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Abstract: The secant method is a very effective numerical procedure used for solving nonlinear
equations of the form f (x) = 0. In a recent work (A. Sidi, Generalization of the secant method for
nonlinear equations. Appl. Math. E-Notes, 8:115–123, 2008), we presented a generalization of the secant
method that uses only one evaluation of f (x) per iteration, and we provided a local convergence
theory for it that concerns real roots. For each integer k, this method generates a sequence {xn}
of approximations to a real root of f (x), where, for n ≥ k, xn+1 = xn − f (xn)/p′n,k(xn), pn,k(x)
being the polynomial of degree k that interpolates f (x) at xn, xn−1, . . . , xn−k, the order sk of this
method satisfying 1 < sk < 2. Clearly, when k = 1, this method reduces to the secant method
with s1 = (1 +

√
5)/2. In addition, s1 < s2 < s3 < · · · , such that limk→∞ sk = 2. In this note,

we study the application of this method to simple complex roots of a function f (z). We show that
the local convergence theory developed for real roots can be extended almost as is to complex
roots, provided suitable assumptions and justifications are made. We illustrate the theory with two
numerical examples.

Keywords: secant method; generalized secant method; complex roots

MSC: 65H05

1. Introduction

Let α be the solution to the equation f (x) = 0. An effective iterative method used
for solving this equation that makes direct use of f (x) (but no derivatives of f (x)) is the
secant method that is discussed in many books on numerical analysis. See, for example,
Atkinson [1], Dahlquist and Björck [2], Henrici [3], Ralston and Rabinowitz [4], and Stoer
and Bulirsch [5]. See also the recent note [6] by the author, in which the treatment of the
secant method and those of the Newton–Raphson, regula falsi, and Steffensen methods are
presented in a unified manner.

Recently, this method was generalized by the author in [7] as follows: Starting with
x0, x1, . . . , xk, k + 1 initial approximations to α, we generate a sequence of approximations
{xn}, via the recursion

xn+1 = xn −
f (xn)

p′n,k(xn)
, n = k, k + 1, . . . , (1)

p′n,k(x) being the derivative of the polynomial pn,k(x) that interpolates f (x) at the points
xn, xn−1, . . . , xn−k. (Thus, pn,k(x) is of degree k.) Clearly, the case k = 1 is simply the secant
method. In [7], we also showed that, provided x0, x1, . . . , xk are sufficiently close to α, the

method converges with order sk, that is, limn→∞
|xn+1 − α|
|xn − α|sk

= C 6= 0 for some constant C,

and that 1 < sk < 2. (We call sk the order of convergence of the method or the order of the
method for short.) Here sk is the only positive root of the polynomial sk+1 −∑k

i=0 si. We
also have that
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1 +
√

5
2

= s1 < s2 < s3 < · · · < 2; lim
k→∞

sk = 2.

Actually, rounded to four significant figures,

s1=̇1.618, s2=̇1.839, s3=̇1.928, s4=̇1.966, s5=̇1.984, s6=̇1.992, s7=̇1.996, etc.

Note that to compute xn+1 we need knowledge of only f (xn), f (xn−1), . . . , f (xn−k),
and because f (xn−1), . . . , f (xn−k) have already been computed, f (xn) is the only new
quantity to be computed. Thus, each step of the method requires f (x) to be computed only
once. From this, it follows that the efficiency index of this method is simply sk and that this
index approaches 2 by increasing k even moderately, as can be concluded from the values
of s1, . . . , s7 given above.

In this work, we consider the application of this method to simple complex roots of a
function f (z), where z is the complex variable. Let us denote a real or complex root of f (z)
by α again; that is, f (α) = 0 and f ′(α) 6= 0. Thus, starting with z0, z1, . . . , zk, k + 1 initial
approximations to α, we generate a sequence of approximations {zn} via the recursion

zn+1 = zn −
f (zn)

p′n,k(zn)
, n = k, k + 1, . . . , (2)

p′n,k(z) being the derivative of the polynomial pn,k(z) that interpolates f (z) at the points
zn, zn−1, . . . , zn−k. As in [7], we can use Newton’s interpolation formula to generate pn,k(z)
and p′n,k(z). Thus

pn,k(z) = f (zn) +
k

∑
i=1

f [zn, zn−1, . . . , zn−i]
i−1

∏
j=0

(z− zn−j) (3)

and

p′n,k(zn) = f [zn, zn−1] +
k

∑
i=2

f [zn, zn−1, . . . , zn−i]
i−1

∏
j=1

(zn − zn−j). (4)

Here, g[ζ0, ζ1, . . . , ζm] is the divided difference of order m of the function g(z) over the set
of points {ζ0, ζ1, . . . , ζm} and is a symmetric function of these points. For details, we refer
the reader to [7].

