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a b s t r a c t

We survey some polynomials {Pn} arising from convergence acceleration, and numerical
integration, that satisfy "biorthogonality" conditions such as∫ b

a
Pn (x) φj (x) w (x) dx = 0,

for appropriate functions
{
φj

}
and weights w. One example is φj (x) = (log x)j , 0 ≤ j ≤

n − 1 on [a, b] = [0, 1]. We discuss identities, asymptotics, positive quadratures, and
zero distributions. We also list some open questions.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In the traditional sense, biorthogonal polynomials involve two sequences of polynomials {pn} and {qn}, as well as a
inear functional L for which

L
(
pjqk

)
= δjk.

s C. Brezinski notes [1, p. 104], in some form the idea goes back at least to Didon in 1869. However, in recent years, the
otion of biorthogonal polynomials has been used in a much more general sense. Thus the term has been used [2] for
olynomials that are orthogonal to some measures

{
µj

}n
j=1 :∫

pndµj = 0, 1 ≤ j ≤ n, (1.1)

r more specially to some functions. In the theory of random matrices [3], they have been defined by conditions such as∫∫
pj (x) qk (y) w (x, y) dx dy = 0, j ̸= k,

r by Cauchy (possibly singular) conditions such as [4,5]∫∫
pj (x) qk (y)

x ± y
dσ1 (x) dσ2 (y) = 0, j ̸= k,

where σ1 and σ2 are measures.
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The most general form we shall discuss in this paper is that defined by (1.1). However, much of our discussion focuses
n more special polynomials, that have their origin in the work of the second author on convergence acceleration and
umerical integration. Brezinski’s book [1] is an excellent source for applications of various forms of biorthogonality in
umerical analysis. A quite general setting for biorthogonal polynomials has also been studied by Iserles, Nørsett, and Saff
n a series of papers [2,6,7], with interesting applications to transformations that preserve properties of zeros, such as all
eing real.
The link between polynomials with special properties and numerical integration is best known in Gauss quadrature:

f w is a positive weight function on an interval [a, b], then the Gauss quadrature rule asserts that∫ b

a
Pw =

n∑
j=1

wjP
(
xj
)
, (1.2)

or all polynomials P of degree ≤ 2n − 1. Here all
{
wj

}
are positive, while the quadrature points

{
xj
}
are distinct and lie

n (a, b). Of course, they are the zeros of the orthogonal polynomial pn of degree n, satisfying∫ b

a
pn (x) xjw (x) dx = 0, 0 ≤ j ≤ n − 1. (1.3)

uadrature formulae (1.2) that integrate polynomials P of degree ≤ n − 1, are called interpolatory, while precisions in
etween n−1 and 2n−1 have also been widely studied [8–11]. In all cases, the polynomial whose zeros are the quadrature
oints is a key tool.
The second author introduced quadrature formulae [12,13] that have their origins in convergence acceleration. The

uadrature points are zeros of polynomials satisfying, for example,∫ 1

0
pn (x) (log x)j dx = 0, j < n.

n Section 2 we shall survey some polynomials that are orthogonal to powers of a fixed function, such as log x. In Section 3,
e discuss polynomials that are orthogonal to exponentials or measures. In Section 4 we discuss positivity of the weights

n interpolatory quadrature formulae generated by these polynomials. In Section 5, we discuss the use of potential theory
o study asymptotics and zero distributions.

. Polynomials orthogonal to powers of a fixed function

In investigating the T-transformation of Levin [14] (see also [12,13], [15, Chapter 19]) for accelerating convergence of
equences, and for related rational interpolation and interpolatory quadrature rules, the second author studied [16,17]
hat are now called the Sidi polynomials

Dn (z) =

n∑
j=0

(
n
j

)
(j + 1)n (−z)j . (2.1)

hey are uniquely determined, up to a multiplicative constant, by the orthogonality conditions∫ 1

0
Dn (x) (log x)j dx = 0, 0 ≤ j ≤ n − 1. (2.2)

stablishing the orthogonality relation from the definition (2.1) is straightforward. The orthogonality conditions imply
hat Dn has n distinct zeros in (0, 1). Here are some further elementary properties, which can be proved by integration
y parts, and Cauchy’s integral formula:

roposition 2.1. (a) There is a Rodrigues type formula

ezDn
(
ez

)
=

(
d
dz

)n [
ez

(
1 − ez

)n]
.

b) There is a contour integral representation

ezDn
(
ez

)
=

n!
2π i

∫
C

et

t − z

(
1 − et

t − z

)n

dt

here C is a simple closed curve encircling z.

