(
kyj −

1

2
yj

)

sin
(

1

2
yj

) ,
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(4.16) gives the equalities

Eliminating Cm,n , we obtain

which, upon realizing that D1,n = n − 1 , gives

As a result, (4.14) becomes

It is easy to see that the general solution of this recursion relation for Bm,n is of the 
form

� and � being constants to be determined. They can be obtained by invoking the val-
ues of B1,n and B2,n.

We start with B1,n . Letting m = 1 in (4.12) and simplifying, we obtain

To determine Ln , we proceed as follows: We first express Ln in the form

Here we have invoked �n−j = −�j and 
∑n−1

j=1
wj =

∑n−1

j=1
wn−j . Now, �1,… , �n−1 are 

the points of extremum of the nth Chebyshev polynomial Tn(z) in (−1, 1) , hence the 
zeros of its derivative T �

n
(z) . Thus,

hence

Dm,n = Cm,n + 1 and Dm+1,n = Cm,n − 1, m = 1,… , n − 1.

Dm+1,n = Dm,n − 2, m = 1,… , n − 1,

Dm,n = n − 2m + 1 ⇒ Cm,n = n − 2m, m = 1,… , n − 1.

(4.17)Bm+1,n − 2Bm,n + Bm−1,n = 8m − 4n, m = 1,… , n − 1.

(4.18)Bm,n = � + �m − 2nm2 +
4

3
m3, m ≥ 1,

(4.19)

B1,n = 2

n−1∑

j=1

(
1

sin2
(

1

2
yj

) − 1

)

= 2(Ln − n + 1), Ln =

n−1∑

j=1

1

sin2
(

1

2
yj

) .

(4.20)

Ln =

n−1∑

j=1

1

1 − �2
j

=
1

2

n−1∑

j=1

(
1

1 − �j
+

1

1 + �j

)

=

n−1∑

j=1

1

1 − �j
, �j = cos

(
j�

n

)

.

T ��
n
(z)

T �
n
(z)

=

n−1∑

j=1

1

z − �j
,
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(See, [3, p. 38], for example.) Consequently,

As for B2,n , letting m = 1 in (4.17) and recalling that B0,n = 0 , we obtain

Substituting these values of B1,n and B2,n into (4.18) (with m = 1 and m = 2 there), 
we obtain � = 0 and � = 2n2∕3 , hence (4.9).   ◻

4.3  Completion of proofs

With Theorem 4.1 available, we can now complete the proof of Theorem 2.3. Since 
u(x) = em(x) when f (x) = fm(x) , from (4.1) and (4.2), we have

Substituting these in (4.4)–(4.6) and invoking also (4.7), we obtain (2.5)–(2.7). 
Finally, the expression given for Bm,n in (2.8) is simply that in (4.9) proved in Theo-
rem 4.1. This completes the proof of Theorem 2.3.

To complete the proof of Theorem  2.4, we only need to verify (2.9). We can 
achieve this by substituting (4.9) in (2.5)–(2.7) and comparing with (2.4). We leave 
the details to the reader.

5  Convergence property of the T̂ (s)
n [f ]

It is well known that the trapezoidal rule Qn[f ] in (2.1) converges exponentially in n 
when applied to regular integrals I[f ] = ∫ b

a
f (x) dx in case f(z), as a function of the 

complex variable z, is analytic in a strip of the z-plane containing the real axis and 
is (b − a)-periodic in this strip. The following theorem from [1], addresses this fully:

Theorem 5.1 Let f(z) be analytic and periodic with period T = b − a in the infinite 
strip D𝜎 = {z ∶ ||Im z|| < 𝜎} of the z-plane. Then

where

(4.21)Ln =
T ��
n
(1)

T �
n
(1)

=
n2 − 1

3
.

B1,n = 2

(
n2 − 1

3
− n + 1

)

.

B2,n = 2B1,n + 8 − 4n.

g�(t) =
T3

�3
e�
m
(t) = i 2

T2

�2
mem(t) and g���(t) =

T3

�3
e���
m
(t) = −i 8m3em(t).

(5.1)|
|Qn[f ] − I[f ]|| ≤ TM(�)

e−2n��∕T

1 − e−2n��∕T
∀� ∈ (0, �),
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We showed in [7, Theorem 9] and in [5, Theorems 6.1 and 6.2] that the numeri-
cal quadrature formulas developed in these papers for periodic Cauchy Principal 
Value integrals and hypersingular integrals, when applied to ∫− b

a
cot

�(x−t)

T
u(x) dx and 

∫= b

a
csc2

�(x−t)

T
u(x) dx , respectively, also enjoy similar convergence properties when f(z) 

is T-periodic and has poles of order one and two, respectively, at the points t + kT , 
k = 0,±1,±2,… , and is analytic in a strip of the z-plane containing the real axis.

Here we show that each of the numerical quadrature formulas T̂ (s)
n
[f ] given in 

(1.3)–(1.5) for supersingular integrals I[f] with T-periodic f(z) enjoys similar conver-
gence properties, as described in Theorem 5.2. The proof of this theorem is provided 
in Sect. 6.

Theorem 5.2 Let the function u(z) be analytic and periodic with period T = b − a 
in the infinite strip D𝜎 = {z ∶ ||Im z|| < 𝜎} of the z-plane, and let

Define E(s)
n
[f ] = T̂ (s)

n
[f ] − I[f ] , s = 0, 1, 2. Then

where

Here F1(z) is T-periodic and analytic in the strip D� and is given as

Remark It is easy to see that, for all practical purposes, all three errors E(s)
n
[f ] are 

O(e−2n��∕T ) as n → ∞ . Of course, this improves the convergence result in (1.6) sig-
nificantly for the supersingular integrals considered here.