As proposed in [7], we generate the k + 1 initial approximations as follows: We choose
the approximations z0, z1 first. We then generate z2 by applying our method with k = 1
(that is, with the secant method). Next, we apply our method to z0, z1, z2 with k = 2 and
obtain z3, and so on, until we have generated all k + 1 initial approximations, via

zn+1 = zn −
f (zn)

p′n,n(zn)
, n = 1, 2, . . . , k− 1. (5)

Remark 1.

1. Instead of choosing z1 arbitrarily, we can generate it as z1 = z0 + f (z0) as suggested in Brin
[8], which is quite sensible since f (z) is small near the root α. We can also use the method of
Steffensen—which uses only f (z) and no derivatives of f (z)—to generate z1 from z0; thus,

z1 = z0 −
[ f (z0)]

2

f (z0 + f (z0))− f (z0)
.

2. It is clear that, in case f (z) takes on only real values along the Re z axis and we are looking for
nonreal roots of f (z), at least one of the initial approximations must be chosen to be nonreal.

3. We would like to mention that Kogan, Sapir, and Sapir [9] have proposed another gener-
alization of the secant method for simple real roots of nonlinear equations f (x) = 0 that
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resembles our method described in (1). In the notation of (1), this method produces a sequence
of approximations {xn} via

xn+1 = xn −
f (xn)

p′n,n(xn)
, n = 1, 2, . . . , (6)

starting with arbitrary x0 and x1, and it is of order 2. Note that, in (6), pn,n(x) interpolates
f (x) at the points x0, x1, . . . , xn, hence is of degree n, which is tending to infinity. In (1),
pn,k(x) is of degree k, which is fixed.

4. Yet another generalization of the secant method for finding simple real roots of f (x) was
recently given by Nijmeijer [10]. This method too requires no derivative information, requires
one evaluation of f (x) per iteration, and has the same order of convergence as our method. It
follows an idea of applying a convergence acceleration method, such as Aitken’s ∆2-process, to
approximations obtained from the secant method, as proposed by Han and Potra [11]. Because
Nijmeijer’s method is not based on polynomial interpolation, it is completely different from
our method, however. For Aitken’s ∆2-process, see [1–5]. See also [12] (Chapter 15) by the
author.

In the next section, we analyze the local convergence properties of the method as it is
applied to complex roots. We show that the analysis of [7] can be extended to the complex
case following some clever manipulation. We prove that the order sk of the method is
the same as that we discovered in the real case. In Section 3, we provide two numerical
examples to confirm the results of our convergence analysis.

2. Local Convergence Analysis

We now turn to the analysis of the sequence {zn}∞
n=0 that is generated via (2). Our

treatment covers all k ≥ 1.
In our analysis, we will make use of the Hermite-Genocchi formula that provides an

integral representation for divided differences (For a proof of this formula, see Atkinson [1],
for example). Even though this formula is usually stated for functions defined on real
intervals, it is easy to verify (see Filipsson [13], for example) that it also applies to functions
defined in the complex plane under proper assumptions. Thus, provided g(z) is analytic
on E, a bounded closed convex set in the complex plane, and provided ζ0, ζ1, . . . , ζm are in
E, there holds

g[ζ0, ζ1, . . . , ζm] =
∫
· · ·

∫
Sm

g(m)(t0ζ0 + t1ζ1 + · · ·+ tmζm) dt1 · · · dtm, t0 = 1−
m

∑
i=1

ti. (7)

Here Sm is the m-dimensional simplex defined as

Sm =

{
(t1, . . . , tm) ∈ Rm : ti ≥ 0, i = 1, . . . , m,

m

∑
i=1

ti ≤ 1
}

. (8)

We note that (7) holds whether the ζi are distinct or not. We also note that g[ζ0, ζ1, . . . , ζm] is
a symmetric and continuous function of its arguments.