The asymptotic behavior of these polynomials was investigated in [18], using the method of steepest descent. Let

A =

{
z = x + iy : x ≥ 0, y ∈ (−π, π) and 0 < |z − 1|2 <

(
y

sin y

)2
}
.

2
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It is an unbounded doubly connected region inside the strip |Im z| < π , Re z > 0. Let

Ψ (z) =
1

ez (1 − z)
, z ∈ A.

It is shown in [18] that Ψ maps A conformally onto C\[0, 1]. We let Φ = Ψ [−1] denote the inverse conformal map of
C\[0, 1] onto A. We also need the function

h (b) =
sin b
b

eb cot b−1, b ∈ [0, π ] .

It was shown in [18] that h decreases from h (0) = 1 to h (π) = 0. Let h[−1]
: [0, 1] → [0, π ] denote the inverse function,

and

g (x) = 1 − h[−1] (x) cot
(
h[−1] (x)

)
.

The asymptotics established there were

Theorem 2.2. As n → ∞,
(a) Uniformly for z in compact subsets of C\[0, 1],

Dn (z) =
n!eΦ(z)

√
2πnΦ (z)

(−zΦ (z))n (1 + o (1)) .

(b) Uniformly for x in compact subsets of (0, 1),

Dn (x)

= n!
(

2
nπ

)1/2

(−xeg(x))n

×

{
eg(x)⏐⏐g (x)+ ih[−1] (x)

⏐⏐1/2 cos
[
(n + 1) h[−1] (x)−

1
2
arctan

(
h[−1] (x)
g (x)

)]
+ o (1)

}
.

The zero distribution of Dn also involves the inverse function of h : if

νn =
1
n

∑
x:Dn(x)=0

δx

is the zero counting measure of Dn, then it was proved that νn converges weakly to an absolutely continuous measure with
derivative −

1
πh′(h[−1](x))

on [0, 1]. The asymptotics in [18] were subsequently generalized by Elbert [19] and Zhao [20].
urprisingly, the precise asymptotics in [18] were not sufficient to prove positivity of the weights in the interpolatory
uadrature generated by Dn. This was only resolved in the affirmative much later, see Section 4.
We note that the second author also considered more general polynomials [16,17,21, pp. 845–6] given by

D(α,β)n (x) =

n∑
i=0

(−1)n−i
(
n
i

)
(β + i + 1)α+n xi, (2.3)

here α, β > −1. If α is a nonnegative integer, these admit the Rodrigues type representation

D(α,β)n (x) = (−1)n x−β−1
(
x
d
dx

)α+n [
xβ+1 (1 − x)n

]
. (2.4)

For general α, β > −1, these polynomials satisfy the biorthogonality relation [17, p. 846], [21]∫ 1

0
D(α,β)n (x)

(
log x−1)j+α xβdx = 0, 0 ≤ j ≤ n − 1. (2.5)

A natural question is what happens if we replace log x in (2.2) by other functions. Herbert Stahl and the first author [22]
investigated polynomials orthogonal to general powers of x. Closely related polynomials arise in the Borodin–Muttalib
ensemble [23–26] but with varying exponential weights. Stahl and the first author proved [22, Theorem 1]

Theorem 2.3. Let α > 0 and

Sn (x) =

n∑
j=0

(
n
j

)[
n−1∏
k=0

(
k +

j + 1
α

)]
(−x)j .

hen
3
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(a)∫ 1

0
Sn (x) xαjdx = 0, 0 ≤ j ≤ n − 1. (2.6)

b) There is a Rodrigues type formula

Sn
(
x1/α

)
= x1−1/α

(
d
dx

)n [
xn−1+1/α (

1 − x1/α
)]n
. (2.7)

c) There is a contour integral formula

Sn
(
z1/α

)
=

n!z1−1/α

2π i

∫
Γ

t−1+1/α

t − z

[
t
(
1 − t1/α

)
t − z

]n

dt.

ere z ∈ C\(−∞, 0] while Γ is a simple closed contour in C\(−∞, 0] enclosing z.
(d) There is confluence to the Sidi polynomials

lim
α→0+

αnSn (z) = Dn (z) .