6  Proof of Theorem 5.2

We start by observing that, with T̃n[f ] as in (4.3) and T̂ (0)
n
[f ] as in (4.4), we can reex-

press T̂ (1)
n
[f ] in (4.5) and T̂ (2)

n
[f ] in (4.6) as follows:

(5.2)M(�) = max
x∈ℝ

|
|f (x + i�)|| +max

x∈ℝ

|
|f (x − i�)||.

f (x) =
cos

�(x−t)

T

sin3
�(x−t)

T

u(x) and I[f ] = ∫=
b

a

f (x) dx.

(5.3)||E
(0)
n
[f ]|| ≤ TM(�)�n(�) ∀� ∈ (0, �),

(5.4)||E
(1)
n
[f ]|| ≤ TM(�)[�n(�) + 2�2n(�)] ∀� ∈ (0, �),

(5.5)||E
(2)
n
[f ]|| ≤ TM(�)[2�n(�) + 5�2n(�) + 2�4n(�)] ∀� ∈ (0, �).

(5.6)M(�) = max
x∈ℝ

|
|F1(x + i�)|| +max

x∈ℝ

|
|F1(x − i�)||, �n(�) =

e−2n��∕T

1 − e−2n��∕T
.

F1(z) = G(t, z)

[

u(z) − u(t) −
T

�
u�(t) tan

�(z − t)

T
−

T2

2�2
u��(t) sin2

�(z − t)

T

]

.
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As a result, we also have

Clearly, this will help us unify the treatments of all three T̂ (s)
n
[f ] , once we treat T̂ (0)

n
[f ].

Next, following [8], we let

and

Therefore,

Since U1(z) and U2(z) are both T-periodic, so are F1(z) and F2(z) . Expanding U2(z) 
about z = t in a Taylor series, it is easy to verify that

which implies that F1(z) has no singularities in the strip D� and that I[F1] is a regular 
integral, to which Theorem 5.1 applies.

Let us now study I[F2] and T̂ (0)
n
[F2] . We have

where by Theorems 2.2 and 2.3,

and since sin2 �(x−t)

T
=

1

4
[2e0(x) − e2(x)e−2(t) − e−2(x)e2(t)],

Next, it is known that

(6.1)T̂ (1)
n
[f ] = 2T̂

(0)

2n
[f ] − T̂ (0)

n
[f ],

(6.2)T̂ (2)
n
[f ] = −2T̂

(0)

4n
+ 5T̂

(0)

2n
[f ] − 2T̂ (0)

n
[f ].

(6.3)E(1)
n
[f ] = 2E

(0)

2n
[f ] − E(0)

n
[f ],

(6.4)E(2)
n
[f ] = −2E

(0)

4n
[f ] + 5E

(0)

2n
[f ] − 2E(0)

n
[f ].

u(z) = U1(z) + U2(z); U2(z) = u(t) +
T

�
u�(t) tan

�(z − t)

T
+

T2

2�2
u��(t) sin2

�(z − t)

T
,

f (z) = F1(z) + F2(z); F1(z) = G(t, z)U1(z), F2(z) = G(t, z)U2(z).

I[f ] = I[F1] + I[F2] and T̂ (0)
n
[f ] = T̂ (0)

n
[F1] + T̂ (0)

n
[F2].

(6.5)
U1(t) = U�

1
(t) = U��

1
(t) = 0, U���

1
(t) = u���(t) −

2�2

T2
u�(t)

⇒ F1(t) =
T3

6�3
U���

1
(t),

I[F2] = u(t)I1 +
T

�
u�(t)I2 +

T2

2�2
u��(t)I3,

I1 = I[G(t, ⋅)e0] = 0 = T̂ (0)
n
[G(t, ⋅)e0]

I3 = I
[
G(t, ⋅) sin2

�(⋅−t)

T

]
= 0 = T̂ (0)

n

[
G(t, ⋅) sin2

�(⋅−t)

T

]
∀ n ≥ 3.
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As for T̂ (0)
n
[G(t, ⋅) tan

�(⋅−t)

T
] , by (4.2)–(4.4) and (4.19)–(4.21), and by the fact that 

tan z = z +
1

3
z3 + O(z5),

We have thus shown that I[F2] = 0 = T̂ (0)
n
[F2]. We conclude that I[f ] = I[F1] and 

T̃ (0)
n
[f ] = T̃ (0)

n
[F1].

We now wish to show that T̂ (0)
n
[f ] = Qn[F1] , where Qn[F1] , the trapezoidal rule 

approximation for I[F1] , is given as

since F1(z) is T-periodic. Therefore, by (4.2)–(4.4) and (6.5),

Combining everything, we have shown that T̂ (0)
n
[f ] − I[f ] = Qn[F1] − I[F1]. We now 

complete the proof of (5.3) by applying Theorem 5.1 to I[F1]. The proofs of (5.4) 
and (5.5) are immediate.
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I2 = I[G(t, ⋅) tan
�(⋅−t)

T
] = ∫=

b

a

1

sin2
�(x−t)

T

dx = 0.

T̃ (0)
n

[
G(t, ⋅) tan

�(⋅−t)

T

]
=

T

n
Ln ⇒ T̂ (0)

n

[
G(t, ⋅) tan

�(⋅−t)

T

]
= 0.

Qn[F1] = h

n−1∑

j=0

F1(t + jh) = T̃ (0)
n
[F1] + hF1(t)

T̂ (0)
n
[F1] = Qn[F1] − hF1(t) +

T3

�3

(

−
�2

3
U�

1
(t)h−1 +

1

6
U���

1
(t)h

)

= Qn[F1].
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