By the conditions we have imposed on g(z), it is easy to see that the integrand
g(m)(∑m

i=0 tiζi) in (7) is always defined because ∑m
i=0 tiζi is in the set E and g(z) is analytic

on E. This is so because, by (7) and (8),

(t1, . . . , tm) ∈ Sm ⇒ ti ≥ 0, i = 0, 1, . . . , m, and
m

∑
i=0

ti = 1,

which implies that ∑m
i=0 tiζi is a convex combination of ζ0, ζ1, . . . , ζm hence is in the set

C = conv{ζ0, ζ1, . . . , ζm}, the convex hull of the points ζ0, ζ1, . . . , ζm, and C ⊆ E. Conse-
quently, taking moduli on both sides of (7), we obtain, for all ζi in E,
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∣∣g[ζ0, ζ1, . . . , ζm]
∣∣ ≤ ∫ · · · ∫

Sm

∣∣∣∣g(m)

( m

∑
i=0

tiζi

)∣∣∣∣ dt1 · · · dtm

≤ ‖g
(m)‖
m!

, ‖g(m)‖ = max
z∈E
|g(m)(z)|. (9)

In addition, since ∑m
i=0 ti = 1 in (7), as ζi → ζ̂ for all i = 0, 1, . . . , m, there hold ∑m

i=0 tiζi → ζ̂

and g(m)(∑m
i=0 tiζi)→ g(m)(ζ̂), and hence

lim
ζi→ζ̂

i=0,1,...,m

g[ζ0, ζ1, . . . , ζm] = g[ζ̂, ζ̂, . . . , ζ̂︸ ︷︷ ︸
m+1 times

] =
g(m)(ζ̂)

m!
. (10)

In (9) and (10), we have also invoked the fact that (see [14] (p. 346), for example)∫
· · ·

∫
Sm

dt1 · · · dtm =
1

m!
.

We will make use of these in the proof of our main theorem that follows. This theorem
and its proof are almost identical to that given in [7] once we take into account, where and
when needed, the fact that we are now working in the complex plane. For convenience, we
provide all the details of the proof.

Theorem 1. Let α be a simple root of f (z), that is, f (α) = 0, but f ′(α) 6= 0. Let Br be the closed
disk of radius r containing α as its center, that is,

Br = {z ∈ C : |z− α| ≤ r}. (11)

Let f (z) be analytic on Br. Choose a positive integer k and let z0, z1, . . . , zk be distinct initial
approximations to α. Generate zk+1, zk+2, . . . via

zn+1 = zn −
f (zn)

p′n,k(zn)
, n = k, k + 1, . . . , (12)

where pn,k(z) is the polynomial of interpolation to f (z) at the points zn, zn−1, . . . , zn−k. Then,
provided z0, z1, . . . , zk are in Br and sufficiently close to α, we have the following cases:

1. If f (k+1)(α) 6= 0, the sequence {zn} converges to α, and

lim
n→∞

εn+1

∏k
i=0 εn−i

=
(−1)k+1

(k + 1)!
f (k+1)(α)

f ′(α)
≡ L; εn = zn − α ∀ n. (13)

The order of convergence is sk, 1 < sk < 2, where sk is the only positive root of the polynomial
gk(s) = sk+1 −∑k

i=0 si and satisfies

2− 2−k−1e < sk < 2− 2−k−1 for k ≥ 2; sk < sk+1; lim
k→∞

sk = 2, (14)

e being the base of natural logarithms, and

lim
n→∞

|εn+1|
|εn|sk

= |L|(sk−1)/k, (15)

which also implies that

sk = lim
n→∞

log |εn+1/εn|
log |εn/εn−1|

. (16)
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2. If f (z) is a polynomial of degree at most k, the sequence {zn} converges to α, and

lim
n→∞

εn+1

ε2
n

=
f ′′(α)

2 f ′(α)
; εn = zn − α ∀ n. (17)

Thus, {zn} converges with order 2 if f ′′(α) 6= 0, and with order greater than 2 if f ′′(α) = 0.