The above properties follow in a fairly straightforward way. There were also partial results about the zero distribution.
The condition (2.6) ensures that the zeros of Sn are distinct and lie in (0, 1). We applied results of VanAssche, Fano and
Ortolani [27] to obtain asymptotics for ratios of coefficients in Sn, and hence to describe the limiting zero distribution of
the reflected zeros, assuming that it exists:

Let

νn =
1
n

∑
x:Sn(x)=0

δ−x.

o that νn is supported on [−1, 0]. Also let H denote the Hilbert transform, so that for functions g ∈ L1 (R),

H [g] (x) =
1
π
PV

∫
∞

−∞

g (t)
t − x

dt,

where PV denotes Cauchy principal value. We proved [22, Theorem 2]:

Theorem 2.4. Let α > 0 and

f (x) = (1 − x)1+1/α x−1 (α + 1 − x)−1/α , x ∈ (0, 1) .

Then f is strictly decreasing with inverse f [−1]. Assume that the reflected zero counting measures {νn} converge weakly to
ome measure ν on [−1, 0]. Assume also that ν is absolutely continuous. Then

ν ′ (x) = −
1
π2x

H
[
f [−1]] (x) , x ∈ (−1, 0) .

It would obviously be preferable to have a more explicit form for the zero distribution, and a proof that the weak
imit exists. In a subsequent paper, the first author and Soran [28] investigated polynomials satisfying a version of
2.6) with a weight. Recall that for ordinary orthogonal polynomials, the classical weights (Jacobi, Laguerre, Hermite)
re characterized by their orthogonal polynomials admitting a Rodrigues formula. We characterized situations for these
iorthogonal polynomials, where there is a Rodrigues formula:

heorem 2.5. Let α > 0. Let w : (0, 1) → (0,∞) be infinitely differentiable and positive a.e. on (0, 1). Assume that Pn is a
polynomial of degree n satisfying∫ 1

0
Pn (x) xαjw (x) dx = 0, 0 ≤ j ≤ n − 1. (2.8)

hen Pn admits a Rodrigues type formula

Pn
(
x1/α

)
=

x1−1/α

w
(
x1/α

) (
d
dx

)n {
x1/α−1w

(
x1/α

) (
x
(
1 − x1/α

))n}
iff w is a Jacobi weight

w (x) = xa (1 − x)b

for some a, b > −1.
There were also analogous results for the intervals (0,∞) and (−∞,∞), as well as generating functions involving

contour integrals. In a random matrix setting, Claeys and Wang [29] considered the case ψ (x) = ex. Thus one forms
polynomials orthogonal to

{
ekx

}n−1
k=0 . Using a Riemann–Hilbert formulation for the biorthogonal polynomials, and the

Deift–Zhou steepest descent method, they obtained precise asymptotics for the polynomials.
4
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3. Polynomials orthogonal to exponentials and measures

In [16] and [30] (see also [31]), the second author developed some new quadrature rules, with origins in techniques
or accelerating convergence of sequences, for integrals of the form

I (f ) =

∫ b

a
wf .

Here (a, b) can be a finite or infinite interval, and w is a suitable weight function. In particular, the following three cases
were considered:

(i) (a, b) = (0, 1) and w (x) = xα (1 − x)β
(
log x−1

)γ , where α > −1 and β + γ > −1.
(ii) (a, b) = (0,∞) and w (x) = xαe−x with α > −1 and w (x) = xαEp (x), with p+α > 0, where Ep (x) =

∫
∞

1 e−xt t−pdt
is the exponential integral.

(iiii) (a, b) = (−∞,∞) and w (x) = |x|β e−x2 , β > −1.

The quadrature formulae take the form

In (f ) =

n∑
j=1

wnjf
(
xnj

)
and are chosen so that

Hn (z) =

n∑
j=1

wnj

z − xnj

pproximates the Stieltjes transform

H (z) =

∫ b

a

w (x)
z − x

dx,

for z outside (a, b). Starting with partial sums of the moment series

H (z) ∼

∞∑
j=1

µj−1

z j
, µj =

∫ b

a
w (x) xjdx

which may or may not converge, we apply a method of convergence acceleration. In particular, the Levin L and Sidi S
transformation (see [14] and [15, Chapter 19]) yield good candidates.