Proof. We start by deriving a closed-form expression for the error in zn+1. Subtracting α
from both sides of (12), and noting that

f (zn) = f (zn)− f (α) = f [zn, α](zn − α),

we have

zn+1 − α =

(
1− f [zn, α]

p′n,k(zn)

)
(zn − α) =

p′n,k(zn)− f [zn, α]

p′n,k(zn)
(zn − α). (18)

We now note that

p′n,k(zn)− f [zn, α] =
{

p′n,k(zn)− f ′(zn)
}
+
{

f ′(zn)− f [zn, α]
}

, (19)

and that

f ′(zn)− p′n,k(zn) = f [zn, zn, zn−1, . . . , zn−k]
k

∏
i=1

(zn − zn−i) (20)

and
f ′(zn)− f [zn, α] = f [zn, zn]− f [zn, α] = f [zn, zn, α](zn − α). (21)

Note that (20) can be obtained by starting with the divided difference representation
of f (z)− pn,k(z), namely, f (z)− pn,k(z) = f [z, zn, zn−1, . . . , zn−k]∏k

i=0(z− zn−i), and by
computing limz→zn [ f (z)− pn,k(z)]/ ∏k

i=0(z− zn−i) via L’Hôpital’s rule.
For simplicity of notation, let

− f [zn, zn, zn−1, . . . , zn−k] = D̂n and f [zn, zn, α] = Ên, (22)

and rewrite (19) and (20) as

p′n,k(zn)− f [zn, α] = D̂n

k

∏
i=1

(εn − εn−i) + Ênεn, (23)

p′n,k(zn) = f ′(zn) + D̂n

k

∏
i=1

(εn − εn−i). (24)

Substituting these into (18), we finally obtain

εn+1 = Cnεn; Cn ≡
p′n,k(zn)− f [zn, α]

p′n,k(zn)
=

D̂n ∏k
i=1(εn − εn−i) + Ênεn

f ′(zn) + D̂n ∏k
i=1(εn − εn−i)

. (25)

We now prove that convergence takes place. First, let us assume without loss of
generality that f ′(z) 6= 0 for all z ∈ Br, and set m1 = minz∈Br | f ′(z)| > 0. (This is
possible since α ∈ Br and f ′(α) 6= 0, and we can choose r as small as we wish to also
guarantee m1 > 0.) Next, let Ms = maxz∈Br | f (s)(z)|/s!, s = 1, 2, . . . . Thus, assuming that
{zn, zn−1, . . . , zn−k} ⊂ Br and noting that Br is a convex set, we have by (9) that

|D̂n| ≤ Mk+1, |Ên| ≤ M2, because {α, zn, zn−1, . . . , zn−k} ⊂ Br.
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Next, choose the ball Bt/2 sufficiently small (with t/2 ≤ r) to ensure that m1 >
2Mk+1tk + M2t/2. It can now be verified that, provided zn, zn−1, . . . , zn−k are all in Bt/2,
there holds

|Cn| ≤
Mk+1 ∏k

i=1 |εn − εn−i|+ M2|εn|
m1 −Mk+1 ∏k

i=1 |εn − εn−i|

≤ Mk+1 ∏k
i=1(|εn|+ |εn−i)|+ M2|εn|

m1 −Mk+1 ∏k
i=1(|εn|+ |εn−i|)

≤ C,

where

C ≡ Mk+1tk + M2t/2
m1 −Mk+1tk < 1.

Consequently, by (25), |εn+1| ≤ C|εn| < |εn|, which implies that zn+1 ∈ Bt/2, just like
zn, zn−1, . . . , zn−k. Therefore, if z0, z1, . . . , zk are chosen in Bt/2, then |Cn| ≤ C < 1 for all
n ≥ k, hence {zn} ⊂ Bt/2 and limn→∞ zn = α.

As for (13) when f (k+1)(α) 6= 0, we proceed as follows: By the fact that limn→∞ zn = α,
we first note that, by (20) and (21),

lim
n→∞

p′n,k(zn) = f ′(α) = lim
n→∞

f [zn, α], (26)

and thus limn→∞ Cn = 0. This means that limn→∞(εn+1/εn) = 0 and, equivalently, that
{zn} converges with order greater than 1. As a result,

lim
n→∞

(εn/εn−i) = 0 for all i ≥ 1,

and

εn/εn−i = o(εn/εn−j) as n→ ∞, for j < i.