This work was continued in [32] for the interval (a, b) = (0,∞) and w (x) = xαe−x and w (x) = xαEp (x). Applying the
Levin transformation to an asymptotic expansion for

∫
∞

0
w(x)
z−x dx, leads to the polynomials [30,33], [32, p. 214]

D[j]
n (z) = (−1)n

n!
Γ (α + j + n + 1)

1
z

(
z
d
dz

)n [
z j+1L(α+j)

n (z)
]
, (3.1)

where L(β)n (z) is the classical Laguerre polynomial. The following was established in these works:

Proposition 3.1. (a) D[j]
n satisfies the biorthogonality relations∫

∞

0
D[j]
n (x) e

−σn,kxxαdx = 0, 1 ≤ k ≤ n, (3.2)

where
{
σn,k

}
are distinct and positive, and σ−1

n,k are positive roots of the polynomial

ψn (z) = (−1)n z−j−1
(
z
d
dz

)n [
z j+1 (1 − z)n

]
.

(b) Dn has n simple positive roots
{
xnj

}
and a root at 0 of multiplicity j. This yields a quadrature rule

I [j]n [f ] =

j−1∑
k=0

w̄kf (k) (0)+

n∑
j=1

wjf
(
xnj

)
, (3.3)

that is exact, that is satisfies

I [j]n [f ] =

∫
∞

f (x) xαe−xdx (3.4)

0

5
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w
p

(

(

w

for functions of the form

f (x) = P(x) + D[j]
n (x)

n∑
k=1

ckexe−σn,kx, (3.5)

here P is any polynomial of degree at most j + n − 1 , while the coefficients {ck} in the exponential part are arbitrary. In
articular, for j = 0, we obtain an interpolatory quadrature.

From the Sidi transformation, the authors obtained instead [32, p. 215] the polynomials

D̂[j]
n (z) = (−1)n

n!
Γ (α + j + n + 1)

(
d
dz

)n [
z j+nL(α+j)

n (z)
]

(3.6)

and established the following:

Proposition 3.2. (a) D̂[j]
n satisfies the biorthogonality relations (3.2), where

{
σn,k

}
are distinct and positive, and σ−1

n,k are positive
roots of the polynomial

ψ̂n (z) = (−1)n z−j
(

d
dz

)n [
z j+n (1 − z)n

]
.

(b) D̂[j]
n has n simple positive roots

{
xnj

}
and a root at 0 of multiplicity j. This yields a quadrature rule of the form

I [j]n [f ] =

j−1∑
k=0

w̄kf (k) (0)+

n∑
j=1

wjf
(
xnj

)
, (3.7)

that is exact, that is, satisfies (3.4) for functions of the form (3.5).

Related results for symmetric weights, such as
(
1 − x2

)α (
log

(
1 − x2

)−1
)β

on (−1, 1), were considered by the second
author in [34] .

In a 2008 paper [35], the authors considered polynomials Pn of degree n determined by biorthogonality conditions like
(3.2), but in a more general setting:

Proposition 3.3. Fix n distinct exponents
{
σn,j

}n
j=1 in (0,∞) and α > −1. Determine Pn of degree n by the conditions∫

∞

0
Pn (x) e−σn,jxxαdx = 0, 1 ≤ j ≤ n. (3.8)

Define the associated exponential polynomial

Qn (x) =

n∏
j=1

(
x + σ−1

n,j

)
=

n∑
j=0

qn,jxj. (3.9)

Then
(a)

Pn (x) =

n∑
j=0

(−1)n−j qn,j
Γ (α + n + 1)
Γ (α + j + 1)

xj.

b)

Qn (y) =
(−1)n

Γ (α + n + 1)

∫
∞

0
e−t tαPn (−yt) dt.

c)

xαPn (x) =
(−1)n Γ (α + n + 1)

2π i

∫ γ+i∞

γ−i∞
esxs−α−1Qn

(
−s−1) ds,

here γ > 0 and the contour of integration is the line Re s = γ .

Let

νn =
1
n

n∑
δ−1/σn,j
j=1

6



D.S. Lubinsky and A. Sidi Journal of Computational and Applied Mathematics 403 (2022) 113842

M

c
a
i
u

t

f
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w
b

T{
(

w

denote the zero counting measure for Qn, and if
{
xn,j

}
are the zeros of Pn,

µn =
1
n

n∑
j=1

δ−xn,j/(4n)

so that µn is a contracted zero counting measure for Pn. The following result was proved there [35, p. 347, Thm. 1.2]:

Theorem 3.4. Let B > 0. Assume that for n ≥ 1, we are given distinct
{
σn,j

}n
j=1 in [B,∞). The following are equivalent:

(a) There exists a measure ν such that νn → ν weakly as n → ∞.
(b) There exists a measure µ such that µn → µ weakly as n → ∞.

oreover, assuming the weak convergence, both µ and ν have support in
[
−

1
B , 0

]
, and µ will have a point mass at 0 of size

λ iff ν does. Moreover, uniformly for z ∈ C\
[
−

1
B , 0

]
,

lim
n→∞

|Pn (−4nz)|1/n /(4n) = exp
(∫ 0

−1/B
log |z − t| dµ (t)

)
.

The measures ν and µ were also related to functions defined by the asymptotic behavior of ratios or nth roots of the
oefficients of Pn and Qn, while various examples were presented there. As noted above, Claeys and Wang [29] investigated
class of polynomials that are biorthogonal to exponentials, with the added complication of an external field. These arise

n a random matrix context, namely random matrices with equispaced external source. They obtained precise asymptotics
sing deep Riemann–Hilbert methods. Related themes have been considered, for example, in [26,36].
In a 2013 paper [37], the authors considered a more general orthogonality, to dilations of measures µ, supported on

he real line, with all moments

µj =

∫
∞

0
xj dµ (x) , j = 0, 1, 2, . . . , (3.10)

inite. We assume that for n ≥ 1, we are given distinct positive numbers
{
σn,j

}n
j=1, and determine a monic polynomial Pn

f degree n by the conditions∫
∞

0
Pn (x) dµ

(
σn,jx

)
= 0, 1 ≤ j ≤ n. (3.11)

Equivalently,∫
∞

0
Pn

(
t
σn,j

)
dµ (t) = 0, 1 ≤ j ≤ n. (3.12)

s in [35], Pn is closely related to the polynomial,

Rn (y) =

n∏
j=1

(
y + σ−1

n,j

)
=

n∑
j=0

rn,jyj. (3.13)

hich we called the dilation polynomial associated with Pn. The following simple proposition established the relationship
etween Pn and Rn:

heorem 3.5. Let µ be a positive measure on (0,∞) with infinitely many points in its support, and finite moments
{
µj

}
. Let

σn,j
}n
j=1 be distinct positive numbers. Let Pn be a monic polynomial of degree n, determined by the orthogonality relations

3.11), and let Rn be given by (3.13). Then Pn exists, is unique, and
(I)

Pn (x) = (−1)n
n∑

j=0

rn,j
µn

µj
(−x)j , (3.14)

hile

(−1)n Rn (−y) =
1
µn

∫
∞

0
Pn (ty) dµ (t) . (3.15)

(II) There exists r > 0 such that

Pn (x) = µn
(−1)n

∫
Rn

(
−

x)
G (t)

dt
(3.16)
2π i |t|=r t t
7
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s

f

4

f
[

A

a
ϕ

L
<

where

G (t) =

∞∑
j=0

t j

µj
. (3.17)

(III) Write σj = σn,j, 1 ≤ j ≤ n. Then

Pn (x)
µn

=

det

⎡⎢⎢⎢⎢⎢⎣
1 σ−1

1 σ−2
1 · · · σ−n

1
1 σ−1

2 σ−2
2 · · · σ−n

2
...

...
...

. . .
...

1 σ−1
n σ−2

n · · · σ−n
n

1
µ0

x
µ1

x2
µ2

· · ·
xn
µn

⎤⎥⎥⎥⎥⎥⎦

det

⎡⎢⎢⎢⎣
1 σ−1

1 σ−2
1 · · · σ−n+1

1
1 σ−1

2 σ−2
2 · · · σ−n+1

2
...

...
...

. . .
...

1 σ−1
n σ−2

n · · · σ−n+1
n

⎤⎥⎥⎥⎦
. (3.18)

(IV) If µ has form

dµ (t) = tαe−tβ dt, t ∈ (0,∞) ,

where α > −1, β > 0, then Pn has n simple zeros in (0,∞).