Consequently, expanding in (25) the product ∏k
i=1(εn − εn−i), we have

k

∏
i=1

(εn − εn−i) =
k

∏
i=1

(
− εn−i[1− εn/εn−i]

)

= (−1)k
( k

∏
i=1

εn−i

)
[1 + O(εn/εn−1)] as n→ ∞. (27)

Substituting (27) into (25), and defining

Dn =
D̂n

p′n,k(zn)
, En =

Ên

p′n,k(zn)
, (28)

we obtain

εn+1 = (−1)kDn

( k

∏
i=0

εn−i

)
[1 + O(εn/εn−1)] + Enε2

n as n→ ∞. (29)

Dividing both sides of (29) by ∏k
i=0 εn−i, and defining

σn =
εn+1

∏k
i=0 εn−i

, (30)

we have
σn = (−1)kDn[1 + O(εn/εn−1)] + Enσn−1εn−k−1 as n→ ∞. (31)
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Now, by (10), (22), and (26),

lim
n→∞

Dn = − 1
(k + 1)!

f (k+1)(α)

f ′(α)
, lim

n→∞
En =

f (2)(α)
2 f ′(α)

. (32)

Because limn→∞ Dn and limn→∞ En are finite, and because limn→∞(εn/εn−1) = 0 and
limn→∞ εn−k−1 = 0, it follows that there exist a positive integer N and positive constants
β < 1 and D, with |Enεn−k−1| ≤ β when n > N, for which (31) gives

|σn| ≤ D + β|σn−1| for all n > N. (33)

Using (33), it is easy to show that

|σN+s| ≤ D
1− βs

1− β
+ βs|σN |, s = 1, 2, . . . ,

which, by the fact that β < 1, implies that {σn} is a bounded sequence. Making use of this
fact, we have limn→∞ Enσn−1εn−k−1 = 0. Substituting this into (31), and invoking (32), we
next obtain limn→∞ σn = (−1)k limn→∞ Dn = L, which is precisely (13).

That sk, the order of the method, as defined in the statement of the theorem, satisfies
(14) and (15) follows from Traub [15] (Chapter 3). We provide a simplified treatment of this
topic in Appendix A.

This completes the proof of part 1 of the theorem.
When f (z) is a polynomial of degree at most k, we first observe that f (k+1)(z) = 0

for all z, which implies that pn,k(z) = f (z) for all z, hence also p′n,k(z) = f ′(z) for all
z. Therefore, we have that p′n,k(zn) = f ′(zn) in the recursion of (12). Consequently,
(12) becomes

zn+1 = zn −
f (zn)

f ′(zn)
, n = k, k + 1, . . . ,

which is the recursion for the Newton–Raphson method. Thus, (17) follows. This completes
the proof of part 2 of the theorem.

3. Numerical Examples

In this section, we present two numerical examples that we treated with our method.
Our computations were done in quadruple-precision arithmetic (approximately 35-decimal-
digit accuracy). Note that in order to verify the theoretical results concerning iterative
methods with order greater than unity, we need to use computer arithmetic of high preci-
sion (preferably, of variable precision, if available) because the number of correct significant
decimal digits in the zn increases dramatically from one iteration to the next as we are
approaching the solution.

In both examples below, we take k = 2. We choose z0 and z1 and compute z2 using
one step of the secant method, namely,

z2 = z1 −
f (z1)

f [z0, z1]
. (34)

Following that, we compute z3, z4, . . . , via

zn+1 = zn −
f (zn)

f [zn, zn−1] + f [zn, zn−1, zn−2](zn − zn−1)
, n = 2, 3, . . . . (35)

In our examples, we have carried out our computations for several sets of z0, z1, and we
have observed essentially the same behavior that we observe in Tables 1 and 2.
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Example 1. Consider f (z) = 0, where f (z) = z3 − 8, whose solutions are αr = 2ei2πr/3,
r = 0, 1, 2. We would like to obtain the root α1 = 2ei2π/3 = −1 + i

√
3. We chose z0 = 2i and

z1 = −2 + 2i. The results of our computations are given in Table 1.