Parts of Theorem 3.4 overlap with results of Brezinski [1], Iserles, Nørsett and Saff [6,7] on biorthogonal polynomials
in a more general setting. In a special case, we gave a simple new contour integral representation of Pn :

Theorem 3.6. Let β ≥ 1, α > −1, and dµ (t) = tαe−tβ dt, t ∈ (0,∞). Let
{
σn,j

}n
j=1 be distinct positive numbers. Let Pn be a

monic polynomial of degree n , determined by the orthogonality relations (3.11), and Rn be given by (3.13). Let
π

2β
< η <

π

β
, (3.19)

> 0, and let Γ be the contour consisting of the rays Γ+ =
{
reiη : r ≥ s

}
, Γ− =

{
re−iη

: r ≥ s
}
, and the circular arc

Γs =
{
seiθ : |θ | ≤ η

}
. Assume that Γ is traversed in such a way that Γs is traversed anticlockwise. Then for all complex z,

Pn (z) =
β2 (−1)n µn

2π i

∫
Γ

et
β
tβ−α−2Rn

(
−

z
t

)
dt. (3.20)

Using this and standard techniques for asymptotics of contour integrals, we showed in [37] that ‘‘strong’’ asymptotics
or Rn lead to strong asymptotics for Pn.

. Positive quadrature rules generated by biorthogonal polynomials

One of the most important questions about any quadrature formula is the positivity of its weights. For interpolatory
ormulae that are not Gauss quadratures, this is often difficult to establish. The setting is as follows: given an interval
a, b] and a ≤ x1 < x2 < · · · < xn ≤ b, a weight function w, we determine

{
λj

}n
j=1 so that

n∑
j=1

λjP
(
xj
)

=

∫ n

a
Pw.

re the
{
λj

}
positive?

For the quadrature determined by the Sidi polynomials, this question had been open since 1980. It was resolved
ffirmatively by the authors in a 2010 paper [21]. We considered a continuously differentiable, strictly increasing, function
: (a, b) → R, a positive weight function w, and the monic polynomial pn of degree n determined by the conditions∫ b

a
pnϕjw = 0, 0 ≤ j ≤ n − 1. (4.1)

et
{
xj
}n
j=1 denote the zeros of pn in (a, b). The corresponding interpolatory quadrature is exact for polynomials P of degree

n :

n∑
λjP

(
xj
)

=

∫ b

a
Pw. (4.2)
j=1

8
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Recall that a function g is said to be m absolutely monotone in an interval J if g (m) exists there and

g (j) > 0 in J for 0 ≤ j ≤ m.

If

(−1)j g (j) > 0 in J for 0 ≤ j ≤ m,

g is said to be m completely monotone in J . Our main result was:

Theorem 4.1. Let n ≥ 1 and ϕ : (a, b) → R be a strictly increasing function with n − 1 continuous derivatives, and let ψ
denote its inverse function, with domain of definition I = {ϕ (x) : x ∈ (a, b)}. Assume that for each β ∈ I , the function

g (t) =
1

ψ (β)− ψ (t)
, t ∈ I\{β} , (4.3)

s n − 1 absolutely monotone in I ∩ (−∞, β) and −g is n − 1 completely monotone in I ∩ (β,∞). Let w : (a, b) → (0,∞)

be such that
∫ b
a xjϕ (x)kw (x) dx is defined and finite for 0 ≤ j ≤ n and 0 ≤ k ≤ n − 1. Let pn be the monic polynomial of

degree n determined by the biorthogonality conditions (4.1). Then the weights
{
λj

}n
j=1 in the interpolatory rule In generated

by pn and w are all positive.

We also proved positivity of the quadrature weights when the weight w is replaced by w |ϕ| :

Theorem 4.2. Assume the hypotheses of Theorem 4.1, and in addition, that ϕ is of one sign in (a, b). Then the weights
{
λj

}n
j=1

n the interpolatory rule In generated by pn and ŵ = w |ϕ| are all positive.

orollary 4.3. Let α, β > −1 and n ≥ 1. Let w (x) =
(
log x−1

)α xβ or w (x) =
(
log x−1

)α+1 xβ , x ∈ (0, 1). Then the weights{
λj

}n
j=1 in the interpolatory rule generated by the Sidi polynomials D(α,β)n defined by (2.3) and the weight w are positive.

We also considered the case where the quadrature points come from a different weight. The proofs of these results
are non-trivial. They involve careful zero counting arguments.

Here is an interesting unsolved problem:

Problem 4.4. Investigate the positivity of interpolatory quadrature generated by the polynomials defined by (3.1) and
(3.6), that are biorthogonal to exponentials.

The authors spent much effort trying to use the techniques of [21] for this problem, but failed.