Table 1. Results obtained by applying the generalized secant method with k = 2, as shown in (34)
and (35), to the equation z3 − 8 = 0, to compute the root α1 = −1 + i

√
3. The entries denoted “**”

mean that the limit of the extended-precision arithmetic has been reached.

n |εn|
εn+1

εnεn−1εn−2

log |εn+1/εn|
log |εn/εn−1|

0 1.035D + 00 - -
1 1.035D + 00 - -
2 4.808D− 01 −8.972D− 02 + i 1.015D− 01 2.516
3 6.979D− 02 1.224D− 01 − i 2.727D− 02 1.437
4 4.355D− 03 1.009D− 01 − i 4.079D− 02 2.023
5 1.591D− 05 4.561D− 02 − i 9.794D− 02 1.839
6 5.223D− 10 3.793D− 02 − i 7.268D− 02 1.839
7 2.967D− 18 3.741D− 02 − i 7.579D− 02 1.838
8 2.083D− 33 ** **
9 0.000D + 00 ** **

From (13) and (16) in Theorem 1, we should have

lim
n→∞

εn+1

εnεn−1εn−2
=

(−1)3

3!
f ′′′(α1)

f ′(α1)
=

1
24

(1− i
√

3) = 0.04166 · · · − i 0.07216 · · ·

and

lim
n→∞

log |εn+1/εn|
log |εn/εn−1|

= s2 = 1.83928 · · · ,

and these seem to be confirmed in Table 1. Furthermore, in infinite-precision arithmetic, z9 should
have close to 60 correct significant figures; we do not see this in Table 1 due to the fact that the
arithmetic we have used to generate Table 1 can provide an accuracy of at most 35 digits.

Example 2. Consider f (z) = 0, where f (z) = sin(iz)− cos z. f (z) has infinitely many roots
αr = (1− i)(π/4 + rπ), r = 0,±1,±2, . . .. We would like to obtain the root α0 = (1− i)π/4.
We chose z0 = 1.5− i1.3 and z1 = 0.6− i0.5. The results of our computations are given in Table 2.

Table 2. Results obtained by applying the generalized secant method with k = 2, as shown in
(34) and (35), to the equation sin(iz)− cos z = 0, to compute the root α0 = (1− i)π/4. The entries
denoted “**” mean that the limit of the extended-precision arithmetic has been reached.

n |εn|
εn+1

εnεn−1εn−2

log |εn+1/εn|
log |εn/εn−1|

0 6.608D− 01 - -
1 3.403D− 01 - -
2 1.341D− 01 3.163D− 01 + i 1.397D− 01 2.743
3 1.043D− 02 1.466D− 01 − i 1.846D− 01 1.774
4 1.122D− 04 −2.943D− 03 − i 1.117D− 01 1.934
5 1.755D− 08 9.223D− 03 − i 1.614D− 01 1.766
6 3.320D− 15 −7.686D− 04 − i 1.658D− 01 1.857
7 1.084D− 27 ** **
8 9.630D− 35 ** **

From (13) and (16) in Theorem 1, we should have

lim
n→∞

εn+1

εnεn−1εn−2
=

(−1)3

3!
f ′′′(α1)

f ′(α1)
= − i

6
= −i 0.16666 · · ·
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and

lim
n→∞

log |εn+1/εn|
log |εn/εn−1|

= s2 = 1.83928 · · · ,

and these seem to be confirmed in Table 2. Furthermore, in infinite-precision arithmetic, z8 should
have close to 50 correct significant figures; we do not see this in Table 2 due to the fact that the
arithmetic we have used to generate Table 2 can provide an accuracy of at most 35 digits.

Remark 2. In relation to the examples we have just presented, we would like to discuss the issue
of estimating the relative errors |εn/α| in the zn. This should help the reader when studying the
numerical results included in Tables 1 and 2. Starting with (13) and (15), we first note that, for all
large n,

|εn+1| ≈ |L|(sk−1)/k|εn|sk .

Therefore, assuming also that α 6= 0, we have

|εn+1/α| ≈ D|εn/α|sk , D =
(
|L|1/k|α|

)sk−1.

Now, if zn has q > 0 correct significant figures, we have |εn/α| = O(10−q). If, in addition,
D = O(10r) for some r, then we will have

|εn+1/α| ≈ O(10r−qsk ).

For simplicity, let us consider the case r = 0, which is practically what we have in the two examples
we have treated. Then zn+1 has approximately qsk correct significant decimal digits. That is, if zn
has q correct significant decimal digits, then, due to the fact that sk > 1, zn+1 will have sk times as
many correct significant decimal digits as zn.

Funding: This research received no external funding.