5. Potential theory

Potential theory is a powerful tool in so many problems involving polynomials [38–41]. In this section, we discuss
its application to biorthogonal polynomials. Let P (K) denote the set of all probability measures with compact support
contained in the set K. For any positive Borel measure µ, we define its energy integral

I (µ) =

∫∫
log

1
|x − t|

dµ (x) dµ (t) . (5.1)

or K ⊂ C, its (inner) logarithmic capacity is

cap (K) = sup
{
e−I(µ)

: µ ∈ P (K)
}
.

e say that a property holds q.e. (quasi-everywhere) if it holds outside a set of capacity 0. We use meas to denote linear
ebesgue measure. For further orientation, see for example [39,40,42].
Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous function, with inverse ψ [−1], and determine a monic

olynomial Pn of degree n by the biorthogonality conditions∫ 1

0
Pn (x) ψ (x)j dx =

{
0, j = 0, 1, 2, . . . , n − 1,
In ̸= 0, j = n . (5.2)

n will have n simple zeros in (0, 1), so we may write

Pn (x) =

n∏
j=1

(
x − xjn

)
. (5.3)

efine the zero counting measures

µn =
1
n

n∑
δxjn . (5.4)
j=1

9
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We need a new energy integral

J (µ) =

∫∫
K (x, t) dµ (x) dµ (t) , (5.5)

nd a new kernel

K (x, t) = log
1

|x − t|
+ log

1
|ψ (x)− ψ (t)|

. (5.6)

he minimal energy corresponding to ψ is

J ∗ (ψ) = inf {J (µ) : µ ∈ P ([0, 1])} . (5.7)

or probability measures µ, ν, we define the classical potential

Uµ (x) =

∫
log

1
|x − t|

dµ (t) , (5.8)

he mixed potential

Wµ,ν (x) =

∫
log

1
|x − t|

dµ (t)+

∫
log

1
|ψ (x)− ψ (t)|

dν (t) (5.9)

= Uµ (x)+ Uν◦ψ
[−1]

◦ ψ (x) , (5.10)

and the ψ potential

Wµ (x) = Wµ,µ (x) =

∫
K (x, t) dµ (t) . (5.11)

We needed ψ to map small sets to small sets:

Definition 5.1. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous function, with inverse ψ [−1]. Assume
that ψ satisfies the following two conditions:

(I)

cap (E) = 0 ⇒ cap
(
ψ [−1] (E)

)
= 0. (5.12)

(II) For each ε > 0, there exists δ > 0 such that

meas (E) ≤ δ ⇒ meas
(
ψ [−1] (E)

)
≤ ε. (5.13)

Then we say that ψ preserves smallness of sets.

The conditions (I), (II) are satisfied if ψ satisfies a local lower Lipschitz condition. Using classical methods, we proved
in [43, p. 29, Thm. 1.2]:

Theorem 5.2. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous function that preserves smallness of sets.
Define the minimal energy J ∗

= J ∗ (ψ) by (5.7). Then
(a) J ∗ is finite and there exists a unique probability measure νψ on [0, 1] such that

J
(
νψ

)
= J ∗. (5.14)

(b)

W νψ ≥ J ∗ q.e. in [0, 1] . (5.15)

In particular, this is true at each point of continuity of W νψ .
(c)

W νψ ≤ J ∗ in supp
[
νψ

]
. (5.16)

and

W νψ = J ∗ q.e. in supp
[
νψ

]
. (5.17)

(d) νψ is absolutely continuous with respect to linear Lebesgue measure on [0, 1]. Moreover, there are constants C1 and C2
depending only on ψ , such that for all compact K ⊂ [0, 1],

νψ (K ) ≤
C1

|log cap (K)|
≤

C2

|logmeas (K)|
. (5.18)

e) There exists ε > 0 such that

[0, ε] ∪ [1 − ε, 1] ⊂ supp
[
νψ

]
. (5.19)
10
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Let

In =

∫ 1

0
Pn (t) ψ (t)n dt, n ≥ 1. (5.20)

heorem 5.3. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous function that preserves smallness of sets. Let
Pn} be the corresponding biorthogonal polynomials, with zero counting measures {µn}. If

supp
[
νψ

]
= [0, 1] , (5.21)

hen the zero counting measures {µn} of (Pn) satisfy

µn
∗

→ νψ , n → ∞ (5.22)

nd

lim
n→∞

I1/nn = exp
(
−J ∗

)
. (5.23)

oreover, uniformly for z in compact subsets of C\[0, 1]

lim
n→∞

|Pn (z)|1/n = exp (−Uµ (z)) . (5.24)