Acknowledgments: The author would like to thank Tamara Kogan for drawing his attention to the
paper [9] mentioned in the Introduction.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Before ending, we would like to provide a brief treatment of the order of convergence
of our method stated in (14) and (15) by considering

εn+1

∏k
i=0 εn−i

= L ∀ n ⇔ εn+1 = L
k

∏
i=0

εn−i ∀ n,

instead of (13). We will show that |εn+1| = Q|εn|sk is possible if sk is a solution to the
polynomial equation sk+1 = ∑k

i=0 si and Q = |L|(sk−1)/k. (For a more detailed treatment,
we refer the reader to [15] (Section 3.3)).

We start by expressing all |εn−i| in terms of |εn|. We have

|εn−i| =
|εn|1/si

k

Qmi
, mi =

i

∑
j=1

1

sj
k

, i = 1, 2, . . . .

Substituting this into |εn+1| = |L|∏k
i=0 |εn−i|, we obtain

Q|εn|sk = |L| |εn|
k

∏
i=1

|εn|1/si
k

Qmi
=
|L|
QM |εn|ρ; ρ =

k

∑
i=0

1
si

k
, M =

k

∑
i=1

mi.

Of course, this is possible when sk = ρ and QM+1 = |L|.
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Now, the requirement that sk = ρ is the same as sk+1
k = ∑k

i=0 si
k, which implies that

the order sk should be a root of the polynomial

gk(s) = sk+1 −
k

∑
i=0

si =
sk+2 − 2sk+1 + 1

s− 1
.

By Descartes’ rule of signs, gk(s) has only one positive root, which we denote by s̃. Since
gk(1) = −k < 0 and gk(2) = 1 > 0, we have that 1 < s̃ < 2. The remaining k roots of gk(s)
are the zeroes of the polynomial g̃(s) = gk(s)/(s− s̃) = ∑k

j=0 cjsj, the cj satisfying s̃c0 = 1
and s̃cj − cj−1 = 1, j = 1, . . . , k, hence

cj =
1
s̃

j

∑
i=0

1
s̃i , j = 0, 1, . . . , k ⇒ 0 < c0 < c1 · · · < ck−1 < ck = 1.

Therefore, by the Eneström–Kakeya theorem, all k roots of g̃(s) are in the unit disk. We
thus conclude that s̃ = sk since we already know that the order of our method is greater
than 1. (For Descartes’ rule of signs and the Eneström–Kakeya theorem, see, for example,
Henrici [16] (pp. 442, 462)).

Next, we note that gk(s) = sgk−1(s) − 1. Therefore, gk−1(sk−1) = 0 implies
gk(sk−1) = −1 < 0, which, along with gk(2) = 1 > 0, implies that sk−1 < sk < 2.
Therefore, the sequence {sk}∞

k=1 is monotonically increasing and is bounded from above by
2. Consequently, limk→∞ sk = ŝ exists and ŝ ≤ 2. Now,

gk(sk) = 0 ⇒ sk+2
k − 2sk+1

k + 1 = 0 ⇒ s2
k − 2sk = −

1
sk

k
.

Upon letting k→ ∞ on both sides, we obtain ŝ2 − 2ŝ = 0, which gives ŝ = 2.
The expression given for M can be simplified considerably as we show next. First, it

is easy to verify that

M =
k

∑
i=1

k− i + 1
si

k
=

1
sk

k

k

∑
i=1

isi−1
k .

Next,

sk
k M =

(
d
ds

k

∑
i=0

si
)∣∣∣∣

s=sk

=

(
d
ds

sk+1 − 1
s− 1

)∣∣∣∣
s=sk

=
(k + 1)sk(s− 1)− (sk+1 − 1)

(s− 1)2

∣∣∣∣
s=sk

.

By sk+1 − 1 = (s− 1)∑k
i=0 si, this becomes

sk
k M =

(k + 1)sk −∑k
i=0 si

s− 1

∣∣∣∣
s=sk

=
ksk

k −∑k−1
i=0 si

k
sk − 1

.

Now, by the fact that gk(sk) = 0, we have ∑k−1
i=0 si

k = sk+1
k − sk

k. Consequently,

M =
k− (sk − 1)

sk − 1
⇒ M + 1 =

k
sk − 1

,

which is the required result.
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