We also proved that we can replace (5.21) by the more implicit, but more general, assumption that supp
[
νψ

]
contains

he support of every weak limit of every subsequence of {µn}. We proved (5.21) when the kernel K , and hence the potential
νψ , satisfies a convexity condition:

heorem 5.4. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous function that preserves smallness of sets. In
ddition assume that ψ is twice continuously differentiable in (0, 1) and either
(a) for x, t ∈ (0, 1) with x ̸= t,

∂2

∂x2
K (x, t) > 0, (5.25)

or
(b) for x, t ∈ (ψ (0) , ψ (1)) with x ̸= t,

∂2

∂x2
[
K

(
ψ [−1] (x) , ψ [−1] (t)

)]
> 0. (5.26)

hen

supp
[
νψ

]
= [0, 1] . (5.27)

We showed in [43] that for

ψ (x) = xα, x ∈ [0, 1] .

ither (5.25) or (5.26) holds and hence (5.21) holds. We showed this separately for α ≥ 1 and for α < 1. As noted before,
uch a ψ arises in the Borodin–Muttalib ensemble in random matrices [25]. Properties of the equilibrium measure were
lso investigated there.
Claeys and Wang [29] provided a detailed study for the case where ψ (t) = et , with the added complication of an

xternal field. They established an explicit formula for the density of the equilibrium density νψ in terms of the second
erivative of the external field.
We believe the following problem is interesting:

roblem 5.5. Find general hypotheses for supp
[
νψ

]
= [0, 1].

Problem 5.6. Find classes of ψ for which we can explicitly solve the integral equation (5.17).

Bloom, Levenberg, Totik, and Wielonsky [44] considered a much more general setting where there is an external field,
while ψ need not be strictly increasing. Let K ⊂ C be closed and have positive capacity. Let Q : K → R be lower
semicontinuous on K, with

lim
|z|→∞,z∈K

[Q (z)− log |z|] = ∞.

Of course if K is compact, this last assumption is vacuous. For a given continuous function ψ : K → C, we say Q is
ψ-admissible if

lim [Q (z)− log |z| − log (1 + |ψ (z)|)] = ∞.

|z|→∞,z∈K

11
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For probability measures µ on K, define the energy integral with external field Q ,

E (µ) =

∫∫
K (x, y) dµ (x) dµ (y)+ 2

∫
Q dµ.

Here the kernel K is as in (5.6). We also need a ‘‘push forward’’ measure ψ∗µ defined by∫
h ◦ ψ dµ =

∫
h dψ∗µ,

so that in particular,∫∫
log

1
|ψ (x)− ψ (t)|

dµ (x) dµ (t) =

∫∫
log

1
|x − t|

dψ∗µ (x) dψ∗µ (t) .

et

V = inf {E (µ) : µ is a probability measure on K} .

loom, Levenberg, Totik, and Wielonsky proved that there is a unique minimizing measure:

roposition 5.7. Let K ⊂ C be closed, and Q be ψ-admissible for K. Suppose there exists a probability measure µ on K with
(µ) < ∞. Then
(a) There is a unique probability measure µQ on K with

E
(
µQ

)
= V .

b) µQ has compact support and I
(
µQ

)
and I

(
ψ∗µQ

)
are finite.

(c) The following Frostman type inequalities hold:

UµQ (z)+ Uψ∗µQ (ψ (z))+ Q (z) ≥ F q.e. on K;

UµQ (z)+ Uψ∗µQ (ψ (z))+ Q (z) ≤ F on supp
[
µQ

]
.

Here

F = V −

∫
Q dµQ .

(d) If a probability measure µ on K has finite energy E (µ) and satisfies

Uµ (z)+ Uψ∗µ (ψ (z))+ Q (z) ≥ C q.e. on K;

Uµ (z)+ Uψ∗µ (ψ (z))+ Q (z) ≤ C on supp
[
µQ

]
.

for some constant C then µ = µQ .

Bloom et al. also studied weighted Fekete points and convergence of their counting measures to the equilibrium
measure. They establish inequalities that estimate the growth of P (z)Q (ψ (z)), where P and Q are polynomials. These
are impressive extensions of the classical Bernstein–Walsh inequalities for growth of polynomials.

One problem that stands out both in this more general situation and the more restrictive situation in [43] is that not
much is known about the support of the equilibrium measure µQ as well as the behavior of µQ . It certainly merits further
investigation.
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